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Abstract

We study edge-labelings of the complete bidirected graph
↔
Kn with functions that map the set

[d] = {1, . . . , d} to itself. We call a directed cycle in
↔
Kn a fixed-point cycle if composing the labels of

its edges in order results in a map that has a fixed point, and we say that a labeling is fixed-point-free
if no fixed-point cycle exists. For a given d, we ask for the largest value of n, denoted Rf (d), for
which there exists a fixed-point-free labeling of

↔
Kn. Determining Rf (d) for all d > 0 is a natural

Ramsey-type question, generalizing some well-studied zero-sum problems in extremal combinatorics.
The problem was recently introduced by Chaudhury, Garg, Mehlhorn, Mehta, and Misra [EC 2021],
who proved that d ≤ Rf (d) ≤ d4 + d and showed that the problem has close connections to EFX
allocations, a central problem of fair allocation in social choice theory.

In this paper we show the improved bound Rf (d) ≤ d2+o(1), yielding an efficient (1 − ε)-EFX
allocation with n agents and O((n/ε)0.67) unallocated goods; this improves the bound of O((n/ε)0.8)
of Chaudhury, Garg, Mehlhorn, Mehta, and Misra.

Additionally, we prove the stronger upper bound 2d − 2, in the case where all edge-labels are
permutations. A very special case of this problem, that of finding zero-sum cycles in digraphs whose
edges are labeled with elements of Zd, was recently considered by Alon and Krivelevich [JGT 2021]
and by Mészáros and Steiner [EJC 2021]. Our result improves the bounds obtained by these authors
and extends them to labelings with elements of an arbitrary (not necessarily commutative) group,
while also simplifying the proof.
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1 Introduction

Let
↔
Kn denote the complete bidirected graph on n vertices, that is,

↔
Kn has directed edges

(u, v) and (v, u) for every pair u, v of distinct vertices. For an integer d > 0, a d-labeling, or
simply labeling, ℓ of

↔
Kn is an assignment of a function ℓe : [d] → [d] to each edge e of

↔
Kn,

where [d] = {1, . . . , d}.
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17:2 Fixed-Point Cycles and Approximate EFX Allocations

Let C be a simple cycle of
↔
Kn with edges e1, . . . , ek (appearing in this order), where

each edge ei is labeled with a function fi, for i ∈ [k]. We say that C is a fixed-point cycle if
the function f = f1 ◦ f2 ◦ · · · ◦ fk = fk(fk−1(· · · f1(x) · · · )) has a fixed point, i.e., f(x) = x

for some x ∈ [d]. Observe that cyclically permuting the edges along C does not affect the
existence of a fixed point.

Let Rf (d) be the largest value n such that a d-labeling of
↔
Kn with no fixed-point cycle

exists. Although not obvious a priori, the finiteness of Rf (d) for all d can be seen through
a simple reduction to Ramsey’s theorem. In light of the known exponential bounds on
multicolor Ramsey numbers [13, 20, 23], the bound obtained in this way is doubly exponential
in d (see [12] for details).

A lower bound of Rf (d) ≥ d can be obtained through the following construction (found
independently by various authors in different contexts). Say V (

↔
Kd) = [d], and label all

edges (i, j) such that i < j with the function x 7→ x and all other edges with the function
x 7→ x + 1 (mod d). The avoidance of fixed-point cycles follows from the observation that
every cycle contains at least one and at most d − 1 edges of the form (i, j) with i > j.

The question of determining Rf (d) was recently raised by Chaudhury, Garg, Mehlhorn,
Mehta, and Misra [12] in a slightly different, but equivalent form they call the rainbow cycle
problem. They proved the upper bound Rf (d) ≤ d4 + d.

The motivation in [12] for introducing this problem comes from an application to discrete
fair division. In particular, through an elegant and surprising connection, they showed that
polynomial upper bounds on Rf (d) yield nontrivial guarantees for the quality of allocations
in a certain natural setting with a strong fairness condition.

EFX allocations

In economics and computational social choice theory, the discrete fair division problem asks
to distribute a set of m indivisible goods among n agents in a fair way. The problem has a
long history (see for example [22]) and different notions of fairness have been extensively
studied, leading to a rich set of algorithmic and hardness results (e.g., see [8] or [9] and the
references therein for an overview and precise definitions).

As simple examples show, complete envy-freeness cannot, in general, be achieved. One
of the most compelling relaxations of this notion is envy-freeness up to any good (EFX).
Informally, EFX means that no agent should prefer the goods received by any other agent
to their own, if an arbitrary single good is removed from the other’s set. The existence
of EFX allocations is considered one of the central open questions of contemporary social
choice theory (e.g., see [6, 9, 10, 12, 19]), and thus, various relaxations of it have been
proposed. In particular, it is desirable to show that an EFX allocation exists (and can be
efficiently computed) when (i) a certain global number t of goods are left unallocated, and
(ii) envy-freeness is required to hold when every agent scales the values of others’ goods by a
factor of 1 − ε for some 0 ≤ ε < 1. Such an allocation is called (1 − ε)-EFX with t unallocated
goods. It is desirable to minimize both t and ε, with the original EFX question requiring
t = ε = 0.

Very recently, Chaudhury, Garg, Mehlhorn, Mehta, and Misra [12] introduced a corres-
pondence between approximate EFX allocations and the fixed-point cycle problem described
above (in their terminology, the rainbow cycle problem). Suppressing constant factors, the
connection can be summarized as follows.
▶ Theorem 1 (Theorem 4 in [12]). For all ε ∈ (0, 1/2], if Rf (d) ∈ O(dc) for some c ≥ 1,
then there exists a (1 − ε)-EFX allocation with O((n/ε)

c
1+c ) unallocated goods, where n is

the number of agents.
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Moreover, if the upper bound on Rf (d) is constructive (i.e., a fixed-point cycle can be
found in time polynomial in the number n of vertices whenever n exceeds the given bound
on Rf (d)), then the claimed allocation can also be found in polynomial time. The result of
Rf (d) ≤ d4 + d from [12] is constructive; together with Theorem 1 it thus implies an efficient
algorithm for computing an approximate EFX allocation with O((n/ε)0.8) unallocated goods,
the first guarantee of this kind with a sublinear (in n) number of unallocated goods.

Rainbow cycles

As remarked in [12], the question of determining Rf (d) is in itself a natural question of
extremal graph theory, independently of its application to EFX allocations.

Chaudhury, Garg, Mehlhorn, Mehta, and Misra formulated the problem in a slightly
different, but essentially equivalent, way as follows. Given an n-partite digraph with each
part having at most d vertices, a rainbow cycle is a cycle that visits each part at most once.
The task is to determine the largest n = n(d) for which such a digraph can avoid rainbow
cycles, with the requirement that each vertex in part i has an incoming edge from at least
one vertex in part j, for all distinct i, j ∈ [n].

Note that we may assume that there is an extremal example containing exactly d vertices
in each part. Indeed, if

→
G is an extremal example and some part has fewer than d vertices,

let v be any vertex from that part; then add the necessary number of new vertices, making
them all “clones” of v, that is, every new vertex has the same in- and out-neighborhood as v.
Then the newly obtained digraph has a rainbow cycle if and only if

→
G does. Further, we may

assume that each vertex v of
→
G has exactly one incoming edge from every part other than its

own. With these observations, the equivalence between the rainbow cycle problem and the
fixed-point cycle problem is evident: we can view the bipartite digraph containing the edges
from a part Vi to another part Vj as the mapping given by y 7→ x, where (x, y) ∈ E(Vi, Vj).

Our main result improves the upper bound of Chaudhury, Garg, Mehlhorn, Mehta, and
Misra.

▶ Theorem 2. For all d > 0 we have Rf (d) ≤ d2+o(1).

Similarly to the previous result, our bound is constructive. Combining Theorem 2 with
Theorem 1 thus yields the following result about EFX allocations.

▶ Corollary 3. For all ε ∈ (0, 1/2], there exists an efficient (1 − ε)-EFX allocation with
O((n/ε)0.67) unallocated goods.

Zero-sum problems in extremal combinatorics

The problem of determining Rf (d) can be cast as a generalization of some classical zero-sum
problems in extremal combinatorics (this is somewhat less apparent in the original multi-
partite formulation of the problem). Zero-sum problems have received substantial attention
and form a well-defined subfield of combinatorics, with an algebraic flavour. Perhaps the
earliest result in this area is the Erdős-Ginzburg-Ziv theorem [14] which states that every
collection of 2m − 1 integers contains m integers whose sum modulo m is zero (see [3] for
multiple proofs and extensions). Zero-sum problems in graphs typically ask, given an edge- or
vertex-weighted graph, whether a certain substructure exists with zero total weight (modulo
some fixed integer). Well-studied cases include complete graphs, cycles, stars, and trees (e.g.,
see [2, 5, 7, 11, 15, 21] for surveys and representative results).

More recently, for a given positive integer d, Alon and Krivelevich [4] asked for the
maximum integer n such that the edges of the complete bidirected graph

↔
Kn can be labeled

with integers so that there is no zero-sum cycle modulo d. In the following, we denote

MFCS 2022



17:4 Fixed-Point Cycles and Approximate EFX Allocations

this quantity by n = Ri(d). Alon and Krivelevich showed through an elegant probabilistic
argument that Ri(d) ∈ O(d log d), with an improvement to Ri(d) ∈ O(d) when d is prime.
The application considered in [4] is finding cycles of length divisible by d in minors of complete
graphs. It is easy to see this question as a special case of our fixed-point cycle problem:
simply replace every edge-label k by the function x 7→ x + k (mod d). Zero-sum cycles in the
original labeling are then in bijection with fixed-point cycles in our new labeling, and thus
Ri(d) ≤ Rf (d).

Recently, Mészáros and Steiner [17] improved the result of Alon and Krivelevich, showing
Ri(d) ≤ 8d − 1, with further improvements for prime d. In fact, Mészáros and Steiner
generalized the result, allowing the labels to come from an arbitrary commutative group of
order d. The proof of the main result in [17] can be seen as an extension of an incremental
construction of [4], combined with an intricate inductive argument that makes use of group-
theoretic results.

We improve these results and show an upper bound of Ri(d) ≤ 2d − 2 through somewhat
similar, but arguably simpler arguments. Our result extends to arbitrary groups (not
necessarily commutative). In fact, we prove the result in the more general setting of fixed-
point cycles, when the edge-labels are restricted to permutations of [d]. The permutation
case subsumes the integer case, since the functions x 7→ x + k (mod d) in the above
reduction are permutations. Denoting the corresponding quantity by Rp(d), we thus have
Ri(d) ≤ Rp(d) ≤ Rf (d), and (omitting the easy case Ri(1) = Rp(1) = Rf (1) = 1), prove the
following.

▶ Theorem 4. For all d ≥ 2, we have Rp(d) ≤ 2d − 2.

By the above discussion, Theorem 4 implies that Ri(d) ≤ 2d − 2. In fact, the following
more general result holds.

▶ Corollary 5. Let ℓ be a labeling of
↔
K2d−1 with elements of a (not necessarily abelian) group

(G, ·) of order d. Then there is a cycle whose labels multiply to the identity 1 ∈ G.

To our knowledge, the question of permutation labels has not been considered before. We
see it as a natural problem of intermediate generality; it facilitates a simple proof for the
integer case, allowing to sidestep the group-theoretic tools used in previous proofs.

In the case of permutation labels, it is natural to ask whether we can guarantee, instead
of a fixed-point cycle, the existence of an identity-cycle. Indeed, Corollary 5 implies, as a
very special case, that if n ≥ 2d! − 1 and the edges of

↔
Kn are labeled with permutations

of [d], then there is a cycle whose labels compose to 1d. The bound of 2d! − 1 may appear
rather loose, and one may wonder if a condition similar to that of Theorem 4, or at least one
with polynomial dependence on d, would be sufficient. The following lower bound rules out
this possibility.

▶ Lemma 6. There exists a fixed d0 > 0 such that for all d ≥ d0 and some n ≥ e
√

d ln d, there
is a labeling of

↔
Kn with permutations of [d] such that there is no cycle whose labels compose

to 1d.

Open questions

Closing the gap between the lower and upper bounds remains an interesting challenge for all
three considered quantities (Rf (d), Rp(d), and Ri(d)). The lower bound construction with
d vertices discussed earlier can be adapted to all three settings, and it remains a plausible
conjecture that Ri(d) = Rp(d) = Rf (d) = d. This is easily verified [12] for d ≤ 3 in the case
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of Rf (d) (and hence for Rp(d)), and was verified via SAT-solvers [17] for d ≤ 6 in the case of
Ri(d). Showing Rf (d) ∈ O(d) would yield, via Theorem 1, an approximate EFX allocation
with O(

√
n/ε) unallocated goods.

A further natural question is whether other classical zero-sum results from extremal
combinatorics can be extended to the fixed-point setting.

Organization of the paper

In § 2 we introduce some useful terminology. In § 3 we prove Theorem 4, Corollary 5, and
Lemma 6 and in § 4 we prove Theorem 2.

Independent work

Independently and concurrently to our work, Akrami, Chaudhury, Garg, Mehlhorn, and
Mehta [1] also obtained the upper bound Rp(d) ≤ 2d − 2, and an improved upper bound
Rf (d) ∈ O(d2).

2 Preliminaries

Let
↔
Kn be given together with a labeling ℓ that assigns functions [d] → [d] to the edges. By

path or cycle we always mean a simple path or cycle, and for a path P , we denote by V (P )
its set of vertices. All edges in this paper are directed, and an edge (u, v) is alternatively
denoted by u → v.

When we say that the edge u → v maps x to y, we mean that the function ℓuv assigned
to u → v maps x to y. Similarly, a path (or cycle) u1 → · · · → uk maps x to y if, given the
label fi on ui → ui+1 for each i ∈ [k − 1], we have (f1 ◦ · · · ◦ fk−1)(x) = y. For consistency,
a path with only one vertex is said to map every value to itself.

We write v:i for a pair of a vertex v ∈ V (
↔
Kn) and a value i ∈ [d]. By u:x ℓ→ v:y (or

simply u:x → v:y when the labeling ℓ is clear from the context) we denote the fact that the
edge u → v maps x to y.

Let W = (v1:i1, v2:i2, . . . , vk:ik) be a sequence of vertex-value pairs with vj :ij → vj+1:ij+1
for each j ∈ [k − 1]. We call W a valued walk in (

↔
Kn, ℓ). If v1 = vk, then W is a valued

circuit. If all vertices in W are distinct, then W is a valued path. A valued circuit in which
all vertices but the last are distinct is a valued cycle.

Finally, let u, v, w ∈ V (
↔
Kn) and x, y ∈ [d]. We say that w routes u:x to v:y if u:x →

w:z → v:y for some z ∈ [d].

3 Permutation labels

In this section we prove our main result for permutation labels.

▶ Theorem 4. For all d ≥ 2, we have Rp(d) ≤ 2d − 2.

First, we introduce a useful tool, generalizing a technique used in [4, 17] to the fixed-point
cycle setting.

Let ℓ be a labeling of
↔
Kn that assigns to every edge e a permutation ℓe : [d] → [d].

Consider an edge u → v of
↔
Kn with label ℓuv. Let (gi)i and (hi)i denote the labels of the

incoming and outgoing edges at v, respectively. A shifting at u → v changes the labeling ℓ

by replacing each gi by gi ◦ ℓuv
−1 and each hi by ℓuv ◦ hi. In particular, the label of u → v

becomes the identity permutation 1d. Let ℓ′ be the resulting labeling. Observe that mappings
along cycles remain unchanged, in particular (

↔
Kn, ℓ′) has a fixed-point cycle if and only if

(
↔
Kn, ℓ) does.

MFCS 2022
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u1 u2 u3 ui−1 ui

v1 v2 vi−1

1d 1d 1d

1d 1d 1df1 f2 fi−1

· · ·

W
1d

1d

1d

Figure 1 Illustration of the proof of Theorem 4.

Proof of Theorem 4. We start with the case d = 2. Suppose there is a permutation 2-
labeling ℓ of

↔
K3 without a fixed-point cycle. The two possible labels are 12 and the function

1̄2 that maps 1 7→ 2 and 2 7→ 1. For each pair of vertices u, v the labels ℓuv and ℓvu must be
distinct, otherwise we have a fixed-point cycle u → v → u. This means that the number of
edges labeled 1̄2 in ℓ is precisely 3. Now consider two directed 3-cycles in

↔
K3 that form a

partition of the edges. One of these cycles has to contain an even number of edges labeled
1̄2. Clearly, that cycle maps each value to itself, a contradiction. Thus, Rp(2) ≤ 2.

Consider now the case d ≥ 3; let n ≥ 2d − 1, and let ℓ be an arbitrary permutation
d-labeling of

↔
Kn. We show that a fixed-point cycle exists.

We construct a “chain” consisting of vertices u1, . . . , uj and v1, . . . , vj−1 (for some j ≤ d)
and transform the labeling so that each edge of the form ui → ui+1 or ui → vi is labeled 1d.
By step i we mean either the edge ui → ui+1 or the path ui → vi → ui+1. Let Si ⊆ [d] denote
the set of possible values to which 1 can be mapped along some path that concatenates steps
1, . . . , i − 1. Observe that if Si = [d] then we are done, since ui → u1 maps some x ∈ [d] to 1,
and adding this edge to the path from u1 to ui that maps 1 to x yields a fixed-point cycle.

We construct the chain step-by-step (see Figure 1), ensuring that |Si| ≥ i for all i. If we
reach |Si| = d, then we are done, having used at most 2d − 1 vertices.

Pick vertex u1 ∈ V (
↔
Kn) arbitrarily. The condition is then trivially satisfied.

Assume now that we have identified vertices u1, . . . , ui and v1, . . . , vi−1 of the chain. Let
W ⊆ V (

↔
Kn) denote the set of vertices not used yet, and shift at all edges ui → u for u ∈ W .

Observe that no label along the chain is affected. Now consider all edges between vertices in
W . There are two possible cases.

Case 1: If some edge v → u (for u, v ∈ W ) maps some element x ∈ Si to some element
y /∈ Si, then extend the chain with ui+1 = u and vi = v. The set of reachable values
becomes Si+1 ⊇ Si ∪ {y}, establishing the claim for the next step.

Case 2: All edges within W map Si to Si, and consequently [d] \ Si to [d] \ Si. Since the
chain has used up 2i − 1 ≤ 2|Si| − 1 vertices, the digraph induced by W has at least
2d − 1 − (2|Si| − 1) ≥ 2 |[d] \ Si| vertices. If i ≤ d − 2, then |[d] \ Si| ≥ 2, and we can
argue inductively that the digraph induced by W has a fixed-point cycle. If i = d − 1,
then |[d] \ Si| = 1 and |W | ≥ 2, so we trivially have a fixed-point cycle. ◀

We next show the extension of the result to the case of labels from an arbitrary (not
necessarily abelian) group.

▶ Corollary 5. Let ℓ be a labeling of
↔
K2d−1 with elements of a (not necessarily abelian) group

(G, ·) of order d. Then there is a cycle whose labels multiply to the identity 1 ∈ G.

Proof. Let ℓ be a labeling that assigns elements of the group (G, ·) of order d to edges of
↔
K2d−1. Construct a labeling ℓ′ of

↔
K2d−1, assigning the function x 7→ x · k to every edge with

label k in ℓ. By Theorem 4, ℓ′ has a fixed-point cycle. Suppose its labels are f1, . . . , ft, where
fi(x) = x · ki for all i ∈ [t]. Then (f1 ◦ · · · ◦ ft)(x) = x for some x ∈ G, which implies that
k1 · · · · · kt = 1 ∈ G. ◀
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Finally, we prove that to guarantee a cycle whose labels compose to the identity permuta-
tion, we need a super-polynomial number of vertices.

▶ Lemma 6. There exists a fixed d0 > 0 such that for all d ≥ d0 and some n ≥ e
√

d ln d, there
is a labeling of

↔
Kn with permutations of [d] such that there is no cycle whose labels compose

to 1d.

Proof. For given d > 0, let n = n(d) denote the maximum order of a permutation of [d],
that is, n is the largest integer for which there exists a permutation π : [d] → [d] such that
πn = 1d but πk ̸= 1d for all 1 ≤ k < n. The function n(d) is Landau’s function, and it is
well known [16, 18] that n(d) = e(1+o(1))

√
d ln d. (One can obtain high-order permutations by

combining cycles of different prime lengths.)
The construction is now similar to the one used earlier. Let π : [d] → [d] be a permutation

of order n, let V (
↔
Kn) = [n], and label all edges (i, j) such that i < j with 1d and all other

edges with π. Since every cycle contains at least one and at most n − 1 edges of the form
(i, j) with i > j, composing the labels along a cycle cannot yield 1d. ◀

4 General function labels

Before proving our main theorem, we first present a weaker result, in order to introduce
some techniques that will be used later. The result already improves the bound from [12],
while using a similar argument.

▶ Lemma 7. For all d > 0 we have Rf (d) ≤ d3 − d2 + d.

Proof. Suppose that n ≥ d3 − d2 + d + 1, and let ℓ be an arbitrary d-labeling of
↔
Kn. We

show that a fixed-point cycle exists. For that, we proceed algorithmically.
Partition V (

↔
Kn) arbitrarily into two parts V = {v1, . . . , vd} and U = {u1, . . . , ud3−d2+1},

and consider all vertices of U initially unmarked.
In the preprocessing phase, for each triplet (i, x, y) ∈ [d − 1] × [d]2 in turn, check whether

there exists an unmarked vertex u ∈ U that routes vi:x to vi+1:y. If yes, then mark u, and
say that u is responsible for the triplet (i, x, y).

Observe that as we mark at most (d − 1)d2 vertices of U , we have at least one unmarked
vertex remaining in U after the preprocessing phase. Let c ∈ U be such a vertex. Consider
now the walk that alternates between visiting c and visiting the vertices of V in order, giving
rise to the valued walk W = (c:c0, v1:x1, c:c1, v2:x2, . . . , vd:xd, c:cd), where xi, ci ∈ [d] for all
i ∈ [d] and c0 = 1. Since |{c0, . . . , cd}| ≤ d, there must be some i, j such that 0 ≤ i < j ≤ d

and ci = cj , yielding the valued fixed-point circuit C = (c:ci, vi+1:xi+1, . . . , vj :xj , c:cj).
It remains to transform C into a cycle. For all k such that i < k < j replace the subpath

vk → c → vk+1 in C by vk → c′ → vk+1, where c′ ∈ U is the unique marked vertex that
is responsible for the triplet (k, xk, xk+1). Such a vertex must exist in U , for otherwise c

itself would have been chosen as responsible for this triplet in the preprocessing phase. We
have removed all occurrences of c in C but the first and last, and we have not changed the
mappings of values; thus we obtain a fixed-point cycle. An efficient algorithm for finding this
cycle is implicit in the proof. ◀

Next, we introduce a transformation that will be useful in the main proof.
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Compression

Given a d-labeling ℓ of
↔
Kn, define the imageset of a vertex v as im(v) = {y | u:x ℓ→

v:y, for some u, x}. In words, im(v) is the subset of values in [d] that can be mapped to by
edges to v.

We say that v is k-compressed if |im(v)| ≤ k. Observe that all vertices are trivially d-
compressed, and the existence of a 1-compressed vertex would immediately yield a fixed-point
cycle. Indeed, if v is 1-compressed, then the cycle v → u → v maps the unique element in
im(v) to itself for any u ∈ V (

↔
Kn).

We now describe the compression operation, illustrated in Figure 2. Let w be a k-
compressed vertex for some k ≥ 2 and w′ ∈ V (

↔
Kn) \ {w}. Suppose there exist two paths P1

and P2 from w to w′, together with two distinct values i1, i2 ∈ im(w) and j ∈ [d] such that
P1 maps i1 to j and P2 maps i2 to j. Note that the sets of interior vertices of P1 and P2 do
not need to be disjoint and that either of the paths may consist of a single edge.

Define the function f : [d] → [d] as follows: let f(i2) = j; for all x ∈ im(w) \ {i2}, let
f(x) = y, where P1 maps x to y; for all x ∈ [d] \ im(w), choose f(x) arbitrarily. Now, delete
all vertices of P1 and P2, and add a new vertex w⋆ with edges to and from all remaining
vertices. For all v ∈ V (

↔
Kn) \ (V (P1) ∪ V (P2)), if the edge v → w had the label g, then the

edge v → w⋆ gets the label g ◦ f , and if an edge w′ → u had the label h, then the edge
w⋆ → u gets the label h. The labels of edges not involving w⋆ remain unchanged.

We refer to this operation as compressing P1 and P2 to w⋆. Suppose we are left with
n′ vertices and observe that n − n′ ≤ |V (P1)| + |V (P2)| − 3, since P1 and P2 have common
endpoints. Let ℓ′ denote the resulting labeling of

↔
Kn′ . We prove two crucial properties.

▶ Lemma 8. Suppose that P1 and P2 (with starting vertex w) are compressed to w⋆ in the
way described above, resulting in a labeling ℓ′ of

↔
Kn′ .

(i) If w is k-compressed in (
↔
Kn, ℓ), then w⋆ is (k − 1)-compressed in (

↔
Kn′ , ℓ′).

(ii) If (
↔
Kn′ , ℓ′) has a fixed-point cycle, then (

↔
Kn, ℓ) has a fixed-point cycle.

Proof.
(i) Let S ⊆ [d] denote the set of values to which values in im(w) \ {i2} are mapped

by P1. Clearly |S| ≤ |im(w)| − 1 ≤ k − 1. Since P2 maps i2 to j and j ∈ S by
construction (as P1 maps i1 to j), every edge v → w⋆ maps all values in [d] to S and
thus |im(w⋆)| ≤ |im(w)| − 1.

(ii) If a fixed-point cycle in (
↔
Kn′ , ℓ′) avoids w⋆, then it also exists in (

↔
Kn, ℓ). Otherwise,

suppose a cycle in (
↔
Kn′ , ℓ′) contains the segment v:x → w⋆:y → u:z. Then, in (

↔
Kn, ℓ),

the edge v → w maps x to some value in im(w) that is mapped by P1 or P2 to w′:y,
and w′ → u maps y to z. Replacing w⋆ by P1 or P2 thus gives a fixed-point cycle in
(

↔
Kn, ℓ). Given a fixed-point cycle in (

↔
Kn′ , ℓ′), a fixed-point cycle in (

↔
Kn, ℓ) can be

reconstructed (i.e., the compression can be undone) efficiently, with minor bookkeeping.

In the remainder of the section we prove our main theorem.

▶ Theorem 2. For all d > 0 we have Rf (d) ≤ d2+o(1).

The high-level strategy is similar to the one used in the proof of Lemma 7. The main
difference is that, instead of trying to build a cycle using a sequence of d designated vertices
(v1, . . . , vd) and a well-chosen center-vertex (c), we pick a sequence of far fewer designated
vertices, and use the structure imposed upon them by a special compressed vertex. We may
fail to find a fixed-point cycle (or even a circuit) with any candidate center. In that case,
however, we make progress by compressing the special vertex further. After repeating the
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P1

P2

w w′

w?

g1 ◦ f

g2 ◦ f

g3 ◦ f

v1

v2

v3

h1

u1

h2 u2

h3

u3

|im(w)| = k

|im(w?)| ≤ k − 1

maps i2 to j

maps i1 to j

g1

g2

g3

v1

v2

v3
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u1

h2 u2

h3

u3

Figure 2 Compressing P1 and P2 to w⋆.

process sufficiently many times, we will have created a large number of highly compressed
vertices. The mappings between these vertices are sufficiently restricted that we can find
a fixed-point cycle in the digraph induced by them, through a recursive application of the
same procedure.

The following lemma describes the key win-win step of the procedure: we either find a
fixed-point cycle, or identify two paths that allow the compression of a vertex.

▶ Lemma 9. Let k ≥ 2, n ≥ 4d⌈ d
k ⌉2 + 2⌈ d

k ⌉ + 2, and w ∈ V (
↔
Kn) be a k-compressed vertex.

Then either (
↔
Kn, ℓ) has a fixed-point cycle, or there exist a vertex u ∈ V (

↔
Kn) \ {w}, values

i1, i2 ∈ im(w) with i1 ̸= i2 and x ∈ [d], and two paths on at most 4⌈ d
k ⌉ + 2 vertices each from

w:i1 and w:i2 to u:x.

Proof. Let q = 2⌈ d
k ⌉ + 1 and arbitrarily fix a q-subset V ⊆ V (

↔
Kn) \ {w}. Write V =

{v1, v2, . . . , vq} and U = V (
↔
Kn) \ (V ∪ {w}). Notice that |U | ≥ 4d⌈ d

k ⌉2.
Call a vertex c ∈ U valid for (i, x, y), where i ∈ [q − 1] and x, y ∈ [d], if c routes vi:x to

vi+1:y and there are at least q − 1 vertices in U that route vi:x to vi+1:y (including c). Let
kc denote the number of triples (i, x, y) for which c is not valid. Double-counting yields∑

c∈U

kc ≤ (q − 1) · d2 · (q − 2) < 4d2
⌈

d

k

⌉2
.

Thus, by the pigeonhole principle, there exists a c ∈ U with kc <
4d2⌈ d

k ⌉2

|U | ≤ d. Fix
such a c.

Recall that |im(w)| = k and assume without loss of generality that im(w) = [k]. For each
i ∈ [k], we construct a (valued) walk Wi that starts with v1:ℓwv1(i) and visits v2, . . . , vq in
that order, possibly taking a detour through c at every step.

Fix i ∈ [k]. We describe the construction of Wi by iteratively constructing prefixes W j
i

that start with v1 and end with vj . First, let W 1
i = v1:x1, where x1 = ℓwv1(i).

For 1 < j ≤ q, suppose that W j−1
i ends with vj−1:xj−1, and consider the values yj , xj

reached in the valued path vj−1:xj−1 → c:yj → vj :xj . If c is valid for (j − 1, xj−1, xj), then
let W j

i = W j−1
i → c:yj → vj :xj . Otherwise, let W j

i = W j−1
i → vj :x′

j for the appropriate x′
j .

Finally, let Wi = W q
i . Note that Wi contains at most 2q − 1 vertices (including up to q − 1

occurrences of c).
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17:10 Fixed-Point Cycles and Approximate EFX Allocations

Observe that in the process of constructing W1, . . . , Wk, we make (q − 1) · k ≥ 2d steps
in total, where each step either adds c to the current walk, or finds that c is not valid for
some triple (j − 1, xj−1, xj).

We claim that some vertex-value pair occurs at least twice in all the valued walks
W1, W2, . . . , Wk. Suppose not. Then, in particular, c occurs at most d times. Moreover, the
triples (j − 1, xj−1, xj) for which c is not valid that we encounter in the construction of the
walks must be pairwise distinct (if (j − 1, xj−1, xj) occurs twice in this way, then two distinct
paths must contain vj−1:xj−1). This means that we encounter such triples at most kc times
in total. The total number of steps is then at most d + kc < 2d, contradicting our earlier
observation. This proves the claim.

First, consider the case where some v:x occurs in two different walks Wi1 , Wi2 . Define W ′
i1

and W ′
i2

by removing all vertices after v from Wi1 and Wi2 , respectively. We turn W ′
i1

and
W ′

i2
into (simple) paths as follows. Suppose c occurs more than once in W ′

i1
. Suppose W ′

i1

contains the segment vi:xi → c:yi → vi+1:xi+1. If this is not the first occurrence of c, then we
simply replace c by some vertex c′ ∈ U \ {c} that routes vi:xi to vi+1:xi+1 and has not been
used in this way before. Note that we do this at most q − 2 times (once for each occurrence
of c in W ′

i1
except for the first one), and there are at least q − 2 such vertices in U \ {c} by

construction, so the operation is well-defined. We proceed the same way for W ′
i2

(recall that
the paths needed for the compression operation need not be internally disjoint). Call the
resulting (simple) paths W ′′

i1
and W ′′

i2
, respectively. Then w:i1 → W ′′

i1
and w:i2 → W ′′

i2
are

the desired paths of at most 2q ≤ 4⌈ d
k ⌉ + 2 vertices, and we are done.

Second, suppose that some v:x occurs twice in a single walk W = Wi. Then v = c, since
each vi occurs only once in W . We now find a sub-walk of W that has a fixed point. Remove
all vertices before the first occurrence of c:x and all vertices after the second occurrence of
c:x, and call the resulting valued walk W ′. Clearly, W ′ is a fixed-point walk and contains at
most q − 1 occurrences of c (counting both start and end individually). Then, similarly as
in the first case, transform W ′ into a simple cycle by replacing all occurrences of c, except
at the start/end, by suitable vertices (at most q − 3 of them) in U \ {c}. The result is a
fixed-point cycle. ◀

We prove Theorem 2 via the following recurrence.

▶ Lemma 10. For all d ≥ 29, we have Rf (d) < 5d2 + 9d log2 d · (Rf (⌊
√

d⌋) + 1).

Proof. Set n = 5d2 + 9d log2 d · (Rf (⌊
√

d⌋) + 1) and consider an arbitrary labeling ℓ of
↔
Kn.

We show that (
↔
Kn, ℓ) contains a fixed-point cycle. We again proceed algorithmically. Our

strategy is to perform transformations on
↔
Kn and ℓ, such as to compress vertices using

Lemma 9. We say that a ⌊
√

d⌋-compressed vertex is fully compressed.
We first observe that if we have more than Rf (⌊

√
d⌋) fully compressed vertices, then

we are done. Indeed, consider the subdigraph induced by the set F of vertices that are
fully compressed. For all u, v ∈ F , restrict each function ℓuv to an arbitrary subset of [d] of
size ⌊

√
d⌋ containing im(u). Applying an arbitrary bijection from each such set to [⌊

√
d⌋],

transform the restricted labeling into a valid ⌊
√

d⌋-labeling on the subdigraph induced by F

without creating new fixed-point cycles. Then, if |F | > Rf (⌊
√

d⌋), we can recursively find a
fixed-point cycle in the induced subdigraph, from which we can recover a fixed-point cycle
in (

↔
Kn, ℓ).
Now we explain how we obtain the required number of fully compressed vertices. Let

T be an arbitrary set of Rf (⌊
√

d⌋) + 1 vertices which are to be compressed and let S be
the remaining set of vertices of

↔
Kn. At each step, let w ∈ T be any vertex that is not

fully compressed; say w is k-compressed. Apply Lemma 9 to w and the subdigraph induced
by {w} ∪ S. If we find a fixed-point cycle, then we are immediately done by Lemma 8.
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Otherwise, we find two paths P1 and P2 starting at w that we can compress into a single
(k − 1)-compressed vertex w⋆. Now set T = T \ {w} ∪ {w⋆} and S = S \ (V (P1) ∪ V (P2)).
Note that the size of S reduces by at most 8⌈ d

k ⌉ + 1 ≤ 8 d
k + 9.

We need to ensure that we always have enough vertices to apply Lemma 9. First we
count the number of vertices that get removed from S throughout the process. Note that,
for each k such that ⌊

√
d⌋ + 1 ≤ k ≤ d, we transform a k-compressed vertex of T into a

(k − 1)-compressed vertex of T at most Rf (⌊
√

d⌋) + 1 times, and every time we perform such
an operation, we remove at most 8 d

k + 9 vertices from S. Thus, the number of vertices we
remove throughout the process is at most

(Rf (⌊
√

d⌋) + 1)
d∑

k=⌊
√

d⌋+1

(
8d

k
+ 9

)
≤ (Rf (⌊

√
d⌋) + 1) (8d log2 d + 9d − 1)

≤ (Rf (⌊
√

d⌋) + 1)(9d log2 d − 1),

where the first inequality uses the fact that
∑d

k=1 1/k ≤ log2 d, and the second inequality
uses our assumption log2 d ≥ 9.

Also accounting for the Rf (⌊
√

d⌋) + 1 vertices in T , it follows that the final set S has at
least 5d2 remaining vertices, which is enough to ensure that we can apply Lemma 9. Indeed,
the number of additional vertices needed to apply Lemma 9 is

4d
⌈d

k

⌉2
+ 2

⌈d

k

⌉
+ 1 ≤ 4d(

√
d + 1)2 + 2(

√
d + 1) + 1

≤ 5d2,

since we always have k ≥ ⌊
√

d⌋ + 1 ≥
√

d, and d ≥ 16. Thus, the process terminates
successfully, leaving us with the set T of Rf (⌊

√
d⌋) + 1 fully compressed vertices, using which

we find a fixed-point cycle, as discussed above. ◀

Finally, we show that the above recurrence solves to Rf (d) ∈ O(d2 · 2(log2 log2 d)2), thus
implying Theorem 2.

▶ Lemma 11. For all d ≥ 4, we have Rf (d) ≤ 16 · d2 · 2(log2 log2 d)2 .

Proof. If d < 220, the claim follows by Lemma 7, since 16 · d2 · 2(log2 log2 d)2 ≥ d3 − d2 + d for
all d < 220. Assume therefore that d ≥ 220. Denoting C = 16 we have:

Rf (d) ≤ 5d2 + 9d log2 d · (Rf (⌊
√

d⌋) + 1) (from Lemma 10)

≤ 5d2 + 9d log2 d ·
(

C · (⌊
√

d⌋)2 · 2(log2 log2 ⌊
√

d⌋)2
+ 1

)
(by induction)

≤ 5d2 + 9d log2 d ·
(

C · d · 2(log2 log2
√

d)2
+ 1

)
(using ⌊

√
d⌋ ≤

√
d)

≤ 6d2 + 9C · d2 log2 d · 2(log2 log2
√

d)2
(using 9 log2 d ≤ d, for d ≥ 52)

≤ 10C · d2 log2 d · 2(log2 log2
√

d)2
(using d ≥ 26)

= 10C · d2 log2 d · 2((log2 log2 d)−1)2

= 10C · d2 · 2((log2 log2 d)−1)2+log2 log2 d

= C · d2 · 2(log2 log2 d)2
·
(
10 · 21−log2 log2 d

)
= C · d2 · 2(log2 log2 d)2

· (20/ log2 d)

≤ C · d2 · 2(log2 log2 d)2
. (using d ≥ 220)

This concludes the proof. ◀
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Note that the constant factor 16 in Lemma 11 can be significantly reduced through a
more careful optimization, but we have avoided this, preferring a simpler presentation.
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