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aSchool of Chemical Engineering, College of Engineering and Physical Sciences, University of
Birmingham, Birmingham, UK; bCentre for Nanostructured Media, School of Mathematics and Physics,
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ABSTRACT
The study of salivary manifestation of various health disorders via
Raman spectroscopy, as a noninvasive molecular sensing technique to
analyze molecular signatures in the saliva projections of health, is an
emerging field of investigation of combined spectroscopy-biofluidics
for early-diagnostics and monitoring, enabling structural and chemical
biomarkers to be monitored overtime to predict prognosis for transla-
tion to real-world sensing applications. Here, we review the potential
uses in healthcare, illicit drug detection, forensics and dental/orthodon-
tic uses, and expound the specific challenges related to the detection
of certain classes of biomolecules or smaller compounds. We highlight
the potential of extracellular vesicles, a salivary constituent and its
potential as an emerging vehicle for medical applications. Furthermore,
portable devices for Raman-saliva based detection are discussed with a
specific attention on the associated microfluidic advances for miniatur-
ization and integration of such technologies and multimodal systems
are examined. Given the low concentrations of target analytes and
thus, the high analytical sensitivity required, surface-enhanced Raman
spectroscopy (SERS) methods are noted across the different application
areas and for development of portable devices.

KEYWORDS
Raman spectroscopy; SERS;
saliva; medical diagnostics

1. Introduction

1.1. Overview

Raman spectroscopy and saliva have been emerging as a promising combination of vibra-
tional spectroscopy and biofluid that have the potential for use in point-of-care settings.
Bottlenecks to adoption at bedside, roadside, or otherwise, are broadly methodological,
with many studies across disciplines lacking standardization in terms of procedures
employed, including matters related to collection, storage, salivary pretreatment, Raman
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spectroscopy set-ups used and measurement protocols (Figure S1, Supplementary material).
Moreover, chemometric methods studied are often limited. We have recently discussed the
methods in Raman spectroscopy for saliva studies.[1]

Nevertheless, Raman spectroscopy and saliva are rapidly growing and expanding
research fields, as illustrated in Figure 1, and have been previously researched
within many application areas including medicine, dentistry and law enforcement
(Tables S1 and S2, Supplementary material). Each application has its own set of
requisite analytes, sensitivities, specificities and requirements for integration into
existing protocols and thus, the associated challenges. In this review, we predomin-
antly focus on the potential of Raman spectroscopy combined with saliva in the
areas of healthcare and illicit drug detection. A dedicated commentary on the spe-
cific field of cancer related studies is included with a focused discussion on the
potential of extracellular vesicles which can be directly interrogated in saliva sam-
ples via Raman spectroscopy, for the specific detection of a wide range of diseases.
Application to law enforcement is further given and prominent drug classes are dis-
cussed. Forensic and dental applications are also briefly overviewed. Concurrently,
advances in portable Raman devices, including microfluidic chips, are introduced
alongside developments of the emerging multi-modal analyses. The complimentary
nature of Infrared absorption spectroscopy and Raman spectroscopy allows for a
more complete understanding of molecular vibration structure of the target analytes
to be obtained when both are used; hence, we also provide a comprehensive outline
comparing the two techniques.

1.2. Comparison of Raman with infrared absorption spectroscopy

Raman spectroscopy (RS), a form of vibrational spectroscopy, provides a unique biomo-
lecular spectral fingerprint of target analytes by exciting molecular bonds within a sam-
ple. RS enables the nondestructive quantitative analysis of the chemical composition
and structure of analytes. Infrared (IR) absorption spectroscopy on the other hand,
relies on small energy absorbances that occur between various vibrational and rotational
states. Within vibrational spectroscopies, IR and Raman are complementary techniques
when used together. However, Raman remains a naturally weak effect and due to
technological advances, IR spectrometers have become the choice spectrometer for
vibrational spectroscopies. Notably, IR systems have been latterly benefitting from the
ongoing progress in the development of linear variable bandpass filters.[2] While IR
spectroscopy remains the leading vibrational spectroscopy technique in terms of minia-
turized device development,[3] there are some indications that accuracy and simplified
presentations of ease of use in current commercial systems may be exaggerated.[3]

Concurrently, in recent years, the handheld Raman spectrometer market has been expe-
riencing a substantial growth.[4,5] Phenomenologically different, IR and Raman are in
fact complementary, having different conditions for excitation of molecular bonds
(selection rules) and thereby exhibit different spectral peaks in the respective spectra.
Whilst IR spectra are impeded by the impact of water absorption, which may obscure
analysis of aqueous samples, in contrast, the environment has a very low Raman cross-
section. Furthermore, the relatively broad and thus, often overlapping IR bands, can
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prove problematic in sample identifications. These render Raman scattering as more
applicable for aqueous sample analyses and multiplexed detection, especially where
unknown compounds are present.

Figure 1. Cumulative Raman-saliva studies. Each subject area has seen an exponential-like rise in
publications particularly since the late 2000s. Bars in (blue) dentistry, (yellow) medicine, (green) drugs
and (red) forensics. Included publications are listed in Supporting Information Tables S1 and S2. Based
on this observation, it would be expected that total papers on the Raman analysis of saliva to exceed
200 by 2025.
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A further avenue where Raman spectroscopy shows continued potential is in its combin-
ation with plasmonic metals, which can support surface-confined hybridized electron-light
excitations, surface plasmon-polaritons which can couple to photons participating in Raman
scattering events and thus, leading to orders of magnitude increase in Raman signal and an
increased analytical sensitivity. It is also possible to perform an IR analogue of SERS known
as, surface-enhanced infrared absorption spectroscopy (SEIRAS). Here, transitions in the
infrared are probed and the enhancement is phonon mediated. While the impact of fluores-
cence is often reduced in the infrared, the enhancements associated with SEIRAS are con-
siderably more modest (101-103)[6] compared to SERS, i.e., up to 108 for a SERS substrate
averaged value[7,8] although some mitigation occurs with the cross-section of IR absorption
typically orders of magnitude larger than the Raman cross-section.[6] Currently, the main
bottleneck in SERS exploitation lies in the development of economical and reproducible
enhancing sub-micron structured substrates, which also need to be fabricated on a large
scale. High sensitivity sensing is essential toward diagnostics for the timely detection of sub-
tle physiological changes fundamental to improving patient wellbeing.

2. Healthcare

2.1. What are biomarkers?

Raman spectroscopy opens the possibility of detecting a broad range of substances, and in
terms of healthcare, these are often termed biomarkers of disease or medical drug use.
Biomarkers are bodily substances, detection of which is often useful for disease identifica-
tion (diagnostic) or outcome assessment (prognostic) purposes.[9] By measuring differences
between normal physiological and altered states, whether due to pathology or pharmacol-
ogy, treatment decisions can be determined. The potential exists not just for disease deter-
mination, but also for the assessment of disease severity (stratification) and indeed,
continual monitoring throughout treatment.[10] A greater focus on prevention or even
“predisposition testing” is possible.[11] Thus, there is growing interest in biomarkers as
they precede phenotypic indicators of disease and may significantly improve survival rates
in certain conditions where clinical manifestations come at advanced stages.[12]

In the US, the Food and Drug Administration (FDA), alongside the National
Institutes of Health (NIH), has produced a glossary, “Biomarkers, EndpointS and other
Tools” (BEST), which describe a biomarker as a defined characteristic that is measured
as an indicator of normal biological processes, pathogenic processes, or responses to an
exposure or intervention, including therapeutic interventions. BEST offers several types,
namely, molecular, histologic, radiographic, or physiologic characteristics, and in seven
categories: susceptibility / risk, diagnostic, monitoring, prognostic, predictive, pharmaco-
dynamic / response and safety.[13,14] The World Health Organization (WHO) states a
biomarker is any substance, structure, or process that can be measured in the body or its
products and influence or predict the incidence of outcome or disease.[13,15]

2.2. Raman and saliva in healthcare studies

A problem in healthcare research is the non-specificity of biomolecules, which is debatably
compounded by a base of small studies that focus on specific diseases.[16] For instance, in
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the context of traumatic brain injury, certain biomarkers may also be indicative of poly-
trauma or neurodegenerative disease,[9] e.g., Tau, neurofilament light chain, myelin basic
protein. For this reason, the full extent of the injury and/or co-morbidities should be
noted. In general, this would appear not to be the case within current Raman-saliva stud-
ies, many of which are preliminary in nature. Moreover, there is the broad difficulty of
patients’ data security, permissions and ethics.[16] Elsewhere, problems may arise in a lack
of specificity to the locale of disease, e.g., sialic acid (SA) – a cancer biomarker, is detected
in many different types of cancers. Furthermore, healthcare related studies tend to be con-
cerned with changes to Raman peak intensities, or more precisely, relative peak intensity
ratio changes rather than the appearance of distinct spectral features. This can make ana-
lysis challenging, even with supporting chemometric tools, especially if physiological
changes are subtle. In turn, medical and clinical studies can be difficult to power correctly
to reach statistical significance.[16–18] This is exacerbated by the difficulty of obtaining large
sample numbers for the various studied diseases and much of the current biomarker
research, at large, is still restricted to small cohorts.[16]

2.3. Cancer types

With 19.3 million new cancer cases and almost 10.0 million deaths in 2020, cancer is
one of the most prevalent and fatal diseases worldwide.[19] With an estimated 2.3 mil-
lion cases (11.7%), female breast cancer has surpassed lung cancer as the most diag-
nosed cancer globally, followed by lung (11.4%), colorectal (10.0%), prostate (7.3%), and
stomach (5.6%) cancers.[19] By 2040, the global cancer burden is projected to be 28.4
million cases, a rise of 47% from 2020. The diversity and prevalence of cancer highlights
the need for a global escalation in cancer diagnostics, distribution of preventative cancer
measurements as well as providing cancer care in those transitioning countries to con-
trol the disease.[19] Raman spectroscopy is emerging as a potentially useful clinical aide
in cancer diagnostics. RS can identify and differentiate, in a label-free and noninvasive
way, the subtle changes in tissue biochemistry associated with disease and cancer pro-
gression. The close association of salivary composition to serum metabolites, combined
with the wide spectrum of molecules present in saliva provides valuable information for
clinical diagnostic applications, of which the main Raman peak assignments relating to
cancer diagnostics are illustrated in Figure 2 with further spectral assignments made in
Table S3 (Supplementary material). Several studies have attempted spectral analysis of
biofluids using Raman spectroscopy for disease diagnosis and screening as it may repre-
sent a prospective viable avenue for cancer diagnosis (Figures S2 and S3, Supplementary
material). Saliva has been investigated as a diagnostic medium and its analytes (protein,
RNA, DNA) as biomarkers in the diagnosis of several malignancies including lung can-
cer, breast cancer, prostate cancer, ovarian cancer and squamous cell carcinoma.

2.3.1. Breast cancer
Breast cancer is the most diagnosed cancer and the leading cause of death in women.
Routine diagnostic procedures include histopathological examination of biopsy samples,
fluorescence, optical bioluminescence, X-ray mammography, computed tomography,
magnetic resonance imaging and ultrasound, which are often time-consuming and
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costly. Issues include low sensitivity and resolution.[20] To overcome this, Wu et al.
developed a noninvasive breast tumor detection method using saliva protein SERS com-
bined with regularized multinomial regression (RMR). Their study indicated diagnostic
accuracies of 92.7% (85/97), 95.8% (93/97) and 88.6% (86/97) were acquired, while suc-
cessfully discriminating among the normal group, the benign breast tumor group and
the malignant breast tumor group.[21] Likewise, Feng et al. also exploited the capability
of saliva protein analysis, based on membrane purification and SERS for detecting
benign and malignant breast tumors. The authors detected subtle but discernible
changes in the mean SERS spectra in each of the three groups. Multiclass partial least
squares discriminant analysis was used to analyze and classify the saliva protein SERS
spectra from healthy subjects, benign breast tumor patients, and malignant breast tumor
patients, yielding diagnostic sensitivities of 75.7%, 72.3% and 74.1% as well as specific-
ities of 93.7%, 81.2% and 86.3%, respectively.[22]

Furthermore, Hern�andez-Arteaga et al. indicate the importance of SA in the diagnosis of
breast cancer.[23] The authors evaluated the feasibility of Raman as a method of quantifica-
tion of SA in saliva using citrate-reduced silver nanoparticles as a SERS substrate. They
determined the mean SA concentration was significantly higher among breast cancer
patients (18.3± 9.4mg/dL) than in the healthy control group (3.5± 1.0mg/dL) with SERS
test sensitivity of 94% and specificity of 98%.[23] In a further study, the authors once again
measured SA levels using SERS with tailored citrate-reduced silver nanoparticles, however
exhibiting a lower sensitivity and specificity of 80% and 93%, respectively.[23]

2.3.2. Lung cancer
Lung cancer remains the leading cause of cancer mortality, leading to more than 1 mil-
lion deaths worldwide in 2020. Clinical studies indicate that approximately 80% of
patients are diagnosed with advanced lung cancer and with a 5-year survival rate of

Figure 2. Raman peak assignment on cancerous saliva samples (n¼ 732). An overview pie chart of
the most prominent peaks in the literature displayed by their biomolecular group. A subset of the
Raman-saliva literature with a perceived focus on chemometrics has been analyzed. Further details
are included in Supporting Information, Figure S1–S2 and Table S3.
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only 20%.[24] Thus, effective screening and early detection have the potential to decrease
lung cancer mortality. Wang et al. demonstrated early detection technology of lung can-
cer based on SERS. They analyzed 19 lung cancer and 45 healthy patient samples and
obtained an accuracy of 96.9% by Logistic Regression Analysis. The authors also
detected two prominent peaks of interest, 758 cm-1 and 1244 cm-1.[25] Similarly, Li et al.
applied SERS for the detection of lung cancer using silver colloids. The peak variations
between the healthy and diseased groups were investigated. The authors determined
that lung cancer peaks were largely detected at a lower Raman intensity than those of
their healthy counterparts. Principal component analysis (PCA) and linear discriminant
analysis (LDA) were used to discriminate between the data sets resulting in an 80%
accuracy, 78% sensitivity and 83% specificity.[26] Qian et al. also applied SERS in their
new method of lung cancer detection. The authors combined a SERS system with a
gold-modified nanochip. Support vector machine and random forest algorithms were
used to analyze differences between healthy and diseased data sets. Sensitivity and speci-
ficity of Raman spectroscopy data was 100%.[27]

2.3.3. Head and neck cancers
Cancers that are known collectively as head and neck cancers, usually begin in the squa-
mous cells that line the mucosal surfaces of the head and neck.[28] Head and neck can-
cers can form in the oral cavity, throat (pharynx), voice box (larynx), paranasal sinuses
and nasal cavity and salivary glands.[29]

Of the head and neck cancers, oral cancer with seven publications has been the most
extensively researched as a Raman salivary disease. Oral cancer involving the lip and
oral cavity is the sixth most common type of cancer worldwide.[30] Currently, diagnosis
of oral cancer relies on clinical investigation and histopathological examination; however
there is a high risk that cancerous lesions developing in hidden areas may go
undetected, therefore early detection is key to improving survival rates of patients.[31]

Saliva represents an ideal biofluid for research relating to oral and oropharyngeal cancer
diagnostics due to its intimate proximity with the oral mucosa.[32] The application of
biomarkers for the detection of oral cancer is a challenging prospect, with over 100 dif-
ferent salivary constituents currently suggested as potential salivary biomarkers. The
majority of these potential biomarkers are proteins which require highly sensitive
methods for detection as they are present at finite concentrations. Therefore, typical
analytical techniques such as the enzyme-linked immunosorbent assay (ELISA) and
radio-immunoassays are limited in their ability to effectively discriminate oral can-
cer[33,34] and the research has been moving more toward the detection of biomolecular
differences between the normal and diseased states.
One such study by Connolly et al. explored the application of silver nanoparticle-

based label-free SERS for biochemical analysis of saliva and oral cell samples from
healthy and confirmed oral cancer patients. The study demonstrated the potential of sal-
iva and oral cell SERS combined with PCA-LDA or PCA-linear regression (PCA-LR),
revealing a sensitivity of 89% and 68% and a diagnostic accuracy of 73% and 60%,
respectively for saliva and oral cells.[35] Rekha et al. applied near-infrared Raman spec-
troscopic characterization of salivary metabolites in discriminating normal from oral
premalignant and malignant conditions. PCA coupled with LDA yielded a diagnostic
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sensitivity of 96.4% and 93.8% and a specificity of 70.2% and 95.7% in the classification
of normal from premalignant and normal from malignant, respectively.[36]

In addition, F�al�amaş et al. explored the enhancement of salivary characteristic Raman
bands by using label-free, ultrasensitive SERS based on gold nanoparticles. Mixing Au col-
loidal nanoparticles with dry samples of saliva presented a high variability of signal inten-
sities and frequency shifts. Healthy and oral cancer saliva was differentiated using PCA.
The authors also identified thiocyanate Raman modes in saliva samples of both smoking
and nonsmoking volunteers and cancer patients, indicating that the cancer group dis-
played an overall higher level of the 2126 cm-1 band area assigned to C-N stretching vibra-
tions of thiocyanate.[30] Similarly, Jaychandran et al. combined Raman analysis with PC-
LDA to discriminate oral pre malignancy and malignancy from normal controls with an
accuracy of 93.1% in saliva samples.[37] A further study by Falamas et al. aimed to test a
sample preparation method for oral and oropharyngeal cancer diagnosis using micro-
Raman and Fourier transform infrared (FTIR) with an accuracy of 90% based on micro-
Raman. The authors identified several differences between healthy and cancer patients,
with the band at 2064 cm-1 suggested to be assigned to thiocyanate. They observed further
cancer-indicative bands at 754 cm-1 (tryptophan), 530 and 927 cm-1 (lysozyme) and
1001 cm-1 (phenylalanine).[30] F�al�amaş et al. have further described a newly identified
sample protocol for the detection of oral squamous cell carcinoma producing high signal-
to-noise ratio Raman spectra.[30] Kah et al. exploited the ability of gold nanoparticles to
enhance the Raman signal of bioanalytes in cancer. They developed a self-assembled
SERS-active gold nanoparticle monolayer film as a biosensing surface. The authors indi-
cated that the SERS spectra of saliva from the closely packed gold nanoparticle films were
discernible from those acquired from normal individuals and oral cancer patients.[12]

Researchers have also focused their efforts on the detection of nasopharyngeal carci-
nomas (NPC). NPC, a head and neck malignancy, has a particularly high mortality rate
in certain regions of south-eastern Asia. The five-year overall survival rate is about 90%
for stage I NPC patients. However, the stage IV group has a poor five-year overall sur-
vival rate of 30.3%.[38,39] Early detection of NPC remains challenging due to the insidi-
ous nature of the cancer and the general inaccessibility of the nasopharynx. Therefore,
researchers have started developing noninvasive detection methods based on salivary
proteins using SERS,[40] where the authors evaluated the capability of saliva analysis
combining membrane protein purification with SERS and PCA-LDA. This method
yielded a diagnostic sensitivity of 70.7%, specificity of 70.3% and diagnostic accuracy of
70.5%.[40] Similarly, Feng et al. developed a method of saliva analysis combining mem-
brane protein purification with silver nanoparticle-based SERS for the noninvasive
detection of NCP. The authors used cellulase acetate membranes to obtain purified pro-
teins from human saliva and mixed these with silver nanoparticles for SERS analysis.
They obtained a higher diagnostic accuracy of 90.2% when combining PCA-LDA.[41]

Additional study by Qiu et al. evaluated the use of saliva SERS for the detection of
NPC. The authors used silver colloids as the SERS substrate and achieved a diagnostic
accuracy of 83.9% with a sensitivity of 86.7% and specificity of 81.3% using PCA-LDA.
They also determined several Raman bands of interest at 447, 496, 635, 729, 1134, 1270
and 1448 cm-1, which primarily contained signals associated with proteins, nucleic acids,
fatty acids, glycogen and collagen.[42]
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2.3.4. Other types of cancer
Raman spectroscopy has shown its versatility for the diagnosis of breast, lung and head
and neck cancers however, it has also been demonstrating applications in other types of
cancer. Aslam et al. and Zhang et al. focused on using SERS.[43,44] Aslam et al. applied
artificial neural networks to classify and predict gastric cancer from SERS data, whilst
Zhang et al. manufactured a SERS sensor to analyze eight salivary amino acids of inter-
est in gastric cancer. Maitra et al. explored Raman spectral discrimination in human
liquid biopsies toward detecting esophageal stages through to esophageal adenocarcin-
oma.[45] The authors used PCA, successive projections algorithm or genetic algorithm
(GA) followed by quadratic discriminant analysis (QDA), achieving 100% sample classi-
fication when using the GA-QDA model.[45] Cottat et al. developed a nanobiosensor to
detect manganese super oxide dismutase (MnSOD), as specific biomarker of liver can-
cer. They applied gold nanostructures (nanocylinders and coupled nanorods) to observe
SERS signal of the MnSOD at concentrations down to nM.[46] Hern�andez-Arteaga et al.
previously reported the significance of SA in breast cancer, Zerme~no-Nava et al. also
reported SA as a predictor of ovarian cancer.[23,47] The authors demonstrated the use of
SERS to determine SA levels in saliva using silver nanoparticles. Their results indicated
a sensitivity/specificity of 80%/100% with a cutoff of 15.5mg/dL to distinguish between
benign/cancer.[47]

2.4. Other diseases

As well as cancer detection, salivary Raman methods have found applications within
many other healthcare studies. For example, Cao et al. developed a potential method for
the noninvasive detection of acute myocardial infarction (MI). The authors observed
significant differences between healthy and MI Raman bands, yielding a diagnostic sen-
sitivity of 80.4%.[48] Multiple studies have focused on the diagnosis of Sj€ogren’s syn-
drome, e.g., Moisoiu et al. combined SERS of saliva with two-dimensional shear wave
elasography (2D-SWE) of the parotid glands whereas Stefancu et al., applied SERS
based liquid biopsy of saliva from patients with Sj€ogren’s syndrome, with silver nano-
particles used as SERS substrate and the data analyzed using PCA-LDA to achieve an
overall higher classification accuracy of 94%.[49,50] In addition, Eom et al. used SERS in
the diagnosis of Tamiflu-resistant influenza virus.[51] The authors combined SERS-active
substrates with urchin gold nanoparticles and oseltamivir hexylthiol, an excellent recep-
tor for the oseltamivir-resistant pandemic H1N1 (pH1N1)/H275Y mutant virus. A fur-
ther application was identified by Ember et al. in the detection of COVID-19. The
authors developed a reagent-free method of detecting COVID-19 combining Raman
spectroscopy, machine learning and droplet segmentation to achieve sensitivities of 79
and 84% in males and females and specificities of 75 and 64%, respectively.[52]

Carlomagno et al. aimed to discriminate amyotrophic Lateral sclerosis (ALS) onset using
Raman spectroscopy to provide a fast, sensitive procedure to efficiently diagnose and
monitor the therapeutic and rehabilitative processes.[53] Saliva and Raman have also
found applications in screening for Alzheimer’s Disease (AD). Ralbovsky et al. com-
bined Raman hyper-spectroscopy with machine learning to develop a novel method for
the diagnosis of AD based on salivary analysis, indicating its remarkable potential for
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use as a noninvasive, efficient, and accurate (99%) method.[54] Further applications have
been identified as a noninvasive alternative procedure for early detection in childhood
asthma biomarkers,[55] analysis of thiocyanate in saliva using droplet SERS-microfluidic
chip[56] and for the detection of Pseudomonas aeruginosa in saliva using SERS.[57]

2.5. Extracellular vesicle analysis in saliva and current characterization methods

Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound vesicles
which vary in submicron size. EVs represent a potential source for biomarker discovery
and have been increasingly recognized as strong vehicles of long-range intercellular
communication in the body.[58] They can transfer proteins, nucleic acids, and lipids to
other cells, thereby influencing the recipient cell function.[59] Initially underappreciated
and thought to act as a mechanism of cell disposal, EVs are now considered abundant
and stable sources of circulatory biomarkers.[60–62] They provide a snapshot of the cells
from which they originate and as such, are depositaries of significant information.
Recent research has looked at the use of EVs (in specific, exosomes) as therapeutic vec-
tors functionalized to trigger an immune response in a host, and application to
COVID-19 has been identified.[63]

Typically, EV subpopulations are broadly divided into three main groups based on
their biogenesis: (a) exosomes, which constitute a homogenous population of spherical
vesicles of approximately 30–100 nm; (b) microvesicles, which are large bilayered
vesicles 100–1000 nm in diameter; and c) apoptotic bodies that comprise a highly het-
erogeneous group of bilayered vesicles 800–5000 nm in diameter.[64,65] EVs have been
found in the extracellular space as well as circulating through many different body flu-
ids including saliva and blood.[66,67] These biofluids contain non-vesicular macromol-
ecular structures which could interfere with analytical results and thus, EVs isolation
and enrichment is a required pre-analytical step for biomedical research.[68] In general,
there are three main methodologies used for the isolation and purification of EVs
including, ultracentrifugation/differential centrifugation, adsorption to microbeads
(immunoaffinity) and size exclusion chromatography.[69–71]

Traditionally, microscopic methods such as atomic force microscopy (AFM), dynamic
light scattering (DLS), flow cyto(fluoro)metry, and nanoparticle tracking analysis (NTA)
have been used to characterize EVs and measure physical features such as vesicle
morphology and size. ELISA may be used for the purpose of specificity, where only
antibodies for external epitopes lead to a signal and surface plasmon resonance (SPR) is
an easy way to obtain interaction parameters. However, given the importance of EVs in
liquid biopsies better quantification of EVs is required. New sensing strategies relying
on detection principles including fluorescence, colorimetry and electrochemistry-based
technologies, allow for the detection of EVs either with the naked eye or without the
requirement of purification steps, promising for the development of future point-of-care
(PoC) testing devices.[72] Due to its simplicity, fluorescence is the most popular
approach for the detection of EVs. Fluorescent molecules are used as tags to label DNA
probes and antibodies thus, enabling the detection of EVs via nucleic acid hybridization
and antibody/antigen interactions.[73] Moreover, colorimetric detection allows for direct
visual observation of EVs. This simplifies the detection process and reduces the need
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for bulky instrumentation, fitting for PoC testing.[74] However, there can be significant
differences between output data between the different EV characterization techniques,
and arguably, there is no gold standard for routine benchtop EV analysis.[71]

Raman spectroscopy offers an alternative method in the analytical study and detec-
tion of EVs. Recently, Gualerzi et al. described Raman spectroscopy as a tool to assess
the purity of EV stem cell preparations. The authors indicate the ability of Raman to
rapidly assess the composition and purity of EVs. The Raman spectral fingerprints
obtained from the different sample preparations can discern both the cell source of the
EV and which isolation procedure (ultracentrifugation, size exclusion) was applied.[75]

A further study by Kwizera et al. describes the use of gold nanorods as a SERS-active
platform in the detection of breast cancer cells.[76] Here, exosomes were captured on a
miniaturized affinity-based device and target proteins on the EVs were detected using
gold nanorods coated with QSY21 Raman reporters. The authors indicated that by using
this technique, differences can be observed in the protein profiles of breast cancer cells
compared to those normal breast cells. These studies analyze blood samples, but Raman
spectroscopy also has the potential for similar EV analysis in saliva.
Notably, tip-enhanced Raman spectroscopy (TERS) might prove a useful technique

for EV analysis, having so far been seemingly unexploited in the literature, whether for
EVs specifically, or other salivary constituents.[1] TERS opens the possibility of charac-
terizing individual EVs by combining the chemical information provided by Raman
scattering, the sensitivity of SERS and the spatial resolution of scanning probe micros-
copy. This technique uses a scanning tunneling microscope (STM), or AFM set-up,
with a plasmonically active tip, which when proximal to analyte molecules and illumi-
nated with light of appropriate wavelength, can produce a SERS effect.[77,78] EV damage
however, caused by tip collision or plasmonic heating could be problematic, as could
inhomogeneity, should too few measurements be taken.[79] It is worth mentioning, that
TERS has a long-standing and well-known problem of reproducible tip manufacture
(and thus signal uniformity).

3. Illicit drugs

3.1. Introduction

As many as 250,000,000 people abuse substances worldwide each year,[80] resulting in
illicit drug use, costly for law enforcement, healthcare and employment.[81] Not all
drugs are consumed illegally, some “abused drugs” are intended for medical purposes,
whether they be prescribed or over the counter (OTC) medications.[82] While drugs of
various kinds have been well-studied with Raman spectroscopy,[17,83,84] the analysis of
drugs in saliva is still an emerging area and is underpinned by the limited classes of
compounds typically reported including for instance, stimulants, opioids/opiates, and
cannabinoids (Table 1). At present, high-cost reagents and time-consuming assays are
often employed in the laboratory for drug identification, including for example, gas
chromatography with mass spectrometry (GC/MS), high-performance liquid chromatog-
raphy (HPLC), and ELISA with the more rapid and portable technique of colorimetric
testing lacking specificity and being subjective.[31,81,85–95] At the point of need, drug
testing often requires fast, inexpensive and selective testing and Raman analysis of saliva
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offers a potential solution, which in contrast to urine, often contains parent com-
pounds.[81,96] Furthermore, when an illicit compound has been ingested, this can lower
analytical sensitivity requirements due to contamination of the oral cavity via direct
contact with the illicit substance. Whilst in quantitative studies this may lead to an
overestimation of drug concentration in oral fluid levels, this in turn acts as an advan-
tage for qualitative screening when determining any recent exposure to illicit substan-
ces.[96] Despite a rise in cases of “drug-driving,” there is currently no roadside drug
test[82,97] analogous to that of an alcohol breathalyzer. Detection of drugs in hospitalized
patients due to overdose also requires rapid assessment.[82]

In theory, almost any illicit compound can be detected by Raman spectroscopy. In a
range of studies, Inscore and Farquharson investigated 80 and 150 different kinds of
compounds respectively, including barbiturates, antipsychotics and sedatives.[97,98] Even
where differences in molecular structure were found subtle, such as between novel can-
nabinoids,[96] the sensitivity of RS phenomenon to alterations in molecular bonds did
not preclude detection, albeit perhaps an increased emphasis on subsequent chemomet-
ric analysis. The real impasse using Raman analysis was the low concentrations in cer-
tain saliva samples, coupled with the inherently low Raman cross-section.
Higher sensitivity could be achieved using SERS for saliva studies. However, the

molecular affinity to specific plasmonic metals, usually gold or silver, needs to be con-
sidered to ensure suitable detection.[91,97–99] In addition, the adsorbate-metal complex
may result in spectrally shifted Raman bands, which needs to be taken into a
consideration.[100]

In some cases, a modification to the spectral position of the Raman bands in SERS
could prove advantageous. From the point of discrimination, for example, between
methylphenidate and meperidine with the former adsorbing to gold such that distinct
peaks are present.[98] Furthermore, the complex matrix of salivary constituents can eas-
ily interfere with the measurement and given the short-range nature of the SERS effect,
mitigate any enhancement of the requisite analyte molecules.[88,90] Similar maleffect
may be observed with interferent capping agents in nanoparticle SERS studies.[91] In
turn, these problems introduce the requirements for pretreatment steps (if not already
in place). Such considerations, while generally applicable in analytics,[101] may be espe-
cially pertinent where smaller molecules are concerned, such as those in drug studies.

3.2. Stimulants

3.2.1. Methamphetamine
One commonly studied illicit compound with adsorption problems to a metal surface
for SERS study is methamphetamine.[81] The compound’s lack of net charge and suit-
able moieties hinders optimal adsorption to a silver surface,[88] although chemical modi-
fication to the molecule,[102] or removal of the capping agent (used to stabilize the
colloid suspicion) have been shown to promote a better affinity.[81,103] This has been
discussed by Kline et al., where the authors varied excitation wavelengths and capping
agents.[91] Hong et al. reported the limit of detection (LoD) in the micromolar range
from saliva in an optoplasmonic (i.e., combining optics and plasmonics) SERS system
consisting of silane modified SiO2 spheres, functionalized with a carboxyl group,
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effectively extracting methamphetamine from the complex salivary matrix.[104] Similarly,
Su et al. used a CHCl3 extractant with a low Raman cross-section to successfully remove
methamphetamine from saliva.[105]

3.2.2. Cocaine
The detection of cocaine formed one of the first commercially device-oriented Raman-
saliva studies (alongside benzoylecgonine and barbiturates).[106] As highlighted by Dana
et al., cocaine concentrations, along with cocaine metabolites, were found to correlate
with those in blood plasma.[107,108] The authors have also highlighted a previous study
demonstrating saliva analysis outperforming serum and urine samples for similar
cocaine concentrations.[109] As with methamphetamine, cocaine would appear to have a
better affinity to gold surfaces than silver. In an additional SERS study on cocaine,
Dana et al. detected a decrease in sensitivity of around two orders of magnitude
between gold (1 lg/mL) and silver (100 lg/mL) sol-gel-doped capillaries.[110] A similar
conclusion was reached by Inscore et al., who observed that while cocaine was active on
both gold and silver substrates, the detection limit was 500� lower for gold (100 ppb vs.
50 ppm).[98] This is a remarkable outcome since silver significantly outperforms gold as
a plasmonic enhancer across the visible range (>600 nm).[7,111] The appearance of a
new cocaine peak and changes to relative peak intensities have also been noted, despite
the saliva matrix being adjudged to interfere minimally.[110] One contradicting report
however, by Kline et al., noted the absence of cocaine Raman bands in a SERS study
with AuNPs (vs. AgNPs), attributing the discrepancy to the plasmonic performance def-
icit of gold.[91]

Dana et al. deemed pretreatment measures necessary to achieve useful cocaine sensi-
tivities, adding solvent and noting no difference between filtration and centrifugation in
causing mucin removal. A subsequent solid-phase extraction step was performed.
Sensitivity improvement however was modest (25 lg/mL) and further optimization was
required.[110]

In a magnetically induced nanoparticle aggregation SERS study, Yang et al. detected
cocaine metabolite benzoylecgonine down to 29 ppb[90] from which the cocaine concen-
tration could be determined. D’Elia et al. opted for a different strategy instead by utiliz-
ing UV Raman to detect cocaine to a cutoff value of 10 lg/mL, noting that moving
further into the UV (200 nm) could increase analytical sensitivity further.[92]

Farquharson et al. used a spectral database of drugs to determine cocaine at 50 ng/mL
in spiked saliva, being adjudged similar to structural analogue cocaethylene (ethylben-
zoylecgonine), which exhibited a comparable “hit quality index” metric value.[98]

3.2.3. Other stimulants
Many other stimulants have not currently been comprehensively studied by Raman in
saliva, notably, 3,4-Methylenedioxymethamphetamine (MDMA), better known as
ecstasy/molly. Cotinine, a metabolite of (legal) stimulant nicotine, has been detected to
a LoD of 50 nM (8.8 ppb) by Yang et al. in a Raman-saliva investigation[90] and may be
easily related to the nicotine concentration[90,112] in the original sample. Occasionally,
metabolites can prove advantageous where they provide prominent Raman peaks that
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are spectrally positioned where they are less obscured by the salivary background
signature.[87]

3.3. Morphine, heroin and other derivatives

Heroin (diamorphine) is a common and particularly damaging illicit drug derived from
morphine, a product of the opium poppy. The Raman spectrum of heroin is compara-
tively sparse, yielding only a few distinct signature peaks (Figure 3).[98] This has not
appeared, however, to impair unambiguous detection via comparison with compounds
such as methamphetamine, 1-(1-phenylcyclohexyl) piperidine (PCP), 3,4-methylenediox-
ymethamphetamine (MDMA) or lysergic acid diethylamide (LSD),[98] due to a promin-
ent Raman peak around 600 cm-1. However, in a multi-drug SERS study, Kline et al.
noted that detection sensitivity of morphine was often 1–2 orders of magnitude lower
than that for methamphetamine and cocaine.[91] Recently, Akçan et al. have investigated
the performance of various silver and gold SERS nanoparticles on different surfaces for
heroin detection by Raman spectroscopy in saliva, with the AuNPs on a polyaniline sur-
face found to provide the best sensitivity.[95]

Other morphine derivatives such as oxycodone, codeine, and fentanyl, have been
studied in[80,97,98,113] with the latter being well-known to often be mixed with heroin.
Shende (2019) et al. noted no change in the spectrum of fentanyl in saliva medium
from that mixed in phosphate-buffered saline (PBS), with only a signal intensity
decrease of a factor of two (to LoD of 0.5 lg/mL). In the case of codeine however, peak
shifts were observed and postulated to be due to the basic nature of saliva (pH �8.0)
and consequently, the drug’s dissociated form.[113] Farquharson et al. commented on
the difficulty in oxycodone detection owing to its structural similarity with other pre-
scription drugs. Using a goodness-of-fit algorithm and a narcotics spectral library, the
authors achieved a successful oxycodone identification.[98]

Li et al. used immunochromatographic assay (ICA) test strips in combination with
functionalized AuNP SERS to detect morphine to 2.4� 10-4ng/ml outside the salivary
medium. Repeatability was studied via multiple measurements with the relative standard
deviations found to be 4–5%. Moreover, the selectivity of the assay was confirmed via
peak ratio analysis testing against common medications as well as structurally similar
compounds including, cocaine, codeine and 6-monoacetylmorphine. The assay proved
to be �6� more selective for morphine than for other drugs. Initial investigations using
spiked saliva have shown a recovery rate within 10% of the actual concentrations
(including overestimations). An ICA test strip shelf life in airtight storage conditions of
up to one year was determined.[85]

3.4. Cannabis

Cannabis (i.e., marijuana, “weed”) is a popular illicit drug for recreational use, where
tetrahydrocannabinol (THC) is the principal psychoactive constituent. In an initial
Raman-saliva study, Sivashanmugan et al. noted no noticeable interference from the sal-
ivary biomolecules.[86] However, in a subsequent publication, these authors reported a
wavenumber shift in the prominent THC Raman band at 1600 cm-1 as well as a new
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peak at 1621 cm-1 owing to THC’s metabolic changes arising from the saliva
medium.[87] The rapid metabolization of THC has also been reported with a concentra-
tion decrease from 148 to 82.6 ng/L in saliva within 30minutes of subject consump-
tion.[86] The researchers obtained a picomolar-range detection of THC and established

Figure 3. Raman bands analyzed in Raman-saliva studies for common illicit drugs. A. Cannabis, B.
Cocaine, C. Heroin, D. Methamphetamine. Most prominent bands marked with �. Background is three
saliva spectra for assessment of potential overlap with innate saliva Raman bands (Based on
Ref. (91)).

16 E. BUCHAN ET AL.



that its detection in saliva can be used as an accurate indicator of cannabis use, poten-
tially up to several days after the consumption.[87]

A unique challenge with cannabinoids is that they are part of a trend involving the
development of novel psychoactive substances (NPS), or “legal highs,” in the form of
synthetic cannabinoids (SCBs). Further to the often-difficult legal aspects of policing
such compounds, they can also confound conventional detection methods where the
alterations to chemical form can reduce analytical selectivity and subsequently, impact
the diagnostic accuracy metrics.[96] Raman spectroscopy, with its highly selective nature,
provides a technique to circumvent this by eschewing any recognition element and
instead relying on the drug’s full spectral signature. For instance, Deriu et al. have
recently discriminated between the SCBs: JWH-018, JWH-073, JWH-081 and JWH-122
in saliva using SERS. In detecting SCB JWH-018, the authors noted a LoD in oral fluid
of 31 ng/mL (7.7� 10-8 M), which approached the observed LoD outside the salivary
medium at 0.8 ng/mL (2� 10-9 M).[96]

3.5. Illicit / abused drugs summary

It is difficult to predict molecular adsorption behavior a priori.[114] Interestingly, many
compounds appear to perform better with gold than silver, including diazepam
(Valium) and 3,4-methylenedioxyamphetamine (MDMA). This has been proposed to be
because of nitrogen-containing moieties, which have a considerably higher affinity to
gold than silver, offsetting the markedly worse plasmonic performance.[91] Some prom-
inent compounds nevertheless are highly active on silver including for instance, the
gamma-hydroxybutyric acid (GHB, date rape drug) and lysergic acid diethylamide
(LSD).[97] Complementary theoretical studies might be beneficial in such cases, however,
may prove too cumbersome where a vast array of NPS and their metabolites are
studied. Focused computational chemistry work confined to the subset of prominent
(parent) compounds on gold surfaces, perhaps with common metabolites, may be
worthwhile.[96] Moreover, full consideration of plasmonic phenomena may be war-
ranted, for example, in the Raman-saliva drugs study of,[91] the authors discussed the
likely radiative/non-radiative pathways for plasmonic dephasing and the effect of par-
ticle size on resonance wavelength. Such challenges although generic are important for
optimization of SERS performance.[91]

The impact of (small amounts of) salivary constituents, chiefly mucins,[96] both as
competitors for metal surface sites in SERS studies and as bodies that can “trap” analyte
molecules, need to be carefully considered and may warrant additional pretreatment
steps.[96,97] This includes methanol addition (well-known protein crash agent), acetic or
sulfuric acid and heat or sonication combinations,[106] or a solid phase extraction
step.[97,110] It may be a more critical concern where the analyte molecules are relatively
small. Optimization of such clean-up processes is vital to avoid unnecessary dilution of
the oral fluid and concurrent reduction in analytical sensitivity.[96] Arguably, studies do
not frequently enough replicate and report on complex environments (and interactions)
in which drug molecules may find themselves.[87] Similarly, while multiple drugs are
often present in studies, multiplexed detection mimicking real-world scenarios is lack-
ing, and a multi-component analysis requires reevaluation of possible analytical
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sensitivities.[105] Furthermore, the chemical assignment of the innate salivary constitu-
ents is under-discussed within the Raman-saliva literature for drugs.
Concerning the classification process, Farquharson et al. noted that their ‘method

could be improved by using a library tailored to the patient population, such that it is not
excessive in size, but includes only those drugs that could be reasonably expected in a
sample.’ Also, it may be useful to not only make use of a spectral library of isolated,
pure, illicit chemical compounds as in,[98] but also one that includes modified spectra
contingent on different surrounding media (e.g., the saliva matrix), use of SERS media,
or longitudinally collected data e.g., where different metabolites may appear. More
recently, Farquharson and colleagues have produced a spectral library of 39 common
drugs analyzed with AuNPs at 785 nm excitation, including opioids, stimulants and sed-
atives, which are chiefly benzodiazepines. Important Raman peaks were identified and
assigned.[113] Where libraries are insufficient, compounds can be identified via more
standard analytical techniques and the databases updated to ensure future classification
accuracy.[17] In many cases, analysis may require other chemometric approaches such as
for instance, the commonly used PCA.[80]

Although beyond the scope of the current review, it is worth noting that chemother-
apy drugs (CDs) have also been studied by Farquharson et al..[93,115] Analogous to
illicit/abused drug studies, Raman band spectral positional and relative band intensity
changes were noted due to interaction of the CD with the (SERS) silver surface. The
authors discussed the possibility of using metabolic data from Raman-saliva measure-
ments to inform on optimal patient dose. Orientation effects and background signal
from a working device were also examined. In contrast to the detection of larger biomo-
lecules as biomarkers for disease, illicit drug detection often requires a roadside test that
must be performed rapidly, ideally, like an alcohol breathalyzer test.[97] Farquharson
and Su et al. emphasized the speed (�15minutes or less) in a series of device-oriented
publications.[105,110,113,115] Raman spectroscopy in itself is amenable to portable devices,
and we discuss this in detail in Section 6.
Further study is required to illuminate any challenges that specific drug classes may

face. There may not be a “one-size-fits-all” approach and more practical studies which
examine multiple drugs simultaneously with a single device would be useful.[91] While
heroin, cannabis, and methamphetamine are known to be three of the most abused
illicit compounds,[98] the detailed investigation into the potential of Raman for other
compounds in saliva is warranted for further study. The current review does not obviate
a possible multimodal or multistep approach (as would typically be the case)[81] and
this may still be necessary for legal i.e., confirmatory reasons.[82,97] In the US, a
10–50 ppb (10–50 ng/mL) detection limit is required for most drugs.[97,110] As with
other analytical fields, the focus is predominantly on the end-user[116] and precise quan-
tification with ultralow sensitivity may not always be necessary. In turn, this could allow
research efforts to focus more on multiplexed detection of drug mixtures.[17]

4. Forensic applications

Raman spectroscopy is further an excellent candidate technique for use in forensics and
is recognized as an emerging analytical method in forensic sciences and analysis.[117]
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Critically important within the forensic sciences is the ability to detect and identify
traces of body fluids and thus, preserve any DNA that may be present at a crime scene.
Many of the current techniques used to identify body fluids are highly destructive pre-
venting further sample analysis and are only specific for a single biofluid. RS, however,
allows for nondestructive measurements[94] and can measure and discriminate between
a range of biofluids such as blood, sweat, semen and saliva.[118,119] Developments in this
field have been led by Lednev et al. with a recent review which focused solely on
Raman spectroscopy applications in forensics.[120,121]

Applications of Raman-salivary studies have to date successfully demonstrated the
ability to differentiate between genders and age[122,123] and between smokers and non-
smokers.[124] Many of these studies are, however, preliminary in their nature yet, they
do establish the ability of Raman as an analytical tool and the potential impact it can
deliver in the forensic analysis, particularly where sample size is small, impure, or diffi-
cult to extract via alternative methods.

5. Dental/orthodontic applications

In most of the teeth-related dentistry literature, the use of Raman spectroscopy primar-
ily focused on the acquisition and analysis of mineral-related content, for example, den-
tin[125–129] and alloy,[25,130–133] where saliva was typically used as a passive medium and
not the focus of any Raman measurements.[125–156] From the initial 70 published papers
which exploited Raman spectroscopy for dental application, 33 used artificial saliva
while 21 used saliva collected from humans. Lee et al. however, used both human sam-
ples and artificial saliva in their study for cotinine detection.[154] Other papers were

Table 2. Composition of artificial saliva.
Artificial saliva composition pH Ref.

0.2mM MgCl2, 1 M CaCl2, 4mM Na2HPO4, 16mM KCl and
4.5mM NH4Cl were dissolved in 20mM HEPES (4-(2-
Hydroxyethyl)piperazine-1-ethane-sulfonic acid) buffer.

The pH of the resulted solution was
adjusted to 7.0 with NaOH.

[157,158]

KCl, KH2PO4, NaHCO3, MgCl2(H2O)6, (NH4)2CO3, CaCl2(H2O)2 HCl used to adjust to pH 6.8. [159]

0.4 g NaCl, 0.4 g KCl, 0.795 g
CaCl2�2H2O, 0.78 g CaCl2�2H2O, 0.005 g Na2S�9H2O, 1 g
urea, 100 g distilled water

[159]

CaCl2 (0.7mM), MgCl2 (0.2mM), KH2PO4 (4.0mM), HEPES
(20mM), KCl (30.0mM)

pH adjusted to 7.0 by 1M NaOH. [161,162]

NaCl (400mg/L), KCl (400mg/L), CaCl2 �2H2O (795mg/L),
NaH2PO4�H2O (690mg/L), KSCN (300mg/L), Na2S�9H2O
(5mg/L), and urea (1000mg/L).

pH adjusted to 6.3 by either lactic
acid or sodium hydroxide and
maintained at 37 �C.

[151]

1.5 g/L KCl, 1.5 g/L NaHCO3, 0.5 g/L NaH2PO4�xH2O, 0.5 g/L
KSCN, 0.9 g/L of lactic acid.

pH 4.8 [130]

NaCl (125.6mg/L), KCl (963.9mg/L), CaCl2�2H2O (227.8mg/
L), KH2PO4 (654.5mg/L), Urea (200mg/L), NH4Cl
(178mg/L), NaHCO3 (630.8mg/L), KSCN (189.2mg/L)
and Na2SO4�10H2O (763.2)

pH 7.1 [163]

50mM HEPES, 5mM CaCl2.2H2O, 0.001mM ZnCl2, 150mM
NaCl and 100 U/ml penicillin, and 1000 lg/mL
streptomycin

pH 7.2 [164]

Carter-Brugirard saliva of composition (g/L): NaCl � 0.7;
KH2PO4 � 0.26; KSCN � 0.33; Na2HPO4 � 0.19; NaHCO3

� 1.5; urea � 0.13.

pH 7.62 [131]

NaCl [0.4], KCl [0.4], CaCl2.H2O [0.795], NaH2PO4 [0.69],
Na2S�9H2O [0.005], Urea [1.0] [g/L]

[165]
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either ambiguous or did not provide sufficient information as to what type of saliva was
used and/or where it was sourced from. Papers by Daood et al. use artificial saliva in
their work; however, there was limited information on its composition and specifica-
tions.[126,127] Table 2 summarizes the details of the chemical compositions and specifica-
tions in these studies using artificial saliva.
Despite the limited focus on saliva with Raman in dental applications, there were sev-

eral studies that focused on saliva including for instance, Gonchukov et al., where spec-
tral regions at 1033, 1155, 1525 and 1611 cm-1 were identified as potential biomarkers
of periodontitis.[166,167] Furthermore, a review by Calado et al. highlighted Raman spec-
troscopy as a potential technique in future clinical applications for early detection of
oral squamous cell carcinoma.[168] Altuntas and Buyujserin investigated, artificial saliva
with different candidate biomarkers for Alzheimer’s incorporating a SERS substrate for
beta-amyloid detection in artificial saliva[169] achieving a LoD of 0.5 pg/ml for Ab.[1–42]

This review highlighted that Raman spectroscopy studies with human saliva samples for
disease detection and diagnostics remain highly limited.

6. Portable devices, microfluidics and multimodal systems

6.1. Portable devices

There is a growing market interest in portable analytical devices. In a review into dis-
ease diagnostics and monitoring, Liu et al. identified the potential of portable devices
and saliva for point-of-care (PoC) diagnostics.[170] Romao et al. suggests three steps in
the portable process: sample preparation, detection/readout, and interpretation. In sam-
ple preparation, the target analyte must be in “acceptable form,” concentration and pur-
ity, which may be accomplished by either external measures,[171] as has been done in
the context of a portable device in a food technology application,[172] or as an integrated
component onto the microfluidic chip. Each approach has its own merit in terms of
cost and speed/ease of use. Romao et al. notes that full integration is likely in future
portable devices, but complexity and size compromises are probable measures to reduce
cost.[171] We note most portable devices appearing in our Raman-saliva literature survey
do not use optical fibers with Raman systems, but fiber-coupling may be useful in some
cases and has been discussed by Pence.[173]

Regarding analysis interpretation, a simple-to-understand user interface is key for an
unambiguous result. This could be contrasted with colorimetric sensors where the test
result may be somewhat subjective.[81] Alternatively, wireless communication, including
the use of cloud services, could be a better solution to get rapid expert opinion, perhaps
even useful as a confirmation.[171,174] Transfer of sensitive health or potentially incrimi-
nating data, however, will also raise questions of security.[171,172]

Many current portable biosensing systems are electrochemically or SPR-based.[171]

Seitz comments that the real bottleneck for better cost-viability in biosensing systems is
not photonic technologies but engineering limitations.[175] Devices must remain low-
cost, reliable, fast, sample-preparation-free and perhaps capable of multiplexed ana-
lysis.[175] Analogously, Durucan et al. observed that a device performing enhanced
Raman measurements must be automated and inexpensive and can provide results
within minutes.[176] Romao et al. differentiates between different kinds of PoC devices,
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firstly, benchtop systems, which are scaled-down versions of more bulky, less portable
laboratory equipment, and that can maintain analytical sensitivity and selectivity/specifi-
city but may still require trained operators, and secondly, lab-on-chip (LoC) devices,
which are fast, hand-held systems that are largely automated and easy to use for non-
specialists.[171] SERS-based chemical detection systems may naturally lend themselves to
miniaturization.[81]

Recently Valpapuran et al. presented an integrated (prism-coupled) optical wave-
guide-SERS system for proposed application to biological substances, which they note
may provide more flexibility in terms of the locations which are accessible by optical
signals.[10] In one notable study, Meyer et al. solve what is an optical problem in a com-
bined SPR-SERS system by introducing additional lenses (including one in the back-
focal plane; excitation phase only) to ensure not only unfocused, orthogonally imping-
ing light at the SPR prism-analyte interface, but also that the backscattered SERS (from
the same planar SPR interface) light cone is collected maximally.[111]

Comprehensive details of device fabrication methods, as in Gale et al., are beyond the
scope of this review, but we note, are important to keep in mind, for example, the
nature of the chip-to-world connections or necessity of passivation steps in the interest
of reusability.[81,177] Further, practical studies where bench-top, portable, and hand-held
Raman devices are compared, analogous to McVey who reports an analytical study into
coriander seeds in the context of NIR absorption spectroscopy.[178] We observe the
recent changes to medical device approval in the EU, which practically, mean more
early-stage input from clinicians and a goal of increased patient safety.[179]

6.2. Microfluidic Systems

In recent years microfluidics-based technologies have emerged and come to play an
essential role in biomedical research. Microfluidic technologies can produce innovative
yet practical research tools. Many conventional laboratory methods used in biological
research have significant limitations, including expensive and time-consuming assays.
Microfluidics, as a technology built for the manipulation of small fluid volumes, has the
potential to miniaturize complex and bulky laboratory processes onto a small microchip.
A variety of theoretical studies have illustrated the advantages of microfluidic-based lab-
on-a-chip (LoC) systems over traditional laboratory tests.[180] Advantages include high
throughput with a fast turnaround time of results and consumption of small volumes of
samples and reagents,[80] and even integration of portable centrifuges that can easily
accommodate the small volumes required.[181] Chip-based enrichment then allows a
complete integrated process from sampling to data read-out,[79] as Matheson and cow-
orkers have demonstrated in the identification of a single bacterium.[79] One of the
main aims in the microfluidics field is the creation of integrated and portable devices
for bedside or roadside use thus, eliminating time-consuming laboratory procedures.[182]

Romao et al. claimed that patient demand for more rapid and decentralized care had
driven projections for the PoC market to reach 31 billion USD by 2021,[171] mirroring
the market growth in hand-held Raman devices [SERS FD Summary Lecture]. Sharma
et al. further identified the potential of PoC microfluidic devices in “low resource”
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settings where their portability, ease-of-use and low-cost might relieve the high burden
of disease.[183]

Advances in microfluidic technology have already made a tremendous impact on bio-
logical and medical science in areas including drug detection, diagnostics and EV isola-
tion/detection.[160,184–187] More recently, microfluidic technologies have been combined
with Raman spectroscopy to simultaneously monitor multiple sample analytes in a sin-
gle microfluidic channel.[188] Microfluidic Raman spectroscopy has been used thus far
in a wide variety of biological and chemical applications, including reaction monitoring,
fiber probes, LoC devices and tumor cell identification.[185,189,190] Nevertheless, com-
pared to other spectroscopic methods, microfluidic Raman spectroscopy applications
remain limited. In many instances, the strong spectral background from the microfluidic
substrate overwhelms the weak Raman signal and thus, requiring minimum background
substrate interference, or alternatively, exploitation of SERS substrates for signal
enhancement. For instance, Zhou et al. developed a SERS microfluidic platform to con-
centrate gold nanoparticles and create SERS hot spots at the bottom of a microchannel
using nanorod arrays and a pneumatic valve for the detection of bovine serum albumin
(BSA) at picomolar levels.[26] This system was also capable of distinguishing cytochrome
C from BSA in a mixture of proteins. Lin et al. designed a quick internet-connected
SERS microfluidic device with both high sensitivity and selectivity for the detection of a
single bacterium.[191] A specific antibody-conjugated SERS tag was combined with a
microfluidic dielectrophoretic (DEP) device depicted in Figure 4.

6.3. Microfluidics, Raman and saliva overview

There has been emerging use for microfluidic Raman in saliva samples, most notably
within the field of pharmacology. Andreou et al. described the use of SERS combined

Figure 4. Portable Raman microfluidic devices. Dielectrophoretic nanoparticle aggregation for on-
demand SERS. (a) Schematic representation of DEP-SERS chip with a PDMS microchannel sandwiched
between a glass cover and an electrode substrate with pipette tips forming fluidic reservoirs. (b)
Illustration of the trap zones (c) Close-up view of a single trap zone. (d) SERS spectra obtained from
the DEP-SERS. SERS microfluidic chip for the detection of drugs of abuse in saliva including: (e)
Schematic representation of the microfluidic device indicating where the Ag-NP suspension, sample
and salt are loaded on to the device and driven through the channel via a vacuum pump. (f)
Visualization of the flow-focusing junction using a fluorescent dye. (g) Schematic of the complete
reaction. Reprinted with permission from.[81,88]

22 E. BUCHAN ET AL.



with microfluidics to detect drugs of abuse in saliva (Figure 4).[88] The laminar flow in
the device controlled the interactions between silver NPs, salt and the analyte to detect
methamphetamine. The analyte diffused into a side stream containing silver NPs
whereby the introduction of salt induced aggregation of the silver NPs resulting in the
creation of species with a strong SERS signal. The analyte was then separated from the
mixture via diffusion in the device. Similarly, Inscore et al., in an 80 illicit drug study,
used a fiber optic-coupled portable Raman system with gold and silver nanoparticle sol-
gel in capillary tubes for SERS analysis, noting that this set-up could be incorporated
into an LoC design. The authors further reported that the addition of an adjacent solid-
phase extraction (SPE) capillary can increase the analytical sensitivity by a factor of two
for cocaine.[97] In addition, Lawanstiend et al. synthesized nanoporous silver micro-
structures (np-AgMSs) in a microfluidic system to determine levels of thiocyanate in
human saliva.[192] These were used as efficient SERS substrates, where “multipod” np-
AgMSs structures provided the highest SERS signal. The authors were pioneers in syn-
thesizing complex mesoporous substrates in contrast to the commonly used spherical
SERS colloids.
In a methamphetamine study, Salemmiliani et al. filtered saliva samples through a

0.2lm-diameter syringe to remove large cells and other particles in order not to clog
their microfluidic channels.[81] This whilst preferable to dilution to maintain sensitivity,
may come at the cost of sample damage should the process be too aggressive. The
authors demonstrated reusability of the Raman-saliva microfluidic system by increasing
the electrode AC potential five-fold and injection flowrate four-fold in the cleaning
phase.[81] This procedure minimized the silver NP fouling effects and analyte retention,
which has been previously recognized as a challenge in microfluidic systems.[56,88,193]

Another approach to minimize fouling and thus, any kind of memory effect in the sen-
sor, is a two-phase continuous flow, known as “droplet microfluidics”.[56,194,195] The
1600 cm-1 methamphetamine SERS peak intensity over the dielectrophoretic trap region
was shown to decrease by only 10–15% over three clearance cycles.[81] Alternatively,
Dies et al. used a microelectrode array, which aggregated plasmonic NPs for SERS saliva
analysis, reporting reusability of up to 30 cycles via a simple soap cleaning step.[80] This
may be a more straightforward alternative to electrically or magnetically induced aggre-
gation[90] for SERS and easier to incorporate into a microfluidic set-up. On the other
hand, consumable options, such as paper-based SERS substrates,[196] which offer no
reusability yet are inexpensive, may be preferable if reliably high performance is
required.[197]

6.4. Modeling

Multiphysics numerical modeling of microfluidic systems in saliva would be useful, yet
it is often overlooked in the literature. Typically, in microfluidic SERS systems there are
several concurrent phenomena, namely, the (plasmon-polariton derived) local electric
fields around the SERS nanostructures (largely responsible for the SERS effect), thermal
effects around said structures as well as possible structure deformations, which in turn
will affect the plasmon-polariton modes supported. The interplay of these effects has
been noted in a plasmonics context.[198] In addition, supporting numerical analysis of
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the fluid dynamics may be critically important to optimize the SERS response, especially
if the saliva sample is highly viscous as may be the case in ill subjects who overproduce
mucins.[199] This ensures that the analyte solution, saliva or otherwise, achieves maximal
coverage of the SERS nanostructures, and proximity to the highest local electric fields,
during the analyte-fluid injection and measurement phase.
Using a fixed, planar SERS substrate may facilitate faster acquisition of the Raman

signal. Wu et al. has shown that a mixture of aqueous analyte and plasmonic nanopar-
ticles must traverse a definite distance before the SERS signal is maximized i.e., nano-
particles and analyte matrix are sufficiently intermixed.[56] Similar conclusions could be
found elsewhere.[88,193] Therefore, it is worth reiterating that the fluid dynamics in
SERS substrates might require careful modeling. An arrangement that promotes chaotic
advection may be beneficial inducing mixing between input solutions.[56] Wu et al. also
noted that a continuous flow regime is beneficial for more homogeneous mixing. In
this study, the microfluidic channel yielded an RSD of 6.13% (before saliva measure-
ment) while measurements on a comparator metal substrate (n¼ 16) produced an RSD
of 20.2%.[56] Alongside requisite analytical sensitivity and selectivity, multiplexed sensing
may be especially important in healthcare where many biomarkers are not exclusive[200]

and their simultaneous detection is facilitated in microfluidic set-ups.

6.5. Multi-modal systems and complementary techniques

The deployment of various analytical techniques in combination with Raman spectros-
copy may be essential for the accurate and sensitive determination of the required sub-
stance when a complex bio-mixture like saliva is being analyzed.[101] Of course, this will
need to be balanced against increased cost, time and engineering difficulties.[173]

Ultimately, the degree of compromise will depend on the needs of the end-user.[116]

Zhang et al. discussed combining Raman with different techniques, including
“chemical approaches” such as chromatography, colorimetry and molecular imprinting
(or other affinity molecule-based approaches).[160] It is not clear however, how translat-
able some of these combinations of techniques might be for incorporation into a port-
able device for salivary analysis, both practically and economically.[129,160,193]

McLaughlin noted that in the field of forensics, a shift toward a “one step confirmatory
method that is rapid, portable and nondestructive” would be desirable, while Matheson
et al. emphasized the importance of automation from measurement to results in the
whole Raman chain.[79,201] Current methods, while providing high analytical sensitivity
and selectivity, often require time-consuming laboratory facilities[80] in addition to a
multi-tier analysis such as, ELISA followed by a liquid/gas chromatography or mass
spectrometry step which further protracts the process.[80]

Zhang et al. detailed combining other spectroscopic techniques with SERS, such as IR
absorption, mass spectrometry, X-ray photon spectrometry (XPS) or the lesser-spotted
nuclear magnetic resonance spectroscopy (NMR).[187] Other correlative characterization
methods exist including, Raman and scanning electron microscopy (SEM) or
AFM.[202,203] AFM and SEM are non-optical techniques providing topographical infor-
mation but with respective benefits on the depth of field, contrast on flatter surfaces as
well as medium of operation. Many SEMs also incorporate an energy-dispersive X-ray
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spectroscopy (EDX) detector for chemical composition analysis. For instance,
Paluszkiewicz used EDX to corroborate Raman and IR measurements in a study on the
effect of immersing dental cement in artificial saliva showing the formation of phos-
phates at the cement surface.[138] Furthermore, Raman/SERS and scanning near-field
optical microscopy (SNOM) can be performed to provide information on the local elec-
tric fields around nanostructures to evaluate SERS performance. However, the bulky
experimental apparatus required for many of the above precludes the portable use.
Further techniques could provide useful complementary information while are also
portable, including optical coherence tomography, which can permit faster Raman
acquisition times.[79]

A broad range of analytical techniques are now available to scientists, clinicians, and
law enforcement. Raman analysis of saliva samples offers ease of use combined with
rapid analysis and portable solutions, thereby complementing existing techniques used
in routine testing within both the clinical and forensic settings. For example, in the con-
text of traumatic brain injury (TBI), Dadas et al. noted that ‘the complexity of TBI has
led to an equally intricate field of diagnostic and prognostic tools’, explicitly mentioning
electroencephalographic recordings.[9] In healthcare applications and the biomedical
fields, it may be that a combination of Raman spectroscopy with subsequent histopatho-
logical analysis to discern chemical abnormalities associated with early-stage anatomical
foci would prove useful.[9] Recently, Popp et al. demonstrated that the combined use of
Raman spectroscopy with more conventional biomarker identification methods can sig-
nificantly increase diagnostic accuracies.[156]

7. Conclusions

Raman spectroscopy and saliva present a promising combination for translation to real-
world use. In this review, we have surveyed Raman-saliva applications in healthcare,
illicit and abused drugs identification, law enforcement forensics and dental/orthodontic
uses. Emphasis has also been on the extracellular vesicles offering an exciting offshoot
with the possibility of accurate disease diagnostic applications via Raman spectroscopy
from within saliva. Challenges in these areas and those associated with specific biomole-
cules or smaller compounds have been discussed. In the context of healthcare applica-
tions, the non-specificity of biomarkers has been highlighted as a particular challenge
highlighting the need for interdisciplinary collaborative research to further advance this
field. This echoes the views of Poste et al. who has pointed out that, ‘Biomarker discov-
ery should be a component of large research networks, involving industry and experts in
molecular biology, genetics, analytical chemistry, computation, engineering, clinical trial
design, epidemiology, statistics, regulation and health-care economics’.[16]

In the context of Illicit drug detection, different classes of compounds have been
highlighted to present distinct challenges in terms of pre-processing steps and suitability
for SERS analysis. The further specific need of this field for rapid, portable devices,
which have been discussed also in the context of Raman and saliva, could further
incorporate the emerging area of microfluidics with the integrated use of Raman-saliva.
This is concluded to not necessarily preclude the use of additional techniques, which
may act as complimentary and confirmatory tools for diagnostics.
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In summary, Raman, SERS and their miniaturization and integration with portable
detection systems are converging areas and combined with an easily accessible biofluid
such as saliva, which can convey rich physiological and pharmacological information,
lay the platform for an impactful emerging field and a breadth of applications.
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