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MINIMAL RAMSEY GRAPHS WITH MANY VERTICES OF SMALL
DEGREE\ast 

SIMONA BOYADZHIYSKA\dagger , DENNIS CLEMENS\ddagger , AND PRANSHU GUPTA\dagger 

Abstract. Given any graph H, a graph G is said to be q-Ramsey for H if every coloring of the
edges of G with q colors yields a monochromatic subgraph isomorphic to H. Such a graph G is said
to be minimal q-Ramsey for H if additionally no proper subgraph G\prime of G is q-Ramsey for H. In
1976, Burr, Erd\H os, and Lov\'asz initiated the study of the parameter sq(H), defined as the smallest
minimum degree among all minimal q-Ramsey graphs for H. In this paper, we consider the problem
of determining how many vertices of degree sq(H) a minimal q-Ramsey graph for H can contain.
Specifically, we seek to identify graphs for which a minimal q-Ramsey graph can contain arbitrarily
many such vertices. We call a graph satisfying this property sq-abundant. Among other results, we
prove that every cycle is sq-abundant for any integer q \geq 2. We also discuss the cases when H is a
clique or a clique with a pendant edge, extending previous results of Burr and co-authors and Fox
and co-authors. To prove our results and construct suitable minimal Ramsey graphs, we use gadget
graphs, which we call pattern gadgets and which generalize earlier constructions used in the study
of minimal Ramsey graphs. We provide a new, more constructive proof of the existence of these
gadgets.

Key words. graph theory, Ramsey graphs, minimum degrees
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1. Introduction. A classical result of Ramsey from 1930 [21] states that, for
every graph H, there exists an integer n such that the following property holds: No
matter how the edges of Kn are colored with two colors, there must always exist a
monochromatic copy of H, that is, a subgraph of Kn isomorphic to H in which all
edges have the same color. In fact, the same is true if, instead of two, we use any
arbitrary number of colors. Through the last decades, this result has become the
starting point of a field of intense studies, giving rise to a branch of combinatorics
known as Ramsey theory. For an excellent survey on the more recent developments
in the field, see [9].

One line of research is concerned with studying properties of (minimal) Ramsey
graphs, which is also the focus of this paper. Formally, given any graph H, a graph
G is said to be q-Ramsey for H, denoted by G \rightarrow q H, if in every coloring of the
edges of G with q colors, there exists a monochromatic copy of H. Ramsey's theorem
discussed above then states that, for every graph H, we have Kn \rightarrow q H provided that
n is large enough, thus establishing the existence of a q-Ramsey graph for H for any
choice of H and q \geq 2. We denote the set of all such graphs for H by \scrR q(H).

In this language, the well-known q-color Ramsey number of a graph H, denoted
by rq(H), can be defined as the minimum possible number of vertices in a graph that
is q-Ramsey for H. Over the years, researchers have worked hard to understand the
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1504 S. BOYADZHIYSKA, D. CLEMENS, AND P. GUPTA

behavior of Ramsey numbers for various classes of graphs, which in some cases has
turned out to be notoriously difficult. Perhaps the most natural example here is the
clique Kt. While the determination of r2(K3) is a simple exercise often given in a first
course in combinatorics, already for t = 5, the precise value of r2(Kt) is not known.
For general t, Erd\H os and Szekeres [11] and Erd\H os [10] showed that 2t/2 \leq r2(Kt) \leq 22t,
establishing that the 2-color Ramsey number of Kt is exponential in t but leaving a
large gap between the two bounds in the base of the exponent. Now, more than 70
years later, those remain essentially the best known bounds, with improvements only
in the lower order terms. The current best known lower bound is due to Spencer [26];
a new upper bound was shown very recently by Sah [24], improving on the previous
best known bound due to Conlon [8].

More generally, it is of interest to understand what makes a graph q-Ramsey for
some chosen graph H, that is, to understand the structural properties of graphs that
are q-Ramsey for H and, whenever possible, to characterize all such graphs. After
considering the number of vertices, it is natural to ask about the behavior of other
graph parameters. For example, much work has been done in studying the minimum
possible number of edges in a graph that is q-Ramsey for H, known as the q-color
size-Ramsey number of H.

Here, we are interested in questions concerning minimum degrees of graphs that
are q-Ramsey for a graph H. Note that asking about the smallest possible minimum
degree of a graph that is q-Ramsey forH is not very interesting, as we can immediately
see that the answer is zero. This is because any graph containing a q-Ramsey graph
for H as a subgraph is itself q-Ramsey for H, and we can of course add an isolated
vertex to obtain a graph with minimum degree zero. To avoid such trivialities, we
restrict our attention to those graphs that are, in some sense, critically q-Ramsey for
H. This leads to the following natural definition: We say G is minimal q-Ramsey for
H if G \rightarrow q H and, for any proper subgraph G\prime \subsetneq G, we have G\prime \not \rightarrow q H, that is, G
loses its Ramsey property whenever we delete any vertex or edge of G. We denote
the set of all minimal q-Ramsey graphs for H by \scrM q(H).

The 1970s saw the beginning of two prominent directions of research concerning
\scrM q(H). One of the questions, first posed in [19] by Ne\v set\v ril and R\"odl, was whether
for a given graph H the set \scrM q(H) is finite or infinite. We call a graph H q-Ramsey
finite (resp., infinite) if the set \scrM q(H) is finite (resp., infinite). In a series of paper
(see [2, 3, 20, 22]), it was established that a graph H is 2-Ramsey-finite if and only if
it is the disjoint union of an odd star and any number of isolated edges.

Around the same time, Burr, Erd\H os, and Lov\'asz [4] initiated the general study
of graph parameters for graphs in \scrM q(H). In their seminal paper, they considered
the chromatic number, the (vertex) connectivity, and the minimum degree of minimal
2-Ramsey graphs for the clique Kt when t \geq 3. In particular, they were interested in
how small these parameters can be.

Surprisingly, while the 2-Ramsey number of Kt is still not known, Burr, Erd\H os,
and Lov\'asz [4] could determine the mentioned values precisely.

Following [13], we set sq(H) = min\{ \delta (G) : G \in \scrM q(H)\} , where as usual \delta (G)
denotes the minimum degree of G. One of the results that appeared in [4] establishes
that s2(Kt) = (t - 1)2, which is perhaps surprising, given that each graph in \scrM q(Kt)
has at least exponentially many vertices.

For more colors, Fox et al. [13] established that sq(Kt) \leq 8(t - 1)6q3, showing that
sq(Kt) is polynomial in both t and q. Recently, this upper bound was improved by
Bamberg, Bishnoi, and Lesgourgues [1] to C(t - 1)5q5/2. Fox et al. also investigated
the growth of sq(Kt) as a function of q (with t being treated as a constant) and proved
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ON SMALL DEGREE VERTICES IN MINIMAL RAMSEY GRAPHS 1505

that sq(Kt) = q2polylog(q). However, a logarithmic gap remained between the lower
and the upper bound. For the case of the triangle, Guo and Warnke [17] closed this
gap, showing that sq(K3) = \Theta (q2 log q). On the other hand, H\`an, R\"odl, and Szab\'o
[18] studied the dependence of sq(Kt) on the size of the clique with the number of
colors kept constant; they showed that sq(Kt) = t2polylog(t).

The parameter sq(H) has also been investigated for other choices of the target
graph H when q = 2. For instance, Szab\'o, Zumstein, and Z\"urcher [27] determined
s2(H) for many interesting classes of bipartite graphs, including trees, even cycles,
and biregular bipartite graphs. Later Grinshpun [15] determined s2(H) for any 3-
connected bipartite graph H. A rather surprising result in this direction appeared in
a paper of Fox et al. [12], who studied s2(Kt \cdot K2), where Kt \cdot K2 is the graph obtained
from a clique of size t by adding a new vertex and connecting it to exactly one vertex
of the clique (we will call such a graph a clique with a pendant edge). The authors
proved that s2(Kt \cdot K2) = t  - 1, showing that even a single edge can significantly
change the value of the parameter s2. This result also implies that there exists a
2-Ramsey graph for Kt that is not 2-Ramsey for Kt \cdot K2.

Once we know that a minimal q-Ramsey graph for a given H can contain a vertex
of small degree, a natural next question is, how many vertices of this small degree can
a minimal q-Ramsey graph for H contain? More specifically, can a minimal q-Ramsey
graph have arbitrarily many vertices of the smallest possible minimum degree? This
question motivates the following definition.

Definition 1.1. For a given integer q \geq 2, a graph H is said to be sq-abundant
if, for every k \geq 1, there exists a minimal q-Ramsey graph for H with at least k
vertices of degree sq(H).

As it turns out, it is not immediate whether sq-abundant graphs exist at all. In [4],
Burr, Erd\H os, and Lov\'asz noted that their construction can be generalized to show that
cliques are s2-abundant. In this paper, we will give several examples showing that,
for all q \geq 2, there are infinitely many sq-abundant graphs.

It is not hard to see that, if a graph is q-Ramsey finite, then it cannot be
sq-abundant. This immediately implies that odd stars are not s2-abundant. On
the other hand, we know that even stars are 2-Ramsey infinite, but as we will see
below they are also not s2-abundant. This statement follows from the following result.

Theorem 1.2 ([4]). Let m \geq 1 be an integer. Then a connected graph G is
2-Ramsey for K1,m if and only if either \Delta (G) \geq 2m  - 1 or m is even and G is a
(2m - 2)-regular graph on an odd number of vertices.

The theorem immediately implies that \scrM 2(K1,m) = \{ K1,2m - 1 \} if m is odd and
\scrM 2(K1,m) = \{ K1,2m - 1 \} \cup \{ G : G is connected, (2m - 2)-regular, and | V (G)| is odd\} 
if m is even. In particular, this implies that no star is s2-abundant.

More generally, it turns out that stars are not sq-abundant for any q \geq 2: A
simple argument implies that, for any m \geq 1 and q \geq 2, a minimal q-Ramsey graph
for K1,m has either zero or q(m  - 1) + 1 vertices of degree one. Indeed, if G is a
minimal q-Ramsey graph for K1,m that is not isomorphic to K1,q(m - 1)+1, then the
maximum degree of G is at most q(m  - 1). Thus, if G contains a vertex v of degree
one, then the only neighbor u of v has at most q(m - 1) - 1 other neighbors. By the
minimality of G, the graph G  - v has a q-coloring c without a monochromatic copy
of K1,m. Since u has at most q(m  - 1)  - 1 neighbors in G  - v, there is a color that
appears at most m - 2 times on the edges incident to u. Then this color can be used
on the edge uv to extend c to a q-coloring of G without a monochromatic copy of
K1,m, leading to a contradiction. Hence, G cannot contain a vertex of degree one.
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1506 S. BOYADZHIYSKA, D. CLEMENS, AND P. GUPTA

One of the goals of this paper is to initiate the systematic study of sq-abundance.
First, we show that all cycles of length at least four are sq-abundant. As a byproduct,
we determine sq(Ct) for all q \geq 2 and t \geq 4.

Theorem 1.3. For any given integers q \geq 2, t \geq 4, and k \geq 1, there exists
a minimal q-Ramsey graph for Ct that has at least k vertices of degree q + 1. In
particular, sq(Ct) = q + 1 and Ct is sq-abundant.

It turns out that the cycle C3 behaves differently compared to longer cycles with
respect to the value of sq. Its behavior is consistent with that of a clique, and we know
from an earlier discussion that s2(K3) = 4 and sq(K3) = \Theta (q2 log q) as a function of
q. While the value of sq for K3, or for any larger clique, is not known precisely when
q > 2, our theory still allows us to show that any clique Kt for t \geq 3 is sq-abundant
for any value of q. In fact, Theorem 1.4 below is a consequence of a more general
result that will be presented in section 3.

Theorem 1.4. For given integers q \geq 2 and t \geq 3, the clique Kt is sq-abundant.

Finally, we show that a clique with a pendant edge is s2-abundant. We note that,
since s2(Kt) = (t - 1)2 and s2(Kt \cdot K2) = t - 1 for all t \geq 3, Theorem 1.5 also yields
that there are infinitely many graphs that are minimal 2-Ramsey for Kt \cdot K2 but not
minimal 2-Ramsey for Kt. One of the main building blocks used in our construction
is not known to exist for Kt \cdot K2 when q > 2, which is why we focus on the case q = 2.

Theorem 1.5. For a given integer t \geq 3, the graph Kt \cdot K2 is s2-abundant.

In order to prove the statements above, we will use gadget graphs that we call
pattern gadgets. These were proven to exist for cycles by Siggers [25] and they gener-
alized other well-known gadgets such as signal senders, originally developed by Burr,
Erd\H os, and Lov\'asz [4] to study s2(Kt). Pattern gadgets help us construct minimal
Ramsey graphs with many vertices of small degree. Even though Siggers' proof can be
generalized to other graph classes, we will provide a more constructive proof, build-
ing and using some intermediate gadgets along the way. The more explicit nature of
our approach might make it applicable in other settings, which is why we choose to
include it in this paper.

In a nutshell, the main idea behind pattern gadgets is the following: Given some
graph G and some family G of colorings of E(G) with q colors that do not contain
monochromatic copies of H, we will find some larger graph P containing G such that
the colorings in G are exactly those colorings of G that can be extended to P without
creating a monochromatic copy of H. Then, in order to prove each of the above
theorems, we will choose G and G in such a way that we can attach k small-degree
vertices to G \subseteq P so that no coloring in G can be extended to the new edges without
creating a monochromatic copy of H, but if we remove any of these new vertices, we
can find a coloring in G that can be extended in the desired way.

The precise definition of a pattern gadget will be given in section 2. We will show
their existence for many target graphs H, including all 3-connected graphs.

Organization of the paper. In section 2, we introduce all necessary auxiliary
gadgets and present our proof of the existence of pattern gadgets. Afterward, we
continue with the proofs of Theorems 1.3, 1.4, 1.5 in section 3, where we also prove
a general statement regarding 3-connected graphs. We end with some concluding
remarks and open problems in section 4.

Notation. Given an integer n \geq 1, we write [n] for the set of the first n positive
integers. For a graph G, we denote its vertex set by V (G) and its edge set by E(G),
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ON SMALL DEGREE VERTICES IN MINIMAL RAMSEY GRAPHS 1507

and we set e(G) = | E(G)| . For any edge \{ v, w\} \in E(G), we write vw for short.
We let NG(v) = \{ w \in V (G) : vw \in E(G)\} denote the neighborhood of v in G,
dG(v) = | NG(v)| denote the degree of v in G, \delta (G) = min\{ dG(v) : v \in V (G)\} , and
\Delta (G) = max\{ dG(v) : v \in V (G)\} denote the minimum degree and maximum degree
of G, respectively.

For a graph G and vertex subsets A and B of G, we denote by EG(A,B) the
edges in G with one endpoint in A and another in B. Also, EG(A) denotes the edges
in G with both endpoints in A. We sometimes identify a graph G with its edge set.

Let F and G be two graphs. We say that F and G are isomorphic, denoted by
F \sim = G, if there exists a bijection f : V (F ) \rightarrow V (G) such that vw \in E(F ) if and only
if f(v)f(w) \in E(G). In this case, we also say that F forms a copy of G.

We say that F is a subgraph of G, denoted by F \subseteq G, if there is an injective
map f : V (F ) \rightarrow V (G) such that f(x)f(y) \in E(G) for all xy \in E(F ); further, F
is a proper subgraph of G if F \subseteq G and F \not = G. Given any subset A \subseteq V , the
subgraph induced by A, denoted by G[A], is the graph with vertex set A and edge set
EG(A). Moreover, we set G  - v = G[V (G) \setminus v] and G  - e = (V (G), E(G) \setminus \{ e\} ) for
any v \in V (G) and e \in E(G). If F \sim = G[A] for some A \subseteq V (G), then we say that F is
an induced subgraph of G and write F \subseteq ind G.

Given a graph G and any subsets A and B of the vertex set or the edge set of G,
we define the distance between A and B, denoted by distG(A,B), to be the number of
edges in a shortest path with one endpoint in (the vertex set of) A and one endpoint
in (the vertex set of) B. The girth of G, denoted by girth(G), is the length of a
shortest cycle in G (if G is acyclic, then girth(G) is defined to be infinity). A graph G
is said to be k-connected if it has more than k vertices and, for any set S of at most
k  - 1 vertices, the graph G[V (G) \setminus S] is connected.

In the rest of the paper, a coloring of some graph G always refers to a coloring
of its edge set. If G contains no monochromatic subgraph isomorphic to H under a
given coloring, the coloring is said to be H-free. If a coloring uses at most q colors,
we call it a q-coloring. Unless otherwise specified, we will assume in this case that our
color palette is the set [q]. If we are only concerned with the case q = 2, for the sake of
convenience we will sometimes call our colors red and blue instead of color 1 and color
2. If c is a q-coloring of G and some subgraph F is monochromatic in some color i, we
will sometimes write c(F ) = i. Similarly, when defining colorings, we will write, for
example, c(F ) = i to indicate that we give color i to every edge of the subgraph F .

2. Construction of pattern gadgets. Most of our constructions of minimal
Ramsey graphs will rely on the existence of certain gadget graphs; these graphs will
have the property that, in every coloring not containing a monochromatic copy of our
target graph H, some fixed color patterns need to appear on certain sets of edges.
Such an approach has already been used in the paper of Burr, Erd\H os, and Lov\'asz [4]
when proving that s2(Kt) = (t  - 1)2. In their paper, the authors introduced gadget
graphs that are now known as BEL gadgets and are defined as follows: Let H and
G be fixed graphs such that G \not \rightarrow q H, and let \varphi be an H-free q-coloring of G; a
BEL gadget for H with respect to the pair (G,\varphi ) is a graph B containing G as an
induced subgraph such that B is not q-Ramsey for H but in every H-free q-coloring
of the edges of B, the subgraph G has the coloring given by \varphi (up to a permutation
of colors). Burr and co-authors showed the existence of BEL gadgets for all cliques
on at least three vertices when q = 2 (for any appropriate choice of G and \varphi ). Later
results imply that BEL gadgets exist for more general graphs and for more colors; we
will give an overview of those results in section 2.1.
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1508 S. BOYADZHIYSKA, D. CLEMENS, AND P. GUPTA

Suppose we want to construct a minimal q-Ramsey graph for H that contains a
vertex of degree at most d. Provided that a BEL gadget with certain properties exists,
it suffices to find a graph G that contains a vertex v of degree d and a q-coloring \varphi of
G - v that contains no monochromatic copy of H but cannot be extended to an H-free
coloring of G. Indeed, we can construct \widetilde G by taking a copy G\prime of G  - v and a BEL
gadget for H with respect to (G\prime , \varphi ) and adding the vertex v along with d edges so

that V (G\prime )\cup \{ v \} induces a copy of G. Now it is not difficult to check that \widetilde G\rightarrow q H,

and if H satisfies certain conditions, then we can also ensure that \widetilde G - v \not \rightarrow q H. This

means that any minimal q-Ramsey subgraph of \widetilde G needs to contain v, that is, v is
important for \widetilde G to be a q-Ramsey graph, and sq(H) \leq d \widetilde G(v).

For our main theorems, we will aim to find graphs \widetilde G with many vertices of small
degree, each of which is important for \widetilde G to be a Ramsey graph for H. In order to
do so, we will use a gadget that allows for more flexibility than a BEL gadget. This
gadget again comes with a subgraph G on which fixed color patterns are forced in any
H-free q-coloring. However, while for a BEL gadget we fix only a single permissible
pattern (up to a permutation of the color classes), our gadget graph allows us to fix
a family of permissible color patterns for G such that each of these patterns, and no
other, can be extended to an H-free coloring of the whole graph.

To make this more precise, let us first define color patterns and an isomorphism
relation between them.

Definition 2.1. Let q \geq 2 be a given integer and H and G be graphs. A q-color
pattern for G is a partition g = \{ G1, G2, . . . , Gq\} of the edges of G. If H \not \subseteq Gi for
every i \in [q], we say that g is H-free. Given any subset A \subseteq V (G), we call the
partition g[A] = \{ G1[A], G2[A], . . . , Gq[A]\} the induced q-color pattern on A.

Let G\prime be a copy of G, and let g\prime = \{ G\prime 
1, . . . , G

\prime 
q\} be a q-color pattern for G\prime . Then

we say that g and g\prime are isomorphic, denoted by g \sim = g\prime , if there exists a permutation
\pi of [q] such that Gi

\sim = G\prime 
\pi (i) for every i \in [q].

Using the above terminology, we can now give a precise definition of the gadget
graphs that we are interested in.

Definition 2.2. Let q \geq 2 be a given integer and H and G be graphs such that
G \not \rightarrow q H. Also let G be a family of H-free q-color patterns for G. Then we call a
graph P = P (H,G,G , q) a pattern gadget if the following properties hold:
(P 1) G \subseteq ind P .
(P 2) If c : E(P ) \rightarrow [q] is an H-free coloring of P , then \{ c - 1

| G (1), . . . , c - 1
| G (q)\} \in G .

(P 3) For every pattern \{ G1, . . . , Gq\} \in G , there exists an H-free coloring c :
E(P ) \rightarrow [q] such that \{ c - 1

| G (1), . . . , c - 1
| G (q)\} = \{ G1, . . . , Gq\} .

A variant of these gadgets was defined by Siggers [25], who showed its existence
for cycles. The rest of this section is mainly devoted to our proof that pattern gad-
gets exist for certain choices of the graph H. In the proof, we will combine various
intermediate gadgets and for that to work we will often require them to satisfy an
additional property that we refer to as robustness (following Grinshpun [15]). We
will also require that our final gadgets satisfy this property, which will be useful in
applications.

Definition 2.3. Let G be a graph and G0 be an induced subgraph of G. We say
that the pair (G,G0) is H-robust if, in any graph obtained from G by adding any set
S of new vertices and any collection of edges within S \cup V (G0), every copy of H is
entirely contained either in G or in the subgraph induced by S \cup V (G0).
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ON SMALL DEGREE VERTICES IN MINIMAL RAMSEY GRAPHS 1509

The main theorem of this section states that if H is 3-connected or isomorphic
to a cycle or Kt \cdot K2, then pattern gadgets that satisfy certain robustness properties
exist for H.

Theorem 2.4. Let q \geq 2 be a given integer, and let H and G be graphs with
G \not \rightarrow q H. Further, let G be a family of H-free q-color patterns for G.

(a) If H is 3-connected or a triangle, then a pattern gadget P = P (H,G,G , q)
exists.

(b) If H is a cycle of length at least four, then a pattern gadget P = P (H,G,G , q)
exists.

(c) If H \sim = Kt \cdot K2 and q = 2 and G does not contain a copy of H, then a
pattern gadget P = P (H,G,G , q) exists. Further, we can ensure that in the
2-colorings in (P 3) every monochromatic copy of Kt using a vertex from G
is fully contained in G.

Further, in parts (a) and (b), the pattern gadget can be taken so that (P,G) is
H-robust, and in part (c), it can be taken so that (P,G) is Kt-robust.

Before we give the proof of Theorem 2.4 in section 2.3, we need to introduce
two different simpler gadgets, known as signal senders and indicators, in section 2.1,
and to construct a generalization of the latter, which we will call generalized negative
indicators, in section 2.2.

2.1. Signal senders and indicators. Signal senders were introduced by Burr,
Erd\H os, and Lov\'asz [4] for the construction of BEL gadgets when H \sim = Kt for t \geq 3
and q = 2.

Definition 2.5. Let q \geq 2 and d \geq 1 be given integers, and let H be a graph.
A positive signal sender S = S+(H, e, f, q, d) for H is a graph that contains two
distinguished edges e, f \in E(S), called the signal edges of S, such that the following
properties hold:

(S 1) S \not \rightarrow q H.
(S 2) In any H-free q-coloring of S, the edges e and f have the same color.
(S 3) distS(e, f) \geq d.

A negative signal sender S = S - (H, e, f, q, d) for H is defined similarly, except that
the words ``the same color"" in (S 2) are replaced by ``different colors.""

An interior vertex of a signal sender is a vertex that is not incident to either of
the signal edges. The interior of a signal sender is the set of all interior vertices.

Signal senders are known to exist for some important classes of graphs, as given
by Theorem 2.6 below. Part (a) is due to R\"odl and Siggers [23], generalizing results
of Burr, Erd\H os, and Lov\'asz [4] and Burr, Ne\v set\v ril, and R\"odl [6], part (b) is due to
Siggers [25], and part (c) follows from a result in the PhD thesis of Grinshpun [15,
Lemma 2.6.3] combined with the result of Fox et al. [12] concerning s2(Kt \cdot K2).

Theorem 2.6.
(a) For all integers q \geq 2 and d \geq 1 and every graph H that is 3-connected or

isomorphic to K3, there exist positive and negative signal senders in which
the distance between the signal edges is at least d.

(b) For all integers q \geq 2, d \geq 1, and t \geq 4, there exist positive and negative
signal senders for Ct with girth t and distance at least d between the signal
edges.

(c) For q = 2 and for all integers t \geq 3 and d \geq 1, there exist positive and
negative signal senders for Kt \cdot K2 in which the distance between the signal
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1510 S. BOYADZHIYSKA, D. CLEMENS, AND P. GUPTA

edges is at least d. Further, a signal sender S, positive or negative, with signal
edges e and f can be chosen so that S has a Kt \cdot K2-free 2-coloring in which
all edges incident to e (resp., f) have a different color from e (resp., f) and
none of the vertices of e and f is contained in a monochromatic copy of Kt.

Before we continue, we make a few remarks about Theorem 2.6. First, in [15],
Grinshpun does not explicitly prove that signal senders exist for K3 \cdot K2; however, his
proof easily extends to this case. Further, part (c) is actually a slight strengthening
of Grinshpun's result: His result is stated only in terms of negative signal senders and
provides a special coloring in which neither signal edge is incident to a monochromatic
copy of Kt but only one of the signal edges, say, f , is required to have a color different
from all edges incident to it. We can derive the version stated above easily. Let S\prime be
the signal sender constructed by Grinshpun. To construct a positive signal sender S+

as in Theorem 2.6(c), take two copies of S\prime and identify the two copies of e; similarly,
to construct a negative signal sender as in Theorem 2.6(c), take a copy of S+ and a
copy of S\prime and identify the edge e with one of the signal edges of S+. As a final remark,
in the original manuscripts where (b) and (c) appear, it is not shown explicitly that
the distance between the signal edges can be arbitrarily large. However, it is easy to
see that this is indeed the case. Both of the constructions do guarantee that the signal
edges are not incident to each other, which means that we can increase the distance
between the signal edges by stringing several signal senders together (that is, taking
signal senders S1, . . . , Sr and, for each i \in \{ 2, . . . , r  - 1 \} , identifying one signal edge
of Si with a signal edge of Si - 1 and the other with a signal edge of Si+1; if we take
S1, . . . , Sr - 1 to be positive signal senders, then the resulting signal sender is of the
same type (positive or negative) as Sr).

Indicators were introduced by Burr, Faudree, and Schelp in [5] for two colors and
generalized by Clemens, Liebenau, and Reding in [7] to multiple colors. Together with
signal senders, these graphs will serve as basic building blocks for our construction of
pattern gadgets. For this, we need to modify slightly the definition appearing in [7],
as given below. In addition, we will need both positive and negative indicators.

Definition 2.7. Let q \geq 2 and d \geq 1, and let H and F be graphs such that
H \not \subseteq F . A positive indicator I = I+(H,F, e, q, d) for H is a graph such that the
following properties hold:

(I 1) F \subseteq ind I and e \in E(I) with distI(F, e) \geq d.
(I 2) There exists an H-free q-coloring of I in which F is monochromatic.
(I 3) For every H-free q-coloring c of I in which F is monochromatic, we have

c(e) = c(F ).
(I 4) For any nonconstant coloring \varphi F : E(F ) \rightarrow [q] and k \in [q], there exists an

H-free coloring c : E(I) \rightarrow [q] such that c| F = \varphi F and c(e) = k.
If I is a positive indicator with parameters H,F, e, q, and d, we call I a positive
(H,F, e, q, d)-indicator. In this case, we call F the indicator subgraph and e the indi-
cator edge of I.

A negative indicator I = I - (H,F, e, q, d) is the same except that in property (I 3)
we replace ``c(e) = c(F )"" with ``c(e) \not = c(F ).""

An interior vertex of an indicator is a vertex that belongs to neither the indicator
subgraph nor the indicator edge. The interior of an indicator is the set of all interior
vertices.

The construction of indicators for the case when H is 3-connected or isomorphic
to K3 was given in [5] for two colors and in [7] for more than two colors, where (I 4)
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is replaced with a similar yet slightly weaker property. Essentially the same con-
structions work for 3-connected graphs as well as cycles and cliques with a pendant
edge with this new property (I 4). In our constructions, however, we need to ensure
that when we put together several gadgets and later on color each of them avoiding a
monochromatic copy of our target graph H, there is still no monochromatic H in the
resulting graph. We do not want to accidentally create monochromatic copies that use
vertices from several different pieces of our construction. While we can get this almost
immediately for 3-connected graphs, in the latter two cases we need to maintain some
extra properties. Despite these additional technicalities and the slight modification
in our definition of indicators, our proofs that the constructions given in [5] and [7]
indeed give the required positive indicators are very similar to the proofs presented
in the original papers. This is why we choose to omit the proof of Theorem 2.8 here;
for the convenience of the reader we include it in the appendix of the arXiv version
of this paper.

Theorem 2.8. Let q \geq 2 and d \geq 1 be integers, H be a graph, and F be a graph
with e(F ) \geq 2 such that H \nsubseteq F .

(a) If H is a 3-connected graph or H \sim = K3, then there exist a positive indicator
I = I+(H,F, e, q, d) and a negative indicator I = I - (H,F, e, q, d).

(b) If H \sim = Ct for t \geq 4 and girth(F ) > t, then there exist a positive indicator
I = I+(H,F, e, q, d) and a negative indicator I = I - (H,F, e, q, d), each with
girth t.

(c) If H \sim = Kt \cdot K2 for t \geq 3 and q = 2, then there exist a positive indica-
tor I = I+(H,F, e, q, d) and a negative indicator I = I - (H,F, e, q, d), each
satisfying the following additional property: The H-free 2-colorings in (I 2)
and (I 4) can be chosen so that none of the vertices of F and e is a vertex of
a monochromatic copy of Kt and all edges incident to e have a different color
from e.

Further, in parts (a) and (b) the indicators can be taken so that (I, F ) is H-robust
and in part (c) we can ensure that (I, F ) is Kt-robust.

Throughout the paper, we will often say that we join or connect two edges e1, e2
of a given graph by a signal sender. What we mean by that is that we create a
vertex-disjoint copy of a signal sender S and identify its signal edges with e1 and
e2, that is, the signal sender does not share any vertices or edges with the original
graph except for the (vertices of the) signal edges. Similarly, joining or connecting a
subgraph F and an edge e by an indicator will mean that we create a vertex-disjoint
copy of the indicator and identify the indicator subgraph with F and the indicator
edge with e. We will also use the same terminology in the context of generalized
negative indicators, defined in the next section.

2.2. Generalized negative indicators. Before we can prove the existence of
pattern gadgets as stated in Theorem 2.4, we will first need to construct slightly
weaker gadget graphs, which we call generalized negative indicators.

Recall that a negative indicator I = I - (H,F, e, q, d) comes with an indicator
subgraph F and an indicator edge e and has the following property: In any H-free
q-coloring of I that colors F monochromatically, e needs to get a color different from
that of F ; but once F is not monochromatic, we can extend the q-coloring to an
H-free q-coloring of I, independently of which color is chosen for e. That is, in short,
when F is monochromatic we get some information on the color given to e, while
otherwise we do not.
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1512 S. BOYADZHIYSKA, D. CLEMENS, AND P. GUPTA

The gadgets I\ast described in the following will generalize this concept by replacing
e with another graph G. Now, whenever the indicator subgraph F is monochromatic
in an H-free q-coloring of I\ast , we again want to get some information on the coloring
given to G, namely, that a certain color pattern is forced on G. Otherwise, when F
is not monochromatic, we do not get any information on G in the sense that we can
still color this subgraph by any H-free q-coloring and then find an H-free extension
to I\ast . We give a precise definition below.

Definition 2.9. Let q \geq 2 and d \geq 1 be integers, and let H,F, and G be graphs
with H \not \subseteq F . Further, let G = G1 \cup G2 \cup . . . \cup Gq - 1 be a partition with H \not \subseteq Gk

for every k \in [q  - 1]. We call a graph I\ast = I\ast (H,F, \{ Gk\} k\in [q - 1], q, d) a generalized
negative indicator if the following properties hold:
(GI 1) F,G \subseteq ind I

\ast and distI\ast (F,G) \geq d.
(GI 2) There exists an H-free q-coloring of I\ast such that F is monochromatic.
(GI 3) In any H-free coloring c : E(I\ast ) \rightarrow [q] in which F is monochromatic, each of

the graphs Gi needs to be monochromatic so that \{ c(F ), c(G1), . . . , c(Gq - 1)\} 
= [q].

(GI 4) Let \varphi F : E(F ) \rightarrow [q] be any nonconstant coloring, and let \varphi G : E(G) \rightarrow [q]
be any H-free coloring. Then there exists an H-free coloring c : E(I\ast ) \rightarrow [q]
such that c| F = \varphi F and c| G = \varphi G.

If I\ast is a generalized negative indicator with parameters H,F, \{ Gk\} k\in [q - 1], q, and d,
we call I\ast a generalized negative (H,F, \{ Gk\} k\in [q - 1], q, d)-indicator. In this case, we
call F and G the indicator subgraphs of I\ast .

An interior vertex of a generalized negative indicator is a vertex that belongs to
neither of the indicator subgraphs. The interior of a generalized negative indicator is
the set of all interior vertices.

The following lemma states that if H is 3-connected or isomorphic to a cycle
or Kt \cdot K2, then generalized negative indicators that satisfy additional robustness
properties exist for H.

Lemma 2.10. Let q \geq 2 and d \geq 1 be integers and H,F , and G be graphs with
H \not \subseteq F . Further, let G = G1 \cup . . . \cup Gq - 1 be a partition such that H \not \subseteq Gk for every
k \in [q  - 1].

(a) If H is 3-connected or H \sim = K3, then a generalized negative indicator
I\ast = I\ast (H,F, \{ Gk\} k\in [q - 1], q, d) exists.

(b) If H \sim = Ct for t \geq 4 and girth(F ) > t, then a generalized negative indicator
I\ast = I\ast (H,F, \{ Gk\} k\in [q - 1], q, d) exists.

(c) If H \sim = Kt \cdot K2 for t \geq 3 and q = 2, then a generalized negative indicator
I\ast = I\ast (H,F, \{ Gk\} k\in [q - 1], q, d) with the following additional property exists:
The H-free 2-colorings in (GI 2) and (GI 4) can be chosen so that every
monochromatic copy of Kt using a vertex from F \cup G is contained fully in
F \cup G.

Further, in parts (a) and (b), the generalized negative indicator can be taken so that
(I\ast , F ) and (I\ast , G) are H-robust. In part (c), we can ensure that (I\ast , F ) and (I\ast , G)
are Kt-robust.

Proof. Let q, d,H, F, and G be as given, and without loss of generality assume
that d \geq v(H) + 1. Let M1, . . . ,Mq - 1 be matchings of size q, let P1, . . . , Pq - 1 be
matchings of size two, and let ek be a fixed edge of Pk for each k \in [q  - 1].

In order to construct I\ast , we take the vertex-disjoint union of F , G and all of the
above matchings and we join them with signal senders and indicators in the following
way:
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F

I
−

I
−

I
−

I
+

I
+

I
+

each pair

G1 G2 G3

I
+

I
+

I
+

S
−

S
−

M1 M2 M3

each pair each pair

P1 P2 P3

Fig. 1. Generalized negative indicator for q = 4.

(i) For every k \in [q  - 1] and every edge m \in Mk, join F and m by a negative
(H,F,m, q, d)-indicator.

(ii) For every k \in [q - 1], every submatching S \subseteq Mk of size two, and every edge
p \in Pk, join S and p by a positive (H,S, p, q, d)-indicator.

(iii) For every 1 \leq k1 < k2 \leq q  - 1, join the distinguished edges ek1 \in Pk1 and
ek2

\in Pk2
by a negative signal sender S - = S - (H, ek1

, ek2
, q, d).

(iv) For every k \in [q  - 1] and every edge g \in E(Gk), join Pk and g by a positive
(H,Pk, g, q, d)-indicator.

Moreover, let all the indicators satisfy the robustness property promised by Theo-
rem 2.8, respectively. When H is a cycle of length t \geq 4, choose the gadgets in (i)--(iv)
so that their girth equals t. When H \sim = Kt \cdot K2 for some t \geq 3 and q = 2, choose
these gadgets so that they have a Kt \cdot K2-special 2-coloring. Note that the existence
of all these gadgets and colorings is given by Theorems 2.6 and 2.8. An illustration
of the construction for the case q = 4 can be found in Figure 1.
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Let Mk = \{ mk
1 , . . . ,m

k
q\} for every k \in [q  - 1]. Before showing that I\ast satis-

fies (GI 1)--(GI 4), we first discuss where copies of H can be located in the graph
I\ast . Note that from the following two observations we immediately obtain the desired
robustness properties as stated in Lemma 2.10.

Observation 2.11. Let H be 3-connected or a cycle. Let I \prime be a graph obtained
from I\ast by adding two new vertex sets SF and SG and any collection of edges within
SF \cup V (F ) and within SG \cup V (G). Then every copy of H in I \prime is fully contained in
one of the indicators from (i), (ii), or (iv), in one of the signal senders from (iii), or
in one of the subgraphs induced by SF \cup V (F ) or SG \cup V (G).

Proof. For a contradiction, assume that some copy H \prime of H in I \prime forms a coun-
terexample. Consider first the case when H \prime uses a vertex v \in SG \cup V (G). Since H \prime 

is a counterexample, we have V (H \prime ) \not \subseteq SG\cup V (G). Hence, H \prime needs to use an interior
vertex of one of the indicators in (iv); without loss of generality, assume it is an indi-
cator I+P1

joining P1 with an edge of G1. We then have distI\ast (P1, G) \geq d > v(H \prime ) by
property (I 1) of the indicators in (iv), and thus, since H \prime is 3-connected or a triangle
or a cycle with v(H \prime ) = girth(I+P1

), it follows that H \prime \subseteq I+P1
, a contradiction. We may

therefore assume that H \prime is vertex-disjoint from SG \cup V (G).
Consider next the case when H \prime uses a vertex v \in SF \cup V (F ). As before, we

have V (H \prime ) \not \subseteq SF \cup V (F ). Hence, H \prime needs to use an interior vertex of an indicator
in (i); without loss of generality, assume it is an indicator I1 between F and an edge
m \in M1. But then, since distI1(m,F ) \geq d > v(H \prime ) by property (I 1) and since (I1, F )
is H-robust by Theorem 2.8, we conclude that H \prime \subseteq I1 must hold, contradicting our
assumption. Hence, we may also assume that H \prime is vertex-disjoint from SF \cup V (F ).

Now, if H \prime uses an interior vertex of one of the signal senders S - in (iii), say,
between the edges ek1

and ek2
, then again, using that distS(ek1

, ek2
) \geq d by prop-

erty (S 3) and that H \prime is 3-connected or isomorphic to a triangle or H \prime is a cycle with
v(H \prime ) = girth(S), we deduce that H \prime must be fully contained in that signal sender.

Next, if H \prime uses an interior vertex of one of the indicators in (i), (ii), or (iv),
using the same argument and the robustness properties of our indicators, guaranteed
by Theorem 2.8 for positive and negative indicators, respectively, we again conclude
that H \prime must be fully contained in that indicator.

Hence, we are left with the case when H \prime uses neither vertices from SF \cup V (F ),
nor vertices from SG \cup V (G), nor interior vertices from one of the gadgets in (i)--(iv).
But then H \prime \subseteq 

\bigcup 
k\in [q - 1](Mk \cup Pk), which contradicts the fact that H \prime contains at

least one cycle.

Observation 2.12. Let H \sim = Kt \cdot K2. Let I \prime be a graph obtained from I\ast by
adding two new vertex sets SF and SG and any collection of edges within SF \cup V (F )
and within SG \cup V (G). Then every copy of Kt in I \prime is fully contained in one of the
indicators from (i), (ii), or (iv), in one of the signal senders from (iii), or in one of the
subgraphs induced by SF \cup V (F ) or SG \cup V (G).

Proof. The proof is analogous to the previous proof, except that we use the robust-
ness properties of all gadget graphs with respect to Kt, guaranteed by Theorem 2.8
for the indicators in (i), (ii), and (iv).

It remains to show that I\ast satisfies (GI 1)--(GI 4) and to verify the additional
property required in case (c) regarding the existence of Kt \cdot K2-special 2-colorings
for (GI 2) and (GI 4).

(GI 1) The graph F is an induced subgraph of I\ast , as it is an induced subgraph of
each of the negative indicators in (i) by property (I 1). Also G is an induced subgraph
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of I\ast , since in the construction of I\ast we attach gadget graphs to single edges of G
without adding any further edges inside V (G). Moreover, we have distI\ast (F,Gk) \geq d,
since, for every k \in [q - 1] and every m \in Mk, the joining (H,F,m, q, d)-indicator I - F
from (i) satisfies distI - 

F
(F,m) \geq d by property (I 1).

(GI 2) We define a coloring c : E(I\ast ) \rightarrow [q] as follows:
\bullet Give color 1 to the edges of F .
\bullet For every k \in [q  - 1], give color k + 1 to the edges mk

1 and mk
2 .

\bullet For every k \in [q  - 1], color the edges of Mk \setminus \{ mk
1 ,m

k
2\} such that each color

from [q] \setminus \{ 1, k + 1\} is used exactly once.
\bullet For every k \in [q  - 1], give color k + 1 to the edges of Pk and Gk.
\bullet Finally, extend this coloring to each of the indicators and signal senders in (i)--
(iv) so that none of these contains a monochromatic copy of H. In case (c),
choose these colorings to be Kt \cdot K2-special.

The extension in the last step of the coloring is possible for the following rea-
son: For the indicators in (i), we can find such an extension by properties (I 2)
and (I 3) for negative indicators and since c(F ) = 1 \not = c(m) for every k \in [q  - 1]
and m \in Mk. For the indicators in (ii), consider two cases. If S = \{ mk

1 ,m
k
2\} , then

we have c(S) = c(Pk) = k + 1, and hence we can color as desired by properties (I 2)
and (I 3). Otherwise, if S \in 

\bigl( 
Mk

2

\bigr) 
is different from \{ mk

1 ,m
k
2\} , the coloring on S is

not constant and hence we can extend as desired by property (I 4). For the signal
senders in (iii), the described extension is possible by properties (S 1) and (S 2) for
negative signal senders and since c(ek1

) \not = c(ek2
) for every distinct k1, k2 \in [q  - 1].

For the indicators in (iv), we again use properties (I 2) and (I 3) plus the fact that
c(Pk) = c(Gk) for every k \in [q  - 1].

It remains to check that the resulting coloring c on I\ast is H-free. Consider first
the case when H is a cycle or 3-connected. By Observation 2.11, we know that each
copy of H must be fully contained in one of the gadgets in (i)--(iv) or in the graph
G. By the choice of the coloring, we know that each of the gadgets is colored without
a monochromatic copy of H. Moreover, the coloring c splits the graph G into color
classes given by the subgraphs G1, . . . , Gq - 1, none of which contains a copy of H by
the assumption of the lemma. Hence, c is H-free in this case.

Next, consider the case when H \sim = Kt \cdot K2. Assume that there is a monochromatic
copy H \prime of H, and let K \prime denote the copy of Kt in H

\prime . According to Observation 2.12,
K \prime needs to be fully contained in one of the gadget graphs or in one of the subgraphs F
or G. If H \prime is fully contained in one of these parts, then H \prime cannot be monochromatic
by the same argument as above. Hence, we may assume that K \prime uses a vertex of one
of the signal edges, indicator edges, or indicator subgraphs. If K \prime is contained in one
of the gadget graphs, then by the choice of the Kt \cdot K2-special coloring for this gadget
graph, K \prime cannot be monochromatic, a contradiction.

So assume next that K \prime \subseteq G = G1. We need to check that no edge adjacent to
K \prime can be of the same color. Indeed, since H \not \subseteq G1 by the assumption of the lemma,
every edge incident to K \prime must belong to one of the indicators from (iv) and must be
incident to the corresponding indicator edge which is part of K \prime . But the 2-coloring
of each indicator was chosen to be Kt \cdot K2-special, so any such edge has the opposite
color, and hence H \prime cannot be monochromatic, a contradiction. We are left with the
case K \prime \subseteq F . As we have H \not \subseteq F by the assumption of the theorem, we know that
any edge adjacent to K \prime must be part of one of the indicators from (i). But then H \prime 

is fully contained in such an indicator and hence cannot be monochromatic, as the
coloring on every gadget is H-free, a contradiction.
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Note that the last argument also shows half of the additional property in case (c),
i.e., that the H-free 2-colorings in (GI 2) can be chosen so that every monochromatic
copy of Kt using a vertex from F \cup G is contained fully in F \cup G.

(GI 3) Let c be any H-free coloring of I\ast such that F is monochromatic, say,
c(F ) = 1. By properties (I 2) and (I 3) for negative indicators, the indicators in (i)
make sure that all edges in the matchings Mk need to get a color different from 1.
Then, by the pigeonhole principle, in each matching Mk there needs to be at least
one color from [q] \setminus \{ 1\} that appears at least twice. For each matching Mk, fix one
such color and denote it by ck. By symmetry, we assume without loss of generality
that c(mk

1) = c(mk
2) = ck. By property (I 3) for the indicators in (ii), we conclude

that c(Pk) = c(ek) = ck. Similarly, using property (S 2) for the signal senders in
(iii), we obtain that all edges in \{ e1, . . . , eq - 1\} need to have distinct colors. Since
color 1 is excluded, we may assume by symmetry that ck = c(ek) = k + 1 and thus
c(Pk) = k + 1. Then, applying property (I 3) for the positive indicators in (iv) yields
that c(Gk) = k + 1 and hence \{ c(F ), c(G1), . . . , c(Gk)\} = [q].

(GI 4) Let \varphi F and \varphi G satisfy the assumption in property (GI 4). We define a
coloring c : E(I\ast ) \rightarrow [q] as follows:

\bullet Color F according to \varphi F .
\bullet Color G according to \varphi G.
\bullet For every k \in [q  - 1] and \ell \in [q], give color \ell to mk

\ell .
\bullet For every k \in [q  - 1], give color k to ek and give color k + 1 to the edge in
Pk  - ek.

\bullet Finally, extend this coloring to each of the indicators and signal senders in (i)--
(iv) so that none of these contains a monochromatic copy of H. In case (c),
choose these colorings to be Kt \cdot K2-special.

The extension in the last step of the coloring is possible for the following reason:
For the indicators in (i), we can find such an extension by property (I 4) for negative
indicators and since \varphi F is not constant by assumption. For the indicators in (ii), such
an extension exists by property (I 4) and since no subgraph S \subseteq Mk of size two is
colored monochromatically. For the signal senders in (iii), this extension is possible by
properties (S 1) and (S 2) and since c(ek1

) \not = c(ek2
) for every distinct k1, k2 \in [q  - 1].

For the indicators in (iv), we again use property (I 4) plus the fact that Pk is not
monochromatic.

Finally, as in the discussion of (GI 2), it follows that c must be H-free. Moreover,
if H \sim = Kt \cdot K2 and q = 2, then, taking a Kt \cdot K2-special 2-coloring for each of the
gadget graphs, we deduce that every monochromatic copy of Kt that uses a vertex
from F \cup G is fully contained in F \cup G. That is, we obtain the second half of the
additional property required in case (c).

2.3. Existence of pattern gadgets. We now prove Theorem 2.4.

Proof. Set t = | G | . For every g = \{ G1, . . . , Gq\} \in G , fix an ordered color pattern
\vec{}g = (G1, . . . , Gq) with an arbitrary ordering of the subgraphs Gi \in g, and denote the

jth component of \vec{}g by \vec{}gj . Further, let
#»

G = \{ \vec{}g : g \in G \} . Choose r \in \BbbZ \geq 1 such that\biggl( 
(r  - 1)q + 1

r

\biggr) 
\geq t .

Fix a matching M of size (r  - 1)q + 1 and a surjection s :
\bigl( 
M
r

\bigr) 
\rightarrow #»

G , which exists by
the choice of r. We construct a pattern gadget P = P (H,G,G , q) as follows. Take G
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together with the given family G of H-free q-color patterns for G. Further, take the
matching M to be vertex-disjoint from G and join submatchings of M and edges of
G by generalized negative indicators and positive indicators as described below. For
this, choose an integer d such that d > v(H).

(i) For every A \in 
\bigl( 
M
r

\bigr) 
and every edge e \in E(s(A)q), join the submatching A and

the edge e by a positive (H,A, e, q, d)-indicator.
(ii) For every A \in 

\bigl( 
M
r

\bigr) 
, join the submatching A and the graph G - (s(A))q by a

generalized negative (H,A, \{ s(A)k\} k\in [q - 1], q, d)-indicator.
The existence of the indicators needed in (i) and (ii) is given by Theorem 2.8 and

Lemma 2.10.
In the case when H \sim = Kt \cdot K2 and q = 2, we additionally choose all gadgets so that

they have Kt \cdot K2-special 2-colorings as described in Theorem 2.8 and Lemma 2.10(c),
respectively. Moreover, we choose all the indicators so that they satisfy the robust-
ness properties described in Theorem 2.8 and Lemma 2.10. Then, analogously to
Observations 2.11 and 2.12, we can prove the following.

Observation 2.13. Let P \prime be a graph obtained from P by adding a vertex set S
and any collection of edges within S \cup V (G). If H is 3-connected or a cycle, then
every copy of H in P \prime is fully contained in one of the indicators from (i) or (ii) or in
the subgraph induced by S \cup V (G). If H \sim = Kt \cdot K2, then every copy of Kt in P \prime is
fully contained in one of the indicators from (i) or (ii) or in the subgraph induced by
S \cup V (G).

Given this observation, it follows immediately that (P,G) is H-robust if H is
3-connected or a cycle and that (P,G) is Kt-robust if H \sim = Kt \cdot K2. Hence, it remains
to verify that P satisfies (P 1)--(P 3) and that in the case when H \sim = Kt \cdot K2 and
q = 2 we can find 2-colorings for (P 3) as described in part (c) of Theorem 2.4.

(P 1) Since P is constructed by attaching different gadgets to G without adding
edges inside V (G), we have G \subseteq ind P .

(P 2) Let c : E(P ) \rightarrow [q] be any H-free coloring of P . By the pigeonhole princi-
ple, at least one color is used at least r times on the matching M . Without loss of
generality, say c(A) = q for some A \in 

\bigl( 
M
r

\bigr) 
. Consider the pattern g = \{ s(A)k\} k\in [q].

By property (I 3) of the indicators in (i), we deduce that every edge in E(s(A)q)
also needs to have color q. Moreover, by property (GI 3) of the generalized negative
indicators in (ii), each of the subgraphs s(A)k with k \not = q is forced to be monochro-
matic, and all colors except for c(A) = q get used among these subgraphs. Hence,
\{ c - 1

| G (1), . . . , c - 1
| G (q)\} = g \in G .

(P 3) Let g = \{ G1, . . . , Gq\} \in G be given. Fix an arbitrary set A0 \in 
\bigl( 
M
r

\bigr) 
such

that s(A0) = \vec{}g. Without loss of generality, assume that s(A0)k = Gk for every k \in [q];
otherwise relabel the subgraphs in g. We define a coloring c : E(P ) \rightarrow [q] as follows:

\bullet Give color q to each edge in A0.
\bullet Color M \setminus A0 so that each color from [q  - 1] appears exactly r  - 1 times.
\bullet For every k \in [q], give color k to the edges of Gk.
\bullet Finally, extend this coloring to each of the gadgets in (i) and (ii) so that
none of these contains a monochromatic copy of H. In case (c), choose these
colorings to be Kt \cdot K2-special.

We claim that the extension in the last step of the coloring is indeed possible.
Recall that each gadget from (i) and (ii) is associated to a submatching A \in 

\bigl( 
M
r

\bigr) 
.

Suppose first that A = A0. Then we have c(A) = q = c(s(A)q), and by properties (I 2)

D
ow

nl
oa

de
d 

12
/0

6/
22

 to
 1

47
.1

88
.2

51
.1

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1518 S. BOYADZHIYSKA, D. CLEMENS, AND P. GUPTA

and (I 3), we find an extension as desired for the corresponding positive indicators in
(i). Moreover, we have c(s(A)k) = k \not = q = c(A) for every color k \in [q  - 1]. Hence,
by properties (GI 2) and (GI 3), we find extensions as desired for the corresponding
generalized negative indicators in (ii). Consider next the case when A \not = A0. Then A
is not monochromatic, since A0 is the only monochromatic subset ofM of size r. Now,
let I be any positive indicator between A and any edge e \in E(s(A)q) as described in
(i). Then, by property (I 4), we find an extension for I as desired. Finally, let I be the
generalized negative indicator from (ii) for the set A. Then, using property (GI 4),
we conclude analogously that an extension for I can be found.

Finally, we have \{ G1, . . . , Gq\} = \{ c - 1
| G (1), . . . , c - 1

| G (q)\} . Since g = \{ G1, . . . , Gq\} 
is an H-free q-color pattern by the assumption of the theorem, we know that c| G
is H-free. Now, if H is 3-connected or a cycle, then every copy of H in P that is
not contained in G must be a subgraph of some indicator from (i) or (ii), according
to Observation 2.13. But we already know that the coloring c is H-free on every
indicator, and hence it is H-free on the whole graph P .

It remains to consider the case when H \sim = Kt \cdot K2 and q = 2. Assume that there
is a monochromatic copy H \prime of H, and let K \prime denote its copy of Kt. As above, if H \prime 

is fully contained in one of the indicators, then it cannot be monochromatic. Hence,
we may assume that K \prime intersects the vertex set of an indicator edge or an indicator
subgraph. Then, by the Kt \cdot K2-special 2-colorings for the indicators, we know that K \prime 

needs to be a subgraph of G. Without loss of generality, let K \prime \subseteq G1. Since G does
not contain a copy of Kt \cdot K2 by assumption, we know that EG(V (K \prime ), V (G2)) = \varnothing .
Hence, the pendant edge f of H \prime needs to belong either to a positive indicator between
some A \in 

\bigl( 
M
r

\bigr) 
and some e \in E(K \prime ) or to a generalized negative indicator between

some A \in 
\bigl( 
M
r

\bigr) 
and the graph G1 \supseteq K \prime . In the former case, the edge f needs to be

incident to the indicator edge e and hence c(e) \not = c(f) by the Kt \cdot K2-special 2-coloring
of the corresponding positive indicator. In the latter case, we have c(f) \not = c(K \prime ) as
the coloring of the generalized negative indicator was chosen to be H-free. Hence, in
both cases H \prime cannot be monochromatic, a contradiction.

3. Applications of pattern gadgets. In this section, we present several ap-
plications of the pattern gadgets constructed in the previous section. We first prove
Theorems 1.3 and 1.5 directly. The proof of Theorem 1.4 is given later in the section
as a consequence of a more general result about 3-connected graphs (Theorem 3.1).

Proof of Theorem 1.3. Let H \sim = Ct and t \geq 4 and q \geq 2 be fixed. We first note
that sq(H) \geq q + 1. Indeed, suppose there is a minimal q-Ramsey graph G for Ct

with a vertex v of degree at most q; by the minimality of G, there exists a Ct-free
q-coloring of G  - v. Now, coloring the edges incident to v so that no two of them
share a color gives a q-coloring of G with no monochromatic Ct, a contradiction.

We now turn our attention to showing that there can be arbitrarily many vertices
of degree q + 1, also implying that sq(Ct) = q + 1. Let k \geq 1. We now construct a
minimal q-Ramsey graph for H with at least k vertices of degree q + 1. Our graph
will be constructed in several steps. We refer the reader to Figure 2 for an illustration
of our construction in the case when q = 2, t = 6, and k = 3.

To begin with, let W be a set of q + 1 vertices. For every u,w \in W and u \not = w,
add q internally vertex-disjoint paths of length t - 2 with u and w as endpoints. Call
the resulting graph F . Let c1 : E(F ) \rightarrow [q] be a coloring of the edges of F such that,
for every distinct u,w \in W , every path between u and w is monochromatic but no
two such paths are monochromatic in the same color. Let c2 : E(F ) \rightarrow [q] be another
coloring of the edges of F such that, for every distinct u,w \in W , no path between u
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G

P

v1 v2 v3

V1 V2 V3

W1 W2 W3

Fig. 2. Graph \widetilde G for q = 2, t = 6, and k = 3. Light solid lines correspond to color 1 and dark
solid lines correspond to color 2. (Color available online.)

and w is monochromatic. We define f1 and f2, two q-color patterns for F , by setting
f1 = \{ c - 1

1 (i)\} i\in [q] and f2 = \{ c - 1
2 (i)\} i\in [q]. Note that f1 and f2 are H-free.

We now take k vertex-disjoint copies F1, . . . , Fk of F , where Fi = (Vi, Ei) for all
1 \leq i \leq k, and denote by Wi the subset of Vi corresponding to W in V (F ). Call this
graph G, and define V = \cup k

i=1Vi. Note that G \not \rightarrow q H, since F \not \rightarrow q H. Let G be a
family of q-color patterns for G such that g \in G if and only if there exists an i \in [k]
such that g[Vi] \sim = f1 and g[Vj ] \sim = f2 for all j \not = i. Note that G is a family of H-free
q-color patterns for G.

By Theorem 2.4, we know that there exists a pattern gadget P = P (H,G,G , q).
Moreover, we can choose the pattern gadget P in such a way that the pair (P,G) is
H-robust. We add k additional vertices v1, . . . , vk to P , and for all i \in [k], we add

edges from vi to all vertices in Wi. We call the resulting graph \widetilde G.
We now show that \widetilde G\rightarrow q H and that each of the new vertices vi is important for\widetilde G to have this property, that is, \widetilde G - vi \not \rightarrow q H for every i \in [k]. This then implies the

existence of a minimal q-Ramsey graph for H with the desired properties. Indeed,
consider any minimal q-Ramsey graph \widetilde G\prime \subseteq \widetilde G. Since \widetilde G  - vi \not \rightarrow q H, we know that

vi \in V ( \widetilde G\prime ) for every i \in [k]. Also q+1 \leq sq(Ct) \leq d \widetilde G\prime (vi) \leq q+1, which means that
d \widetilde G\prime (vi) = sq(Ct) = q + 1.

First, we show that \widetilde G \rightarrow q H. Let c : E( \widetilde G) \rightarrow [q] be a q-coloring of the edges

of \widetilde G, and assume that c is H-free. For each i \in [q], define ci = c - 1(i) to be the ith
color class with respect to c. By property (P 2) of the pattern gadget P , we know
that g = \{ c1[V ], . . . , cq[V ]\} \in G ; by the definition of G , there exists an i \in [k] such
that \{ c1[Vi], . . . , cq[Vi]\} \sim = f1. Without loss of generality, we may assume that i = 1.
Consider the edges from v1 to the vertices of W1. There are q+1 such edges and they
are colored in q colors, so by the pigeonhole principle there are two vertices inW1, say,
u and w, such that c(v1u) = c(v1w). Again without loss of generality, we may assume
that c(v1u) = 1. By our choice of f1, we know that there is a monochromatic path of
length t - 2 in color 1 between the vertices u and w. This monochromatic path along
with the edges v1u and v1w gives a monochromatic cycle of length t, contradicting
our assumption.
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P

G

V1 V2 V3

v1 v2 v3

e1 e2 e3

Fig. 3. Graph \widetilde G for t = 4 and k = 3. Light shading of discs corresponds to red, and dark
shading corresponds to blue. (Color available online.)

Next, we show that \widetilde G  - vi \not \rightarrow q H for every i \in [k]. By symmetry, it is enough
to show this for i = 1. Partition the vertices in V in the following way: For every
\ell \in [k], write G[V\ell ] = G\ell ,1 \cup \cdot \cdot \cdot \cup G\ell ,q so that \{ G1,j\} j\leq q

\sim = f1 and \{ G\ell ,j\} j\leq q
\sim = f2 for

\ell \not = 1. We define a coloring c : E(G) \rightarrow [q] by setting c(G\ell ,j) = j for every \ell \in [k] and
j \in [q]. The q-color pattern on V defined by c, namely, \{ c | G - 1(1), . . . , c | G - 1(q) \} ,
is in G , and by property (P 3), we can extend c to an H-free coloring of P . We then

color the remaining edges in \widetilde G - v1 arbitrarily and denote the resulting q-coloring of\widetilde G  - v1 by \~c. Since \~c| P is H-free, any monochromatic copy of H in \widetilde G  - v1 needs to
contain a vertex v\ell for some \ell \geq 2. Now, due to the Ct-robustness of the pair (P,G),
any possible monochromatic copy of H must be contained in some V\ell \cup \{ v\ell \} . Such
a copy then needs to contain two vertices of W\ell and a path of length t  - 2 between
them. But we know that \{ c - 1

| G[V\ell ]
(j)\} j\in [q]

\sim = f2, and by the definition of f2, no such

path is monochromatic. Hence, no monochromatic copy of H exists.

Proof of Theorem 1.5. It was shown by Fox et al. [12] that s2(Kt \cdot K2) = t - 1 for
every t \geq 3. We now show that a minimal 2-Ramsey graph for Kt \cdot K2 can contain
arbitrarily many vertices of this minimum degree.

Let H \sim = Kt \cdot K2 for some t \geq 3, and let k \geq 1 be fixed. Our construction
of a minimal 2-Ramsey graph for H containing at least k vertices of degree t  - 1
will combine ideas similar to those in the proof of Theorem 1.3 with ideas from the
construction given by Fox et al. [12]. We again refer the reader to Figure 3 for an
illustration of the case t = 4 and k = 3.

We begin by defining F to be the vertex disjoint union of t - 1 copies of Kt. For
every copy of Kt, we fix an arbitrary vertex and call the set of all these vertices W .
Let c1 : E(F ) \rightarrow \{ red, blue\} be a 2-coloring that colors every edge of F red. Let
c2 : E(F ) \rightarrow \{ red, blue\} be another 2-coloring of the edges of F such that no copy of
Kt is monochromatic (in either color). We define two color patterns f1 and f2 for F
by setting f1 = \{ c - 1

1 (red), c - 1
1 (blue)\} and f2 = \{ c - 1

2 (red), c - 1
2 (blue)\} . Note that f1

and f2 are H-free.
Now take k vertex-disjoint copies F1, . . . , Fk of F , where Fi = (Vi, Ei) for i \in [k],

and let Wi be the subset of Vi corresponding to the set W in V (F ). Call this graph
G, and define V = \cup k

i=1Vi. Note that G does not contain any copies of H. Let G be
a family of 2-color patterns for G such that g \in G if and only if there exists an i \in [k]
such that g[Vi] \sim = f1 and g[Vj ] \sim = f2 for all j \not = i. Note that G is a family of H-free
2-color patterns for G.
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By Theorem 2.4, we deduce that there exists a pattern gadget P = P (H,G,G , 2).
Moreover, we can choose the pattern gadget P in such a way that the pair (P,G) is
Kt-robust and that for property (P 3) there is always an H-free 2-coloring such that
if a monochromatic copy of Kt uses a vertex from G, then it lies entirely in G. We
add k additional vertices v1, . . . , vk to P with edges from vi to all vertices of Wi for
all i \in [k]; also, for all i \in [k], we add an edge between each pair of distinct vertices
in Wi. Last we choose an arbitrary vertex in Wi and add a pendant edge ei incident
to that vertex. We call the resulting graph \widetilde G.

We now show that \widetilde G \rightarrow 2 H and that \widetilde G  - vi \not \rightarrow 2 H for every i \in [k]. This,
as argued in the proof of Theorem 1.3, implies the existence of a minimal 2-Ramsey
graph with the desired properties.

First we show that \widetilde G \rightarrow 2 H. Let c : E( \widetilde G) \rightarrow \{ red, blue\} be a 2-coloring of the

edges of \widetilde G; assume that c is H-free. Define cred = c - 1(red) and cblue = c - 1(blue) to
be the two color classes with respect to c. By property (P 2) of the pattern gadget P ,
we know that g = \{ cred[V ], cblue[V ]\} \in G , and by the definition of G , there exists an
i \in [k] such that \{ cred[Vi], cblue[Vi]\} \sim = f1. Without loss of generality, we may assume
that i = 1 and every edge inside Vi is red. Consider the edges with endpoints in the
set W \prime = W1 \cup \{ v1\} . Since c is an H-free coloring of \widetilde G and each such edge e has at
least one endpoint in W1 (and is hence incident to an all-red copy of Kt), we obtain
that c(e) = blue. As a result, the graph induced by W \prime is a monochromatic blue copy
of Kt. Now, the pendant edge e1 is incident to monochromatic copies of Kt in both
colors and thus creates a monochromatic copy of H irrespective of its color. This
contradicts our assumption.

Next, we show that, for every i \in [k], we have \widetilde G  - vi \not \rightarrow 2 H. By symmetry, it
suffices to show this for i = 1. For every \ell \in [k], take a partitionG[V\ell ] = G\ell ,red\cup G\ell ,blue

such that \{ G1,red, G1,blue\} \sim = f1 and \{ G\ell ,red, G\ell ,blue\} \sim = f2 for \ell \not = 1. We define a

coloring c : E( \widetilde G) \rightarrow \{ red, blue \} by first setting c(G\ell ,j) = j for every \ell \in [k] and
j \in \{ red, blue\} . The color pattern defined on G by c is in G , and by property (P 3)
of P , we can extend this to all of P so that the coloring c| P is H-free and has the
following additional property:

(P) If a monochromatic copy of Kt in the coloring c| P uses a vertex from G, then
it lies entirely in G.

Now, for every \ell \geq 2, color one edge between v\ell and W\ell red and color the remaining
edges in E \widetilde G(W\ell \cup \{ v\ell \} ) \cup \{ e\ell \} blue. Further, color all edges in E \widetilde G(W1) \cup \{ e1\} with
the color not used on G[V1] (recall that G[V1] was colored monochromatically as
\{ G1,red, G1,blue\} \sim = f1).

We claim that this coloring is H-free. For a contradiction, assume that there is
a monochromatic copy H \prime of H produced by the coloring c. Since c| P is H-free, H \prime 

needs to use at least one edge e0 from E \widetilde G(W1) \cup \{ e1\} or from E \widetilde G(W\ell \cup \{ v\ell \} ) \cup \{ e\ell \} 
for some \ell \geq 2.

Consider first the case when e0 \in E \widetilde G(W1) \cup \{ e1\} . We know that G[V1] is
monochromatic and that e0 has the opposite color, say, G[V1] is red and e0 is blue.
Then, by property (P) and the fact that | W1| = t  - 1, there can be no blue copy of
Kt in the subgraph induced by the set V1 \supseteq W1. But this means that e0 cannot be
part of a blue copy of Kt \cdot K2, a contradiction.

Consider now the case when e0 \in E \widetilde G(W\ell \cup \{ v\ell \} ) \cup \{ e\ell \} for some \ell \geq 2, and
assume without loss of generality that \ell = 2. By the Kt-robustness of the pair (P,G),
the copy H \prime of H must be contained within E \widetilde G(V2 \cup \{ v2\} )\cup \{ e2\} . Since c| G[V2]

\sim = f2,
i.e., the copies of Kt in F2 are not monochromatic, and c satisfies property (P), we

D
ow

nl
oa

de
d 

12
/0

6/
22

 to
 1

47
.1

88
.2

51
.1

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1522 S. BOYADZHIYSKA, D. CLEMENS, AND P. GUPTA

obtain that G[V2] does not contain a monochromatic copy of Kt. From this and the
fact that e2 is a pendant edge it follows that the vertices of the copy of Kt in H

\prime must
be contained entirely in W2 \cup \{ v2 \} . But this set contains precisely t vertices that do
not form a monochromatic copy of Kt, again giving a contradiction.

Before turning to the proof of Theorem 1.4, we state and prove a more general
statement concerning 3-connected graphs. Roughly speaking, it reduces the problem
of showing sq-abundance to that of finding a suitable minimal q-Ramsey graph con-
taining at least one vertex of the desired small degree. In fact, we can even relax the
condition that the q-Ramsey graph be minimal and that the desired small degree be
precisely sq(H) for the given graph H.

Theorem 3.1. Let H be 3-connected or a triangle and assume there exists a graph
F together with a vertex v \in V (F ) and an edge e \in E(F ) satisfying the following
properties:
(F 1) F \rightarrow q H.
(F 2) v and e do not share a copy of H in F .
(F 3) F  - e \not \rightarrow q H.
(F 4) F  - g \not \rightarrow q H for every g \in E(F ) which is incident to v.

Then, for any k \in \BbbZ \geq 1, there exists a minimal q-Ramsey graph for H that has k
vertices of degree dF (v).

Proof. Given a graph F with the required properties, denote the edges incident
to v in F by g1, . . . , gdF (v). Let F

\prime = F  - v - e. In order to define q-color patterns for
an application of Theorem 2.4, we first observe the existence of two types of H-free
q-colorings on F \prime .

Claim 3.2. For every j \in [dF (v)], there exists an H-free q-coloring c1,j of F \prime 

such that
\bullet c1,j can be extended to an H-free q-coloring of F  - \{ e, gj\} , and
\bullet c1,j cannot be extended to an H-free q-coloring of F  - e.

Proof. By property (F 4), there exists an H-free q-coloring \varphi of F  - gj . We set
c1,j := \varphi | F \prime . One observes easily that this is an H-free q-coloring of F \prime and that
\varphi | F - \{ e,gj\} is an extension to F  - \{ e, gj\} that is H-free. Hence, it remains to check
that there is no H-free extension to the graph F  - e.

For a contradiction, assume that there is some H-free coloring \psi : E(F  - e) \rightarrow [q]

extending c1,j . The q-coloring \widetilde \psi : E(F ) \rightarrow [q] defined by

\widetilde \psi (f) = \Biggl\{ 
\psi (f) if f \not = e,

\varphi (e) if f = e

cannot be H-free by property (F 1). Thus, there must be a copy H \prime of H that is

monochromatic under \widetilde \psi ; moreover, H \prime needs to use the edge e as \widetilde \psi | F - e = \psi is H-
free. By property (F 2), we have v /\in V (H \prime ), that is, H \prime lies entirely in the graph

F  - v. However, \widetilde \psi | F - v = \varphi | F - v, since \widetilde \psi | F \prime = \psi | F \prime = c1,j = \varphi | F \prime and \widetilde \psi (e) = \varphi (e).
Hence, since \varphi is H-free, H \prime cannot be monochromatic, a contradiction.

Claim 3.3. There exists an H-free q-coloring c2 of F \prime that can be extended to an
H-free q-coloring of F  - e.

Proof. By property (F 3) there exists an H-free q coloring \varphi of F  - e. We set
c2 := \varphi | F \prime .
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Given the colorings of our previous claims, we next define H-free q-color patterns
f1,j , with j \in [dF (v)], and f2 for F \prime by partitioning F \prime into its color classes with
respect to c1,j and c2, respectively. More precisely, we set

f1,j = \{ c - 1
1,j(i)\} i\in [q] and f2 = \{ c - 1

2 (i)\} i\in [q].

Now let k \geq 1 be an integer. We proceed similarly as in the proof of Theorem 1.3
and construct a graph \widetilde G that will be a q-Ramsey graph for H with the additional
property that there are at least k vertices of degree dF (v), each of which is important
for G to be q-Ramsey for H.

First, let F1, . . . , Fq be k vertex-disjoint copies of F  - e. For each i \in [k], let
vi \in V (Fi) represent the vertex v \in V (F  - e) and let gi1, . . . , g

i
dF (v) \in E(Fi) be the

edges representing g1, . . . , gdF (v). Moreover, for every i \in [k], let F \prime 
i = Fi  - vi and

Wi := NFi(vi).
We fix G = (V,E) to be the vertex-disjoint union of the graphs F \prime 

i = (V \prime 
i , E

\prime 
i),

i.e., we set V = \cup k
i=1V

\prime 
i and E = \cup k

i=1E
\prime 
i. Then we fix a family G of q-color patterns

for G such that g \in G if and only if there exist i \in [k] and j \in [dF (v)] such that
g[V \prime 

i ]
\sim = f1,j and such that g[V \prime 

\ell ]
\sim = f2 for all \ell \not = i.

By the definition of the patterns f1,j and f2, and since the vertex sets V \prime 
i for

i \in [k] are pairwise disjoint, we know that G is a family of H-free q-color patterns
for G. Hence, applying Theorem 2.4, we can find a pattern gadget P = P (H,G,G , q)

such that (P,G) is H-robust. Finally, we obtain \widetilde G from P by adding the vertices
v1, . . . , vk and by connecting vi to all vertices in Wi via the edges gi1, . . . , g

i
dF (v) for all

i \in [k].

Analogously to the proof of Theorem 1.3, we now show that \widetilde G \rightarrow q H and that

each of the edges gij for i \in [k] and j \in [dF (v)] is important for \widetilde G to be Ramsey in

the sense that \widetilde G - gij \not \rightarrow q H. This then implies the existence of a minimal q-Ramsey

graph as claimed by the theorem. Indeed, assuming these properties, let \widetilde G\prime \subseteq \widetilde G be
minimal q-Ramsey for H. Since \widetilde G  - gij \not \rightarrow q H, we can conclude that gij \in E( \widetilde G\prime ) for

every i \in [k] and j \in [dF (v)]. This then implies that d \widetilde G\prime (vi) = dF (v). Hence, \widetilde G\prime is a
minimal q-Ramsey graph for H with at least k vertices of degree dF (v).

Let us show first that \widetilde G \rightarrow q H. For a contradiction, suppose we can find an

H-free q-coloring c : E( \widetilde G) \rightarrow [q]. For each i \in [q], define ci = c - 1(i) to be the ith
color class with respect to c. By property (P 2) of the pattern gadget P , we know that
g := \{ c - 1

| G (1), . . . , c - 1
| G (q)\} \in G . Hence, by the definition of G , there exist i \in [k] and

j \in [dF (v)] such that g[V \prime 
i ]

\sim = f1,j . But then, by the choice of f1,j and the properties of

c1,j , we deduce that c| \widetilde G[V \prime 
i ]
cannot be extended to an H-free q-coloring of \widetilde G[V \prime 

i \cup \{ vi\} ].
This is a contradiction, since c| \widetilde G[V \prime 

i \cup \{ vi\} ] is already such an H-free extension by the

assumption on c.
Next, we show that \widetilde G  - gij \not \rightarrow q H for every i \in [k] and j \in [dF (v)]. By sym-

metry, we may only consider the case when i = j = 1. We first partition G in the
following way: For every \ell \in [k], we fix a partition G[V\ell ] = G\ell ,1 \cup \cdot \cdot \cdot \cup G\ell ,q such
that \{ G1,r\} r\leq q

\sim = f1,1 and \{ G\ell ,r\} r\leq q
\sim = f2 for \ell \not = 1. By the choice of f1,1 and f2,

we know that the coloring c : E(G) \rightarrow [q] defined by c(G\ell ,r) = r for every \ell \in [k]
and r \in [q] is H-free. Moreover, \{ c - 1(1), . . . , c - 1(q)\} \in G and therefore, by prop-
erty (P 3), we can extend c to an H-free q-coloring \varphi P of P . By the definition of f1,1
and the properties of c1,1, we know that the coloring c| G[V1] can be extended to an

H-free q-coloring \varphi 1 of \widetilde G[V1 \cup \{ v1\} ] - g11 . By the definition of f2 and the properties
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of c2 we know that, for each \ell \not = 1, the coloring c| G[V\ell ] can be extended to an H-free

q-coloring \varphi \ell of \widetilde G[V\ell \cup \{ v\ell \} ]. We now put all these colorings together to form the

coloring \varphi : E( \widetilde G - g11) \rightarrow [q] given by

\varphi (f) :=

\Biggl\{ 
\varphi P (f) if f \in E(P ),

\varphi \ell (f) if v\ell \in f for some \ell \in [k].

We claim that this coloring is H-free.
Assume for a contradiction that there is a monochromatic copy H \prime of H in

the coloring \varphi . Then, since (P,G) is H-robust, we know that either H \prime \subseteq P or

H \prime \subseteq \widetilde G[V \cup \{ v\ell \} \ell \in [k]] - g11 . Since the coloring \varphi P on P is H-free, we can assume that

H \prime \subseteq \widetilde G[V \cup \{ v\ell \} \ell \in [k]] - g11 . But since H
\prime is connected, we have H \prime \subseteq \widetilde G[V\ell \cup \{ v\ell \} ] for

some \ell \not = 1 or H \prime \subseteq \widetilde G[V1 \cup \{ v1\} ] - g11 . In both cases we know that H \prime cannot be
monochromatic, since the colorings \varphi 1, . . . , \varphi k are H-free. This is a contradiction.

Finally, we illustrate how to apply Theorem 3.1 by deriving Theorem 1.4 as a
consequence of it.

Proof of Theorem 1.4. In order to show that Kt is sq-abundant, it will be enough
to prove the existence of a graph F with a vertex v \in V (F ) and an edge e \in E(F )
satisfying (F 1)--(F 4) with dF (v) = sq(Kt). Implicitly, such a graph is given in an
argument of Fox et al. [13], which was a first step for finding an upper bound on
sq(Kt). In the following, we will briefly sketch their argument and then conclude the
existence of a graph F as desired.

Let Pq(t - 1) be the smallest integer n such that the following holds: There exist
a graph G on n vertices and a Kt-free q-color pattern \{ G1, . . . , Gq \} for G such that,
for every partition V (G) = \cup j\in [q]Vj , there exists a copy H of Kt - 1 and an integer
i \in [q] such that H \subseteq Gi[Vi]. Fox et al. proved that sq(Kt) = Pq(t - 1) (Theorem 1.5
in [13]). For a proof of the inequality sq(Kt) \leq Pq(t - 1) (Theorem 2.3 in [13]), they

gave the following construction of a graph \widetilde G.
Fix a graph G on Pq(t - 1) vertices with a Kt-free q-color pattern \{ G1, . . . , Gq \} 

as described above. We take the given graph G, an isolated vertex v, and a matching
M = \{ e1, . . . , eq\} that is vertex-disjoint from G and v; next, we take a negative signal
sender S - := S - (Kt, e, f, q, d) and a positive signal sender S+ := S+(Kt, e, f, q, d)

with d > t, the existence of which is guaranteed by Theorem 2.6. We then obtain \widetilde G
as follows:

(i) For every distinct i, j \in [q], join ei and ej by a copy of S - .
(ii) For every i \in [q] and every f \in E(Gi), join ei and f by a copy of S+.
(iii) Connect v to all vertices in V (G) by an edge.

We will see in the following that \widetilde G \rightarrow q Kt, \widetilde G  - v \not \rightarrow q Kt, and \widetilde G  - M \not \rightarrow q Kt.
From this, we can then conclude the existence of a graph F \in \scrM q(Kt) satisfying
the hypothesis of Theorem 3.1. Indeed, consider any minimal q-Ramsey graph F
for Kt contained in \widetilde G. Since \widetilde G  - v \not \rightarrow q Kt, we conclude that F must contain the
vertex v; moreover, we have sq(Kt) \leq dF (v) \leq d \widetilde G(v) = Pq(t  - 1) = sq(Kt), so

dF (v) = sq(Kt). Further, using that \widetilde G  - M \not \rightarrow q Kt, we also deduce that \widetilde G must
contain at least one edge e \in M . Since distF (v, e) \geq dist \widetilde G(v, e) \geq d > v(Kt), v and
e cannot share a copy of Kt, implying that property (F 2) holds. By the minimality
of F , properties (F 1), (F 3), and (F 4) are immediate. We split the remainder of the
proof into three claims.
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Claim 3.4. We have \widetilde G\rightarrow q Kt and \widetilde G - v \not \rightarrow q Kt.

Proof. Both statements were already proven in [13]. We include the argument
here for completeness.

We begin by showing that \widetilde G \rightarrow q Kt. For a contradiction, assume that there

exists a Kt-free coloring c : E( \widetilde G) \rightarrow [q]. The signal senders in (i) then ensure that the
edges of M must receive distinct colors, say, without loss of generality that c(ei) = i
for every i \in [q]. The signal senders in (ii) ensure that c(Gi) = c(ei) = i for every
i \in [q]. Now, consider the partition V (G) = \cup j\in [q]Vj , where, for every j \in [q], we
have w \in Vj if and only if c(vw) = j. Then, by the choice of G and the definition of
Pq(t - 1), there exists a graph H \sim = Kt - 1 and an integer i \in [q] such that H \subseteq Gi[Vi].
Hence, the edges in E(H) \cup \{ vw : w \in V (H)\} all have color i and thus induce a
monochromatic copy of Kt. This is a contradiction.

Next, let us show that \widetilde G  - v \not \rightarrow q Kt. In order to do so, we define a q-coloring

c of \widetilde G  - v. We first set c(Gi) = c(ei) = i for every i \in [q]; afterward we extend the

coloring c to \widetilde G  - v in such a way that c is Kt-free on each signal sender from (i)
and (ii). Note that the latter is possible by property (S 1) and (S 2). Analogously
to previous proofs, each copy of Kt is fully contained either in a signal sender or in
the graph G. Since the coloring restricted to any signal sender is Kt-free and since
\{ G1, . . . , Gq \} is a Kt-free q-color pattern, it follows that c is Kt-free.

The next two claims were not shown in [13].

Claim 3.5. If sq(Kt) \leq rq(Kt) - 2, then \widetilde G - M \not \rightarrow q Kt.

Proof. In order to see this claim, we define a q-coloring c of \widetilde G  - M as follows:
We first fix a Kt-free q-coloring of \widetilde G[N \widetilde G(v)\cup \{ v\} ] = \widetilde G[V (G)\cup \{ v\} ], which is possible
since by assumption we have

| N \widetilde G(v) \cup \{ v\} | = sq(Kt) + 1 \leq rq(Kt) - 1 .

Afterward we extend the coloring to every signal sender so that it is Kt-free. The
latter is possible since every signal sender is missing at least one signal edge in the
graph \widetilde G - M (and hence we can always pretend that the missing signal edge has a color
that fits property (S 2)). Now, each copy of Kt is fully contained either in a signal

sender or in the graph G, and hence the resulting coloring of \widetilde G - M is Kt-free.

Claim 3.6. For all q \geq 2 and t \geq 3, we have sq(Kt) \leq rq(Kt) - 2.

Proof. Let t \geq 3 be fixed. For all q \geq 2, define Nq = (t - 1)q. To show the claim
it suffices to prove that KNq

satisfies the following properties:
(i) There is a Kt-free q-coloring \varphi q of KNq

that cannot be extended to a Kt-free
coloring of KNq+1.

(ii) There exists a Kt-free coloring \psi q of KNq+1.
Note that, by an argument similar to that given in Claim 3.4, property (i) implies that
Pq(t  - 1) \leq Nq. Property (ii) implies that Nq + 1 < rq(Kt). These two inequalities
together with the fact that sq(Kt) = Pq(t - 1) imply the claim.

We now proceed by induction on q and show properties (i) and (ii). First consider
the case q = 2. We can use the idea of Burr, Erd\H os, and Lov\'asz [4]. Partition the
vertices of the graph K(t - 1)2 into t - 1 equally sized sets Q1, . . . , Qt - 1. Consider the
coloring \varphi 2 of K(t - 1)2 in which the edges lying within a single Qi are colored red
and the edges with endpoints in two different Qi are colored blue. It is not difficult
to check that this coloring is Kt-free but there is no way to extend it to K(t - 1)2+1
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without creating a monochromatic Kt, establishing property (i). On the other hand,
we can define a Kt-free 2-coloring \psi 2 of K(t - 1)2+1 as follows. Let Q1, . . . , Qt - 1 be as
before; fix an arbitrary vertex vi \in Qi for every i \in [t - 1]. Color all edges of K(t - 1)2

as before except for the edge v1v2, which we now color red. Let v be a new vertex
connected to all vertices of K(t - 1)2 . Color vvi blue for all i \in [t  - 1], and color all
other edges incident to v red. It is not difficult to check that this coloring is Kt-free.

Assume that (i) and (ii) hold for some q \geq 2. Consider the graphKNq+1
. Partition

its vertex set into t  - 1 equally sized sets Q1, . . . , Qt - 1. Let \varphi q+1 be the coloring in
which the edges inside each Qi are colored according to \varphi q and the edges between two
different Qi are given color q+1. Again, it is easily seen that this coloring is Kt-free.
Now, let v be a vertex connected to all vertices of KNq+1 , and consider any coloring
of KNq+1+1 extending \varphi q+1. If all edges from v to some Qi have colors in [q], then by
induction the graph induced by Qi \cup \{ v \} contains a monochromatic copy of Kt. So
we may assume that, for all i \in [t  - 1], there is a vertex vi \in Qi such that the edge
vvi has color q+1. But then the vertices v1, . . . , vt - 1, v induce a monochromatic copy
of Kt. Hence property (i) is satisfied. For property (ii), notice that if Q1, . . . , Qt - 1

are as above and v is a new vertex connected to all vertices of KNq+1 , then coloring
the graph induced by Qi \cup \{ v \} according to \psi q for all i \in [t - 1] and giving all edges
with endpoints in different Qi color q + 1 gives the required Kt-free coloring \psi q+1 of
KNq+1+1.

Putting Claims 3.4--3.6 together, we obtain the theorem.

4. Concluding remarks and open problems. In the present paper, we for-
malized a new tool for studying (minimal) Ramsey graphs and showed some appli-
cations to questions concerning minimum degrees. In particular, we used pattern
gadgets to find examples of graphs H such that a minimal q-Ramsey graph for H
can contain arbitrarily many vertices of degree sq(H), that is, sq-abundant graphs.
A number of interesting problems remain open.

Questions concerning minimum degrees of minimal Ramsey graphs are partic-
ularly interesting for the class of so-called q-Ramsey-simple graphs. Observe that
sq(H) \geq q(\delta (H) - 1) + 1 for any graph H and integer q \geq 2. This was shown by Fox
and Lin [14] for two colors and generalizes easily to any number of colors. Indeed, as-
sume there exists G \in \scrM q(H) with a vertex v \in V (G) such that dG(v) \leq q(\delta (H) - 1).
Since G is minimal q-Ramsey forH, we can color the graph G - v with q colors without
a monochromatic copy of H. Then we can extend this coloring to all of G by coloring
at most \delta (H) - 1 of the edges incident to v in any given color. It is not difficult to check
that this is an H-free coloring of G, a contradiction. Now, a graph H without isolated
vertices is said to be q-Ramsey-simple if sq(H) = q(\delta (H)  - 1) + 1. In [27], Szab\'o,
Zumstein, and Z\"urcher found many classes of 2-Ramsey-simple bipartite graphs; in
particular, all trees were shown to be 2-Ramsey simple. Later Grinshpun [15, The-
orems 2.1.2 and 2.1.3] gave further examples of Ramsey-simple graphs, showing in
particular that all 3-connected bipartite graphs are 2-Ramsey-simple. Despite this
progress, the following question, posed by Szab\'o and co-authors, remains open.

Question 4.1 ([27, Problem 2]). Is every bipartite graph with no isolated vertices
2-Ramsey-simple?

In fact, Grinshpun made the following bolder conjecture.

Conjecture 4.2 ([15, Conjecture 2.8.2]). Every connected triangle-free graph is
2-Ramsey-simple.
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Some evidence in favor of this conjecture was given in [16], where the authors
showed that the statement is true for regular 3-connected triangle-free graphs satis-
fying one extra technical condition. It is of course natural to ask the same questions
for larger values of q.

In view of the results presented in this paper, it is also interesting to investigate
which bipartite (or triangle-free) graphs are sq-abundant. This question is particularly
interesting for trees. As discussed above, Szab\'o, Zumstein, and Z\"urcher [27] showed
that, for all trees T , we have s2(T ) = 1. This result might appear surprising at
first, since we might not expect a degree-one vertex to be essential for the Ramsey
properties of a graph. Having established that a degree-one vertex can indeed play a
significant role in a minimal Ramsey graph for a tree T , we might wonder whether
we can find many such vertices in a minimal Ramsey graph for T .

It is simple to show that the path P4 with three edges is s2-abundant. Indeed,
let k \geq 3 be an odd integer and G be the graph obtained from the cycle Ck by
adding a distinct pendant edge to each vertex of the cycle. Using the fact that in
every 2-coloring of Ck there must be two consecutive edges of the same color, it is
not difficult to check that G is a minimal 2-Ramsey graph for P4. Further, G has k
vertices of degree one, establishing the claim.

Thus, we have seen that stars are not s2-abundant but P4 is. For all other trees T ,
the question of whether T is s2-abundant (or, more generally, sq-abundant) remains
open. This leads us to propose the following problem.

Question 4.3. Is every tree that is not a star sq-abundant for q \geq 2?

As explained above, a positive answer to this question would be rather surprising.
More generally, we would like to understand better which graphs are sq-abundant.

In particular, besides stars, we do not have any examples of graphs that are not
sq-abundant; we propose the following question.

Question 4.4. Let q \geq 2 be an integer. Does there exist a graph H that is not
sq-abundant but has infinitely many minimal q-Ramsey graphs of minimum degree
sq(H)?

We saw in Theorem 1.4 that we can sometimes show sq-abundance without know-
ing the precise value of sq. Further, we established a sufficient condition for a given
3-connected graph to be sq-abundant in Theorem 3.1. Given the tools developed in
this paper, we believe that all 3-connected graphs should be sq-abundant and propose
Conjecture 4.5 below.

Conjecture 4.5. Every 3-connected graph H is sq-abundant for any integer
q \geq 2.
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