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Highlights
Lactate is a pleiotropic signalling mole-
cule capable of regulating several bio-
logical processes, including immune–
inflammatory responses, angiogenesis,
and fibrosis.

Lactate is sensed via transporters
of the families of monocarboxylate
transporter (MCT) and sodium mono-
carboxylate transporter (SMCT) and
the G protein-coupled receptors,
GPR81 and GPR132.

Lactate is a high-energy carbon mole-
Metabolites generated from cellular and tissuemetabolism have been rediscovered
in recent years as signalling molecules. They may act as cofactor of enzymes or be
linked to proteins as post-translational modifiers. They also act as ligands for
specific receptors, highlighting that their neglected functions have, in fact, a long
standing in evolution. Lactate is one such metabolite that has been considered
for long time a waste product of metabolism devoid of any biological function.
However, in the past 10 years, lactate has gained much attention in several
physio-pathological processes. Mechanisms of sensing and signalling have been
discovered and implicated in a broad range of diseases, from cancer to inflamma-
tion and fibrosis, providing opportunities for novel therapeutic avenues. Here, we
review some of the most recently discovered mechanisms of lactate sensing and
signalling.
cule actively taken up from the extracel-
lular environment and preferentially
used by cells to feed macromolecule
biosynthesis.

Lactate carbon-dependent macromole-
cule biosynthesis is linked to metabolic
reprogramming-dependent protein ki-
nase activation and cytokine synthesis.

Lactylation is a newly discovered lactate-
dependent post-translational protein
modification, and it impacts cell metabo-
lism and function.
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Introduction
In the past few years, metabolites produced from the cellular metabolism have been rediscovered
as signalling molecules, capable of orchestrating several biological processes, including the im-
mune response, via specific transporters and receptors. Less than 10 years since this area of re-
search began, metabolites are now seen as some of the most ancient signalling molecules on the
evolutionary scale.

We and others focused on the signalling properties of lactate, previously considered a waste
product devoid of any biological function, except in specific contexts, for example, in the Cori
cycle [1–5]. Lactate is a main product of glycolytic metabolism that accumulates acutely upon
exercise and chronically in cancer [tumour microenvironments (TMEs)] and inflammatory sites,
for example, arthritic synovia, atherosclerotic arterial walls, and fibrotic lungs. Indeed, lactate is
often the most concentrated metabolite in these sites when assessed by mass spectrometry
methodologies [6,7].

Lactate is now recognized as a pleiotropic signallingmolecule, capable of regulating the immune–
inflammatory response, angiogenesis, and fibrosis. Its effects are context dependent andmay be
influenced by factors such as the concentration of lactate itself as well as the acidity and concen-
trations of other nutrients in the microenvironment where lactate is present [2]. Such factors
could, for instance, determine the reported suppressive effects of lactate in the TME
(30–40mM lactate, pH ~6, nutrient-deprived) versus the proinflammatory effects in the inflamma-
tory sites (10–15 mM lactate, pH ~6.9, presence of nutrients). The pKa of lactic acid is 3.86,
meaning that at pH 3.86, 50% of lactic acid exists as the lactate anion. By contrast, H+ may
also derive from other acids, for example, ketone bodies, sulfate, phosphate, and urate. This
means that it is not appropriate to compare the acidity and lactate signalling pathways head-
to-head as it is done in some studies, particularly in the TME.

Excitingly, recent studies have established mechanisms of sensing of lactate, via transporters
and, even more recently, receptors; they have also identified signalling pathways, including
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metabolic reprogramming linked to kinase activation and cytokine production and protein
modification, via a novel type of post-translational modification (PTM), that is, lactylation. These
novel discoveries will be the focus of this review.

Lactate transporters and lactate signalling through G protein-coupled receptors
(GPCRs)
Lactate is transported in a stereospecific manner across plasma membranes. Both proton
(monocarboxylate transporters: SLC16A1, SLC16A7, SLC16A8, and SLC16A3, also known
as MCT1–4) and sodium-dependent transporters (SLC5A8 and SLC5A12, also known as
SMCT1–2) exist [8,9]. These transporters are promiscuous and can act on a variety of substrates,
including pyruvate or ketone bodies [9].

Although each transporter primarily shuttles lactate in a specific direction (i.e., MCT4 efflux, MCT1
influx), this will ultimately depend on the lactate gradient. Therefore, when the extracellular milieu is
lactate rich (e.g., TME, inflamed tissues), import of lactate into the cell prevails. Their tissue distri-
bution is receptor specific, and while for some of them, it can be relatively broad [SLC16A7
(MCT2), SLC16A3 (MCT4)], and for others it is predominantly confined [i.e., SLC16A8 (MCT3)
in the retinal pigment and choroid plexus epithelia]. Further details on lactate transporters can
be found elsewhere [10,11].

Classical metabolites can signal directly through GPCRs [12]. Upon agonist binding, there is a
GDP–GTP exchange in the GPCR alpha subunit. The downstream signalling events are driven
by secondary messengers (e.g., cAMP, Ca2+) depending on the alpha subunit type (Gα i, o, q,
s, or 12) [13], although Gα-independent signalling also exists. Specifically, lactate can signal
though GPR81 (HCAR1) and GPR132 (G2A) [6], both being proton sensitive [14].

GPR81
Two homologs of GPR81 have been identified in zebra fish, allowing studies of conserved residues
across species [15]. Arg71 in the transmembrane domain 2 and the C165-E166-S167-F168motif
and six conserved Cys in the extracellular domain are essential for GPR81 function [15].

Adipose tissue
GPR81 is mainly expressed in adipose tissue (mice, rats, humans), where signalling triggered by
lactate results in inhibition of lipolysis [16,17], thus promoting lipid accumulation. On top of adipo-
cytes, these effects have also been reported in skeletal muscle [18]. GPR81 primarily signals
through Gαi, inhibiting the cAMP–protein kinase A (PKA) pathway. Lactate signalling through
GPR81 is responsible for insulin-driven prevention of lipolysis by inhibiting cAMP production [19].
Inmice, the lactate-GPR81-p38 axis has been linked to adipose browning and thermogenesis [20].

Tumours
GPR81 is expressed in various tumours from patients and cancer cell lines [21]. In vivo, levels of
GPR81 correlate with tumour growth and metastasis in pancreatic cancer, and both dramatically
decline upon GPR81 silencing [21]. Mechanistically (Figure 1), lactate promotes (i) angiogenesis by
signalling through the PI3K/Akt-cAMP-CREB (cAMP response element-binding protein) pathway
leading to production of pro-angiogenic amphiregulin (AREG), as described in breast cancer [22]
and (ii) lactate impairs antitumour immunity. It signals through GPR81 in tumour-infiltrating dendritic
cells (DCs), compromising their ability to efficiently present antigen to T cells by downregulating
MHC-II molecules [23]. Lactate limits type I interferon (IFN) production by intratumoural plasmacytoid
DCs through Gβγ-Ca2+-calcineurin phosphatase (CALN) signalling [24]. Moreover, lactate–GPR81
induces programmed death-ligand 1 (PD-L1) expression in lung cancer cells via TAZ/TEAD
Trends in Endocrinology & Metabolism, October 2022, Vol. 33, No. 10 723
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Figure 1. Multiple effects of lactate–GPR81 signalling in different cell types. Lactate can signal through GPR81 and its alpha subunit, inhibiting the cAMP/PKA
pathway and inducing lipid accumulation in adipocytes. The same pathway can be triggered in cancer cells resulting in TAZ/TEAD activation and PD-L1 transcription,
inhibiting cytotoxic T cells. The alpha subunit in tumour cells can also increase chemoresistance, by upregulating the ABCB1 transporter through PKC/ERK. The beta/
gamma subunits can also transduce GPR81 signalling through PIK3/AKT, promoting amphiregulin transcription and, ultimately, its secretion, inducing angiogenesis,
and favouring tumour growth. Lactate impacts immune cell behavior of multiple cell types, in and outside the tumour microenvironment. Lactate signalling through
GPR81 reduces type I IFN production of pDCs, downregulates the antigen-presenting machinery of dendritic cells, and promotes S100A8/9 secretion of MDSCs,
inhibiting T cells. In monocytes/macrophages, GPR81 can signal through the ARRB2 domain, inhibiting NLRP3 inflammasome and subsequent pro-IL1b processing
by Caspase-1. Abbreviations: AC, adenylyl cyclase; AREG, amphiregulin; CALN, calcineurin; CASP1, caspase-1; DC, dendritic cell; HIF-1α, hypoxia-inducible factor 1;
IFN, interferon; MDSCs, myeloid-derived suppressor cells; PKA, protein kinase A.
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(encoded by the gene Wwtr1) transcription complex activation, which binds the PD-L1 promoter,
resulting in impaired T cell cytotoxicity [25]. Dual blockade strategy of lactate/GPR81 and PD-1/
PD-L1 potentiates metformin antitumour effects [26]. (iii) DNA repair is enhanced upon GPR81 sig-
nalling, which triggers expression of DNA repair proteins such as BRCA1, nibrin, DNA-PKs [27] and
MLH1 (mutl homolog 1) [28], favouring chemoresistance. Chemoresistance is also increased by
GPR81-dependent increased expression and activity of the drug-exporting transporter ABCB1,
with the Gαi-PKC-ERK (extracellular signal-regulated kinase) pathway being crucial [29]. Importantly,
radiotherapy enhances the Warburg effect and lactate production in pancreatic cancer [30]. Lactate
signalling throughGPR81/mechanistic target of rapamycin (mTOR)/hypoxia-inducible factor (HIF)-1α/
STAT3 activates myeloid-derived suppressor cells (MDSCs), favouring tumour growth [30].

Brain
GPR81 is found in the brain, expressed in different cell types including neurons, astrocytes, and
cells from the microvasculature. These cells can be activated at physiological concentrations of
724 Trends in Endocrinology & Metabolism, October 2022, Vol. 33, No. 10
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lactate, linking neuronal activity and brain metabolism [31], potentially by optimising cAMP con-
centrations [32]. Using GPR81 knockout (KO) mice, GPR81 signalling was shown to reduce neu-
ronal activity [33] through both Gαi and Gβγi subunits [34]. In rodents, lactate impacts learning
and memory [35], and the effects are enantiomer specific [36]. Lactate has been linked to
neuroplasticity [37,38], neurogenesis [39], and neuroprotection [40,41], potentially bridging inten-
sive exercise (high lactate producing activity) with improved brain capacity.

Other tissues
The lactate–GPR81 axis is also involved in retinal function [42,43], osteoblast differentiation through
GPR81-Gβγ-PLC-PKC-Akt signalling [44], inflammation regulation during labour [45], suppression
of innate immunity [46–49], and regulation of intestinal [50,51], renal [52], cardiovascular [53], and
atherosclerotic [54] homeostasis.

GPR132
GPR132 is expressed in several tissues such as the lung and the gastrointestinal tract and in
immune cells, particularly macrophages (The Human Protein Atlasi). It has abundant physiological
ligands, including fatty acids and derivatives, such as oxylipins [55] and lipoamines [56], and
presents Gα promiscuity [57].

Lactate signalling throughGPR132 has been limitedly studied so far. Most studies have been per-
formed in mice, and the murine and humanGPR132 forms present important differences in terms
of sequence homology (67% shared amino acid identity) [58] and proton sensitivity [59].

L-lactate administration in high-fat diet (HFD)-fed mice mitigated fat accumulation, insulin re-
sistance, and infiltration of proinflammatory macrophages in adipose tissue [16]. This was a
result of lactate signalling through the GPR132-cAMP-PKA-AMPKα1 (AMP-activated protein
kinase α1) pathway, with AMPK polarising macrophages toward an anti-inflammatory
phenotype [60].

Lactate signalling throughGPR132 in tumour-associatedmacrophages promoted a protumoural M2
(alternatively activated, anti-inflammatory) phenotype in models of breast cancer [26] and in Lewis
lung carcinoma, here heterodimerising with Olfr78 [61]. In human breast cancer, GPR132 correlates
with M2 macrophages and metastasis, and metastasis is absent in GPR132-KO animals [26].

Therefore, direct lactate signalling through GPCRs is arising as an essential mechanism by which this
once thought metabolic waste product shapes key biological processes, in both health and disease.

Lactate-induced acidity
Extracellular acidosis is a hallmark of inflammatory processes. Tissue hypoxia caused by the
damage of small blood vessels and the high glycolytic metabolism of resident or infiltrating cells
leads to the accumulation of lactic acid in the extracellular space. The resulting acidosis, in
turn, can alter the functions of cells of the immune system, including T cells, neutrophils, macro-
phages, and DCs [2]. The role of extracellular acidosis is not merely immunosuppressive but can
have both supporting and suppressive effects on different immune cells (Figure 2). A clear exam-
ple of a physiological and immune-modulating effect of low pH is the lymph node (LN) microen-
vironment. Although this low pH, resulting from activated T cell-generated lactic acid, does not
inhibit T cell activation, it protects the LN from premature release of inflammatory cytokines
[62]. MCTs, Na+/H+ exchanger 1, carbonic anhydrases (CAs), vacuolar ATPase, and proton-
sensing GPCRs can sense intra- and extracellular pH variations and modulate the immune
system in inflammatory and immunoreactive processes.
Trends in Endocrinology & Metabolism, October 2022, Vol. 33, No. 10 725
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Figure 2. Differential immune cell-specific effects of acidity and lactate on the inflammatory microenvironment. Extracellular acidosis is a hallmark of
inflammatory processes. Tissue hypoxia and the high glycolytic metabolism of infiltrating cells lead to the accumulation of lactic acid in the extracellular space. When
dissociated, both H+ and La– can be sensed by immune cells including T cells, neutrophils, and macrophages, through specific receptors and transporters such as
monocarboxylate transporters (MCT1–4), sodium monocarboxylate transporters (SMCT1–2), Na+/H+ exchanger 1, carbonic anhydrases (CAs), V-ATPase, and
proton-sensing G protein receptors (GPRs), and alter their functions. These sometimes opposite effects can be both supportive and suppressive on different immune
cells, thus leading to proinflammatory (red boxes) or anti-inflammatory (green boxes) phenotypes. Abbreviations: BM, bone marrow; G-CSF, granulocyte colony-
stimulating factor; IL, interleukin; MCP1, monocyte chemoattractant protein-1; TNF-α, tumour necrosis factor alpha; V-ATPase, vacuolar ATPase.
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Acidification can induce an anergic state in human and murine CD8+ T cells, characterized by
reduced cytolytic activity and cytokine secretion, reduced expression of T cell receptors, and
diminished activation of STAT5 and ERK [63,64]. Lactic acid inhibits the production of IFN-γ
and interleukin (IL)-2 by activated CD8+ T cells and promotes cell death [65]. A possiblemechanism
bywhich extracellular acidosis alters T cell activity is the suppression ofmTORC1 and its interaction
with RHEB (Ras homolog enriched in brain) [66]. Low pH affects plasma membrane and microtu-
bule mobility, thus decreasing the TCR-CD8 colocalization, with consequent T cell anergy [67].
Unlike the other T cell subsets, the activity and recruitment of Tregs are increased in the acidic
microenvironment.
726 Trends in Endocrinology & Metabolism, October 2022, Vol. 33, No. 10
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It has also been demonstrated that lactic acidosis induces the secretion of IL-23 by mononuclear
phagocytes, thus stimulating T cell IL-17 secretion [68], and it induces the production of inflamma-
tory cytokines, including IL-1β, IL-6, CXCL1, and CCL2, as well as the recruitment of neutrophils in
murine models of pneumonia and peritonitis [69]. Low extracellular pH has also been shown to
stimulate phagocytosis in macrophages, and one of the mechanisms underlying this effect may
be the increased expression of the phagocytic receptor stabilin-1 [70]. Contrasting with these
observations, other studies have shown that low extracellular pH inhibits tumour necrosis factor
alpha (TNF-α) production by human monocytes [71]. Furthermore, acidosis limits the expression
of proinflammatory genes such as inducible nitric oxide synthase (iNOS), monocyte chemoattrac-
tant protein-1 (MCP1), and IL-6 inM1 (classically activated, proinflammatory) macrophages, while it
enhances the expression of M2 genes such as mannose receptor C-type 1 (MRC1), arginase 1
(ARG1), and chitinase-3-like protein [72]. Exposure of human macrophage foam cells to acidic
conditions, such as those found in atherosclerotic lesions, reduces their intracellular pH with con-
comitant reduction of the cholesterol-esterifying enzyme acyl coenzyme A:cholesterol O-
acyltransferase 1 (ACAT1) activity. This leads to a proatherogenic cascade affecting both choles-
terol esterification and cholesterol efflux processes in macrophages.

Extracellular acidification also plays a key role in neutrophil function, leading to the upregulation of
surface expression of CD18 and a decreased spontaneous apoptosis [73]. Extracellular acidosis
induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol
3-kinase/Akt and ERK pathways. In the same study, it has been reported that extracellular
acidification induces endocytosis of exogenous proteins, resulting in an increased ability to
present antigens through the MHC class I-restricted pathway [74]. It has also been shown
that acidic pH drives activation of integrin αvβ3, a receptor for vitronectin. This increase in
integrin affinity and avidity facilitates cell–cell connections, limiting the migration of neutrophils
[75]. However, other studies have shown that in the acidic environment, neutrophils can
acquire an alternative phenotype, as is the case with macrophages, characterized by reduced
phagocytic activity and reactive oxygen species (ROS) production, a very high expression of
the β2 integrin CD11b/CD18, and an increased ability to inhibit T cell responses and to release
the angiogenic factors IL-8, vascular endothelial growth factor (VEGF), and the matrix
metallopeptidase 9 (MMP-9) [76].

Lactate-induced metabolic reprogramming in immune cells
To initiate and sustain an inflammatory response, immune cells need to activate metabolic
pathways, and each population of immune cells relies on a different metabolism and nutrient
utilization [77]. As a consequence of inflammatory activation and engagement in glycolysis, immune
cells start to produce high amounts of lactate in the surroundingmicroenvironment. Lactate can be
sensed by other immune cells via the expression of lactate receptors (discussed previously) or via
MCTs on their cell surface and can affect their cellular metabolism, ultimately modulating their
phenotype into pro- or anti-inflammatory [7,30,78] (Figure 2).

Lactate reduces the extracellular acidification rate (ECAR) and increases the oxygen consumption
rate (OCR) in macrophages treated with lipopolysaccharide (LPS), an this metabolic reprogram-
ming is responsible for the phenotype shift of these cells from pro- to anti-inflammatory, as
evidenced by the reduction of inflammasome assembly, LPS-induced cytokine secretion, and
migration of macrophages and monocytes [79,80]. Lactate also reduces the induction of Il1B,
Nlrp3, and Casp1, the activation of nuclear factor kappa B (NF-κB), and the release of IL1β in
macrophages [47]. In addition, lactate injection reduces inflammation and organ injury in mice
with immune hepatitis, acute pancreatitis, or acute liver injury [47]. Lactate also downregulates
the activity of phosphofructokinase (PFK), the key regulatory glycolytic enzyme, favouring the
Trends in Endocrinology & Metabolism, October 2022, Vol. 33, No. 10 727
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dissociation of enzyme active tetramers into less active dimers, thereby reducing the glycolysis flux
and the proinflammatory phenotype of monocytes [81]. In addition, lactate can interact with the mi-
tochondrial antiviral-signalling (MAVS) protein, inhibiting MAVS aggregation and therefore limiting
type I IFN production [82]. However, other studies have found proinflammatory effects of lactate
in macrophages. For instance, Samuvel et al. [83] showed an enhanced TLR4 signalling and
increased NF-κB transcriptional activity and expression of inflammatory genes in human
monocyte-derived macrophages. These effects are a result of lactate uptake through MCTs, as
evidenced by the fact that they are reversed through their inhibition. Moreover, lactate has been
shown to enhance prostaglandin E2 synthesis [84] and LPS-induced IL-23 production in mono-
cytes, macrophages, and tumour-infiltrating immune cells [85]. The reason for these opposite
effects may rely on the duration of lactate exposure and the cellular metabolic profile, and on the
fact that both lactate and the related H+ ion can modulate macrophage function.

Neutrophils are commonly present in inflammatory sites that often have high lactate levels, but the
role of lactate in neutrophil activity is less explored. These cells use different metabolic pathways
to cope with energy demands during their proliferation and release of inflammatory mediators,
including not only the pentose phosphate pathway, glutaminolysis, the mitochondrial oxidative
metabolism, but also glycolysis which is crucial for phagocytosis, ROS, and networked protein
family (NET) production [86,87]. In these cells, lactate may act as a signalling molecule as demon-
strated by the fact that lactic dehydrogenase (LDH) inhibition reduces NET release, thereby
indicating a key role of lactate-mediated metabolic pathways in NETosis [88]. It has also been
reported that glycolytic lactate produced by neutrophils following stimulation with LPS promotes
their mobilization acting on its receptor GPR81 functionally expressed by endothelial cells to
locally increase vascular permeability. In addition, lactate induces neutrophil mobilization
from the bone marrow through an increased release of CXCL1, CXCL2, and granulocyte
colony-stimulating factor (G-CSF) [89].

Lactate suppresses T cell migration, contributing to the retention of these cells in the inflammatory
site. In addition, lactate also induces the production of IL-17 in the CD4+ T cells and inhibits the
cytolytic function of cytotoxic CD8+ T cells [64]. These effects are a consequence of the induced
expression of the lactate transporters SLC5A12 and SLC16A1, which are present in CD4+ and
CD8+ T cells, respectively. Inhibition of lactate transporters re-establishes T cell migration both
in vitro and in a murine model of peritonitis [64]. On the contrary, it has been demonstrated that
Tregs resist lactate-mediated suppression of T cell function and proliferation through Foxp3-
mediated repression of Myc and suppression of glycolysis [90]. Tregs metabolize lactate into
pyruvate, citrate, and malate to fuel the tricarboxylic acid (TCA) cycle to sustain their proliferation.
We have shown that the reduced T cell motility induced by lactate is associated with an inhibition
of glycolysis [1]. T cells reduce NAD+ to NADH via glyceraldehyde-3-phosphate dehydrogenase
and need NAD+ recycling through LDH to support glycolysis. In the presence of high lactate
concentrations, this metabolite is reconverted to pyruvate with production of NADH and inhibition
of glycolysis. A direct consequence of this dysregulation of the glycolytic pathway could be the diver-
sion of glucose-derived carbons into the pentose phosphate pathwaywith subsequent generation of
NADPH, which is the reduced cofactor in fatty acid synthesis. Furthermore, when exposed to high
levels of lactate, such as those found in an inflamed tissue, activated CD4+ T cells take up lactate
via the specific carrier SLC5A12 and its carbons are used as fuel for the TCA cycle. This leads to
an increase in intracellular pool of citrate and acetyl-CoA and ultimately to an enhanced fatty acid syn-
thesis, ametabolic pathway involved in the differentiation of the Th17 T cell subset [1,91]. Lactate can
also modulate T cell cytokine production as a consequence of changes in cellular metabolism. For
instance, we have found that sodium lactate can directly polarize CD4+ T cells toward a Th17 phe-
notype via PKM2 nuclear translocation and concomitant enhanced STAT3 phosphorylation, and
728 Trends in Endocrinology & Metabolism, October 2022, Vol. 33, No. 10
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via enhanced fatty acid synthesis, which leads to the release of IL-17 in the inflamed tissue, thus
sustaining the chronic inflammatory process [1]. Finally, lactate inhibits the cytolytic function of both
human and mouse natural killer (NK) cells by lowering the expression of perforin and granzyme [92].

Taken together, these studies support a role for lactate in the modulation of immune cell functions
through a reshaping of their metabolism. Targeting this metabolic switch may represent a valuable
strategy for the development of new therapeutics against chronic inflammatory disorders [2].

Lactylation and other lactate-dependent PTMs
In 2019, lysine lactylation (Kla) was first identified by mass spectrometry (mass shifting) in both
human and murine cells [93]. Protein lactylation is a highly regulated process. Existing evidence
suggests a key role for p53 and p300 in lactylation of lysine residues [93–95], whereas HDAC1-
3 and Sirtuin3 are enzymes with reported delactylase activity [96]. In this first study, 28 lactylation
sites were described on core histones, with glycolysis being a key modulator. Post-translational
histone modifications link the metabolic cellular state to gene expression, favouring cell adaptation
to the new environment. In this seminal study, bone marrow-derived macrophages (BMDMs)
treated with LPS + IFNγ resulted in increased histone lactylation [93]. Kla associated with a shift
in macrophage phenotype, in which glycolytic proinflammatory macrophages returned to homeo-
stasis by lactylating specific genes (e.g., Arg1, Mmp9). Building on the role of lactate in inflamma-
tion resolution, a follow-up study identified the B cell adapter for PI3K (BCAP) as crucial for the
reparative macrophage transition in a murine model of colitis [97]. Mechanistically, BCAP was
necessary for optimal glycolysis, lactate production, and histone lactylation after microbial chal-
lenge. BMDMs of BCAP–/– mice presented decreased histone lactylation and reduced expression
of anti-inflammatory macrophage genes (i.e., Arg1, KLf4), which could be rescued by treatment
with sodium lactate. However, the Kla–anti-inflammatory causal link was challenged by Dichtl
et al. [98]. Kla and the anti-inflammatory gene expression program were shown to be uncoupled
despite their concurrency. The authors identified the IL-6-Stat3 axis as essential in the expression
of hallmark macrophage anti-inflammatory genes (i.e., Arg1) and proposed Kla as a consequence
of macrophage activation with no direct impact on polarization [98]. Different models and method-
ologies used could account for these differences, and more mechanistic studies are required to
elucidate the precise functional consequences of histone lactylation (e.g., mutation of specific
histone lysines). Besides lactylation, lactate can influence the epigenetic landscape of the cells by
inhibiting histone deacetylases [99], primarily increasing transcription. Specifically, lactate promotes
high-mobility group box-1 (HMGB1) acetylation inmacrophages in amousemodel of polymicrobial
sepsis [100]. HMGB1 resides in the nucleus, and activated macrophages release it to orchestrate
inflammatory responses. Lactate drives HMGB1 lysine acetylation by a dual action. On one hand, it
suppresses SIRT1 deacetylase in a Hippo/YAP-dependent manner; on the other hand, lactate
signals through GPR81 impairing nuclear recruitment of acetylases p300/CBP. This is the first
study directly linking lactate-GPCR signalling with lactate-driven PTMs. Also, in the context of
macrophages, mitochondrial lactate was shown to drive M2 polarisation through histone acetyla-
tion [101]. Adenosine triphosphate–citrate lyase (ACLY) was essential for this induction of anti-
inflammatory macrophages, and it aided tumour progression in a mouse tumour admixture model.

Histone lactylation is required for successful embryo development and implantation in mouse
and sheep [95]. Kla controls mouse embryonic stem cells, expanding their transcriptional net-
work [102]. H3K18la associates with increased pluripotency in mouse embryonic fibroblasts
[103]. In this context, the transcription factor Glis1 was responsible for enhancing expression
of glycolytic genes and consequent lactate production. Interestingly, increased glycolysis
also resulted in enhanced acetyl-CoA levels, and histone acetylation (H3K27Ac) also promoted
pluripotency [103].
Trends in Endocrinology & Metabolism, October 2022, Vol. 33, No. 10 729

CellPress logo


Trends in Endocrinology &Metabolism
OPEN ACCESS
Targets of protein lactylation extend beyond histones and have been investigated in different
settings. Lactate is abundant in cancer because of abundant aerobic glycolysis (Warburg effect)
[104]. In lung cancer, Kla sites were found in the promoters of the metabolic genes hexokinase-1
(HK-1; glycolysis) and isocitrate dehydrogenase [NAD] subunit gamma (IDH3G, Krebs cycle),
down- and upregulating them, respectively [105]. In lung fibrosis, Kla sites are present in pro-
moters of profibrotic genes [94]. Increased histone lactylation occurs in ocular melanoma, and
preventing it suppresses tumour progression [106]. Mechanistically, lactylation enhances transcrip-
tion of the YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2), responsible for recognising
the m6A RNA modification on PER1 and TP52 (two tumour suppressor genes), causing their
degradation.

Full lactylome studies (Table 1) have been performed in the plant fungal pathogen Botrytis cinerea
[107], in rice (Oryza sativa) grains [108], and in the protozoan parasite Trypanosoma brucei [109].
These comprehensive analyses have revealed key targeted pathways and cellular compartments,
as well as evolutionary conservation [108], suggesting a role for lactylation in regulating essential bi-
ological processes.

In the context of the brain and behavioural science, neural excitation and social defeat stress
resulted in increased levels of lactate and lactylation in mouse brains [110]. Particular Kla sites corre-
lated with reduced social behaviour and increased anxiety.
Table 1. Summary of the three published proteome-wide lysine lactylation (Kla) analysis in Botrytis cinerea, Oryza sativa, and Trypanosoma brucei

Refs [107] [108] [109]

Species Botrytis cinerea Oryza sativa Trypanosoma brucei

Lactate source Glycolysis Glycolysis Glyoxalase pathway

Biological replicates, n 4 8 3

Lylated proteins, n 166 342 257

Kla sites, n 273 638 387

Kla sites – structure Preference for alpha-helix NAa NA

Kla flanking region (enrichment) A (+3 to +5) A (–2, +1, +2) A (–10, –4 to –3, +4, +6)

G (–1 to +1) E (–8, –3, –1) G (–1, +1)

K (–9 to –6 and +5 to +9) G (–4, –1, +1, +2) K (–9 to –8, –6, +2 to +10)

R (+6 to +7) K (–7, –9, +10) R (–7)

Kla subcellular distribution (%)

Nucleus 36 9.94 38.13

Cytoplasm 25 33.04 35.02

Mitochondria 27 9.06 11.28

Chloroplast NA 38.3 NA

Top lactylated pathways Ribosomal small subunit assembly Central carbon metabolism Translation, ribosomal structure, biogenesis

Cytoplasmic translation Protein biosynthesis PTMs, protein turnover, chaperones

Noncoding RNA (ncRNA) export from nucleus Nutrition reservoir Replication, recombination, repair

PTM overlap Crotonylation Acetylation Succinylation

2-hydroxyisobutyrylation Succinylation Crotonylation

Malonylation Acetylation

2-hydroxyisobutyrylation

aAbbreviation: NA, not applicable.
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Outstanding questions
What are the precise mechanisms of
direct lactate signalling through GPCRs,
how do they impact human diseases,
and can GPR81 and GPR132 be
pharmacologically targeted for human
health benefit?

How do lactate and lactate-dependent
acidosis impact foam cell formation in
the atherosclerotic vessel wall?

What are the biochemical pathways
activated by cells consuming lactate
from the extracellular space and how
do they drive specialised functions,
such as cytokine synthesis or cell
migration?

What are the precise functional
consequences of protein lactylation
(e.g., mutation of specific histone lysines)
for physiology and pathology, and can
this process be targeted for therapeutic
benefit?
Lactate levels can be used as a biomarker, as they often correlate with disease severity [111]. The
potential role of Kla as a biomarker is being explored. Levels of H3K18la have been linked to
infection and severity of critical illness [112]. A potential mechanism could be lactate-driven
lactylation and acetylation of the HMGB1, which is secreted by macrophages via exosomes
and increases endothelium permeability in polymicrobial sepsis [113].

Identification of Kla substrates and sites is key to understanding the mechanisms and regulatory
roles of protein lactylation. A recent preprint proposes, instead of mass shifting, the use of cyclic
immonium ion and liquid chromatography–tandem mass spectrometry for confident lactylation
assignment. This approach allows interrogation of public datasets such as the human proteome
[114] or the meltome atlas [115], which showed that lactylation impacts protein thermal stability,
including enzymes involved in glycolysis, which is the most heavily lactylated pathwayii. Additional
bioinformatic tools are being developed, based on protein sequence, structure, and physico-
chemical properties, to predict Kla profiling using a few-shot learning (FSL) approaches [116],
which is particularly useful to capitalise on limited datasets.

Although lactylation was only reported in 2019, abundant and exciting research is bringing new
insights into the mechanisms behind biological contexts and functional consequences of this
newly described PTM. A better understanding of the lactylation process may set the path for
new therapeutic avenues, in cancer and other diseases.

Concluding remarks and implications for inflammatory conditions and fibrosis
The pathways for lactate sensing and signalling have been implicated in human disease. The
immune suppressive role of lactate in TME has been largely covered elsewhere [117,118].
Here, we will refer to few examples of the implications for fibrosis and inflammation.

Myofibroblasts' glycolysis in fibrotic lungs enhanced lactate production, resulting in the promotion
of profibrotic genes in alveolar macrophages through non-cell autonomous histone lactylation
[94]. Furthermore, lactic acid is elevated in the lung tissue of patients with idiopathic pulmonary
fibrosis (IPF), resulting in myofibroblast differentiation via a pH-dependent activation of latent
TGF-β [119]. Also, lactate treatment induced stabilization of HIF-1α, a master regulator of glycoly-
sis, resulting in the priming of fibroblasts to a profibrotic phenotype via switching to a glycolytic
metabolism with significantly increased PDK1 and PKM2 protein levels [120].

The protein SARM1, which is the enzyme responsible for axon degeneration, is activated in an
acidic pH [121]. Recent evidence showed that H4K12 histone lactylation activates the transcrip-
tion of glycolytic genes through a PKM2 positive feedback loop inmicroglia in Alzheimer's disease
[122]. Also, host-derived lactate promotes intestinal epithelial cell migration, resulting in the miti-
gation of colitis through the promotion of intestinal wound healing [123].

In this review, we discussed the mechanisms underpinning lactate shaping of cell behaviour and
function, including acidosis, GPCR signalling, lactylation, and lactate as a fuel. These mechanisms
do not occur in isolation, and the precise contribution of each of them to the overall cell outcome
is a matter of current investigations. For instance, we know that lactate signalling through
GPR81 prevents acetylation in macrophages [100] and that acidosis directly impacts protein-
sensing receptors, includingMCTs andGPCRs. Also, constant research is being done to elucidate
new lactate signalling pathways, and novel players have emerged in recent years. Lactate-driven
stabilization of HIF-1α in macrophages has been linked to tumour angiogenesis and growth
[124,125]. Lactate can also regulate hypoxic responses in a HIF-1α-independent manner. An
elegant study showed that lactate accumulated under hypoxic conditions stabilizes N-myc
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downstream-regulated gene 3 (NDRG3), which can then bind to c-Raf enabling Raf-ERK signalling
[126]. Therefore, lactate arises as a master regulator of hypoxia responses, promoting cell growth
and angiogenesis. Lactate also contributes to increasing acetyl-CoA and fatty acid (e.g., palmitate)
intracellular pools in CD4+ T cells [1]. These lactate-derived metabolites have the potential to post-
translationally modify histone and nonhistone proteins (e.g., palmitoylation), broadening the poten-
tial impact of lactate at the cytoplasmic and epigenetic levels.

Targeting lactate transporters is gaining attention as a pharmacological approach in inflammatory
disorders. Inhibition of these transporters can modulate the effector functions of fibroblasts and
T cells in rheumatoid arthritis and can reduce the severity of disease in mouse models of arthritis
[1,127]. It was also shown that alpha-cyano-4-hydroxycinnamic acid, an inhibitor for MCTs,
inhibits lactate-induced inflammatory gene expression and nuclear NF-κB activity [84]. Inhibition
of SLC5A12 has been successful in promoting CD4+ T cell egress from the inflamed site in a
murine model of zymosan-induced peritonitis, while having no effect on CD8+ T cells, and thus
suggesting an interesting specificity of these lactate transporter inhibitors [64].

Targeting specific metabolic pathways induced by lactate is also becoming a useful and promising
therapeutic strategy in inflammatory conditions. We have shown that T cells in a lactate-rich micro-
environment can utilize this metabolite as a source of carbons in fatty acid synthase (FAS) and that
the internalization of lactate in T cells leads to the translocation of PKM2 from the cytosol into the
nucleus, resulting in the induction of proinflammatory genes [1]. Intriguingly, the inhibition of FAS
can reduce the proinflammatory behaviour of T cells [91], while cytosolic PKM2 stabilization with
TEPP-46 inhibits the proliferation of Th1 and Th17 cells and ameliorates experimental autoimmune
encephalomyelitis (EAE) in vivo [128].

Overall, the effects of lactate are pleiotropic and context dependent. Understanding the
key molecules to its sensing and signalling promises to open avenues for pharmacological
approaches in a broad spectrum of human diseases (see Outstanding questions).
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