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ABSTRACT

Machine unlearning refers to mechanisms that can remove
the influence of a subset of training data upon request from
a trained model without incurring the cost of re-training from
scratch. This paper develops a unified PAC-Bayesian frame-
work for machine unlearning that recovers the two recent de-
sign principles – variational unlearning [1] and forgetting La-
grangian [2]– as information risk minimization problems [3].
Accordingly, both criteria can be interpreted as PAC-Bayesian
upper bounds on the test loss of the unlearned model that take
the form of free energy metrics.

Index Terms— Machine unlearning, PAC-Bayesian
bounds, free energy minimization

1. INTRODUCTION

AI tools are increasingly widespread and subject to privacy
attacks and data misuse. Recent regulations, such as the Eu-
ropean Union’s General Data Protection Regulation (GDPR)
and the California Consumer Privacy Act, has enshrined in
law the right for individuals to withdraw consent to the use of
their personal data for training machine learning models. The
mere deletion of the requested data from the training data set
does not serve the purpose, as information about the deleted
data can still be retrieved from already trained machine learn-
ing models [4]. Thus, data deletion necessitates the machine
learning model to unlearn the contribution of the deleted data
to the training process, such that the resulting model behaves
as if it has never observed the data in the first place.

A straightforward approach to unlearn is to retrain the
model from scratch by using only data remaining after dele-
tion of the data to be unlearnt. However, this is computation-
ally intensive and resource expensive. Machine unlearning

The authors have received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 Research and Innovation
Programme (Grant Agreement No. 725731)

refers to mechanisms that can remove the influence of a spe-
cific subset of the training data on a trained machine learning
model, without incurring the cost of retraining from scratch
[5], [6].

Several machine unlearning approaches have been studied
since the introduction of the concept in [5], where the problem
was studied in the context of statistical query learning. [7]
proposes an unlearning approach that partitions the data set
into shards that are used to train multiple models in isolation
and finally aggregrated. This allows unlearning to be carried
out by aggregating only the remaining shards, avoiding the
need for retraining.

Our work is motivated by two recently proposed machine
unlearning mechanisms. The first proposes a design criterion,
termed Evidence Upper BOund (EUBO), for variational un-
learning within a Bayesian setting [1], while the second opti-
mizes over a “scrubbing function” by minimizing a forgetting
Lagrangian criterion [2]. Although prima facie these two ap-
proaches seem different, we demonstrate that the two design
principles can be interpreted in a unified manner in the context
of PAC-Bayesian theory [8], [9]. PAC-Bayesian theory de-
velops high-probability upper bounds on the population loss
of a learning algorithm in terms of a free energy metric that
includes the sum of a training loss and the Kullback-Leibler
(KL) divergence between the learning algorithm and a data-
independent prior distribution [9, 10].

The main contributions of the paper are summarized as
follows. We develop a unified PAC-Bayesian framework
for machine unlearning that explains the unlearning design
principles in [1] and [2] through the principle of information
risk minimization (IRM) [3]. The PAC-Bayesian formulation
makes use of the recent result in [11] that accounts for data-
dependent priors. We show that the design criteria – EUBO
and forgetting Lagrangian – optimize PAC-Bayesian bounds
with appropriate choices of training loss and data-dependent
prior. Finally, the proposed framework motivates the design
of amortized variants of variational unlearning and forgetting
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Lagrangian-based mechanisms, which are also described.

2. LEARNING AND UNLEARNING ALGORITHMS

In this section, we start by defining the operation and perfor-
mance criteria of learning and unlearning algorithms. These
are described as stochastic mappings as in the standard PAC-
Bayes framework.

2.1. Learning Algorithm

Let D = (Z1, . . . , Zn) denote a training data set of n sam-
ples generated i.i.d. according to an unknown population dis-
tribution PZ ∈ P(Z). A learning algorithm uses the data set
D to infer a model parameter W belonging to a model class
W . We define the learning algorithm as a stochastic mapping,
PW |D ∈ P(W)1, from the input training set D to the model
class,W . The probabilistic mapping PW |D describes a distri-
bution over all possible outcomes W in the model classW .

Let ` :W ×Z → R+ denote a loss function. The goal of
the learning algorithm is to find a model parameter w ∈ W
that minimizes the population loss,

L(w) = EPZ
[`(w,Z)], (1)

which is the average loss of the model parameter w incurred
on a new test data point Z ∼ PZ . The population loss (1)
is unknown to the learner, since the underlying population
distribution PZ is not available. Instead, the learner uses the
empirical training loss on the data set D, i.e.,

L̂(w|D) =
1

n

n∑
i=1

`(w,Zi) (2)

as the training criterion. For a given training data set D,
we define the generalization error, ∆L(PW |D), of a learn-
ing mechanism PW |D as the average difference between the
population loss (1) and the training loss (2), i.e.,

∆L(PW |D) = EPW |D [L(W )− L̂(W |D)]. (3)

The generalization error (3) quantifies the extent to which the
training loss (2) can be reliably used as a proxy measure for
the unknown population loss.

2.2. Machine Unlearning

Consider a model Wl ∼ PW |D learned using the data set
D. When a request is received to “delete” a subset De ⊂
D of m samples, the learned model Wl must be updated so
as to “unlearn” the information extracted from the data set
De by the learning process. We refer to data set De as the
unlearning data set. Ideally, this could be done by re-training
from scratch by using the remaining data, Dr = D \De, i.e.,

1We use P(·) to denote the space of all probability distributions on ‘·’.

by applying the stochastic mapping PW |Dr
. Given the large

computational cost of re-training, machine unlearning aims
to remove the influence of the data De on the learned model
Wl without incurring the full cost of re-training from scratch.
Formally, we define an unlearning algorithm as follows [12].

Definition 2.1 (Unlearning Algorithm) An unlearning al-
gorithm PW |Wl,T (D),De

is a stochastic mechanism that maps
the learned model parameter Wl ∼ PW |D, a statistic T (D)
of data set D, and the unlearning data set De to the space of
model parametersW .

We note that the rationale for making the unlearned model
W ∼ PW |Wl,T (D),De

depend on a statistic T (D) of D is
to rule out training from scratch. In fact, if the statistic is
T (D) = D, the unlearning algorithm can ignore Wl and re-
train from scratch, while more restrictive choices of T (D)
make this impossible.

In order to ensure successful unlearning, one needs to im-
pose that the distribution of the unlearned model W be close
to that obtained by training from scratch. For fixed data sets
D andDe, the latter distribution is PW |Dr

, while the former is
given by the average EPWl|D

[PW |Wl,T (D),De
] over the learn-

ing mechanism. Note that the expectation marginalizes over
the learned models. This constraint can be formalized as fol-
lows.

Definition 2.2 (ε-certified unlearning) An unlearning algo-
rithm PW |Wl,T (D),De

is said to satisfy ε-certified unlearning
for ε > 0 if

DKL(EWl∼PW |D [PW |Wl,T (D),De
]||PW |Dr

) ≤ ε, (4)

where DKL(P ||Q) denotes the KL divergence between distri-
butions P and Q.

By the biconvexity of the KL divergence, it is easy to see
that the unlearning certificate in (4) is implied by the stronger
condition that the inequality

DKL(PW |Wl,T (D),De
||PW |Dr

) ≤ ε (5)

applies for all Wl ∈ W in the support of PW |D.

3. PRELIMINARIES

In this section, we briefly review the classical PAC-Bayesian
framework, which underlies the proposed unified approach to
machine unlearning. PAC Bayesian theory [8, 13] provides
upper bounds on the average population loss, EPW |D [L(W )],
of a learning algorithm PW |D in terms of: (a) the aver-
age training loss, EPW |D [L̂(W |D)], and (b) the KL diver-
gence between the distribution PW |D and an arbitrary data-
independent “prior” QW . The PAC-Bayesian bounds hold
with high probability over random draws of the training data
set D. There has been extensive study on various refinements
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to the original PAC-Bayesian bound of [8] (see [14] for a
review). More recently, PAC-Bayesian bounds have been
extended to account for data-dependent priors [15], [11].

In this work, we make use of the general PAC-Bayesian
bound derived in Theorem 2 of [11] that allows for data-
dependent priors. This turns out to be important for unlearn-
ing, since the prior will be used to account for the learning
algorithm. The next lemma restates Theorem 2 in [11] by us-
ing our notation and by adopting a conventional formulation
in terms of uniform bounds over all posteriors PW |D. A proof
is provided for completeness in Section 6.1.

Lemma 3.1 Let QW |D denote a data-dependent prior. For
any (measurable) function A : Zn × W → R2 and convex
function F : R2 → R, let f : Zn ×W → R be the compo-
sition of F and A, and let ξ = EP⊗n

Z
EQW |D [exp(f(D,W ))].

Then, with probability at least 1− δ, with δ ∈ (0, 1), over the
random draw of data set D ∼ P⊗nZ , the following inequality
holds uniformly over all stochastic mappings PW |D

F (EPW |D [A(D,W )])

≤ DKL(PW |D||QW |D) + log(ξ/δ). (6)

In the rest of the paper, we will use Lemma 3.1 by select-
ing function A(D,W ) to output a tuple including the popula-
tion loss L(W ) and a training loss metric to be specialized for
different unlearning methods. Furthermore, the convex func-
tion F will be chosen to output the difference of its inputs,
i.e., F (a, b) = a − b. With these choices, the PAC-Bayesian
bound in (6) will allow us to relate the empirical training met-
rics and the unknown population loss.

For reference, in the standard analysis of learning al-
gorithms, the function A(D,W ) is selected to be the two-
dimensional vector [βL(W ), βL̂(W |D)]. With this choice,
the bound in (6) can be re-written as an upper bound on the
population loss that holds for all PW |D:

EPW |D [L(W )] ≤ FIRM +
1

β
log(ξ/δ), where, (7)

FIRM = EPW |D [L̂(W |D)] +
1

β
DKL(PW |D||QW |D).

Important to our framework is the observation that the PAC-
Bayesian bound (6), and hence also (7), hold uniformly over
all choices of the learning algorithm PW |D. As such, one
can optimize the right-hand side of (7) ove the learning al-
gorithm PW |D by considering the problem minPW |D FIRM.
By minimizing an upper bound on the population loss, the
learning criterion (7) facilitates generalization. This approach
is known as Information Risk Minimization (IRM) [3], and it
amounts to the minimization of a free energy criterion [10].
A free energy criterion is given by the sum of a training loss
and of an information-theoretic regularization.

The PAC-Bayesian bound in (6) contains a constant term
ξ, bounding which ensures non-vacuous bounds on the gen-
eralization error. For data-independent priors, under suitable

assumptions on the loss function, such as boundedness or sub-
Gaussianity, the constant ξ can be easily upper bounded. An
upper bound on ξ for a data-dependent prior has been recently
obtained in [11]. Since we will use (6) to justify unlearning
criteria via variants of the IRM problem, we will not be fur-
ther concerned with bounding ξ.

4. VARIATIONAL UNLEARNING

In this section, we study the Bayesian unlearning framework
introduced in the recent work [1]. As we first review, this
paper presents a new unlearning criterion, termed Evidence
Upper BOund (EUBO), that enables variational unlearning.
To be consistent with Definition 2.1, we specifically describe
here an amortized variational unlearning variant of the ap-
proach proposed in [1]. We then show that the resulting un-
learning algorithm can be interpreted as IRM, which is ob-
tained through a specific instantiation of the PAC-Bayesian
bound (6).

4.1. Amortized Variational Unlearning

In order to meet the unlearning requirement (4) for some ε >
0, the variational unlearning framework proposed in [1] finds
a distribution in the model parameter spaceW that is closest,
in terms of KL divergence, to the distribution PW |Dr

resulting
from re-training on the remaining data Dr. Optimization is
restricted to a given family of distributions.

The approach requires the variational optimization to be
carried out separately for any given selection of data sets D
and De. Furthermore, it relies on access to the distribution
PW |D and not solely on a trained model Wl. In contrast,
an efficient unlearning mechanism conforming to Defini-
tion 2.1 must define a conditional probability distribution
PW |Wl,T (D),De

that can be instantiated for any choice of
learned model Wl, statistic T (D) of the data, and unlearn-
ing data set De. To this end, in this section, we develop an
amortized variant of variational unlearning [1] that enables
optimization over an unlearning mechanism PW |Wl,T (D),De

.
We refer to this approach as amortized variational unlearning
(AVU).

The proposed AVU framework constrains the unlearning
mechanism PW |Wl,T (D),De

to belong to a family QAVU of
(parameterized) conditional distributions on W . AVU seeks
to find the unlearning mechanism PW |Wl,T (D),De

that solves
the following problem

min
PW |Wl,T (D),De

∈QAVU

EPD,DePWl|D

[
DKL(PW |Wl,T (D),De

||PW |Dr
)
]
,

(8)

where PWl|D denote the distribution of the learned model
Wl ∼ PW |D, and PD,De

denote the probability distribution
of the training data D ∼ P⊗nZ and of the unlearning data set
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De ∼ PDe|D. The conditional distribution PDe|D describes
a uniformly distributed stochastic selection of a subset De of
m samples from D. Problem (8) aims at ensuring that the
unlearning condition (5) be satisfied on average over all train-
ing data set D and unlearning data set De for small value of
ε > 0.

Following [1], the optimization problem in (8) can be
equivalently formulated as

min
PW |Wl,T (D),De

∈QAVU

EPD,DePWl|D

[
EUBO(PW |Wl,T (D),De

, PW |D)
]
,

(9)

where the Evidence Upper BOund (EUBO) is defined as

EUBO(PW |Wl,T (D),De
, PW |D)

=EPW |Wl,T (D),De
[logPDe|W ]

+DKL(PW |Wl,T (D),De
||PW |D). (10)

The EUBO (10) comprises of two terms: (i) the average pos-
itive log-likelihood of the unlearning data set De obtained af-
ter unlearning; and (ii) the deviation of the unlearning mech-
anism from the learning algorithm PW |D. Intuitively, the first
term should be small for effective unlearning, while the sec-
ond is a regularization penalty that accounts for the residual
epistemic uncertainty associated with the training algorithm.

4.2. A PAC-Bayesian View of Variational Unlearning

We now demonstrate that the optimization (10) can be jus-
tified as an IRM obtained from the PAC-Bayesian bound in
(6). To instantiate the PAC-Bayesian bound in (6) for unlearn-
ing, we note that the unlearning mechanism in Definition 2.1
is a cascade of two operations: (a) sample model parame-
ter Wl ∼ PW |D according to the learning mechanism; and
then (b) apply the unlearning mechanism PW |Wl,T (D),De

on
the learned model Wl. This process is subject to the random
draw of data D ∼ P⊗nZ and to the random selection of subset
of data to be removed, De ∼ PDe|D. In line with this ob-
servation, we have the following PAC-Bayesian bound for the
unlearning mechanism.

Corollary 4.1 Let the data dependent prior be fixed as the
learning mechanism PW |D. With probability at least 1 − δ,
with δ ∈ (0, 1), over the random draw of the data set D ∼
P⊗nZ and the subset De ⊂ D to be removed, the follow-
ing inequality holds uniformly for all unlearning algorithms
PW |Wl,T (D),De

:

EPWl|D
EPW |Wl,T (D),De

[−EPZ
[logPZ|W ]]

≤EPWl|D

[
1

m
EUBO(PW |Wl,T (D),De

, PW |D)

]
+

1

m
log

ξ̄AVU

δ
, (11)

where ξ̄AVU = EPD,DePW |D [exp(m(−EPZ
[logPZ|W ] −

(1/m) logPDe|W )].

Proof : This result is obtained from Lemma 3.1 by selecting
A(D,W ) as the two-dimensional vector [−mEPZ

[logPZ|W ],
logPDe|W ] and F (a, b) = a−b. Details can be found in Sec-
tion 6.2.

The left-hand side in (11) is the average test log-loss ob-
tained by the unlearnt model. Therefore, by (11), the varia-
tional unlearning mechanism introduced in [1] can be inter-
preted as minimizing an upper bound on the test log-loss over
the unlearning mechanism PW |Wl,T (D),De

(assuming knowl-
edge of PW |D). By (10), this minimization is of the form (7)
assumed by IRM problems [3]. As δ → 0, the inequality in
(11) holds almost surely, which justifies taking the average in
(10) over the draws of D and De. It follows that the proposed
AVU (10) can be similarly interpreted in terms of the min-
imization of a PAC-Bayes upper bound on the average test
log-loss, and hence in terms of an IRM problem.

5. FORGETTING LAGRANGIAN-BASED
UNLEARNING

In this section, we first review the unlearning framework in-
troduced in [2], the Forgetting Lagrangian, and show that this
can also be intrepreted as an IRM obtained as a specific in-
stantiation of (6).

5.1. Forgetting Lagrangian

Reference [2] considers a stochastic learning mechanism
PW |D that trains the model parameter vector W of a deep
neural network (DNN) using data set D. The unlearning
mechanism PW |Wl,T (D),De

ignores the statistic T (D) and
yields a stochastic scrubbing function PW |Wl,De

that “scrubs
off” the influence of the unlearning data setDe on the learned
model Wl ∼ PW |D.

The scrubbing function PW |Wl,De
is designed so as to op-

timize the Forgetting Lagrangian,

FL(PW |Wl,De
, λ) = EPW |Wl,De

[L̂(W |Dr)]

+ λDKL(EPWl|D
[PW |Wl,De

]||EPWl|Dr
[P̃W |Wl

]) (12)

where λ > 0 denotes a Lagrangian multiplier, and P̃W |Wl

is a an arbitrary ‘reference’ distribution that maps the model
Wl ∼ PW |Dr

, obtained by retraining on the data set Dr, to
a “noisy” version W ∈ W . The forgetting Lagrangian in
(12) thus aims at finding an unlearning mechanism that (a)

minimizes the average training loss L̂(w|Dr) on the remain-
ing data Dr; while (b) ensuring that the unlearning mecha-
nism PW |Wl,De

applied on the learned model Wl ∼ PW |D is
close, in terms of KL divergence, to the reference distribution
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P̃W |Wl
applied on the model Wl ∼ PW |Dr

obtained after re-
training from scratch. Thus, the KL divergence term in (12)
ensures a “certificate of unlearning” with respect to the refer-
ence P̃W |Wl

in the sense of Definition 2.2. Moreover, the KL
divergence term can be interpreted as an upper bound on the
information about the unlearning data set De that can be read
out from observing the unlearned model W ∼ PW |Wl,De

[2].
As discussed in Section 4.1, designing the unlearning

mechanism via the forgetting Lagrangian in (12) requires
the optimization to be performed for each selection of the
learned model Wl and the data sets D and De. Furthermore,
it depends directly on the distribution PW |D. Following the
discussion in Section 4.1, we could address this problem by
considering an amortized forgetting Lagrangian approach
so as to optimize a conditional distribution PW |Wl,De

that
can be instantiated for any choice of learned model Wl, and
unlearning data De. We do not pursue this here, since ref-
erence [2] shows that an approximate solution PW |Wl,De

to
problem (12) can be found that does not require a separate
optimization for all D and De.

5.2. A PAC-Bayesian view of forgetting Lagrangian

We now show that the forgetting Lagrangian (12) follows
from a specific instantiation of the PAC-Bayesian bound (6)
for unlearning mechanisms.

Corollary 5.1 Let the data dependent prior be fixed as
P̃W |D,De

= EPWl|Dr
[P̃W |Wl

]. Then, for all β > 0, with
probability at least 1 − δ, with δ ∈ (0, 1), over the random
draw of the data set D ∼ P⊗nZ and the subset De ⊂ D to
be removed, the following inequality holds uniformly for all
PW |Wl,De

,

EPWl|DPW |Wl,De
[L(W )]

≤ EPWl|D
[FL(PW |Wl,De

, β−1)] +
1

β
log

ξFL
δ2

, (13)

where ξFL = EPD,De P̃W |D,De
[exp(β(L(W )− L̂(W |Dr))].

Proof : The proof follows in the same steps as the proof of
Corollary 4.1 with A(D,W ) = [βL(W ), βL̂(W |Dr)]. De-
tails in Section 6.3.

The left-hand side of (13) is the average test loss, and
hence the forgetting Lagrangian framework introduced in [2]
can be again interpreted as minimizing an upper bound on the
average test loss.

6. PROOFS OF MAIN RESULTS

6.1. Proof of Lemma 3.1

The PAC-Bayesian bound in (6) is obtained by first using a
Markov inequality, and then applying change of measure as

detailed next. The Markov inequality for a non-negative ran-
dom variable Y states that with probability at least 1−δ, with
δ ∈ (0, 1), we have Y ≤ E[Y ]/δ. Precisely, the following
inequality holds,

Pr(Y ≤ E[Y ]/δ) ≥ 1− δ.

We specialize the above Markov inequality to our setting by
taking Y = EQW |D [exp(f(D,W ))]. Note that Y is a function
of the random variable D, and that EP⊗n

Z
[Y ] = ξ. Markov’s

inequality then gives that

PrD

(
EQW |D [exp(f(D,W )] ≤ ξ

δ

)
≥ 1− δ. (14)

Applying change of measure then results in the following in-
equality

PrD

(
∀PW |D,EPW |D

[
exp
(
f(D,W )− log

PW |D(W |D)

QW |D(W |D)

)]
≤ ξ

δ

)
≥ 1− δ. (15)

Using Jensen’s inequality to take expectation inside the expo-
nential term, and subsequently applying log on both sides of
the inequality then results in

PrD

(
∀PW |D, EPW |D [f(D,W )]−DKL(PW |D||QW |D)

≤ log
ξ

δ

)
≥ 1− δ. (16)

Finally, noting that f(D,W ) = F (A(D,W )) where F is
convex, and applying Jensen’s inequality again results in the
PAC-Bayesian bound in (6).

6.2. Proof of Corollary 4.1

The required bound follows by instantiating the general PAC-
Bayesian bound in Lemma 3.1 for unlearning. As such, the
unlearning PAC-Bayesian bound depends on the cascade op-
eration of learning a model Wl ∼ PW |D, and subsequent un-
learning using PW |Wl,T (D),De

. This process is subject to the
random draw of D ∼ P⊗nZ , and to the random selection of
the subset De ⊂ D. Consequently, we consider the prior in
Lemma 3.1 as QW |D,De

, depending on both data sets D and
De.

Lemma 3.1 then gives that with probability at least 1 − δ
over the random draw of data setD, and that of the unlearning
data set De, the following inequality holds uniformly over all
distributions PW |D,De

,

F (EPW |D,De
[A(D,W )])−DKL(PW |D,De

||QW |D,De
)

≤ log
ξ

δ
. (17)
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In particular, (17) holds for all learning mechanisms PW |D
and unlearning mechanismsPW |Wl,T (D),De

such thatPW |D,De
=

EPWl|D
[PW |Wl,T (D),De

] is the marginal of the joint distribu-
tion PWl|D ⊗ PW |Wl,T (D),De

.
To get to (11), we consider the PAC-Bayesian bound

(17) for a fixed learning algorithm PW |D. Further, we
take QW |D,De

= PW |D, A(D,W ) = [−mEPZ
[logPZ|W ],

logPDe|W ] and F (a, b) = a − b. Noting that PW |D,De
=

EPWl|D
[PW |Wl,T (D),De

], we use the biconvexity of KL diver-
gence to upper bound

DKL(PW |D,De
||PW |D)

≤ EPWl|D
[DKL[PW |Wl,T (D),De

||PW |D].

Using all these in (17) yields the required bound in (11).

6.3. Proof of Corollary 5.1

The proof follows the same line as the proof of Corollary 4.1
in Section 6.2. To get to (13), we use (17) with PW |D,De

=

EPWl|D
[PW |Wl,T (D),De

], QW |D,De
= EPWl|Dr

[P̃W |Wl
] and

A(D,W ) = [βL(W ), βL̂(W |Dr)].

7. CONCLUSION

The paper presents a unified PAC-Bayesian framework for the
design of machine unlearning algorithms. We show that two
unlearning design criteria studied in literature – EUBO for
variational unlearning [1] and Forgetting Lagrangian [2] can
be interpreted as IRM obtained via specific instantiation of
the proposed PAC-Bayesian framework.
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