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Much of the early research into AD relies on a neuron-centric view of the brain, 

however, evidence of multiple altered cellular interactions between glial cells 

and the vasculature early in AD has been demonstrated. As such, alterations 

in astrocyte function are widely recognized a contributing factor in the 

pathogenesis of AD. The processes by which astrocytes may be involved in AD 

make them an interesting target for therapeutic intervention, but in order for 

this to be most effective, there is a need for the specific mechanisms involving 

astrocyte dysfunction to be investigated. “α disintegrin and metalloproteinase” 

10 (ADAM10) is capable of proteolytic cleavage of the amyloid precursor 

protein which prevents amyloid-β generation. As such ADAM10 has been 

identified as an interesting enzyme in AD pathology. ADAM10 is also known to 

play a role in a significant number of cellular processes, most notable in notch 

signaling and in inflammatory processes. There is a growing research base for 

the involvement of ADAM10 in regulating astrocytic function, primarily from 

an immune perspective. This review aims to bring together available evidence 

for ADAM10 activity in astrocytes, and how this relates to AD pathology.
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Introduction

Alzheimer’s disease (AD) is the most common type of dementia accounting for 50–75% 
of all dementia cases worldwide (Prince et al., 2015). Despite an age-specific lowering of 
AD risk in some high-income countries, the worldwide prevalence of AD is predicted to 
rise rapidly, doubling every two decades (Langa, 2015). The progression of AD can have 
devasting effects on a person’s quality of life and is ultimately fatal. Therefore, it is critical 
that disease-modifying treatments are developed targeting early pathogenic processes, with 
the aim of delaying the onset or progression of AD symptoms. The hallmark pathological 
features of the AD brain are described as the accumulation of Amyloid-β (Aβ) plaques and 
intracellular hyperphosphorylated Tau tangles, in addition to synapse loss and neuronal 
degeneration (Hampel et al., 2021). The accumulation of Aβ species is hypothesized to be a 
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driving force in the development of AD (Selkoe and Hardy, 2016). 
However, there is evidence to the contrary, such as the presence of 
Aβ in cognitively healthy individuals, and the lack of correlation 
between amyloid plaque load and cognitive function (Morris 
et  al., 2014; Gómez-Isla and Frosch, 2022). What is widely 
accepted, is that the development of AD begins much earlier than 
a clinical diagnosis is reached, preceding the onset of symptoms 
by 20–30 years (Selkoe and Hardy, 2016; Pfeil et al., 2021). This 
prodromal stage of AD is perhaps the most opportune timepoint 
for effective interventions, thus identifying disease processes in 
this period is an area of intense research. Much of the early 
research into AD relies on a neuron-centric view of the brain, 
however, evidence of multiple altered cellular interactions between 
glial cells and the vasculature early in AD has been demonstrated 
(De Strooper and Karran, 2016).

Astrocyte dysfunction is becoming widely recognized to 
contribute to the pathogenesis of AD, showing both adaptive and 
adverse profiles effecting neurodegeneration (Monterey et  al., 
2021). The diverse functions of Astrocytes include regulating 
synaptogenesis, cellular signaling, neurotransmitter buffering and 
ion homeostasis in addition to providing key metabolic support 
to neuronal cells (Khakh and Deneen, 2019). Astrocytes are also 
important for protecting against and repairing neuronal damage 
can undergo reactive gliosis when responding to inflammatory 
stimulus (Li et  al., 2019). Reactive astrocytes secrete growth 
factors, cytokines and gliotransmitters to promote the resolution 
of acute injury, which diminished once resolved. However, in AD, 
chronic inflammatory conditions can persist increasing the risk 
of neuronal dystrophy (Figure 1; Monterey et al., 2021). Recent 
data has demonstrated that disease-specific astrocytes are linked 
to a proinflammatory profile. These inflammatory-linked states, 
also termed as astrocyte reactivity, form a heterogenous and 
functionally diverse response effecting cell morphology, 
molecular expression, and cellular function in response to a 
changing environment (Sofroniew, 2020). Cytoskeletal 
remodeling, often characterized by changes in Glial fibrillary 
acidic protein (GFAP) levels, neuroinflammation, redox balance, 
lipid and protein metabolism have all been identified to be altered 
in astrocytes from the AD brain (Viejo et al., 2022). Although 
previously considered as simply supporting cells, astrocytes are 
recognized as having increasingly important physiological roles 
in the brain and represent a highly heterogenous cell population 
(Garwood et  al., 2017). In 5xFAD mice, distinct astrocyte 
populations could be subtyped into six clusters based on GFAP 
expression, with clusters 1 and 2 reflecting homeostatic astrocytes 
and cluster 6 representing a disease state (Habib et al., 2020). 
‘High GFAP astrocytes’ states were associated early in the AD 
pathology prior to cognitive impairment and increased with 
disease duration. Interestingly, wild-type mice showed a trajectory 
toward high GFAP cluster astrocytes with aging (Habib et al., 
2020). In support of this, increased GFAP reactivity was shown to 
be present in both aged mice and in the earlier development of 
double transgenic (B6.152H) mouse line, suggesting FAD 
mutations may represent an accelerated aging phenotype 

(Leparulo et  al., 2022). In humans elevated GFAP has been 
identified in both cognitively healthy aging and AD, reflecting 
cognitive ability irrespective of diagnosis (Bettcher et al., 2021). 
Interestingly however, GFAP is elevated in cognitively healthy 
individuals with higher Aβ loads, suggesting there may be some 
link between astrocytic damage and Aβ accumulation in 
pre-symptomatic AD (Chatterjee et  al., 2021). This astrocytic 
response may primarily represent a defensive state, whereby 
relatively mild isomorphic gliosis occurs. Astrocytes are also 
critical for providing neuronal support, actively modulating 
processes at the synapse and maintaining the blood brain barrier 
(Allen and Eroglu, 2017). Perisynaptic astrocytes can rapidly 
remove neurotransmitters such as glutamate from the synaptic 
cleft, preventing accumulation and thus, neurotoxicity. This can 
be recycled back to neurons in the form of glutamine to support 
synaptic transmission. Further metabolic support can be provided 
by astrocytes to neurons, by astrocytic lactate shuttling (Pellerin 
et al., 1998).

The processes by which astrocytes may be involved in AD 
pathogenesis make them an interesting target for therapeutic 
intervention, but in order for this to be most effective, there is a 
need for the specific mechanisms involving astrocyte dysfunction 
to be investigated. There has been a mounting evidence base for 
the involvement of “α disintegrin and metalloproteinase” 10 
(ADAM10) in AD progression, therefore this review aims to bring 
together available evidence for ADAM10 activity in astrocytes, 
and how this relates to AD pathology.

ADAM10 in Alzheimer’s disease

The metalloproteinase, ADAM10 belongs to a family of 
membrane-anchored proteases capable of ‘ectodomain shedding’, 
a process of cleaving the extracellular domain of close-proximity 
targets (Hsia et al., 2019). ADAM10 is known to cleave a number 
of proteins from cell adhesion molecules to membrane receptors 
and is ubiquitously expressed in both peripheral and central 
tissues (Hsia et  al., 2019). The ADAM10 gene is localized on 
chromosome 15 and mutations effecting the enzymatic activity of 
ADAM10 are associated with an increased risk of AD (Kim et al., 
2009; Jansen et al., 2019). Mutations affecting the pro-domain of 
ADAM10 appear to be responsible for this loss of activity perhaps 
unsurprisingly, as pro-domain removal is a key step in ADAM10 
maturation (Anders et  al., 2001). Blocking this process can 
significantly reduce membrane expression of ADAM10 (Seifert 
et al., 2021). The trafficking of ADAM10 is also a key process in 
determining the colocalisation and targeting of ADAM10 to 
receptors and substrates. This trafficking is thought to be highly 
regulated by members of the Tetraspanin (TSPAN) family of 
transmembrane proteins, in particular the TSPAN C8 subgroup 
(Matthews et al., 2017). Cell type dependent repertoires of TSPAN 
C8s may elucidate interesting targets for ADAM10 activity 
regulation, although this is highly speculative at this stage (Seipold 
and Saftig, 2016).
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The importance of ADAM10 function in neurodevelopment 
is highlighted by the embryonic lethality of ADAM10 deficiency 
in mice, which is known to interfere with notch receptor signaling. 
Attempts to understand the maturation, trafficking and regulation 
of ADAM10 have revealed several key processes that may govern 
the enzymes interaction with target molecules and are beginning 
to resolve therapeutic options (Musardo et al., 2022). Similarly, 
modulation of both serotonin receptor (5HTr) four and six 
stimulate ADAM10 activity and subsequent sAPPα secretion, 
which is linked to APP processing and are a target for 
AD treatment.

As the major α-secretase responsible for APP processing, 
ADAM10 has been of significant interest in AD (Postina et al., 
2004; Kuhn et al., 2010). While the amyloidogenic cleavage of APP 
by the β-amyloid converting enzyme (BACE-1), followed by 
y-secretase cleavage, liberates sAPPβ and the Aβ peptide, initial 
ADAM10 cleavage of APP can prevent BACE-1 interaction and 
therefore preclude the formation of Aβ (Zhang et al., 2011). Not 
only this, ADAM10 cleavage of APP liberates sAPPα which is 
thought to be neuroprotective. Attempts to characterize ADAM10 
as a potential peripheral biomarker of AD have revealed several 
interesting findings, with lower platelet ADAM10 expression in 
people with AD (Colciaghi et al., 2002, 2004). Platelet ADAM10 
activity also correlates with measures of cognitive function, 
suggesting lower ADAM10 is related to worse cognitive function 
in people with AD (Manzine et al., 2013, 2014). However, when 
measuring ADAM10 protein levels in plasma and cerebral spinal 
fluid, an apparent opposite relationship has been shown, where 
elevated ADAM10 has been reported in people with AD (Pereira 
Vatanabe et  al., 2021). As ADAM10 is active as a membrane 
protease it is likely that soluble ADAM10 has undergone 
ectodomain shedding by other members of the ADAM family, and 
thus represents a soluble inactive protein (Parkin and Harris, 
2009; Pereira Vatanabe et al., 2021). Therefore, elevated soluble 
levels of ADAM10 may be  linked to reduced overall enzyme 
activity. Although the reasons for this increased ectodomain 
shedding has not been investigated, it is possible that reduced 
ADAM10 activity leads to an increase in removal of the enzyme 
from the cell membrane via internalization and secretion in 
extracellular vesicles thus, increasing extracellular levels (Seifert 
et al., 2021). As ADAM10 acts primarily at the cell membrane to 
cleave close-proximity targets (Hitschler and Lang, 2022), the 
plasma and CSF activity levels may reflect a decreased amount of 
functionally active ADAM10, therefore, explaining reduced 
ADAM10 activity in AD. This has led to the idea of increasing, or 
at least restoring ADAM10 activity, as a therapeutic option for 
Alzheimer’s disease. Yet, this is not without concern as the 
involvement of ADAM10-mediated cleavage in propagating 
inflammatory signaling processes and adhesion molecules could 
negatively impact other tissue or cell types (Pruessmeyer and 
Ludwig, 2009). Evidence of these unwanted side effects can 
be  drawn from failed metalloproteinase inhibitors for cancer 
treatment which had limited specificity to particular substrate 
processing axis (Wetzel et al., 2017). This has placed an emphasis 

on the need to understand how ADAM10 activity is related to its 
localisation and functionality, as controlled modulation will 
be  critical, likely being administered within a particular 
therapeutic window early in the disease process (Wetzel et al., 
2017). Interestingly, limiting ADAM10 endocytosis, which 
promotes the maintenance of cell surface activity without 
interfering with canonical activity, may be  one avenue to 
therapeutic intervention (Musardo et  al., 2022). Similarly, 
ADAM10 activity may also play role in our understanding of how 
non-pharmacological interventions such as exercise, can improve 
cognitive function. However, before this can be answered, it is 
critical that we gain a better understanding how ADAM10 activity 
is regulated in the brain and between different cell types. With a 
growing acknowledgment of the importance of astrocytes in AD 
progression, understanding ADAM10 expression and activity may 
be of great significance.

ADAM10 activity in astrocytes

Astrocytes are a heterogenous, non-neuronal cell type that 
perform a plethora of functions in the brain. Several key functions 
of astrocytes are to assist in the formation, maintenance and 
remodeling of synapses (Chung et al., 2015). Astrocytes form a 
“synaptic cradle” around the synapse allowing regulation of 
neurotransmitters, ion gradients, releasing neuromodulators and 
providing metabolic support to neighboring cells (Matias et al., 
2019). Further regulatory roles of astrocytes in controlling blood–
brain barrier permeability and immune signaling have been 
identified. Astrocytes are key in maintaining homeostatic brain 
function and play a significant role in neuroprotection in acute 
brain injury (Bylicky et  al., 2018; Mederos et  al., 2018). 
Considering the multitude of functions of astrocytes in 
maintaining homeostasis within the brain, it is clear that they 
possess a more significant role in the central nervous system than 
the ‘glue’ for neuronal structures, and it is perhaps not surprising 
that their dysfunction is related to a wide-range of neuro-
pathologies (Siracusa et al., 2019).

ADAM10 and inflammatory processes in 
astrocytes

The contribution of glial cells to inflammatory processes, the 
expression and secretion of APP processing machinery, and their 
importance for maintaining the synapse, highlight the potential 
importance of astrocytes in AD pathology. The role of ADAM10 in 
many of these processes suggest the enzyme is likely to play an 
interesting role in astrocyte function (Goetzl et  al., 2016; 
Sofroniew, 2020). Despite the interest in ADAM10 activity and 
proposed roles of astrocytes in AD pathology, there is relatively 
little research specifically investigating how ADAM10 is regulated 
in astrocytes. Much of this research is focused on ADAM10 and 
cytokine signaling, where stimulation of astrocytes with 
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proinflammatory mediators have been shown to induce ADAM10 
ectodomain shedding. In human astrocytes, a combined 
Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNFα) and 
Interferon-γ (IFNγ) treatment increased ADAM10 mediated 
Fractalkine (CX3CR1) shedding, which is reported to 
be neuroprotective (O’Sullivan et al., 2016). Further, exposure of 
the C6 rat astroglia cell line to acrolein, a product of lipid 
peroxidation, resulted in increased ADAM10 levels and 
n-cadherin cleavage. Acrolein treated astrocytes also displayed 
reduced glutamate uptake, which is a critical function of astrocytes 
at the synapse to support neuronal function (Park et al., 2020). In 
mouse models of traumatic brain injury, which are known to 
induce a potent inflammatory response, ADAM10 expression has 
been shown to colocalise with GFAP positive cells (Del Turco 
et  al., 2014). The increased expression of ADAM10 as part of 
reactive plasticity to brain injury may facilitate synaptogenesis 
(Warren et al., 2011). The activity of ADAM10 is also increased, 
shown by elevated N-cadherin cleavage which was linked to 
reactive gliosis (Warren et al., 2012). The relationship between 
ADAM10 and inflammatory processes appears to 
be bi-directional. ADAM10 prodomain mutations which have 
been proposed to increase the risk of AD, are associated with 
increased gliosis, which would indicate a more reactive astrocytic 
phenotype (Suh et  al., 2013). In support, overexpression of 
ADAM10 is associated with reduced expression of protein GFAP 
positive astrocytes, which is indicative of reduced gliosis (Zhu 
et al., 2021). Interestingly, conditional knock out of ADAM10 in 
mouse derived neurospheres, which represent a 
neurodevelopmental timeframe, elevated the ratio of neuronal 
cells at the expense of astrocytes. In support of this, APP and its 
secreted sAPPα fragment induce glial differentiation of neural 
stem cells (Kwak et al., 2010, 2014). This suggests ADAM10 may 
play a critical role in the proper development of neural progenitor 
pools and its removal may lead to early neuronal dominant 
cortical differentiation as astrocyte typical appear much later in 
development (Jorissen et al., 2010). In later stages of development, 
it is possible that ADAM10 activity is constitutively lower in 
astrocytes compared to neurons (Guo et al., 2016), and is instead 
activated in response to inflammatory stimulus.

ADAM10 and APP processing in 
astrocytes

The role of ADAM10 in non-amyloidogenic APP processing 
has been known for a number of years, although how ADAM10 is 
regulated in astrocytes is not well characterized. Early evidence 
characterizing the balance between APP processing pathways in 
primary astrocytes showed that while non-amyloidogenic 
processing is evident, it is significantly lower than that of 
amyloidogenic processing (LeBlanc et al., 1997). However, when 
compared to primary neurons the total amyloid generation from 
astrocytes was much lower which was matched by total APP 
protein levels (LeBlanc et  al., 1996). In addition, the APP751 

isoform containing Kunitz serine protease inhibitor domain in 
predominant in astrocytes which differs to the APP695 isoform in 
neuronal cells (LeBlanc et al., 1997). More recent research into 
ADAM10  in astrocytes is often limited to investigation of the 
effect of induced inflammation, which can directly affect APP 
processing. IL-1α treatment of the U373 astrocytoma has been 
shown to stimulate non-amyloidogenic APP processing via 
ADAM10. Interestingly, after 6 h of treatment with IL-1α total 
APP levels were elevated, with sAPPα increased after 48 h 
(Bandyopadhyay et al., 2006). However, it is important to consider 
that ADAM10 activity is implicated in cancer progression and 
thus, this cell line may not be  generalisable across more 
physiological models (Smith et al., 2020). Exposure of astrocytes 
to cytokines may also act in tandem with low concentrations of 
Aβ to promote a reactive state, possibly creating a distinct 
neurotoxic astrocyte profile (LaRocca et al., 2021). Treatment of 
astrocytes with IL-1β has been shown to induce extracellular 
vesicle release, which contain altered cargo proteins compared to 
resting astrocyte-derived vesicles. The application of IL-1β 
stimulated astrocyte vesicles onto neuronal cultures was able to 
significantly increase neuronal Aβ generation, however, direct 
treatment of neuronal cultures with IL-1β only, failed to show a 
similar increase (Li et  al., 2020). This highlights the potential 
interplay between reactive states of astrocytes and APP processing. 
Interestingly, Aβ oligomer treatment, which has been shown to 
induce proinflammatory conditions, can alter ADAM10 
localisation and this in turn, may indicate a different mechanism 
of action of Aβ on ADAM10 activity (Marcello et  al., 2019). 
Treatment with Aβ has further been shown to disrupt cellular 
calcium flux, decreasing ADAM10 expression (Grolla et al., 2013). 
In fact, this may be a concentration dependent mechanism with 
low doses of Aβ acting synergistically with cytokines to induce 
astrocyte reactivity. Thus, high doses of Aβ used in many cell 
studies may alter cell functions non-physiologically (LaRocca 
et al., 2021). Inhibiting astrogliosis can accelerate Aβ accumulation 
in AD mice (Kraft et al., 2013) indicating a protective role for 
astrocyte reactivity. Further, reactive astrocytes can help to clear 
Aβ, release trophic factors, regulate autophagy, and maintain 
redox balance by upregulating antioxidant systems (Chun and 
Lee, 2018). However, the progression toward a chronic state of 
reactive astrocytes in aging and disease, perhaps related to 
duration of disease, can be detrimental and could contribute to a 
persistent neuroinflammation and the presence of atrophic 
astrocytes in AD (Preman et al., 2021). Excessive accumulation of 
Aβ can also induce astrocyte reactivity. This can lead to 
dysregulation of calcium dynamics, altered neuron–glia 
communication and impaired synaptic transmission (Preman 
et  al., 2021). Neuronal dystrophy and lowered axonal growth 
which is associated with Aβ accumulation may in part be mediated 
by impaired astrocytic functions, as evidenced in co-cultures of 
Aβ-treated astrocytes and neurons (Monnerie et al., 2005). In 
addition, Aβ may interact with astrocytes to reduce phagocytosis 
and the clearance of dystrophic synapses leading to neuron 
functional deficits (Afridi et al., 2020; Sanchez-Mico et al., 2021). 
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Thus, healthy functional astrocytes may promote 
non-amyloidogenic APP processing by ADAM10 and increase 
neuronal plasticity which could be neuroprotective in AD (Lopes 
et al., 2022).

Lipid transport and ADAM10 in astrocytes

The synthesis and transport of lipids, in particular 
cholesterol, is necessary for maintaining neuronal function and 
is primarily supplied by glial cells in the form of Apolipoprotein 
E (APOE; Zhang and Liu, 2015). The brain holds up to 25% of 
the body’s cholesterol and levels are tightly regulated for normal 
physiological function (Feringa and Van der Kant, 2021). In 
AD, the accumulation of cholesterol may drive pathological 
processes. Evidence of lipid transport deficits in AD pathology 
are supported by the increased risk of AD associated with genes 
highly expressed by glial cells, such as APOE, Clusterin, Feritin, 
and ABCA7, all of which impact lipid transport (Preman et al., 
2021; Picataggi et al., 2022). Of these genes, carrying one or two 
copies of the APOE Ɛ4 allele gives the greatest risk for 
developing late-onset AD. This is opposed to the most common 
APOE Ɛ3 alleles, or APOE Ɛ2, which is associated with a 
reduced risk of AD. Interestingly, astrocytes produce the 
majority of APOE in the central nervous system (Williams 
et  al., 2020) and carrying APOE Ɛ4 significantly impacts 

astrocytic functions through multiple pathways, leading to 
impaired functioning. APOE Ɛ4 astrocytes display dysregulated 
lipid transport leading to lipid accumulation and impaired 
cholesterol efflux, when compared to APOE Ɛ3 astrocytes (de 
Leeuw et al., 2022; Lindner et al., 2022), and this is coupled with 
altered metabolic flux. Similarly, APOE Ɛ4 astrocytes have 
perturbed autophagy and mitophagy, and increased cytokine 
production in an allele dependent manner (APOE Ɛ4 > Ɛ3 > Ɛ2; 
de Leeuw et al., 2022; Eran and Ronit, 2022). This has been 
linked to increased amyloid pathology through astrocyte 
specific APOE reduction in mice (Mahan et al., 2022), although 
there is convening evidence that the link between APOE Ɛ4 and 
deficits in AD are initially amyloid independent. Astrocyte-
derived cholesterol has been shown to be a key regulator of 
neuronal Aβ accumulation in neurons, by the transfer of APOE 
(Wang et al., 2021). This enrichment of neuronal membrane 
cholesterol leads to the increased generation of Aβ (Wang et al., 
2021). The enzymes responsible for the liberation of Aβ from 
APP, BACE-1 and γ-secretase, are known to reside favorably in 
lipid rafts (Vetrivel and Thinakaran, 2010). Due to this, it is 
hypothesized that lipid clustering may increase Aβ production. 
This, linked with the observed accumulation of cholesterol in 
the brains of people with AD and the associated increased risk 
of carrying an Apolipoprotein-E (ApoE) ε4 allele, suggests 
cholesterol dyshomeostasis is a contributing factor toward AD 
(Feringa and Van der Kant, 2021). Cholesterol transport can 

FIGURE 1

Astrocyte response to acute stressors elicits a neuroprotective phenotype and localized inflammatory state that can be resolved over time. In AD, a 
chronic neuroinflammatory state is present whereby prolonged astrocyte dysfunction is evident, contributing to neurodegeneration and AD 
pathology.
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also impact ADAM10 activity. Low cellular cholesterol induced 
by treatment with statins has been reported to elevate ADAM10 
expression and promote sAPPα production (Kojro et al., 2001). 
Similarly, methyl-β-cyclodextrin treatment in COS-7 cells, 
stimulated IL-6 receptor shedding by ADAM10, indicating 
ADAM10 activity can be  promoted under low cholesterol 
conditions (Matthews et  al., 2003). Interestingly, it does not 
appear that elevated cholesterol has a negative effect on 
ADAM10 activity, in fact, inhibiting cholesterol transport can 
increase both α- and β-cleavage of APP in astrocytes and 
increase their secretion into astrocyte-derived exosomes (Yang 
et al., 2017; Wu et al., 2021).

Discussion

There is significant interest in further understanding the 
role of astrocytes and glial cells in AD pathology. ADAM10 
has been identified as a potential therapeutic target in the 
treatment of AD, with the hypothesis that increasing ADAM10 
activity may slow disease progression. Increased ADAM10 
activity is also associated with reactive gliosis which itself has 
been identified in the AD brain. Thus, ADAM10 activity may 
be  differentially regulated between acute and chronic 
inflammatory states, whereby ADAM10 is upregulated acutely 
before a gradual decline in function over time. Equally, it is 
possible that ADAM10 activity is regulated by independent 
mechanisms between different cell types, possibly mediated by 
multiple TSPAN repertoires. While gliosis may increase 
astrocyte ADAM10 activity, it may have an inhibiting effect on 
neuronal ADAM10 activity. However, this is speculative and 
an area for future investigation. Of note, exercise, which is 
known to reduce the risk of AD, can reduce astrocyte reactivity 
and stimulate ADAM10 activity (Elsworthy et al., 2022). The 
mechanisms by which exercise might reduce the risk of AD is 
worthy of future investigation, both related to, and 
independent of the regulation of ADAM10 activity in the 
brain (Zhang et al., 2018, 2019). Overall, it is clear that more 
evidence is needed to understand the multifunctional role of 
astrocytes in the brain in order to aid our understanding of 

how they might contribute to AD pathology. The advancement 
in cell modeling of physiologically credible astrocytes may 
pave the way for more mechanistic research (Hill et al., 2016). 
Much of the available data on acute astrocyte reactivity points 
toward a potentially neuroprotective effect, linked to increase 
ADAM10 activity and elevated sAPPα release. However, in AD 
chronic neuroinflammation and glial reactivity points toward 
a much less favorable outcome.
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