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Abstract 

Cooperation is fundamental for survival and a functioning society. With substantial individual 

variability in cooperativeness, we must learn whom to cooperate with, and often make these 

decisions on behalf of others. Understanding how people learn about the cooperativeness of others, 

and the neurocomputational mechanisms supporting this learning, is therefore essential. During 

functional MRI scanning, participants completed a novel cooperation-partner-choice task where 

they learned to choose between cooperative and uncooperative partners through trial-and-error both 

for themselves and vicariously for another person. Interestingly, when choosing for themselves, 

participants made faster and more exploitative choices than when choosing for another person. 

Activity in the ventral striatum preferentially responded to prediction errors during self-learning 

whilst activity in the perigenual anterior cingulate cortex signaled both personal and vicarious 

prediction errors. Multivariate pattern analyses showed distinct coding of personal and vicarious 

choice-making and outcome processing in the temporoparietal junction (TPJ), dorsal anterior 

cingulate cortex, and striatum. Moreover, in right TPJ the activity pattern that differentiated self 

and other outcomes was associated with individual differences in exploitation tendency. We reveal 

neurocomputational mechanisms supporting cooperative learning and show that this learning is 

reflected in trial-by-trial univariate signals and multivariate patterns that can distinguish personal 

and vicarious choices. 

keywords 

cooperation partner selection, computational modeling, vicarious learning, prediction errors, 

multivariate pattern  
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MAIN TEXT 

Introduction 

Cooperation — two or more individuals working together or helping each other to achieve 

a common goal — is critical for the success of societies (Fehr and Fischbacher, 2003). 

Cooperation exists between family members and genetically unrelated individuals, as well 

as between tribes, cities, and nations (Stallen and Sanfey, 2013). Choosing the right partners 

is essential for the establishment and maintenance of cooperation (Noë and Hammerstein, 

1994), as there is substantial individual variability in the willingness of people to cooperate 

(Hula et al., 2018). Moreover, successful partner selection has been associated with greater 

access to resources, more efficient problem solving, and a significant reduction in energy 

costs. However, in everyday life, not only do we have to select good partners for ourselves, 

but we also often choose cooperation partners on behalf of others, henceforth ‘vicarious 

partner choice’. For example, a human resource manager recruiting a new employee for the 

team, and a professor hiring a research assistant for a post-doc. Despite the importance of 

understanding the mechanisms that drive personal and vicarious partner choice, the 

neurocomputational basis remains poorly understood. 

How do we decide whether to cooperate with someone or not? An individual’s physical 

appearance (e.g., facial and body features) provides a rapid clue to infer the cooperativeness 

of others (Stirrat and Perrett, 2010). However, such snapshot-like perceptual cues are often 

inaccurate and make people fail to continuously update their belief of others’ 

cooperativeness in light of new information and dynamic changes (Takahashi et al., 2006). 

A more reliable and accurate way to know the cooperativeness of a partner and to select 

them for oneself or others is to learn from the consequences of iterated interactions with the 

particular partner (McAuliffe et al., 2019). For example, we would prefer a cooperative 

partner who often performs to maximize mutual benefits over self-interest, as we could 

predict their cooperation with a high probability. In contrast, those who have betrayed us in 

previous encounters would not be selected again, as we would have a low expectation of 

cooperation. Thus, through positive (cooperative) and negative (uncooperative) outcomes 

of social interactions with someone, we learn and update our expectation of cooperativeness, 

which guides our future decisions.  
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The framework of reinforcement learning (RL) theory provides a biologically plausible 

theoretical account for understanding how people update their expectations between actions 

and outcomes over multiple decisions (Daw et al., 2006). In this framework, the discrepancy 

between actual and expected outcomes (i.e., prediction errors, PEs) drives learning and, in 

the context of cooperation, could quantify how we learn about the cooperativeness of others. 

Indeed, recent studies have shown that people learn about traits of other agents, such as 

generosity, trustworthiness, and social dominance, in a manner consistent with the RL 

theory (Fareri et al., 2015; Hackel et al., 2015; Ligneul et al., 2016). When applying the RL 

framework to social learning, we can design experimental paradigms with carefully matched 

self and other conditions to directly compare them and test whether the computational and 

neural mechanisms overlap or are distinct (Lockwood et al., 2020). Previous work has 

shown that people use prediction errors to learn for others in a manner similar to how they 

learn for themselves (Aquino et al., 2020; Lindström et al., 2018). However, the extent to 

which different learning parameters are used can also differ when learning for oneself and 

for others. For example, individuals process self-relevant information more rapidly (Harris 

et al., 2018; Lockwood et al., 2018), are less willing to take risks when rewarding 

themselves (Beisswanger et al., 2003), and are less tolerant to temporal delays in receiving 

self-benefiting rewards (Albrecht et al., 2011). The current study aimed to reveal whether 

similar or distinct behavioral and neural processes are involved in choosing cooperative 

partners for the self and for others. 

In terms of neural implementation, both human and nonhuman primate studies suggest that 

activity in the anterior cingulate cortex (ACC) is associated with decision-making regarding 

cooperation vs. defection in dyadic interactions (Haroush and Williams, 2015; Rilling et al., 

2002). The ACC region, especially the more ventral portions of the ACC (perigenual ACC, 

pgACC), has been shown to encode prediction errors under both self- and other-referenced 

frameworks (Hill et al., 2016; Silvetti et al., 2014) and play an important role in representing 

dyadic similarity between self and other (Lau et al., 2020). We thus expected that the 

pgACC would play a crucial role in updating learning about other’s cooperativeness and 

would be commonly involved in self and other processing.  

We also expected different neural activity patterns engaged in the self and other conditions. 

The temporoparietal junction (TPJ), dorsolateral prefrontal cortex (dlPFC), precuneus, and 

dorsomedial prefrontal cortex (dmPFC) have been linked to decision-making on behalf of 

others compared to oneself (Braams et al., 2014a; Braams et al., 2014b; Wu et al., 2020). 
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We therefore predicted stronger activity in these regions when choosing cooperation 

partners vicariously for others. Finally, the finding that the striatum specifically responded 

personal (but not vicarious) prediction errors (Morelli et al., 2015; Sul et al, 2015) led us to 

predict stronger prediction error encoding in the striatum when receiving (either positive or 

negative) outcomes for the self than for others. In addition, extensive work suggests that 

individual differences in empathy are associated with variability in vicarious processing and 

prosocial behaviors (Lockwood et al., 2016; Singer et al., 2004). Thus, we further examined 

individual differences in learning to choose cooperative partners, especially how it is linked 

to trait empathy.  

Here, we examined how individuals select cooperative partners for themselves and 

vicariously for others and included carefully matched self and vicarious experimental 

conditions. We designed a cooperation-partner choice task (Fig. 1) in which participants 

played a modified version of a prisoner dilemma (PD) game where they were provided with 

the opportunity to choose a cooperation partner for themselves (hereafter the ‘self’ 

condition, Fig. 1A) and vicariously for another gender-matched stranger (hereafter the 

‘other’ condition, Fig. 1B), rather than cooperate or defect as in a traditional PD (see Fig. 

1C for payoffs). Although it is under the frame of PD, the current cooperation-partner-

choice task is essentially different from PD. Specifically, participants were not provided 

with the opportunity to choose cooperation or defection, rather participants cooperated by 

default, and they could only choose whom to cooperate with.  Unbeknownst to the 

participants, we designed two types of partners. One type of partner chose to cooperate 70% 

of the time, while the other one chose to cooperate 30% of the time. We would expect that 

participants would select the cooperative partner over the uncooperative partner by trial-

and-error learning consistent with RL models. Critically, in half of the trials, participants 

made partner-choice decisions for themselves, and in the other half of the trials, participants 

made choices for another participant (a gender-matched stranger). Such a design allowed 

direct comparison between the self and other conditions within the same participant so as to 

identify the behavioral and neural similarities and differences between personal and 

vicarious learning about others’ cooperativeness.  
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Materials and Methods 

Participants 

Thirty-two right-handed healthy participants were recruited as paid volunteers in the current 

study. They participated in a cooperation-partner choice task and made decisions in a 

Siemens Trio 3-T MRI scanner (Siemens, Erlangen, Germany). All participants had normal 

or corrected-to-normal vision, no history of psychiatric or neurological disorders or 

medication and were not majoring in psychology or economics. Four participants were 

excluded from the analysis due to technical failure (n = 1) or excessive head movement (>3 

mm; n = 3). Behavioral and neural data analysis was conducted on the remaining 28 

participants (12 males, age range: 19–27 years, mean age = 22.25 years, SD = 2.40). All 

participants gave written informed consent before the start of the experiment. The study 

protocol was approved by the Institutional Review Board of Beijing Normal University, 

Beijing, China. 

Experimental task 

We examined the behavioral and neural mechanisms underlying learning to choose 

cooperative partners for the self and for another agent. Each participant and a gender-

matched confederate came to the experiment at the same time. Participants completed a 

cooperation-partner choice task: choosing partners for a revised version of prisoner dilemma 

(rPD) game. Instead of choosing to cooperate or defect, participants cooperated by default 

in the rPD, and they chose one of the two gender-matched players to cooperate with, for 

themselves (learning for the self and the participants received the earned points: the self 

condition, Fig. 1A) or for the confederate (vicarious learning and the confederate received 

the earned points: the other condition, Fig. 1B). Participants were informed that two players 

of each presented pair would differ in cooperation propensity and that they needed to choose 

based on their own judgment. Unbeknownst to the participants, one player of each pair was 

more cooperative and would choose to cooperate with a probability of 70% (in the case of 

partner choosing to cooperate, both earned 200 points, Fig. 1C) and the other player would 

choose to defect with a probability of 70% (in the case of partner choosing to defect, the 

partner earned 300 points whereas the participants/the confederate earned 0). To avoid 

potential effects of reciprocity, participants were told that the confederate would perform a 
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different task irrelevant to their payoffs and that the money participants earned for the 

confederate would be given anonymously.  

Participants encountered 4 pairs of players (with different face identities) and chose one of 

the players from each pair to cooperate with. Two of the pairs were used in the self condition 

(Fig. 1A), and 2 pairs in the other condition (Fig. 1B). There were 40 trials for each pair, 

resulting in a total of 160 trials (namely 80 trials in the self condition and 80 trials in the 

other condition). All pairs were randomly presented across 4 runs (40 trials/run), with no 

more than 2 trials of the same pair in a row. In each trial, photos of a particular pair of 

players were presented with the message “For Self”/“For Other”, and participants were 

asked to choose one player as the partner for rPD within 3 s (the choice phase). The selected 

player was highlighted for 500 ms, followed by a fixation cross (varied between 4 to 6 s 

from a uniform distribution minus reaction time). Then, the payoff outcome of the trial was 

presented for 2 s (the outcome phase), followed by an inter-trial interval that varied between 

2 to 4 s from a uniform distribution. If participants did not respond within 3 s, this trial was 

terminated with a message “No response”. The players in each pair were randomly assigned 

as cooperative or uncooperative players across participants and randomly presented on the 

left or right side of the screen across trials. 

Procedure 

Participants and a gender-matched confederate arrived at the fMRI center around the same 

time and completed the consent form and the interpersonal reactivity index (IRI) (Davis 

1983). Participants were then introduced to the cooperation-partner choice task and 

performed 16 practice trials (8 trials in the self condition and 8 trials in the other condition). 

After being familiarized with the task, participants entered the scanner and performed the 

formal cooperation-partner choice task. Participants completed pre- and post-experiment 

ratings of the cooperative propensity of all players on a 7-point Likert scale (1 = not 

cooperative at all, 7 = extremely cooperative). Participants’ pre-experiment cooperativeness 

ratings were similar for all partners, but they rated cooperative partners as more cooperative 

than uncooperative partners after learning (Fig. S1). Participants were paid for their 

participation (i.e., 20 USD show-up fee) plus a bonus earned across 10 randomly selected 

trials in the self condition (100 points = 1 CNY ≈ 0.15 USD; i.e., around 2 USD). 

Behavioral Analysis 
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Behavioral data analysis. To test behavioral similarities and differences between the self 

and the other conditions, we compared the following indices between the self and other 

conditions: 1) the proportion of choosing cooperative partners, 2) learning criterion, i.e., the 

minimal trial number of choosing cooperative partners for five consecutive trials of the same 

pair, 3) reaction time, and 4) the proportion of choosing the same (cooperative and non-

cooperative) player in two consecutive trials of the same pair. We used a non-parametric 

test (i.e., Wilcoxon signed-rank test for the between-conditions comparison) if the 

distribution of the data violated the assumption of normality; otherwise, conventional paired 

sample t-tests were performed. 

Computational modeling. Reinforcement learning models have been shown to capture the 

behavioral and computational mechanisms of reward learning and social learning (Daw et 

al., 2006; Fareri et al., 2015; Lockwood et al., 2016). In the current study, we employed RL 

models to understand how people learn to choose cooperative partners and whether the 

underlying computations were similar or distinct for the self and for another agent. 

Specifically, we built models based on the Rescorla-Wagner (R-W) value update rule to fit 

behavioral data and assessed the performance of these models.  

First, we built a non-learning model (M1) where we assumed that participants did not use 

partners’ instant cooperation behaviors to guide their choices and thus set the learning rate 

α as 0 and inverse temperature β as a free parameter. Moreover, we fitted participants’ 

choice data with 6 RL models. In these RL models, we tested whether the same or different 

computations underpinned participants’ choices in the self and other conditions. We built 

and compared models that estimated shared parameters (i.e., M2, M4, M6) or separate 

parameters (M3, M5, M7) for the self and other conditions. 

Model M2 is a basic RL model assuming same learning rate for all experiences. Specifically, 

we assumed that participants updated the expected value of an action of the chosen player i 

choosing to cooperate (𝐸𝑉 ) based on the difference (𝑃𝐸 ) between the expected and actual 

outcome 𝑅  (coded as  𝑅 = 1  or 0 if the chosen player chose to cooperate or defect, 

respectively) of the previous trial t-1. Specifically, participants updated the 𝐸𝑉  in trial t 

according to the Equations 1 and 2: 

𝐸𝑉 (𝑡) =  𝐸𝑉 (t − 1)  +  α ∗ 𝑃𝐸 (𝑡 − 1)                            (1) 

𝑃𝐸 (𝑡 − 1)  =  𝑅 (t − 1)  −  𝐸𝑉 (t − 1)                          (2) 
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where 𝐸𝑉  represents the expected value of an action that the chosen players choose to 

cooperate; the learning rate α ∈ [0,1] characterized the extent to which the 𝐸𝑉  is changed 

by  𝑃𝐸 ; 𝑃𝐸  represents the prediction error: the difference between the actual outcome (𝑅 ) 

and the expected value of cooperation for the chosen player i. A high learning rate (α) 

indicated that the expected value of cooperation was volatile and largely influenced by the 

prediction error. We then employed the softmax function to transform the expected value 

into the probability of choosing a given player i in the Equation 3: 

𝑃 (t) =  
𝑒𝑥𝑝 (β ∗ 𝐸𝑉 (𝑡))

𝑒𝑥𝑝 β ∗ 𝐸𝑉 (𝑡) +  𝑒𝑥𝑝 (β ∗ 𝐸𝑉 (𝑡))
                (3) 

where the inverse temperature parameter β is a free parameter capturing the amount of 

exploration, i.e., the degree to which participants decide to choose a higher expected value 

choice vs exploring the other option. A low inverse temperature parameter β indicates that 

the participant has a similar likelihood of choosing either player irrespective of the expected 

value and that the choices are close to random. A high β suggests that the participant’s 

choice is consistent and strongly driven by a higher expected value. 

Model M3 is based on Model M2 except assuming different learning rates and inverse 

temperatures for the self and other conditions. The expected value is updated according to 

the Equation 4 for the self and the Equation 5 for the other agent: 

𝐸𝑉 (𝑡) =  𝐸𝑉 (𝑡 − 1)  + 𝛼 ∗ 𝑃𝐸 (𝑡 − 1)                            (4) 

𝐸𝑉 (𝑡) =  𝐸𝑉 (𝑡 − 1)  +  𝛼 ∗ 𝑃𝐸 (𝑡 − 1)                            (5) 

where 𝛼  and 𝛼  are the learning rates for the self and the other agent, respectively. The 

expected values were transformed using the Equation 6 for the self and the Equation 7 for 

the other agent: 

𝑃 (𝑡) =  
𝑒𝑥𝑝 (𝛽 ∗ 𝐸𝑉 (𝑡))

𝑒𝑥𝑝(𝛽 ∗ 𝐸𝑉 (𝑡)) +  𝑒𝑥𝑝 (𝛽 ∗ 𝐸𝑉 (𝑡))
                (6) 

𝑃 (𝑡) =  
𝑒𝑥𝑝 (𝛽 ∗ 𝐸𝑉 (𝑡))

𝑒𝑥𝑝(𝛽 ∗ 𝐸𝑉 (𝑡))  +  𝑒𝑥𝑝 (𝛽 ∗ 𝐸𝑉 (𝑡))
                (7) 

In Model M4, we included separate positive (cooperate) and negative (defect) learning rates. 

We assumed that participants learned about players’ cooperative and defective behavior 
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asymmetrically; hence, we used separate learning rates for the different outcomes as in the 

Equations 8 and 9: 

𝐸𝑉 (𝑡) =  𝐸𝑉 (t − 1)  + α[ ] ∗ 𝑃𝐸 (𝑡 − 1)         

if the chosen partner i cooperates in trial (t-1) (8) 

𝐸𝑉 (𝑡) =  𝐸𝑉 (t − 1)  + α[ ] ∗ 𝑃𝐸 (𝑡 − 1)     

                                                    if the chosen partner i defects in trial (t-1)    (9) 

Model M5 is based on Model M4 except assuming different learning rates and inverse 

temperatures for the self and other conditions, as in equations 4-7. 

Model M6 is based on Model 2. We further included a noise parameter (lapse ϵ [0,1]) to 

capture choice noisiness that is irrelevant to expected value differences (Equation 10), 

allowing us to examine whether it is necessary to account for choice noisiness driven by 

factors independent of expected value differences (such as inattention): 

𝑃 (t) = [
𝑒𝑥𝑝 (β ∗ 𝐸𝑉 (𝑡))

𝑒𝑥𝑝 β ∗ 𝐸𝑉 (𝑡) +  𝑒𝑥𝑝 (β ∗ 𝐸𝑉 (𝑡))
] ∗ (1 − 𝑙𝑎𝑝𝑠𝑒) +  

𝑙𝑎𝑝𝑠𝑒

2
                 (10) 

Model M7 is similar M6 except assuming different lapse, learning rates, and inverse 

temperatures for the self and other conditions, as in equations 11 and 12: 

𝑃 (𝑡) = [
𝑒𝑥𝑝 (𝛽 ∗ 𝐸𝑉 (𝑡))

𝑒𝑥𝑝(𝛽 ∗ 𝐸𝑉 (𝑡))  +  𝑒𝑥𝑝 (𝛽 ∗ 𝐸𝑉 (𝑡))
] ∗ (1 − 𝑙𝑎𝑝𝑠𝑒 ) + 

𝑙𝑎𝑝𝑠𝑒

2
                 (11) 

𝑃 (𝑡) = [
𝑒𝑥𝑝 (𝛽 ∗ 𝐸𝑉 (𝑡))

𝑒𝑥𝑝(𝛽 ∗ 𝐸𝑉 (𝑡))  +  𝑒𝑥𝑝 (𝛽 ∗ 𝐸𝑉 (𝑡))
] ∗ (1 − 𝑙𝑎𝑝𝑠𝑒 ) +  

𝑙𝑎𝑝𝑠𝑒

2
                 (12) 

Similar to previous work (Guitart-Masip et al., 2012; Huys et al., 2011; Mkrtchian et al., 

2017), we employed a hierarchical Bayesian model fitting approach to estimate parameters. 

An expectation-maximization (EM) algorithm was used to find the maximum a posteriori 

estimate of each parameter for each participant (Huys et al., 2011). The EM algorithm 

started with the maximum likelihood estimation (MLE) for individual’s parameters. In each 

iteration, a gaussian distribution (with mean and variance as free parameters) was estimated 

from individuals’ parameters of the previous iteration. This gaussian distribution was then 

used as the prior for a maximum a posterior (MAP) process to estimate individuals’ 
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parameters again. The iteration ceased when all parameters barely change. Compared to the 

widely used MLE method, this fitting method leverages individuals’ parameters to estimate 

a group prior so as to regularize all individuals’ parameters to the group mean and therefore 

less susceptible to extreme parameter values and guarantee a more accurate group estimate. 

Moreover, this fitting procedure has been thoroughly verified on the simulated data 

generated from the known decision process (Huys et al., 2011). To constrain parameters 

within meaningful ranges, exponential transforms were applied to the inverse temperature 

(>= 0), and the sigmoid transform was applied to the learning rate and lapse (varied between 

0 and 1). These transformations indicate that the parameters are not normally distributed. 

Model fit was compared by the integrated Bayesian information criterion (iBIC). The iBIC 

was the integral of the likelihood function over the individual parameters. A lower iBIC 

indicates a better fit of the observed data. 

To qualify the ability of the winning model to explain participants’ behaviors, we ran a 

simulation analysis using the fitting parameters from the winning model. Specifically, for 

each subject, the set of fitting parameters was seen as a virtual subject and used to simulate 

choices of both the self and other conditions 100 times. The learning criterion and the stay 

probability of both conditions were computed for simulation and then were averaged across 

simulations to obtain a dataset of simulated behaviors. This simulated learning criterion and 

stay probability were then submitted to paired t-tests and were correlated with participants’ 

actual behaviors to test whether the winning model successfully reproduced our model-free 

effects.   

 

 

fMRI analysis 

fMRI data acquisition and preprocessing 

Whole-brain imaging data were acquired on a Siemens Trio 3-T MRI scanner with a 12-

channel head coil at Beijing Normal University Brain Imaging Center, Beijing, China. 

Functional images were obtained using a T2*-sensitive gradient echo-planar imaging (EPI) 

sequence (33 slices; slice thickness = 3.5 mm, gap between slices = 0.7 mm, TR = 2000 ms; 

TE = 30 ms; FOV = 224 mm; flip angle = 90°; voxel size = 3.5 × 3.5 × 3.5 mm3 spatial 
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resolution). Structural images were collected using T1-weighted magnetization prepared 

rapid acquisition with gradient-echo (MPRAGE) sequence (144 slices; slice thickness = 

1.33 mm; gap between slices = 0.66 mm; TR/TE = 2530 ms; TE = 3.39 ms, FOV = 224 

mm; flip angle = 7°; voxel size = 1.3 × 1.3 × 1.3 mm3 spatial resolution). Neuroimaging data 

were analyzed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The first 

four volumes from each run were discarded to account for T1 equilibrium effects. Images 

were corrected for slice acquisition timing within each volume and realigned to correct head 

motions. Next, the realigned images were coregistered to the individual gray matter image 

segmented from the corresponding T1-weighted image and then normalized to Montreal 

Neurological Institute (MNI) space (resampled to 3 x 3 x 3 mm3). Finally, a Gaussian kernel 

of 6 mm full-width at half-maximum was applied to spatially smooth the images. 

Univariate activation analysis 

After preprocessing, we created a GLM of BOLD responses to examine brain regions in 

which neural activity was associated with latent variables (i.e., trial-wise expected value, 

prediction error) derived from the computational model (i.e., the winning model M3). In 

this GLM, missed trials, where participants did not make a choice, were included as a 

regressor of no interest. All regressors were convolved with a canonical hemodynamic 

response function. Six head motion parameters were also modeled to capture potential 

movement-related artifacts. A high pass filter with a cutoff of 128 seconds was employed. 

The GLM integrated parameter estimates (i.e., trial-wise expected value, prediction error) 

derived from the computational model (i.e., the winning model M3). For each participant, 

we estimated a GLM with the following regressors of interest: (R1) a stick function at the 

onset of the choice phase in the self condition; (R2) R1 modulated by the expected value of 

cooperation in the self condition; (R3) a stick function at the onset of the outcome phase in 

the self condition; and (R4) R3 modulated by prediction errors in the self condition. 

Regressors 5 – 8 were similar to R1 – R4, except that they were created for the other 

condition. Group mean estimated parameters in each condition were used to regularize the 

individual estimates and avoid noisy fitting by following previous studies (Eldar, Hauser, 

Dayan, and Dolan, 2016; Seymour, Daw, Roiser, Dayan, and Dolan, 2012). First-level 

contrast images were separately entered into a second-level random analysis to identify 

brain areas encoding the expected value (R2, R6) and tracking prediction errors (R4, R8) 

for self and for others, respectively. To determine the common neural representation of 
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prediction errors, we performed a conjunction analysis (self condition ∩ other condition) 

within the flexible factorial framework (Nichols et al., 2005). To examine the distinct 

representations of expected value (prediction errors) between the self and other conditions, 

we conducted contrasts between R2 and R6 (between R4 versus R8 for prediction error).  

Statistical inference in both GLMs was performed at a standard threshold of p < 0.05, 

family-wise error (FWE) cluster-level corrected at the whole-brain level with a cluster-

forming threshold of voxel-wise p < 0.001. We also performed p < 0.05 FWE small volume 

corrected (SVC) with an initial voxel-wise threshold of p < 0.001 for regions where we had 

a strong a prior hypothesis of encoding prediction errors (i.e., pgACC and striatum, Fig. 

S2). We defined the pgACC based on a previous study examining how people learn about 

social information (Lau et al., 2020). The striatum was defined from term-based meta-

analysis of “prediction error” in Neurosynth (Yarkoni et al., 2011). 

Multi-voxel pattern analysis 

Next, multi-voxel pattern analysis (MVPA) was employed to uncover finer-grained and 

spatially distributed neural activity underlying personal and vicarious learning to choose 

cooperative partners. Specifically, we examined the pattern of neural activity that could 

distinguish self-regarding from other-regarding choices (MVPA at the onset of the choice-

making phase, MVPA 1) and outcomes (MVPA at the onset of outcome-presenting phase, 

MVPA 2). MVPA was implemented using slice-timing corrected and spatially realigned 

(but non-normalized and unsmoothed) images in the Decoding Toolbox (Hebart et al., 

2015). 

To assess activity patterns that discriminated self- and other-regarding choices (outcomes), 

we first estimated a GLM for each participant: the choice (outcome) on each trial of the self 

and other conditions was modeled as a single regressor at the onset of choice-making 

(outcome-presentation) phase for MVPA 1 (MVPA 2). The GLM also included two 

regressors for outcomes (choices) in self and other conditions separately, 6 head-motion 

parameters and a regressor of missed trial as effects of no interest. Consistent with previous 

studies (Zhu et al., 2019), the estimated beta images of all choices were entered into a 

support vector machine (SVM) classifier with the leave-one-run-out cross-validation 

method. We used the default SVM classifier in the Decoding Toolbox, i.e., a SVM with 

linear kernel and a L2 regularization with the penalty parameter C = 1. A whole-brain 
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searchlight decoding analysis was then performed using a sphere with a radius of 4 voxels. 

Beta values of each voxel were normalized across all pattern vectors by removing the mean 

and dividing the standard deviation.  Then the beta values of N voxels in a given sphere 

were used to construct an N-dimensional pattern vector. The pattern vectors from three of 

four runs were used to train the SVM to discriminate between self- and other-regarding 

choices (outcomes for the second MVPA) and applied to the test run to obtain the 

classification accuracy of the test run. This process was iterated for the other three runs to 

calculate the mean cross-validated classification accuracy for each voxel, yielding a 3D map 

of classification accuracy. The individual accuracy maps were then spatially normalized and 

smoothed using the same parameters as those in the univariate activation analysis. At the 

group level, these maps were then entered into a one-sample t-test against chance level 

(50%). Multiple comparisons across the whole brain were performed the same as the 

univariate activation analysis did, except the initial cluster-forming threshold of p < 0.0001 

in MVPA 1.  

Finally, we investigated the relationship between the neural activity pattern and behavioral 

differences in personal and vicarious learning about cooperation. The results of behavioral 

modeling showed a significant difference in the inverse temperature between the self and 

other conditions. We, therefore, extracted classification accuracy from a 6-mm sphere 

centered at the reported peak coordinates and calculated the correlations between the 

differences in the inverse temperature and the averaged classification accuracy of survived 

clusters. In addition, to examine whether the individual level of empathy modulates the 

other-self difference of both behaviors and neural responses, we calculated the correlation 

between the empathic concern subscale and the difference in other- and self-regarding 

learning behavior and neural underpinnings. We also regressed the behavioral and neural 

differences between self and other conditions on each of the IRI questionnaire subscales. 

Results  

In the cooperation-partner choice task (Fig. 1), each participant encountered 4 pairs of 

gender-matched players in a revised PD game (2 pairs for the self condition, Fig. 1A, and 2 

pairs for the other condition, Fig. 1B). In this revised PD, participants cooperated by default 

and could choose one player from each pair as the PD partner. If the partner also chooses to 

cooperate, both the partner and the participant (or the other agent) earn 200 points; if the 

partner chooses to defect, then the partner earns 300 points and the participant (or the other 
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agent) earns 0 (Fig. 1C). In an event-related design, the 4 pairs were randomly presented 

(40 trials for each pair). In each trial, participants were presented with two players: one 

player chose to cooperate with a probability of 70% (cooperative partner), and the other 

player chose to cooperate with a probability of 30% (uncooperative partner). We expected 

that, through trial-and-error, participants would learn which player was the cooperative 

player for each pair of players. 

Participants can accurately learn for self and other but are faster to choose cooperative 

partners for self 

All results use parametric tests when data are normally distributed and non-parametric tests 

when data violate assumptions of normality (i.e., the Wilcoxon Signed-Rank test) 

(Lindström et al., 2018). We first examined the probability of choosing the cooperative over 

the uncooperative partner and revealed that participants were able to learn cooperativeness 

of the players significantly above chance for both the self and other conditions (self: M ± 

SE = 71.55% ± 3.04%, vs 50%, t(27) = 7.095, p < 0.001, 95% CI: [15.32%, 27.79%]; other: 

M ± SE = 68.22% ± 3.00%, vs 50%, t(27) = 6.079, p < 0.001, 95% CI: [12.07%, 24.37%]; 

Fig. 2A), and to a similar extent when learning for the self and for the other agent (t(27) = 

0.981, p = 0.335, 95% CI: [-3.63%, 10.29%]). 

The results of the Bayesian analysis lent further support for the null hypothesis of a similar 

accuracy for choosing the cooperative partner when learning for the self and other (Bayes 

factor [H1:H2] = 4.324). However, we also revealed differences in the learning processes 

for the self and other conditions. We found that participants were faster to learn for the self. 

Specifically, we set a learning criterion of choosing the cooperative player over the 

uncooperative player in at least five consecutive trials. When comparing self and other on 

this criterion, participants required fewer trials to reach the criterion successfully for 

themselves (minimal-trial-number to reach learned criterion, self: 14.93 ± 1.62; other: 18.45 

± 1.82; t(27) = -2.196, p = 0.037, 95% CI: [-6.805, -0.230]; Fig. 2B). Moreover, we found 

that participants were more likely to stay with their choice of the last trial (t - 1) in the 

current trial (t) when choosing for themselves (self: M ± SE = 74.64% ± 2.47%; other: M ± 

SE = 67.40% ± 2.27%; t(27) = 2.944, p = 0.007, 95% CI: [2.19%, 12.28%]; Fig. 2C). This 

was especially true when the chosen player cooperated in the previous trial (self: M ± SE = 

82.39% ± 2.72%; other: M ± SE = 74.33% ± 2.84%; t(27) = 3.089, p = 0.005, 95% CI: 

[2.71%, 13.40%]; Fig. S3A) but not when the chosen player defected in the previous trial 
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(self: M ± SE = 62.03% ± 2.90%; other: M ± SE = 56.51% ± 2.08%; t(27) = 1.84, p = 0.077, 

95% CI: [-0.65%, 11.69%]; Fig. S3B). 

Interestingly, reaction time analyses showed that participants made decisions faster when 

choosing partners for the self than for another agent (self: 1.212 ± 0.038 s; other: 1.259 ± 

0.042 s; t(27) = 2.817, p = 0.009, 95% CI: [-0.083 s, -0.013 s]; Fig. 2D). Moreover, the 

differential reaction times when choosing for another agent and the self was associated with 

individuals’ empathic concern, one of the interpersonal reactivity index (Davis 1983) 

subscales. Individuals scoring higher on the empathic concern made decisions more slowly 

and deliberately when choosing for other people than for the self (Pearson’s r = 0.433, p = 

0.021, Fig. 2E). Multiple regression, including all IRI subscales, confirmed that the 

association between the self-other differential reaction time and empathy score was specific 

to the empathic concern subscale (β = 0.011, SEM = 0.004, t = 2.564, p = 0.017). 

Next, we built models to fit participants’ choice data and to reveal the computations 

underlying choosing cooperative partners, as well as to assess whether participants 

employed similar or distinct computations when choosing for self and other. We tested 

seven models based on the Rescorla-Wagner (R-W) value update rule (Table 1): a baseline 

no-learning model (M1), basic R-W models (M2 and M3), R-W models with separate 

positive (cooperate) and negative (defect) learning rates (M4 and M5), and R-W models 

with choice noise being irrelevant to value difference (M6 and M7). Of particular interest, 

we compared the R-W models with single parameters shared by the self and other conditions 

(i.e., M1, M2, M4, and M6) and those with separate parameters split between the self and 

other trials (i.e., M3, M5, and M7). 

Model comparison revealed that participants’ choices of cooperative players were most 

parsimoniously explained by the basic R-W model with separate learning rates and inverse 

temperatures for the self and other conditions (i.e., M3; see Table 1 for the Integrated 

Bayesian Information Criterion for all models tested). Here, the learning rate captures the 

extent to which participants update their choices based on recent feedback and the inverse 

temperature captures the extent to which participants made their choices based on the value 

difference between the two players. Model comparison results suggested that the same 

computational algorithm (i.e., the basic R-W learning strategy without featuring valance-

sensitive learning rates) was employed to choose cooperative partners for the self, as well 
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as for another agent. Moreover, individuals utilized different weighting of model parameters 

to support their choices when choosing for themselves and for another agent. 

For sanity check, we used the set of individual fitting parameters derived from the winning 

model to simulate data mimicking participants’ behaviors (detailed in Methods). The 

simulated data reproduced the same behavioral patterns of the learning criterion and the stay 

probability as participants showed: 1) smaller minimal-trial-number to reach learned 

criterion in the self than other conditions (self: 15.89 ± 0.60, other: 17.43 ± 0.70, t(27) = -

2.26 , p = 0.032, CI : [-2.95,-0.14], Fig. 3A) and 2) larger stay probability for the self than 

other conditions (self: 68.67% ± 1.49%, other: 64.42% ± 1.57%, t(27) = 2.84, p = 0.009, CI 

: [1.18%, 7.33%], Fig. 3B). Moreover, the model simulated behaviors were highly 

consistent with participants’ actual behaviors (minimal-trial-number, self: r = 0.66, p < 

0.001, other r = 0.75, p < 0.001; Fig. 3C; stay probability, self: r = 0.76, p < 0.001, other: r 

= 0.73, p < 0.001; Fig. 3D). These results confirmed the capability of our wining model to 

explain participants’ behaviors. 

Next, we compared these parameters between self and other. We found that learning rates 

for the self and other conditions were not significantly different (self: M ± SE = 0.275 ± 

0.04; other: M ± SE = 0.274 ± 0.04; V = 212, p = 0.849; Bayes factor [H1:H2] = 6.852; Fig. 

3E). However, participants showed a significantly higher inverse temperature when 

choosing partners for the self than for another agent (self: M ± SE = 3.91 ± 0.32; other: M 

± SE = 3.30 ± 0.28; V = 295, p = 0.036; Fig. 3F), suggesting that more exploitative decisions 

were made when choosing for the self. This was consistent with the model-free result of 

higher staying probability in the self condition. 

 

Taken together, individuals updated their beliefs of other’s cooperativeness using 

immediate evidence to a similar extent when choosing for oneself and another agent. 

However, individuals made decisions faster, relied more on the partners’ cooperative 

tendency, and preferred to choose the previously cooperated partners when choosing 

partners for oneself (vs. others). 

fMRI results 

Common and distinct prediction errors encoding for oneself and another agent 
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We first examined neural activity that encoded prediction errors (PEs) during learning of 

cooperative partners, by correlating neural responses during the outcome phase with the 

trialwise PE derived from the winning model. Previous studies have revealed that the 

pgACC is implicated in cooperative behaviors (Haroush and Williams, 2015; Rilling et al., 

2002) and encoding prediction errors (Hill et al., 2016; Silvetti et al., 2014). In addition, the 

striatum was reported in social reinforcement learning (Chang and Sanfey, 2009; Fareri et 

al., 2015) and reward-based learning (Lefebvre et al., 2017). We thus identified the pgACC 

and striatum as regions of interest (ROIs) and examined whether and how neural responses 

in the pgACC and striatum encoded self-regarding and other-regarding PEs via ROI 

analysis. The pgACC and striatum ROIs were adopted based on the results of previous 

studies examining learning about social coalition (Lau et al., 2020) and term-based meta-

analysis of “prediction error” in Neurosynth (Yarkoni et al., 2011), respectively. Parameter 

estimates (β values) respectively associated with PEs in the self and other conditions were 

extracted and averaged over all voxels within each ROI.  

We found that the activity in the pgACC activity co-varied with PEs in both the self and 

other conditions (self: M ± SE = 0.60 ± 0.15, p<0.001, t= 3.99, 95% CI: [0.29, 0.90]; other: 

M ± SE = 0.57 ± 0.16, p = 0.001, t = 3.55, 95% CI: [0.24, 0.90]) and to a similar extent (p 

= 0.89, t = 0.14, 95% CI: [-0.35, 0.40]; Bayes factor [H1:H2] = 6.791, Fig. 4A). However, 

the bilateral striatum signaled PEs only in the self condition (left striatum: M ± SE = 0.68 ± 

0.16, p < 0.001, t = 4.18, 95% CI: [0.35, 1.02]; right striatum: M ± SE = 0.73 ± 0.17, p < 

0.001, t = 4.35, 95% CI: [0.39, 1.07], Fig. 4B and Fig. S4A) but not in the other condition 

(left striatum: M ± SE = 0.33 ± 0.20, p = 0.11, t = 1.65, 95% CI: [0.35, 1.02]; self vs other: 

p=0.072, t= 1.87, 95% CI: [-0.03, 0.73]；right striatum: M ± SE = 0.27 ± 0.19, p = 0.15, t 

= 1.47, 95% CI: [0.03, 0.67]; self vs other: p=0.014, t= 2.64, 95% CI: [0.16, 0.75], Fig. 4B 

and Fig. S4A). Interestingly, we found that the striatum activity that differently encoded the 

other and self PEs varied as a function of individual trait in the empathic concern subscale. 

Individuals scoring lower in empathic concern showed larger differences in striatum activity 

encoding other (vs self) PEs (left striatum: Pearson’s r = 0.41, p = 0.030; right striatum: 

Pearson’s r = 0.52, p = 0.005, Fig. 4C and Fig. S4B). The multiple regression, including all 

IRI subscales, also supported that this association was specific to the empathic concern 

subscale (left striatum: β = 0.103, SEM = 0.048, t = 2.157, p = 0.042; right striatum: β = 

0.115, SEM = 0.042, t = 2.763, p = 0.011).  
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In addition, we conducted a whole-brain analysis and confirmed that the trial-by-trial PEs 

were encoded by activity in the pgACC, bilateral striatum, and precentral gyrus for the self 

condition (Fig. 4D) but only in the pgACC for the other condition (p < 0.05 FWE whole-

brain corrected at the cluster level after voxel-wise thresholding at p < 0.001; Fig. 4D, Table 

S1). We next examined the shared and distinct encoding of PEs in the self and other 

conditions. A conjunction analysis (Nichols et al., 2005) confirmed the overlap in PE 

encoding in the pgACC for both the self and other conditions (FWE-SVC after voxel-wise 

thresholding at p < 0.001; Fig. 4E). The direct comparison of neural activity related to PE 

computations for self versus for others revealed stronger activity in the bilateral striatum 

encoding PE when learning for the self than the other agent (FWE-SVC after voxel-wise 

thresholding at p < 0.001; Fig. 4F). These findings suggested that when learning about 

other’s cooperativeness, pgACC signaled personal and vicarious prediction errors, whereas 

the striatum specialized in coding prediction errors in regard to the self. 

Neural patterns discriminating self vs. vicarious choices and outcomes 

We next employed multivariate pattern analyses (MVPA) to probe how personal and 

vicarious learning of cooperativeness was distinctly represented in spatially distributed 

neural response patterns in the brain. We aimed to reveal neural patterns distinguishing the 

self and other at both decision-making and outcome phases. We used a whole-brain 

searchlight to obtain a classification accuracy value per voxel. A whole-brain searchlight 

analysis at the onset of the choice phase, thresholding at a standard cluster-forming 

threshold of p < 0.001, resulted in a cluster of 147,090 voxels spanning a large portion of 

the brain (Fig. S5). We therefore used a more stringent cluster-forming threshold of p < 

0.0001 to obtain precise clusters that differentiated self and other choices. This analysis 

revealed that the neural activity pattern in the left dlPFC, the right TPJ, the occipital cortex 

comprising the left TPJ, the right middle temporal gyrus (MTG), the left superior/middle 

frontal gyrus (SFG/MFG), and the cerebellum differentiated choice-making for the self and 

other conditions (p < 0.05 FWE whole-brain corrected at the cluster level after voxel-wise 

thresholding at p < 0.0001; Fig. 5A). The MVPA results showed that neural patterns in a 

range of brain regions distinguished personal choices from vicarious choices during learning 

cooperativeness. 

Next, we implemented another MVPA to reveal the neural activity patterns differentiating 

the processing of personal and vicarious outcomes. This analysis identified differential 
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activity patterns in the right TPJ, the left striatum, the precuneus (PCUN), the left superior 

temporal gyrus (STG) and cortical midline structures, including the posterior cingulate 

cortex (PCC) and the dorsal ACC (p < 0.05 FWE whole-brain-corrected at the cluster level 

after voxel-wise thresholding at p < 0.001; Fig. 5B, Table S2).  

Finally, we tested for the association between our behavioral differences in choosing for the 

self and another agent (i.e., differences in the inverse temperature between self and other 

conditions) and the neural responses to personal and vicarious cooperative learning. We 

found that larger differences in inverse temperature (but not learning rate) were associated 

with a higher classification accuracy of right TPJ in differentiating personal and vicarious 

outcome processing (Pearson’s r = 0.473, p= 0.011, survives from FDR-correction for 

multiple comparisons, Fig. 5C), suggesting a consistent classification of learning for the self 

and the other agent at both behavioral and neural levels. Therefore, those participants with 

the largest self and other difference in learning were the same participants who distinguished 

self and other more at the time of the outcome in the right TPJ. It also should be cautious 

about our decoding results due to the relatively small sample size. 

Discussion  

Knowing whether someone is cooperative plays a crucial role in successful social life. The 

current study examined the neurocomputational mechanisms for how people learn to choose 

cooperative partners. We found that despite showing similar learning rates when choosing 

cooperative partners for oneself and vicariously for another person, people made slower and 

less exploitative choices for others than for themselves. This effect was modulated by 

individual levels of empathic concern, with those higher in empathic concern making fewer 

speedy decisions when choosing for others, suggesting more deliberative choice-making 

when choosing for the welfare of others in more empathic individuals. Trial-by-trial 

prediction errors during personal and vicarious learning were tracked in the perigenual 

anterior cingulate cortex (pgACC), whereas activity in the striatum specialized in coding 

prediction errors during learning for oneself. Multivariate pattern analysis showed that 

distinct neural patterns in the left dlPFC, TPJ, right middle temporal lobe when making 

decisions for the self and others and neural activity patterns in the right TPJ, dorsal ACC, 

and the striatum distinguished outcomes of others and self. The classification accuracy was 

associated with the difference in choice exploitation. Taken together, we demonstrate that 
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both computational and neural mechanisms share commonality and distinction for personal 

and vicarious partner choice.  

Increasing evidence suggests that the computational mechanisms of social behavior can be 

characterized within a reinforcement learning framework (Ligneul et al., 2016; Lindström 

et al., 2018; Wittmann et al., 2018), such as predicting other’s generosity and 

trustworthiness (Fareri et al., 2015a; Hackel et al., 2015) and inferring the mental states of 

others (Rosenthal et al., 2019). Moreover, learning on behalf of others has also been 

characterized by RL models, such as vicarious learning to gain rewards and avoid 

punishment (Lengersdorff et al., 2020; Lindström et al., 2018; Lockwood et al., 2016). Here, 

we show that individuals learn about the cooperativeness of others through trial-and-error 

and that reinforcement learning models can capture personal and vicarious learning 

mechanisms. However, individuals’ choices for themselves were faster and more 

exploitative, and they weighed recent experiences more, as well as preferring to stay with 

the previously chosen cooperative partners instead of exploring new potential partners. It 

has been shown that people are more aversive to risk when making decisions for themselves 

than for others (Beisswanger et al., 2003). Thus, it is possible that individuals, when 

choosing partners for themselves, are less explorative and stay with previously chosen 

partners to avoid potential risks of new social encounters. Alternatively, when personally 

interacting with others, individuals may wish to avoid betraying the previous partner by 

choosing another partner and therefore stick with the previously chosen partner. 

We further revealed agent-general and agent-specific neurocomputational mechanisms for 

choosing cooperative partners. First, we found that pgACC activity positively co-varied 

with cooperative prediction errors independent of beneficiaries. ACC has been linked to 

tracking one’s own status in a social hierarchy and tracking confidence in social and non-

social contexts (Bang and Fleming, 2018; Kumaran et al., 2016). In the current task, pgACC 

activity tracked the differences between expected and actual cooperative (or not) behavior 

of the chosen partner when learning for the self and for another agent. A separate portion of 

the ACC, the dorsal ACC, distinguished between outcomes for self and other in a 

multivariate pattern. This more dorsal ACC area has previously been linked to cooperation, 

competition and social learning (Chang and Sanfey, 2009; Haroush and Williams, 2015; 

Silvetti et al., 2014) but also to learning and decision-making in general (Apps et al., 2016; 

Kolling et al., 2016).  
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Second, we revealed agent-specific neural activity patterns when learning to choose 

cooperation partners at different stages of the learning processes. During the choice-making 

stage, participants showed a neural activity pattern in the TPJ and dlPFC that differentiated 

decisions made for another person and for oneself. Univariate responses in these areas have 

previously been observed when making gambling decisions for another person (Braams et 

al., 2014a; Braams et al., 2014b), suggesting the important role of the TPJ and dlPFC in 

vicarious decision-making (Wu et al., 2020). The TPJ and dlPFC have been implicated in 

mentalizing others’ thoughts (Saxe 2006) and the inhibition of self-centered motives 

(Baumgartner et al., 2011; Buckholtz, 2015). Thus, our results suggested that individuals, 

when choosing for others, may not simply take their first perspective to make choices; rather, 

they regulate their own thoughts and take the perspective of the other agent.  

During the outcome presentation stage, the TPJ and the striatum may play different roles. 

We found the bilateral striatal and TPJ engaged in different encoding processes, with 

bilateral striatum encoding prediction errors during self-learning and TPJ differentiating 

self- and other-related outcomes. Moreover, we found that individual’s empathic concern 

was associated with striatal encoding of self (vs. other) prediction errors, but not with TPJ 

activity pattern that differentiated self and other outcomes (r = 0.039, p = 0.843). Previous 

studies have also linked the striatal activity to computing reward prediction errors when 

learning the association between abstract stimuli and monetary rewards (i.e., a non-social 

context, Daw et al., 2006; Lefebvre et al., 2017). Similar to the current study, other studies 

also reported striatal encoding of prediction errors in social context, such as learning about 

others’ generosity (Hackel et al., 2015), trustworthiness (Fareri et al., 2015), and social 

approval (Will et al., 2017). Taken together, previous and our current findings suggested 

that the striatum specifically signaled self-interest-related prediction errors in both social 

and non-social contexts. It has also been reported that the striatum has a high response for 

reward to oneself than to unknown others (Albrecht et al., 2011; Braams et al., 2014a). The 

involvement of the striatum in encoding self-related but not other- related prediction error 

further indicates the specific role of this area may play in updating the learning experience 

related to oneself.  

Moreover, the activity pattern of the right TPJ during the outcome stage distinguished 

between the self- and other-regarding outcomes. The  right TPJ has been implicated in the 

mentalizing (Saxe 2006) and self-other distinction (Quesque and Brass, 2019). Our findings 

thus suggested that the self-other distinction in processing outcomes might be an important 
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feature for vicarious learning and decision-making. When making vicarious decisions, 

individuals may put themselves into others’ shoes and consider whether other people would 

be satisfied with the outcome. Alternatively, the TPJ activity patterns differentiating 

outcomes of the self and another agent may also be associated with processing outcomes of 

prosocial decisions, as the TPJ has been shown to play a key role in prosociality and 

altruistic decision-making (Hutcherson et al., 2015; Liu et al., 2019; Morishima et al., 2012). 

Previous studies using monetary allocation tasks have revealed stronger TPJ activity when 

individuals forgo their own rewards in favor of others’ benefits (Hutcherson et al., 2015; 

Strombach et al., 2015). Anatomical evidence also showed that the gray matter volume in 

the right TPJ was positively associated with individuals’ altruistic behaviors (Morishima et 

al., 2012). Consistently, we showed that individuals showing higher classification accuracy 

of the right TPJ in distinguishing self and other outcomes are more exploitative to partners’ 

cooperation when making choices for the other agent (relative to the self). Moreover, 

benefits for the self and for another agent were not set in conflict in the current task, thus 

further support the function role of the right TPJ in other-regarding motives. Since the 

variance of the classification performance is relatively high for small sample sizes 

(Combrisson and Jerbi, 2015), it would be helpful to increase the sample size in the future 

studies to investigate the function of right TPJ in the vicarious rewarding process. 

One potential limitation of our study is that it only involved personal and vicarious learning 

in the social context – choosing cooperation partners. To explicitly test whether the same 

brain regions also support the process of non-social learning (i.e. monetary reward learning) 

in self- and other-referenced frameworks, future studies could include a non-social 

condition where the agent (on behalf of self and other) would complete a task with the same 

structure, reward probabilities as we set here, but his/her partner is computer. Additionally, 

it should be noted that, in the current task, participants were asked only to choose one of 

two players to cooperate with in each round without the opportunity to defect. It remains 

unknown whether individuals would also adopt a basic RL model to update their partners’ 

choice in more complicated situations. For example, if participants play a two-stage 

cooperation game where they first choose partners to play a classic PD game with and then 

choose to cooperate or defect, participants may employ more sophisticated learning 

algorithms to track others’ mental states and tackle the cooperation problem (Hula et al., 

2018; Zhu et al., 2012). In addition, social preference has been implicated in prosocial and 

cooperative choices (Charness and Rabin 2002; Chen and Krajbich 2018; Fehr and Schmidt 
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1999), thus the combination of the learning model and the social preference model may help 

us understand cooperation partner choice in a more complex situation. It would be 

interesting for future studies to reveal the computational and neural mechanisms underlying 

different strategic cooperation on behalf of the self and other. 

Overall, we reveal the computational and brain mechanisms that underpin learning about 

the cooperativeness of others for ourselves and on behalf of someone else. We show that 

common and distinct univariate and multivariate signals support this learning. These 

findings could have important implications for understanding how people form successful 

partner relationships and ultimately help to understand disorders of social learning. 
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Figures and Figure legends 

 

 

 

Fig. 1. Timeline and payoff matrix for the cooperation-partner choice task. (A, B) Timeline of 

the cooperation-partner choice task. Participants were asked to choose one of two gender-

matched partners for the self (the self condition, A) or another agent (the other condition, 

B). On each trial, participants were given 3 s to decide which one among two partners to 

cooperate with (the choice phase). After the decision was made, the chosen partner was 

highlighted for 500 ms followed by a fixation cross varying from 4 to 6 s minus RT. The 

chosen partner’s decision and corresponding payoff were then presented for 2 s (the 

outcome phase), followed by an inter-trial interval (varying from 2 to 4 s from a uniform 

distribution). If participants did not respond within 3 s during the choice phase, no decision 

was collected for that trial, and “No response” was presented during the outcome phase. (A) 

An example trial of the self condition where participants chose a partner and received the 

outcome that the chosen partner had chosen to defect. (B) An example trial of the other 

condition where participants chose a partner for another agent and received the outcome 

that the partner had chosen to cooperate. (C) The payoffs of the revised PD game. If the 

chosen partner cooperates, the agent (either oneself or the other agent) and the chosen 

partner earn 200 points each. If the chosen partner defects, s/he earns 300 points, and the 

agent earns nothing. Points were converted into money at the end of the experiment. (RT: 

Reaction Time) 
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Fig. 2. Behavioral results. (A) The group-level proportion of choosing cooperative partners 

changed over time in the self (blue) and the other (green) conditions. Dashed line 

shows the chance level of 50%. Lines and shaded areas show the mean ± SEM of 

choice proportion. (B) The minimum number of trials that was required to reach the 

learning criterion was smaller in the self condition than in the other condition. (C) 

A higher proportion of staying with the chosen partner in the previous trial, when 

choosing for self than for the other agent. (D) Participant decided faster when 

choosing for the self than for the other agent. (E) The positive association between 

trait empathic concern and the difference in reaction time when choosing for another 

agent and the self. (Data are shown as the mean ± SEM with overlaid dot plots. * p 

< 0.05; ** p < 0.01) 
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Fig 3. Computational modeling results. Simulated data using the winning model 

reproduced the effect of the minimum number of trials that was required to reach the 

learning criterion (A), and the probability of staying with the chosen partner in the 

previous trial (B). Moreover, the learning criterion (C) and the probability of staying 

(D) computed by simulated data were highly correlated with participants’ actual 

behavior. (E) Similar learning rates when learning cooperative partners for the self 

and for the other agent. (F) The inverse temperature, characterizing the sensitivity 

toward value difference, was significantly larger in the self condition than in the 

other condition. (Data are shown as the mean ± SEM with overlaid dot plots. n.s., 

non-significant; * p < 0.05; ** p < 0.01; *** p < 0.001). 
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Fig 4. Common and distinct neural responses encoding prediction errors for self and 
the other agent. (A, B) The ROI analysis revealed that the pgACC tracked PEs in 
both self and other conditions, but the right striatum signaled PE exclusively in the 
self condition. (C) Scatterplot revealed that individual differences in empathic 
concern modulated the neural responses to other-regarding vs. self-regarding PE in 
the right striatum. That is, the neural activity in the right striatum responded less to 
other-regarding PE relative to self-regarding PE for people lower in empathic 
concern. (D) The pgACC (peak MNI coordinates [x, y, z]: [0, 42, 6], Cluster size k 
= 602, t = 6.68), bilateral striatum ([-12, 9, -3], k = 61, t = 6.30) and precentral gyrus 
([-6 ,-33, 54], k = 641, t =5.91) signaled prediction errors (PEs) in the self condition. 
(E) The pgACC ([9, 30, 9], k = 128, t = 4.69) tracked PEs in the other condition. p 
< 0.05 FWE whole-brain corrected at the cluster level after voxel-wise thresholding 
at p < 0.001 for Panels D and E. (F) Conjunction analysis revealed that pgACC 
activity tracked PEs regardless of the agent ([-3, 39, 0], k = 104, p < 0.001, t = 4.65). 
The contrast analysis revealed that the bilateral striatum tracked PEs to a greater 
degree in the self condition than in the other condition (left: [-18, 9, -3], k = 2, p = 
0.017, t = 3.75; right: [18, 6, -6], p = 0.015, k = 3, t = 3.60). p < 0.05 FWE-SVC 
after voxel-wise thresholding at p < 0.001. Display threshold is p < 0.001 
uncorrected. Error bars represent the standard error of the mean; n.s, non-significant; 
* p < 0.05; ** p < 0.01; *** p < 0.001. 
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Fig 5. Differential neural activity patterns at the onset of choice and outcome phases. 

(A) Using a whole-brain searchlight analysis, we found that the distributed activity 

patterns of the left dlPFC (peak MNI coordinates [x, y, z]: [-33, 30, 30], cluster size 

k = 39, t = 4.93), occipital cortex comprising the left TPJ ([0, -84, 6], k = 4300, t = 

8.99), right MTG extending into the right TPJ ([48, -51, 3], k = 179, t = 5.24) and 

SFG/MFG ([-18, 24, 54] k = 326, t = 5.36) could significantly distinguish between 

self- and other-regarding choices. The display threshold is p < 0.0001 uncorrected 

and significant activations are defined at p < 0.05 FWE whole-brain corrected at the 

cluster level after voxel-wise thresholding at p < 0.0001. (B) The distributed activity 

patterns of the left striatum ([-21, 6, 6], k = 401, t = 5.14), right TPJ ([45, -30, 21], 

k = 543, t = 5.58) and dorsal ACC ([0, 21, 45], k = 526, t = 5.04) could significantly 

distinguish between self- and other-regarding outcomes. The display threshold is p 

< 0.001 uncorrected and significant activations are defined at p < 0.05 FWE whole-

brain corrected at the cluster level after voxel-wise thresholding at p < 0.001. (C) 

Bivariate association between the classification accuracy of self- and other-

regarding outcomes in the right TPJ and the difference in inverse temperature 

between the other and self conditions (Pearson’s r = 0.473, p = 0.011). Participants 

who behaved more exploitatively for other compared to the self had more distinct 

multivariate patterns in the right TPJ. 
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Table 1. Computational model comparison summary. 

 

Note. Model No.: Model Number; NP: Number of Parameters; LR: learning Rate; IT: Inverse 
Temperature. 

 

Model 
No. 

NP Parameter iBIC 

M1 1 Inverse Temperature 6141.4 

M2 2 Learning Rate Inverse Temperature -- 4694.1 

M3 4 LR(Self) LR(Other) IT(Self) IT(Other) -- 4667.5 

M4 3 LR[C] LR[D] Inverse Temperature -- 4691.7 

M5 6 
LR[C] 

(Self) 

LR[C] 

(Other) 

LR[D] 

(Self) 

LR[D] 

(Other) 
IT(Self) IT(Other) -- 4669.7 

M6 3 Learning Rate Inverse Temperature Lapse 4705.3 

M7 6 LR(Self) LR(Other) IT(Self) IT(Other) 
Lapse 

(Self) 

Lapse 

(Other) 
4668.8 


