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Abstract 29 

“Frailty” is a term used to refer to a state characterised by enhanced vulnerability to, and 30 

impaired recovery from, stressors, when compared to a non-frail state, which is increasingly 31 

viewed as a loss of resilience. With increasing life expectancy and the associated rise in years 32 

spent with physical frailty, there is a need to understand the clinical and physiological features of 33 

frailty and the factors driving it. We describe the clinical definitions of age-related frailty and 34 

their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given 35 

age-related frailty manifests in the form of functional declines such as poor balance, falls and 36 

immobility, as an alternative we view frailty from a physiological viewpoint and describe what is 37 

known of the organ-based components of frailty, including adiposity, the brain, and 38 

neuromuscular, skeletal muscle, immune and cardiovascular systems, as individual systems and 39 

as components in multisystem dysregulation. By doing so we aim to highlight current 40 

understanding of the physiological phenotype of frailty and reveal key knowledge gaps and 41 

potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans 42 

that have intervened with exercise to reduce frailty. We conclude that more longitudinal and 43 

interventional clinical studies are required in older adults. Such observational studies should 44 

interrogate the progression from a non-frail to a frail state, assessing individual elements of 45 

frailty to produce a deep physiological phenotype of the syndrome. The findings will identify 46 

mechanistic drivers of frailty and allow targetted interventions to diminish frailty progression.  47 

  48 
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Clinical Highlights 49 

 Frailty assessment is currently used as a diagnostic score to estimate risk in older people at 50 

times of ill health, such as bed-rest, surgery, infections, and bone fractures.  51 

 Clinicians typically use frailty to predict adverse outcomes in older patients, such as risk of 52 

dying, good or poor recovery, and moving into a care home.  53 

 Clinicians use multimodal interventions to manage frailty. These have been shown to slow 54 

progression of frailty and reverse frailty. As a greater understanding of the underlying 55 

physiological dysregulation and biology grows, so should robust trials of new interventions, 56 

based on physical activity, nutrition, and pharmacological agents. 57 

 A more detailed physiological systems approach is needed to standardise frailty assessments 58 

which will enable clinicians to describe the heterogeneity in health and physical function 59 

progression as humans age with greater insight and sensitivity. This will need a multi-60 

disciplinary approach involving geriatricians and physiologists employing longitudinal study 61 

designs. 62 

 63 

  64 

Downloaded from journals.physiology.org/journal/physrev (002.028.186.208) on November 18, 2022.



4 
 

Table of Contents 65 

1.0 Introduction 66 

2.0 The clinical phenotype of frailty 67 

2.1 Current definitions of frailty 68 

2.2  Frailty assessment  69 

2.3  Clinical manifestation of frailty  70 

3.0 The physiological phenotype of frailty 71 

3.1 The physiological phenotype of frailty: resting state condition 72 

3.1.1 Skeletal muscle 73 

3.1.2 Neuromuscular junction and motor unit 74 

3.1.3 Brain 75 

3.1.4 Cardiovascular system 76 

3.1.5 Immune system 77 

3.1.6 Adipose tissue 78 

3.1.7 Multisystem dysregulation 79 

3.2 The physiological phenotype of frailty: using a stress stimulus paradigm 80 

3.2.1 Skeletal muscle energy metabolism 81 

3.2.2 Responses to feeding 82 

4.0 Exercise interventions in frailty prevention 83 

4.1 Reversing frailty in frail adults 84 

4.2 Lowering the progression to frailty in pre-frail adults 85 

4.3 Interventions in mixed frailty populations 86 

4.4 Longevity of interventions 87 

4.5 Summary: exercise interventions in frailty prevention 88 

5.0 Knowledge gaps and recommendations for future research  89 

 90 

  91 

Downloaded from journals.physiology.org/journal/physrev (002.028.186.208) on November 18, 2022.



5 
 

List of abbreviations 92 

ADL                          Activities of daily living  93 

ASL                          Arterial Spin Labelling 94 

ATP                          Adenosine triphosphate  95 

BAK-1                      BCL2 antagonist/killer 1 96 

BIA                           Bioelectrical Impedance Analysis 97 

BDNF                       Brain-derived neurotrophic factor  98 

CMAP                      Compound Muscle Action Potential 99 

CHS                          Cardiovascular Health Study  100 

COPD                       Chronic Obstructive Pulmonary Disease  101 

CRP                          C Reactive Protein 102 

CSA                          Cross-Sectional Area 103 

CSVD                       Cerebral Small Vessel Disease  104 

CT                             Computerised Tomography 105 

CXCL13                   C-X-C motif chemokine ligand 13  106 

DEXA                       Dual Energy X-ray Absorptiometry  107 

DHEAS                     Dehydroepiandrosterone sulfate 108 

DIG                           Delayed intervention group 109 
 110 
DNA                          Deoxyribonucleic acid  111 

DTI                            Diffusion tensor imaging  112 

EF                              Ejection fraction  113 

EMRA                       Effector Memory expressing RA 114 

FOXM1                     Forkhead box M1 115 

FSR                            Fractional Synthetic Rate 116 

iEMG                         intramuscular ElectroMyoGraphy 117 

IFNγ                           Interferon gamma 118 

IGF-1                         Insulin-like growth factor 1 119 

IGFPB3                      Insulin-Like Growth Factor Binding Protein 3 120 

IMAT                         Intra Muscular Adipose Tissue 121 

IL                               Interleukin 122 

LCFA                         Long Chain Fatty Acids 123 

Downloaded from journals.physiology.org/journal/physrev (002.028.186.208) on November 18, 2022.



6 
 

MFGM                     milk fat globule membrane complex powder  124 

MD                           Mean diffusivity  125 

MRI                          Magnetic Resonance Imaging 126 

fMRI                        Functional MRI 127 

MRS                         Magnetic resonance spectroscopy 128 

mTOR                      Mammalian target of rapamycin                   129 

mt DNA                   mitochondria DNA 130 

MU                          Motor Unit 131 

MUP                        Motor Unit potential  132 

NF-Kb                     Nuclear Factor kappa B 133 

OGTT                      Oral glucose tolerance test 134 

PCr                           Phosphocreatine 135 

PST                          Problem solving therapy  136 

PUMA                      p53-Upregulated Modulator of Apoptosis 137 

RASM                      Relative appendicular skeletal muscle mass 138 

RNA                         Ribonucelic acid 139 

SASP                        Senescence associated secretory phenotype 140 

SMA                         Supplementary motor areas 141 

SNP                          Single nucleotide polymorphism  142 

STAT                     Signal transducer and activator of transcription 143 

TNFα                        Tumor Necrosis Factor-alpha 144 

WMH                        White Matter Hyperintensities 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

Downloaded from journals.physiology.org/journal/physrev (002.028.186.208) on November 18, 2022.



7 
 

1.0 Introduction 155 

As a result of advances in medicine and public health policy over the last 150 years, life 156 

expectancy has doubled and continues to increase globally. In the UK, 1 in 4 adults are predicted 157 

to be aged over 65 by the year 2050 and 20% of boys and 26% of girls born in 2019 are expected 158 

to reach their 100th birthday (1). However, although we are living longer we are spending more 159 

years in ill health, as healthy life expectancy (the length of time we can expect to live in a 160 

healthy, disease free state) has not kept pace with the extension in lifespan. In the period from 161 

2009-2011 to 2016-2018, life expectancy in the UK increased by 0.8 years and 0.6 years for 162 

males and females, respectively. In contrast, healthy life expectancy for males increased by 0.4 163 

years and for females it actually decreased by 0.2 years in the same period (2). As a result of the 164 

failure of healthy life expectancy to keep pace with lifespan extension over decades, older males 165 

now spend an average of 16.5 years in ill health and for women this is 19.8 years, with 166 

multimorbidity and frailty major components of poor health in old age.  167 

Frailty is a largely age-related clinical syndrome characterised by the physiological decline in 168 

several body systems, resulting in an increased vulnerability to poor health outcomes and death 169 

(3). A systematic review of data from 62 countries, covering over 1.7 million individuals, 170 

revealed a global prevalence for frailty of between 12% and 24% dependent upon the specific 171 

method for frailty assessment used (4). The transition from health to frailty is a critical factor in 172 

the loss of independence in old age. Indeed the impact on health and social care services of an 173 

ageing population has led the UK government to set a target of adults spending 5 more years in 174 

independent living by 2035. Understanding the factors influencing the progression to frailty and 175 

developing practical approaches to prevent this progression, will be key to achieving this target.  176 

In this review, we describe the clinical and physiological features of frailty from an 177 

organ/systems based perspective and the evidence that increased systemic inflammation, 178 

increased physical inactivity and sedentary behaviour, with consequent increased adiposity, play 179 

roles in frailty development. We review the evidence for the ability of exercise and physical 180 

activity to reduce frailty in older adults. We conclude with our perspective on the major 181 

knowledge gaps regarding our understanding of the physiology of frailty and priorities for future 182 

research. 183 

2.0 The clinical phenotype of frailty 184 

2.1. Current definitions of frailty 185 
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Initial descriptions of frailty tended to describe a static physiological phenotype (5), which was 186 

first challenged in the 1990s by Rockwood and colleagues who instead suggested a description 187 

of frailty as a dynamic model that balances assets and deficits (6). This ultimately provided a 188 

mathematical framework to describe the heterogeneity of ageing, estimating frailty as the 189 

difference between biological and chronological age (7). As such, an exercise to describe a 190 

typical person with frailty may seem counterintuitive. However, it provides an initial structure 191 

for our review from which to explore the physiological phenotype of frailty.  192 

A consensus group has defined frailty as “a medical syndrome with multiple causes and 193 

contributors that is characterised by diminished strength, endurance and reduced physiologic 194 

function that increases an individual’s vulnerability for developing increased dependency and/or 195 

death” (3) (Figure 1). Importantly, frailty is conceptually different, but distinctly related, to 196 

ageing, comorbidity and disability (8, 9). For example, in a large cross-sectional study of frail 197 

individuals, 29.1% of people had an activities of daily living (ADL) disability, and 81.8% had 198 

one or more comorbidities (9). These findings underpin the difficulties in producing an exact 199 

frailty definition, by showing that frailty can present alongside, and potentially be a consequence 200 

of, disability and comorbidity, but may also occur in the absence of these conditions. The 201 

absence of detailed physiological insight pertaining to the condition undoubtedly contributes to 202 

the current lack of understanding of frailty aetiology and progression.   203 

Despite this lack of understanding, frailty is strongly associated with an increased risk of adverse 204 

events, including falls, hospitalisation and mortality (10, 11). Furthermore, some signs and 205 

symptoms appear essential for describing the frailty state. The most important of which may be 206 

the deterioration of physical function. Specifically, decreased performance in measures such as 207 

skeletal muscle strength, mobility and ADL, which is highly predictive of frailty presence (12). 208 

Conceptually, frailty development involves decreases in functional capacity following a stressor 209 

event (e.g. a minor acute illness or fall), with this capacity then remaining at a lower level than 210 

baseline following recovery from the event (13) (Figure 1). In short, a lack of resilience to return 211 

to prior functional capacity. Progressively decreasing functional capacity instigates a cascade of 212 

functional decline resulting in frailty, whereby an individual loses independence and becomes at 213 

significantly increased risk of disability, morbidity and mortality (14, 15).  214 

2.2 Frailty assessment 215 
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Although usually present, functional decline is not the only clear presentation of a frail 216 

individual. Instead, frailty is typically defined by multiple measures of functional decline. Fried 217 

and colleagues have operationalised this as the concurrent presence of three or more of the 218 

following criteria: low grip strength, slow walking speed, exhaustion, low physical activity levels 219 

or unintentional weight loss (16). Termed the physical frailty phenotype, these authors also 220 

defined a state of pre-frailty, when one or two criteria are present, identifying individuals at 221 

increased risk of becoming frail (16). The physical frailty phenotype is currently the 222 

recommended international standard for frailty identification and assessment (13). Rockwood 223 

and colleagues have used deficit accumulation to determine the presence of frailty by employing 224 

a frailty index, which is calculated by considering a number (usually 40 or more) of potential 225 

deficits (e.g. age-related symptoms, signs and diseases) (17). The physical frailty phenotype and 226 

frailty index are the two most cited frailty assessment tools within the literature (18), having both 227 

been validated as predictive of clinically important outcomes (e.g., hospitalisation, mortality) 228 

(19).  229 

Due to our lack of knowledge of the underlying pathophysiology of frailty, frailty is currently 230 

operationalised by measured outcome, rather than underlying physiological or biological drivers 231 

of these outcomes. This lack of consensus of pathophysiology hinders the development of 232 

interventions to combat the syndrome’s progression. Therefore, a clear goal for emerging frailty 233 

research has been to elucidate the syndrome's physiological characteristics, enhance knowledge, 234 

and improve subsequent treatment options for frail individuals. 235 

2.3 Clinical manifestations of frailty 236 

Investigations of frailty in human populations commonly describe the proportion of people with 237 

frailty within a said population. For example, in a representative survey of 2740 people aged 65 238 

to 102 from the Canadian Study of Health and Aging, 23% of participants were described as frail 239 

using the frailty index definition (17, 20). In a prospective cohort study (the Cardiovascular 240 

Health Study (CHS)) which included 5317 people aged over 65 years, but excluded those with 241 

dementia, 7% were deemed to be frail using the physical frailty phenotype definition (16). Age 242 

was consistently associated with frailty, and frailty, therefore, identified in groups of people with 243 

age-related diseases, such as 19% of people with COPD, and 40% of people with heart failure 244 

(21, 22). 245 
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Thus, it is also important to consider how a typical person with frailty presents clinically and 246 

how frailty affects that person’s individual risks. There are several important risk factors and 247 

clinical characteristics identified in longitudinal studies that increase the risk of someone 248 

developing frailty over time: People who develop frailty are more likely to be female, of non-249 

white ethnicity, have a lower level of education, and of lower socio-economic backgrounds (23). 250 

Clinical risk factors include obesity, depressive symptoms, and smoking.  Protective associative 251 

factors include eating a Mediterranean diet and maintaining physical activity (23, 24) (Figure 2).  252 

Therefore, our final clinical description of people with frailty identifies common conditions and 253 

outcomes associated with ageing, and reports how commonly people with frailty have them. 254 

Frail adults are at higher risk of adverse outcomes, and this is the most important clinical utility 255 

of identifying frailty currently.  People with frailty are more likely to be hospitalised, fall and 256 

fracture bones, and develop a disability, both in physical function and ADL. In addition, people 257 

with frailty have high rates of heart failure, cerebrovascular disease, hypertension, COPD, 258 

anaemia and diabetes (Figure 3). They are also more likely to have multimorbidity (the co-259 

occurrence of two or more diseases), polypharmacy, and sarcopenia (Table 1). As such, 260 

compared to individuals without frailty, people with frailty have a greater risk of death (25).     261 

Some diseases are difficult to diagnose in people with frailty if functional impairments from 262 

frailty affect the disease itself.  Dementia is a clear example, where it is likely that in moderate to 263 

severe dementia, frailty may well be ubiquitous due to functional and physical impairment 264 

caused by dementia. There are positive associations with dementia (26) and worse cognitive 265 

impairment in people as the degree of frailty worsens (27). Therefore, dementia highlights how 266 

treating frailty as a binary condition, simply present or absent, has limitations. Consideration of 267 

the severity of frailty states may begin to lead to more explicit phenotypic definitions of frailty as 268 

well as mechanistic understanding of its pathogenesis. 269 

3.0 The physiological phenotype of frailty 270 

The term ‘phenotype’ is defined as “the observable traits of the organism”, covering various 271 

characteristics such as morphology, physiology and behaviour (28). The physiological phenotype 272 

of the human can be influenced and altered by disease and degenerative syndromes, resulting in 273 

measurable distinctions between healthy and disordered states. For example, the condition of 274 

sarcopenia, defined as the loss of skeletal muscle mass, quality and function with age (29), can 275 

negatively influence the physiological phenotype of a person through various mechanisms of 276 
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skeletal muscle deterioration, which leads to observable presentations such as functional decline. 277 

Determining exactly how states of health and disorder differ will help identify biological targets 278 

for interventions and treatments to combat medical conditions and provide greater insight into 279 

the aetiology and pathophysiology of complex conditions such as frailty. For example, detailed 280 

molecular analyses at the transcriptome level in frailty are now beginning to emerge, including 281 

from blood cells and relevant tissues such as skeletal muscle. Zhang et al., analysed blood cell 282 

transcriptomic data for nonagenarians from the Vitality 90+ longitudinal study of ageing, 283 

comparing non-frail and frail participants. They identified 3 genes associated with the emergence 284 

of frailty, TSIX, BEST1 and ADAMTSL4 suggestive of key roles for inflammation and 285 

regulation of cellular metabolism in frailty, discussed further in section 3.2.1 (30). Analysis of 286 

the same dataset for transcriptomic signatures associated with mortality revealed NFκB 287 

signalling as a key node, reinforcing inflammation as a potential pathophysiological 288 

mechanism in frailty (31). Another study has examined the transcriptome of skeletal muscle 289 

from healthy young, non-frail and a mixed pre-frail and frail group of older adults. Whilst the 290 

differences in gene expression were less marked than between the young and old groups, 291 

significant differences were seen between the non-frail and (pre-)frail elders, including for 292 

genes regulating muscle function (MYLK4) and metabolism (NNMT) (32). Importantly, 293 

whether these relatively small differences in MYLK4 and NNMT are a driver or consequence 294 

of emerging frailty is unknown, but needs to be resolved. Whilst such transcriptomic analyses 295 

may help in mechanistic understanding of the drivers of frailty and aid drug development, 296 

perhaps more pertinent, given that people with frailty are invariably at increased risk of adverse 297 

events, identifying a distinct physiological phenotype differentiating frail from non-frail states 298 

would be a key priority. Comprehensively characterising the frailty phenotype would 299 

undoubtedly aid in developing strategically targeted interventions against the condition by 300 

highlighting typical locations and features of dysregulation.  301 

3.1 The physiological phenotype of frailty: the resting state condition 302 

Determining the physiological phenotype of human frailty is a challenging prospect. In this way, 303 

phenotyping requires intuitive methods to encapsulate complex physiological variables and 304 

investigations into how different physiological processes interact and affect each other. In the 305 

ideal scenario, the most robust science would require integrative modelling of individual 306 

component parts to predict the overall collective response, i.e., the physiological phenotype. 307 
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However, whilst the research focus on frailty has increased in recent years, this level of insight is 308 

far from being achieved. The majority of studies have involved assessing the physiological 309 

characteristics of individual organs under resting-state conditions, which in itself is somewhat 310 

incongruous given that frailty seems to be best characterised by a decline in physical functioning 311 

and adverse response to stressors. Here we review six systems that contribute in different ways to 312 

the frail physiological phenotype, namely: skeletal muscle, the neuromuscular junction and 313 

motor unit, the brain,  immune and cardiovascular systems, and adiposity (Figure 4), and then 314 

consider multisystem dysregulation. 315 

3.1.1 Skeletal muscle: Ageing is accompanied by a loss of skeletal muscle mass (33), which 316 

often culminates in sarcopenia (29, 34). Sarcopenia reduces insulin sensitivity (35) and is 317 

accompanied by deconditioning and the associated loss of mitochondrial mass (36). These 318 

observations point to age-related changes in lifestyle factors (e.g., physical inactivity) inducing 319 

these muscle level changes, particularly as prescribed, supervised exercise intervention can at 320 

least partly restore muscle mass and function (37) and mitochondrial mass (38), even in frail very 321 

old people (39).  322 

Sarcopenia influences functional deficits associated with frailty, including a loss of mobility, 323 

decreased strength and an increased risk of bone fractures (40-42). Therefore, attenuation of 324 

skeletal muscle mass and quality likely contributes to frailty development. Frailty and sarcopenia 325 

are linked, but distinct correlates of musculoskeletal ageing. This is evidenced by overlap, but 326 

incomplete concurrence, in frailty and sarcopenia prevalence (43). Nonetheless, the interrelated 327 

nature of frailty and sarcopenia makes it essential to consider skeletal muscle characteristics as 328 

contributing factors towards the frailty phenotype (Figure 4). 329 

Whole-body lean mass: Dual energy X-ray absorptiometry (DEXA) is an X-ray scanning 330 

modality allowing the quantification of lean tissue mass (a composite of non-fat and non-bone 331 

tissue) and fat mass at a whole body level or regionally. Similarly, bioelectrical impedance 332 

analysis (BIA) assesses lean and fat masses based on the notion that lipid-rich adipose tissue is 333 

more resistant to the passage of an electrical current compared to tissues rich in water (e.g., 334 

muscle tissue). Although DEXA and BIA do not provide direct measures of muscle mass, they 335 

are routinely employed in studies of ageing, with lean tissue mass observed to decrease with 336 

advancing age (so-called sarcopenia) (44). Further, lean mass reductions with age are associated 337 

with decreased physical function and quality of life (29, 45), and can be used as a predictor of 338 
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mortality (46), justifying the use of this parameter as a valid physiological variable. Of published 339 

longitudinal studies, Koster et al., (47) reported the loss of leg lean muscle mass occurred at a 340 

rate of 0.7-0.8% per annum during a 7 year follow up of individuals in their 70s. In agreement, 341 

Frontera et al., (48) demonstrated a 1% per annum decline in thigh muscle mass volume over the 342 

course of a 12 year longitudinal study, and concluded this was a major contributor to the 343 

decrease in muscle strength seen over this time. Furthermore, in a cross-sectional study of 18-88 344 

year old men and women, muscle mass loss was reported to be greater in the lower body, being 345 

twice as high as the upper body (33).  346 

In studies defining frailty using the Fried physical frailty phenotype (16), estimates of lean mass 347 

by DEXA revealed a lower whole-body lean mass in pre-frail and frail people compared to non-348 

frail people. Furthermore, significant differences were apparent when comparing frail versus pre-349 

frail individuals (49). In a study of 1,839 older Taiwanese adults, frail participants had 350 

significantly lower total lean body and appendicular lean mass, when compared with pre-frail 351 

and non-frail adults (50). Similarly, whole-body lean mass determined by BIA in 220 older 352 

adults was significantly less in frail and pre-frail compared to non-frail older males and females 353 

(51). However, others have contradicted these findings, reporting no differences in appendicular 354 

lean mass across non-frail, pre-frail and frail subgroups of 250 older women (52).  355 

As outlined above, DEXA and BIA do not quantify muscle mass per se which adds to the 356 

variance in study outcomes focused on muscle mass. To address this issue, advances in mass 357 

spectrometry technology have enabled machine sensitivity to be increased, such that orally 358 

administered stable-isotope tracers can now be applied to quantify muscle mass directly in 359 

community dwelling people, e.g., the deuterated creatine (D3-creatine) dilution method (53-55). This 360 

method is based on the assumption that approximately 98% of the total body creatine pool is present in 361 

skeletal muscle, and is turned over in muscle in a non-enzymatic reaction that degrades creatine to 362 

creatinine at a constant rate of about 2g/day. The additional assumption is that oral consumption of a trace 363 

amount of D3‐creatine has 100% bioavailablity and once absorbed is sequestered by muscle. The urinary 364 

excretion of creatine, creatinine and enrichment with D3‐creatine allows the muscle enrichment of D3‐365 

creatine to be calculated, allowing the determination of the dilution of the tracer in the muscle creatine 366 

pool. Of note, the measurement does not require invasive procedures, but simply collection of urine and 367 

saliva so could be readily employed in large population studies. This method of assessing of skeletal 368 

muscle mass in longitudinal large-scale cohort studies may reveal sarcopenia as a powerful 369 

biomarker of frailty progression. For example, D3‐creatine estimation of muscle mass was associated 370 
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with functional capacity and risk of injurious falls and disability, while assessments of lean body mass or 371 

appendicular lean mass by DXA were only weakly or not associated with these outcomes (54). 372 

Skeletal muscle volume and cross-sectional area: Quantity of skeletal muscle can also be 373 

determined with measures of muscle volume and cross sectional area (CSA). Magnetic 374 

resonance imaging (MRI) and computed tomography (CT) are imaging methods considered as 375 

the gold standard for muscle volume and CSA measurement, due to their excellent accuracy 376 

when compared to cadaver analysis (r = 0.99) (56), with these methods utilised to demonstrate 377 

muscle volume and CSA reductions in older compared to younger adults (57, 58). 378 

There are few studies utilising these imaging methods to quantify muscle volume, with CSA 379 

used in most studies of muscle quantity in frailty. A study of 26 older adults reported 6.4% lower 380 

thigh muscle CSA in frail compared to non-frail males and females when quantified using MRI 381 

(59). Similarly, MRI-derived average quadriceps muscle CSA of frail hemodialysis patients was 382 

lower than non-frail counterparts (60). Comparisons across these studies is hindered by the 383 

adoption of different frailty classification criteria. Muscle CSA estimates derived from CT 384 

scanning also point to lower skeletal muscle quantity in frailty. In a study of 923 participants, 385 

frail adults had significantly lower muscle calf areas compared to those without frailty, albeit 386 

numerically small absolute differences (61). A reduced thigh muscle CSA in frail compared to 387 

non-frail  nonagenarians has been reported using CT scanning, providing one of few absolute 388 

measures of muscle CSA in frail nonagenarians (62). It should be noted however that lower 389 

skeletal muscle CSA is not always reported in frail versus non-frail individuals. For example, 390 

one study assessing thigh muscle CSA by MRI observed similar values when comparing non-391 

frail (n=12) and frail (n=11) individuals (63). The smaller number of frail individuals studied 392 

alongside the mixed-gender sample adopted, may explain the difference in findings between this 393 

study and others. Nonetheless, these discrepancies clearly demonstrate the need for further 394 

research to delineate differences in skeletal muscle mass between frailty states. In addition, data 395 

derived from imaging methods is needed to definitively illustrate skeletal muscle characteristics 396 

evident during frailty, so that key mediators can be targeted with future interventions (e.g., 397 

exercise training). For example, if regional differences in muscle volume are apparent during 398 

frailty, areas more prone to mass and quality attenuation would be prime targets for 399 

interventions.  400 
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Skeletal muscle quality: It is worth noting that skeletal muscle quantity (i.e., CSA or volume) 401 

may not be the only important variable related to muscle within the context of frailty. Recent 402 

evidence from multicomponent exercise trials highlight an improvement in functional capacity in 403 

older adults, but these gains were not mediated by changes in lower extremity muscle CSA (64). 404 

The enhancement of functional capacity evidenced in this study may be attributable to increases 405 

in cardiorespiratory function (aerobic capacity) and improved muscle quality, e.g., increased 406 

mitochondrial mass, which is consistent with the physiological impact of endurance exercise 407 

training intervention in older people (38, 65).  408 

Muscle quality can be assessed from its structural and functional properties, such as muscle 409 

aerobic capacity, muscle fibre orientation, myosteatosis and fibrosis. Muscle quality diminishes 410 

with age and is associated with reduced muscle function and mobility (for review see: (40))  and 411 

frailty (66). 412 

MRI is a non-invasive and accurate method for assessing skeletal muscle quality, but  data in 413 

frail individuals are scarce. Melville et al., used MR spectroscopy to highlight greater mean 414 

intramuscular adipose tissue (IMAT) content in the vastus lateralis and medialis of pre-frail and 415 

frail individuals, when compared to non-frail counterparts (67). Whilst the clustering of pre-frail 416 

and frail participants into a single group for analysis potentially reduced contrast between groups 417 

in this study (67), increased IMAT in the frail has also been reported by others using MRI 418 

methods. Addison et al., reported significantly greater IMAT in the thigh muscles of frail 419 

compared to non-frail males and females (59). Similar findings were also observed in a study 420 

utilising T2 weighted MR imaging, in which frail individuals  had a greater intramuscular fat 421 

fraction compared to non-frail subjects (63). Overall, the limited number of studies assessing 422 

IMAT support an apparent lipid infiltration of skeletal muscle during frailty. However, 423 

generalisation of these findings may be hindered by a lack of study power and stratification 424 

between genders (59, 63), given the reported differences in IMAT between older males and 425 

females (68).  426 

Potential drivers and mechanisms of skeletal muscle deterioration in frailty 427 

Several interconnected and age-related mechanisms potentially contribute to the reported lower 428 

skeletal muscle mass, quality and function in frailty (for reviews see (69-71)). Sarcopenia is 429 

considered by many as a core component of frailty (72), with this notion supported by reports of 430 
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overlap in the presence of sarcopenia and frailty (43). However, definitive longitudinal data in 431 

humans are missing.  432 

Anabolic resistance: One mechanism proposed to influence the loss of muscle mass in old age is 433 

anabolic resistance, the inability of feeding and/or exercise to stimulate muscle protein synthesis 434 

or inhibit muscle protein breakdown to the same extent as that seen in young individuals. 435 

Seminal research in this area employed stable isotope tracer infusion methods to determine 436 

protein turnover in healthy young and older men in response to essential amino acid infusion, 437 

thereby avoiding any age-related impact on gut amino acid absorption (73). The authors reported 438 

a blunting of muscle protein synthesis in response to essential amino acids in older compared 439 

with young participants. Furthermore, the increase in the phosphorylation status of anabolic 440 

signalling proteins thought to regulate muscle protein translation initiation, such as mammalian 441 

target of rapamycin (mTOR), was also reduced in the older volunteers in response to essential 442 

amino acid infusion, indicating impaired muscle nutrient sensing rather than nutrient availability 443 

was underpinning the reduced muscle protein synthetic response. Similarly, a diminished muscle 444 

protein synthetic response was observed following a bout of resistance exercise in older 445 

compared to young men, which was accompanied by a blunting of the exercise induced increase 446 

in phosphorylation of anabolic signalling molecules (74). Notably, in a study that quantified 447 

muscle protein synthesis over the course of a 6 week resistance exercise intervention, it was 448 

observed that chronic muscle protein synthesis was diminished in healthy older compared with 449 

young volunteers (75). Furthermore, this was accompanied by a blunted muscle hypertrophic 450 

response to the training intervention in the older volunteers, which appeared to reflect blunted 451 

ribosomal biogenesis and translational efficiency and lower blood anabolic hormone 452 

concentrations (75). It is not known whether the extent of anabolic resistance is greater in older 453 

frail adults when compared to non-frail older adults or whether anabolic resistance is a feature of 454 

ageing per se and/or occurs secondary to factors that accompany ageing such as decreased 455 

physical activity levels. Nevertheless, the consensus is that deficits in muscle protein synthesis, 456 

rather than increases in muscle protein breakdown is the primary driver of anabolic resistance in 457 

older people (76). 458 

Inflammation: The vastus lateralis muscle of non-obese frail individuals has been reported to 459 

have increased interleukin (IL)-6 mRNA and protein content compared with non-frail 460 

individuals, purportedly due to the release of pro-inflammatory cytokines from elevated 461 
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intramuscular adipose tissue in the frail individuals (59). The authors concluded this 462 

intramuscular adipose tissue-inflammatory axis provided a potential link between intramuscular 463 

adiposity and decreased muscle mass and mobility function in frailty, but did not see any parallel 464 

associations involving muscle TNF-α. Nevertheless, potential processes underlying 465 

inflammation-mediated muscle loss include exacerbation of anabolic resistance by 466 

downregulated muscle anabolic signalling. For example, IL-6 infusion into rodent skeletal 467 

muscle at levels consistent with chronic inflammation, induces muscle atrophy (77). Atrophy 468 

was accompanied by a 60% reduction in the phosphorylation of ribosomal S6 kinase, 33% 469 

reduction of pSTAT5 and a 2-fold increase in pSTAT3 (77). This effect is likely mediated 470 

through reduced IGF-1 as transgenic overexpression of IL-6 in mice results in reduced serum 471 

IGF-1 levels, possibly due to increased proteolysis of the IGF-1 binding protein 3 or increased 472 

IGF-1 clearance (78). Accordingly, lower serum IGF-1 concentrations have been observed in 473 

frail individuals with low relative appendicular skeletal muscle mass (RASM) compared to frail 474 

persons with normal RASM (79).  475 

Other emerging evidence suggests that inflammation contributes to sarcopenia by inducing 476 

apoptosis in skeletal muscle fibres, with Chen and colleagues reporting the downregulation of 477 

miR-532-3p in muscle from sarcopenic adults. This miRNA targets the proapoptotic gene BAK1 478 

(BCL2 antagonist/killer 1) and the authors showed that this downregulation was inflammation 479 

dependent with NFKB1, a subunit of the transcription factor NF-kappa B, able to bind to the 480 

promoter region of miR-532-3p and repress its expression (80). A separate study examined the 481 

role of long chain fatty acids (LCFA) showing that pentadecanoic acid accumulated in human 482 

skeletal muscle in sarcopenia (81), with in vitro studies revealing that this LCFA induced the 483 

expression of the transcription factor FOXM1 (Forkhead box M1) and several pro-apoptotic 484 

genes including PUMA (p53-upregulated modulator of apoptosis) and Bax (B cell/lymphoma 2 485 

associated x).   486 

A third underlying mechanism is the increasing levels of TNF-α in the circulation with 487 

advancing age. This cytokine induces upregulation of 11-βHSD1 in skeletal muscle, increasing 488 

local generation of the catabolic steroid cortisol. Importantly, expression of 11-βHSD1 in muscle 489 

increases with age in women and is negatively correlated with hand grip strength (82). Taken 490 

together, these findings present possible mechanisms by which inflammation may induce muscle 491 

mass loss during frailty, by impairing muscle regeneration and anabolic processes. However, it is 492 
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unknown whether these muscle level characteristics are drivers of muscle deterioration in frailty 493 

or a consequence of it.   494 

Physical inactivity: As evidenced by reduced step counts and increased sedentary behavior in 495 

frail people (83-85), physical inactivity is likely to be another important driver of muscle atrophy 496 

and impaired muscle quality, possibly by increased muscle anabolic resistance (86). As people 497 

age, physical activity levels tend to decline (87), but studies investigating muscle mass and 498 

functional decline with age have rarely controlled for differences in physical activity levels 499 

across age groupings in cross-sectional studies. Here, data from studies of episodic periods of 500 

increased bed-rest are informative and will likely induce a greater physiological burden than 501 

reduced step count (88). Ten days of bedrest has been shown to induce ~1 kg lean mass loss 502 

from the lower extremities and a 16% decline in knee extensor strength in older individuals (89), 503 

which was attributed to a 30% reduction in muscle protein synthesis (89). A metanalysis of 504 

transcriptomic data from studies of disuse or bedrest (≥ 7days) revealed significant increases in 505 

transcripts involved in protein ubiquitination, immune signaling and apoptosis and 506 

downregulation of genes involved in mitcohondrial organisation and metabolic function (90), 507 

some of the pathways also seen in transcriptomics data from studies of frail elders (30). Other 508 

research also highlights bed-rest induced reductions in skeletal muscle protein synthesis with 509 

may underpin muscle atrophy and functional losses (91, 92). Moreover, the increased burden of 510 

bed rest and illness likely explains why hospitalisation will transition an older person from the 511 

non-frail to frail state (11, 93). Whether bed-rest induces increased muscle mass loss and 512 

functional decline in an already frail person is currently unknown but warrants consideration.  513 

3.1.2 The neuromuscular junction and motor unit 514 

The size and function of the motor unit (MU; the motor neuron and all fibres it innervates) have 515 

become a recent focus of ageing research, and it has been postulated that muscle fibre atrophy 516 

and loss promotes age-related sarcopenia (94). Human MU characteristics can be quantified 517 

using the intramuscular electromyography (iEMG) technique. Motor unit potentials (MUPs) (i.e., 518 

the sum of action potentials produced by muscle fibres of a motor unit during voluntary 519 

contraction) are assessed using this approach, with the size of an MUP proportional to the 520 

number of fibres contributing to it (95). Thus, as outlined in Figure 5, MUP size is indicative of 521 

MU size. Further, a measure of electrical activity termed compound muscle action potential 522 

(CMAP) represents a summation of the single-fibre action potentials from all muscle fibres 523 
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contributing to the signal (96). Dividing the CMAP by the size of an average MUP provides an 524 

estimate of the number of MUs within the whole muscle (97). 525 

With advancing age, reorganisation of MU fibres is observed (for a comprehensive review of 526 

ageing effects on the MU and neuromuscular junction (NMJ) see (98)), which precedes the 527 

grouping of fibre types and localised atrophy (99-101). Reorganisation includes an increase in 528 

MU size with age (102, 103), which is thought to result from branching of nearby motor neurons 529 

to reinnervate recently denervated fibres (104, 105). Furthermore, research involving elite master 530 

athletes suggests they have a greater capacity to reinnervate muscle fibres (106). Morphological 531 

changes also occur at the site of the NMJ, with findings from electron and light microscopy 532 

techniques revealing an expansion of the junction perimeter along fibres, and more complex 533 

branching of the nerve terminal with the synaptic site (107, 108). These morphological changes 534 

may occur as an attempt to compensate for a gradual loss of motoneurons during ageing, as a 535 

result of denervation. Indeed, an age-related decline in myelinated neurons has been shown in 536 

human peripheral nerves (109, 110), suggesting ageing promotes denervation (Figure 5). In 537 

conjunction with morphological changes, age-associated neuromuscular deterioration has also 538 

been inferred from the lower MU firing rate observed using iEMG in the vastus lateralis of older 539 

compared to younger men (103). Furthermore, based on iEMG and muscle cross-sectional area 540 

measurements, this study estimated 50-60% fewer MUs in the older participants (103). As well 541 

as a reduction in MU number with age (103), it has been proposed that sarcopenic individuals 542 

have smaller MUPs during voluntary muscle contractions compared to non-sarcopenic older 543 

adults, suggesting reinnervation of denervated fibres occurs to expand the MU size in the muscle 544 

of non-sarcopenic individuals, but not during sarcopenia (94). Thus, it is becoming clear that 545 

distinct neuromuscular remodelling occurs during ageing, alongside sarcopenia, resulting in a 546 

reduction in MU number and size.  547 

Building on these findings, increased frailty severity is associated with a smaller size of vastus 548 

lateralis MUPs during voluntary contractions and smaller CMAPs generated during electrical 549 

stimulation; independent of age and BMI (111). These results suggest frailty exacerbates MU 550 

number and size loss compared to ageing without frailty. Given the links between smaller MUs 551 

and reduced functional performance (e.g., strength and power) with age (112), the reductions in 552 

MU size and number during frailty, evidenced by Swiecicka et al., may contribute to the 553 

impaired functional performance of the frailty syndrome (66). Accordingly, the same authors 554 
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subsequently revealed negative relationships between CMAP and MUP and performance in the 555 

timed up and go test in frail individuals (113).  556 

Potential mechanisms for neuromuscular junction and motor unit deterioration during frailty 557 

As thoroughly reviewed by Larsson and colleagues (98), the mechanisms underlying NMJ and 558 

MU deterioration with age are complex and remain poorly understood. DNA damage and 559 

modification in old age have been implicated in NMJ functional deterioration and motoneuron 560 

loss during ageing producing the aged neuromuscular phenotype (114). Spinal motoneurons 561 

exhibit apoptotic cell death following treatment with neurotoxic intermediates of glycation, 562 

suggesting by-products of glycation may also contribute to motoneuron degeneration (115). 563 

Furthermore, the absence of several molecules involved in NMJ formation and maintenance 564 

appear to produce pre- and post-synaptic alterations in aged muscle. Genetic deletion of the 565 

molecule agrin (a molecule involved in the formation of synapses between neurons) (116, 117), 566 

or its muscle receptor Lrp4 (118, 119), results in degeneration of motor axon terminals and 567 

partial or complete denervation of endplates, suggesting effects on these molecules may 568 

contribute to NMJ deterioration (Figure 5).  569 

From the perspective of human frailty, the relationship between MU characteristics and plasma 570 

concentrations of anabolic hormones has been explored, with free testosterone and 571 

dehydroepiandrosterone sulfate (DHEAS) found to be significantly associated with CMAP in 572 

frail individuals (113). With the earlier reports of attenuated CMAP in frail men (111), this 573 

finding suggests diminished androgen availability may accelerate MU decline into frailty. 574 

Mechanistic insight from a rodent model of spinal cord injury demonstrated that atrophy of 575 

motor unit dendrites and muscle fibres was prevented by four weeks of sub-cutaneous 576 

testosterone administration that maintained normal physiological concentrations (120). Similarly, 577 

testosterone administration mitigated motor neuron atrophy following the castration of male 578 

adult rats (121, 122). Thus, hypogonadism during frailty may contribute to a decline in MU size 579 

and number.  580 

3.1.3 The Brain  581 

Ageing is associated with various physiological changes in the brain, such as alterations in brain 582 

size, vasculature and cognition (123, 124). Incidence of brain related diseases such as 583 

Alzheimer’s and other dementias also increases with age (125), suggesting advancing age has 584 

profound physiological effects on the brain. Frailty is associated with an increased risk of 585 
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cognitive decline and dementia (126-128), suggesting neurodegenerative and neurovascular 586 

changes contribute to the physiological phenotype of frailty. Consequently, reported MRI 587 

correlates of frailty include lower global or regional brain volume, an increased number of 588 

cerebral microbleeds and a higher number of white matter hyperintensities (WMHs) (126, 129-589 

131). Collectively, these findings provide strong indications of brain structure deterioration 590 

during frailty (Figure 4) and warrant further investigation of the brain within non-frail, pre-frail 591 

and frail older adults. Figure 6 outlines MRI methods currently being employed to study brain 592 

architecture and function. 593 

Brain volume: Brain volume refers to the mass of nervous tissue within the skull (i.e., the total 594 

size of the brain), and can be further partitioned into regional volumes of white matter, grey 595 

matter and cerebrospinal fluid. Measures of total brain volume are strongly correlated with 596 

cognitive ability level throughout adulthood (132, 133). During ageing, brain volume declines, 597 

which is associated with cognitive decline (134, 135), and impairments in physical function 598 

(136). Considering the links between frailty, cognitive decline (126, 127) and functional 599 

impairments (66), this evidence warrants investigation of brain volumes as key physiological 600 

variables during ageing and frailty. 601 

Early studies reported global cortical atrophy and reduced grey matter in the brains of frail adults 602 

(129, 131). Low recruitment of frail individuals in one of these studies resulted in combining 603 

pre-frail and frail participants into a single group, possibly reducing the contrast between this 604 

group and non-frail adults during analysis (129). Other studies adopting the physical frailty 605 

phenotype assessment have provided more detailed findings. Kant et al., reported significantly 606 

lower total brain volume and grey matter volume in frail compared to non-frail older adults. 607 

Further, the frail group exhibited lower total brain and grey matter volumes than pre-frail 608 

participants. No differences were observed between pre-frail and non-frail states (137). Adopting 609 

a similar MRI scan sequence, another study also observed total brain volume as significantly 610 

reduced in frail versus non-frail subjects (138). These findings indicate the presence of regional 611 

and global brain atrophy during the more severe stages of frailty (Figure 6), but again whether 612 

associations are causative or a consequence of frailty is not known.  613 

In contrast to these observations, voxel-based analyses of regional grey matter volumes revealed 614 

no significant associations between any particular brain region and frailty (139). However, the 615 

weakness and slowness criteria of the physical frailty phenotype were associated with reduced 616 
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grey matter volumes in regions including the hippocampus and the amygdala. Discrepancies with 617 

previous research may be attributable to the use of a voxel-based morphometry (VBM) approach, 618 

as opposed to previous region of interest (ROI) based methods. VBM involves measurement of 619 

tissue volume within each image voxel (or within a specified region), whereas ROI based 620 

methods provide an average estimate of multiple voxels with a large region. This may potentially 621 

lead to methodological differences in subsequent image analysis. Nonetheless, these differential 622 

findings warrant further research to determine if frailty per se, or rather elements of the 623 

syndrome’s component criteria, are associated with lower brain volumes and in specific brain 624 

regions.  625 

Cortical thickness, defined as the distance between the outer cortical surface and the grey-white 626 

matter boundary (140), is another structural marker of grey matter volume quantified by MRI 627 

(Figure 6). Thinning of the cortex in specific brain regions has been shown during normal 628 

ageing (140-142) and during Alzheimer’s disease (143) has been proposed as a biomarker of 629 

neurodegeneration (144). As far as we are aware, only two studies have assessed the relationship 630 

between cortical thickness and frailty. One study reported lower global cortical thickness in frail 631 

compared to pre-frail and non-frail participants. However, these authors did not report any 632 

statistical evidence for this finding (137). A more recent cross-sectional analysis found that older 633 

adults with greater global cortical thickness were less likely to be pre-frail and frail (145). These 634 

studies indicate cortical thinning may present during frailty, but further studies are required to 635 

confirm these findings.  636 

White matter hyperintensities: Lesions within brain white matter, termed white matter 637 

hyperintensities (WMHs), are common features of the ageing brain, with an increase in WMH 638 

volume observed with advanced age (146). WMHs are also considered MRI markers of cerebral 639 

small vessel disease (cSVD) (147). WMHs are associated with adverse outcomes linked to 640 

frailty, such as cognitive impairment (148), slow gait (149) and functional decline (150), 641 

indicating these lesions, in addition to cSVD, may present within the pathophysiology of frailty. 642 

Recent studies have attempted to clarify the relationship between WMHs and frailty, when 643 

defined by the physical frailty phenotype (16). Significantly greater mean WMH volume has 644 

been observed in frail and pre-frail groups when compared to non-frail  participants (138, 151). 645 

Unfortunately, analysis of WMH volume between pre-frail and frail individuals was lacking in 646 

these studies, limiting insight between these two states and the progression to frailty. The 647 
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association of increased WMH volume during frailty has been corroborated in several studies 648 

adopting the accumulated deficits frailty index assessment (17), with larger WMH volume 649 

shown to be related to higher frailty index scores (152, 153). Further, higher frailty index score 650 

has been significantly associated with the presence of mild, moderate and severe deep WMH and 651 

severe periventricular WMH burden (154). Interestingly, using WMH segmentation techniques, 652 

it has also been reported that pre-frail, but not frail, individuals had a more complex shape of 653 

periventricular (situated around ventricles in the brain) and confluent (lesions that extend from a 654 

ventricle to > 10mm into deep white matter) WMHs than non-frail subjects (151). These early 655 

reports present an interesting area for further research regarding frailty progression, highlighting 656 

WMHs as key markers of brain deterioration during frailty.  657 

Microstructural integrity: Diffusion tensor imaging (DTI) is an MRI technique enabling 658 

assessment of the microstructural integrity of white and grey matter tissue by mapping the 659 

directionality of water molecule diffusion (155) (Figure 6). Common measures of diffusion 660 

assessed during DTI include, fractional anisotropy (FA) and mean diffusivity (MD). DTI has 661 

been utilised to demonstrate deterioration in brain microstructural integrity during ageing, such 662 

as an increase in MD (156, 157), warranting investigation as a physiological feature of the frailty 663 

state. 664 

Frail individuals have been observed to have higher MD (indicating degeneration of the tissue 665 

that prevents undirected water diffusion) and lower FA in white matter tissue, when compared to 666 

non-frail counterparts (158), with similar findings also reported in the grey matter tissue of 667 

another cohort of frail and non-frail individuals (138). Further, baseline white matter diffusivity 668 

estimates have been significantly associated with worsening frailty over a 5 year follow up (159). 669 

Common findings of reduced FA and increased MD indicate that frailty is accompanied by 670 

degeneration in structural brain tissue through a loss of organised structure.  671 

Some additional findings from these DTI based studies are noteworthy. Firstly, during region-672 

specific analyses of MD, the medial frontal and anterior cingulate cortexes were strongly 673 

associated with frailty (138). The medial frontal cortex is a brain region important for motor 674 

function and lower extremity performance, whilst the anterior cingulate is associated with 675 

locomotion and gait performance (160-162). These findings suggest that microstructural 676 

deterioration in these brain regions may present a physiological cause of functional decline 677 

experienced by frail individuals. Secondly, in frail subjects, a larger global WMH volume was 678 
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associated with decreased FA and increased values in all diffusivity estimates (158). This finding 679 

suggests that different features of brain deterioration are linked and negatively influence each 680 

other, thereby increasing the risk of frailty development.  681 

Cerebral perfusion and oxygenation: The brain oxygen requirement in the adult human accounts 682 

for about 15% of the resting cardiac output (Figure 7), for a relative body size of only 2%. 683 

Cerebral perfusion is therefore a high flow, low pressure system, which can be quantified using 684 

imaging techniques (e.g., MRI and CT). Arterial spin labeling (ASL) is an MRI technique 685 

enabling quantification of cerebral perfusion by applying magnetism to ‘label’ arterial blood 686 

before flowing into the brain, then subsequently imaging the contrast between labelled blood and 687 

brain tissue. Similar to ASL, MRI techniques quantifying cerebral oxygenation can magnetically 688 

label venous blood, and the rate at which the magnetic signal is lost is indicative of blood oxygen 689 

levels. Cerebral oxygenation can also be quantified using near-infrared spectroscopy (NIRS) and 690 

is based on the differential light absorbance of oxyhemoglobin and deoxyhemoglobin, as these 691 

‘chromophores’ absorb different wavelengths of light. Both cerebral perfusion and oxygenation 692 

are observed to decline with age (163, 164) and this decline is associated with Alzheimer’s 693 

disease and other dementias (165, 166), suggesting these variables are key physiological markers 694 

of neurodegeneration. One study has assessed global grey matter perfusion using ASL, 695 

evidencing no association between global grey matter perfusion and frailty (151). This lack of 696 

relationship may have been due to the reduced sample size adopted when performing the ASL 697 

scanning procedures, which the authors acknowledged compromised the statistical power of their 698 

analyses (151). Cerebral oxygenation was previously measured in frail hospital patients during 699 

aneasthesia using NIRS (167). These authors found increased cerebral desaturation in the frail 700 

compared to the non-frail group, suggesting oxygenation of the brain is impaired during the 701 

frailty state.  702 

Potential mechanisms of brain deterioration in frailty 703 

Although current research into brain deterioration during frailty is mainly observational, some 704 

insight into potential interrelated mechanisms of brain degeneration can be inferred. One 705 

possible mechanism is based on the finding of reduced cerebral perfusion within WMHs (168). 706 

Considering this finding, and the higher WMH burden evident during frailty (151, 152), cerebral 707 

perfusion may be attenuated. Accordingly, in healthy and cognitively impaired participants, 708 

relationships between reduced cerebral blood flow and brain atrophy have been observed (169, 709 
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170). Further, in a study of middle-aged adults, lower cerebral blood flow has been associated 710 

with increased brain atrophy, but only in patients with moderate to severe WMH volume burden 711 

(171). Taken together, this evidence suggests WMH-mediated attenuations in cerebral perfusion 712 

may contribute to brain deterioration during frailty. However, mechanistic insight cannot be 713 

inferred given the evidence presented in these human studies is only associative. Experimental 714 

evidence for the role of reduced cerebral blood flow in the pathogenesis of brain atrophy is 715 

provided by animal models (172). However, only one underpowered estimation of cerebral 716 

perfusion exists within the human frailty literature (151), leaving this notion speculative at 717 

present.  718 

Physical inactivity and increased sedentary behaviour have also been conveyed as factors 719 

contributing to altered brain structure during ageing (173, 174). For example, a recent study 720 

demonstrated that a five-year decrease in white matter volume was associated with increased 721 

amounts of sedentary behaviour and reduced physical activity levels, when measured by 722 

accelerometry methods in non-frail older adults (175). A previous review outlines evidence to 723 

suggest that sedentary behaviour and reduced physical activity may cause detrimental effects in 724 

the brain through mechanisms such as reduced neurogenesis, synaptic plasticity and 725 

angiogenesis, and by increased inflammation (176). Collectively, these findings indicate that 726 

physical activity levels and sedentary behaviour may mediate the mechanisms leading to reduced 727 

total brain volumes (137) and increased WMH volumes (151) in frail individuals.  728 

Neuroinflammation is a common feature of ageing (177, 178) and neurodegenerative diseases 729 

such as Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis (179). Considering 730 

frailty is an age-related syndrome associated with neurodegenerative disease (180), it seems 731 

logical that neuroinflammation may contribute to brain deterioration in frail individuals. 732 

However, neuroinflammation has not been explored extensively within the context of frailty. 733 

Nevertheless, research combining cerebrospinal fluid sampling and brain MRI indicates reduced 734 

cognitive function is associated with increased levels of the neuroinflammatory marker YKL-40 735 

in older adults (181), with a second two year longitudinal study reporting increased cerebrospinal 736 

fluid YKL-40 concentrations associated with loss of microstructural integrity and brain atrophy 737 

of older individuals (182). These markers of structural decline are also evident in frailty (138), 738 

suggesting neuroinflammation may contribute to brain deterioration during the syndrome, which 739 

warrants further investigation. 740 
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Mechanisms of cerebral degeneration are difficult to uncover in human research due to the 741 

invasiveness of accessing and sampling brain tissue. However, insight into causal mechanisms 742 

may benefit from region-specific analyses when studying the brain in human imaging studies. In 743 

the context of frailty, these analyses are helpful as they may provide specific targets for further 744 

research aiming to uncover underlying mechanisms of brain deterioration. For example, during 745 

frailty, attenuation in brain volume (129, 183) and  microstructural integrity (138) has been 746 

found within regions of the brain related to physical function, such as the medial frontal and 747 

anterior cingulate cortexes. This information could be used in animal models of frailty (e.g., the 748 

IL-10 knock out mouse model of frailty (184)) to inform on the mechanistic links between brain 749 

deterioration and functional decline during frailty. Alternatively, to provide further insight into 750 

human frailty, future studies should adopt similar protocols to Tian et al., where multiple 751 

features of brain structure, including brain volumes, WMHs and DTI parameters, are 752 

investigated simultaneously (138). Although this application of multiparametric MRI is not a 753 

new approach in human studies, and may even be considered standard practice in Alzheimer’s 754 

and dementia research (185, 186), we stress the importance of employing this approach in future 755 

frailty work to aid in understanding how different features of brain deterioration interact and 756 

potentially exacerbate frailty development. 757 

3.1.4 The cardiovascular system  758 

The prevalence of cardiovascular disease increases with age (187, 188) and encompasses 759 

complex pathophysiology in numerous interrelated organs and tissues. A meta-analysis of 6000 760 

non-frail, 7000 pre-frail and 1500 frail individuals revealed frail (odds ratio = 3.4) and pre-frail 761 

(odds ratio = 1.5) persons are at increased risk of cardiovascular disease compared to non-frail 762 

counterparts (189). This provides associative evidence for the role of cardiovascular dysfunction 763 

in the development of frailty. However, the specific alterations in cardiovascular structure and 764 

function that might contribute to frailty remain unclear. A summary of cardiac and vascular 765 

characteristics present during frailty is shown in Figure 4. 766 

Cardiac parameters: Ageing is associated with various physiological changes in heart structure 767 

and function, such as an increase in left ventricular (LV) wall thickness, atrial fibrillation, and a 768 

decrease in LV ejection fraction (190). Impairments in cardiac structure and function, assessed 769 

by echocardiography, are associated with physical function decline in older individuals (191, 770 

192), suggesting cardiac dysregulation may contribute to frailty. Some common findings are 771 
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evident across studies assessing cardiac parameters during frailty. In the Cardiovascular Health 772 

Study, increased LV mass was observed in frail versus non-frail participants (193), with several 773 

other studies since reporting an increased LV mass index as well as increased left atrial volume 774 

index within frail individuals (194-196). Despite some common findings, inconsistencies have 775 

been reported for several other cardiac parameters during frailty. For example, LV ejection 776 

fraction (EF) has been observed as significantly attenuated in frail versus non-frail groups in 777 

some studies (195, 196), but not others (197, 198). These differential findings may be due to the 778 

mean age of participants in some studies being higher (195) and the adoption of differing 779 

echocardiographic protocols. It would be worthwhile to build on these echocardiography derived 780 

findings by employing the less patient and investigator dependent cardiac MRI methodology 781 

(199-201). Furthermore, cardiac MRI enables the assessment of myocardial scarring and diffuse 782 

fibrosis (202), which may be a cause of the increased LV mass observed in frail individuals. As 783 

such, it appears there are currently no MRI based measures of cardiac parameters within the 784 

literature associated directly with frailty per se, reinforcing the need to apply this modality to 785 

enhance understanding in this area.  786 

In a large sample of frail individuals, increased LV hypertrophy, along with impaired LV systolic 787 

and diastolic function, has been found in the frail compared to the non-frail (196). Interestingly, 788 

this study reported greater prevalence of abnormal cardiac measures in the frail even after 789 

impairments in the pulmonary, renal, hematologic and adipose systems had been accounted for 790 

in the analysis. Further, cardiac abnormalities, such as LV hypertrophy, showed the greatest 791 

association with frailty of all the organ systems studied (196). Collectively these findings suggest 792 

that heart dysfunction significantly contributes to the physiological frailty phenotype (Figure 4). 793 

Vascular parameters: Alterations in the physiological characteristics of the human vasculature 794 

are also observed with advancing age, such as increased arterial stiffness (203), wall thickness 795 

(204) and endothelial dysfunction (e.g., reduced vasodilatory response and nitric oxide 796 

bioavailability) (205, 206). Further, vascular dysfunction is associated with sarcopenia, 797 

potentially through decreased muscle micro-perfusion (207) and sedentariness (208), indicating 798 

pathophysiology within the vasculature may contribute to the phenotype of frailty.  799 

However, only a limited number of studies have assessed parameters of vascular structure and 800 

function during frailty. Assessing carotid-femoral pulse wave velocity, two large sample studies, 801 

including the Framingham Heart Study, reported an increase in arterial stiffness during frailty 802 
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(196, 209). Markers of endothelial dysfunction, such as abnormal ankle-brachial index, pulse 803 

wave velocity and low levels of flow-mediated dilatation, have also been associated with frailty 804 

(210). Further, frailty has been linked to a greater blood concentration of dimethylarginine (211), 805 

which is elevated in endothelial dysfunction and is an independent risk factor for major adverse 806 

cardiovascular events, and reduced flow-mediated dilation (212, 213). This small number of 807 

studies collectively provide some indications of vascular deterioration during frailty. 808 

Hypertension: Hypertension is a well-known cardiovascular risk factor associated with ageing 809 

(214) with blood pressure, particularly systolic pressure, increasing with age (215). Hypertension 810 

may contribute to cardiovascular decline through exacerbating endothelial dysfunction (216) and 811 

promoting an increase in LV mass (217). Furthermore, traits related with frailty, such as physical 812 

function decline and cognitive impairment are associated with hypertension (218-220), implying 813 

blood pressure is an important parameter to assess in the context of frailty. However, a 814 

systematic review and meta-analysis revealed an inconclusive relationship between frailty and 815 

hypertension, with cross-sectional and longitudinal studies reporting mixed results (221). 816 

Discrepancies may be due in part to the different frailty assessment criteria adopted across cross-817 

sectional studies, which may partially explain why the meta-analysis failed to show any 818 

significant associations. The mixed results from longitudinal analyses (221) are in line with the 819 

findings of a randomised control trial (RCT) that was unable to show any impact of treatment of 820 

hypertension on the onset of frailty (222). However, a possible explanation for this RCT data 821 

may be that individuals developing frailty might be more likely to be lost before follow-up, with 822 

this selective drop out making it difficult to draw firm conclusions regarding the effect of the 823 

treatment on frailty-related outcomes (223). Nonetheless, these mixed results warrant further 824 

investigation of the relationship between frailty and hypertension, ideally with large sample size 825 

longitudinal studies. 826 

Potential mechanisms of cardiovascular dysfunction in frailty 827 

Inflammation: Higher serum inflammatory markers in older individuals are related to features of 828 

cardiac dysregulation, such as increased LV hypertrophy and diastolic dysfunction (224). Given 829 

that these cardiac abnormalities are also evident during frailty (196), increased inflammation in 830 

frail individuals may contribute to cardiac deterioration. Inflammatory cytokines have been 831 

proposed as regulators of cardiac dysregulation through several mechanisms. Overexpression of 832 

TNF-α in cardiac tissues in mice leads to proteasome dysfunction and accumulation of 833 
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ubiquitinated proteins in the left ventricle (225), which may be a mechanism contributing to 834 

increased LV mass during frailty (193). Similarly, chronic TNF-α overexpression restricted to 835 

cardiac tissues reduces the activity of collagenolytic enzymes, resulting in an attenuation of LV 836 

dilation (226). These processes may underpin cardiac dysfunction during frailty, mediated by a 837 

chronically heightened inflammatory state in the heart.  838 

Physical inactivity: Reduced physical activity levels may also contribute to cardiovascular 839 

dysfunction during frailty (83). For example, lower LV EF, which has been noted during frailty 840 

(195, 196), is associated with reduced physical activity levels in middle-aged adults (227). This 841 

may be explained by physical inactivity induced promotion of cardiac atrophy (228), which in 842 

turn attenuates LV function via less contractile tissue being available for contraction. This is 843 

supported by findings of marked reductions in the synthesis of cardiac proteins and significant 844 

cardiac tissue loss following limb unloading (229). Increased arterial stiffness in frail individuals 845 

may also be contributed to by reduced physical activity, given that higher arterial stiffness is 846 

observed in older individuals with increased amounts of sedentary time (230). Arterial stiffening 847 

may also be influenced by low vascular blood flow during sedentary time, leading to lower 848 

endothelial shear stress and impairments in endothelial function (231). For example, low 849 

endothelial shear stress is associated with low nitric oxide synthase expression (232), and 850 

blocking nitric oxide synthesis increases arterial stiffness in vivo (233).  851 

3.1.5 The Immune system  852 

As with the four organ systems described above, the immune system is significantly altered with 853 

age (Figure 4), termed immunesenescence, resulting in a decline in the ability to mount a robust 854 

immune response to infection or vaccines and increased risk of autoimmune and chronic 855 

inflammatory diseases (234, 235). These age-related changes are also a key factor in the increase 856 

in systemic inflammation seen with advancing age, inflammaging (Figure 8), which is associated 857 

with an increased risk of a broad range of age-related diseases (236). Importantly, the immune 858 

system by the very nature of its function in defending against pathogens, has access to all parts of 859 

the body. A compromised immune system thus has the potential to influence functional decline 860 

throughout the body and contribute to multi-system dysregulation in frailty. That an aged 861 

immune system may have broad influences on organ function and thereby frailty has recently 862 

been suggested by studies in mice in which only the T cell compartment was modified. 863 

Specifically mitochondrial function was compromised by the knockdown of mitochondrial 864 
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transcription factor A (TFAM), resulting in accelerated T cell senescence. The TFAM deficient 865 

mice showed an aged phenotype including multimorbidity, reduced physical function and 866 

premature death, a phenotype that was rescued by blocking of TNFα signalling or restoration of 867 

mitochondrial function with nucleoside riboside (237).  868 

As the hallmarks of immunesenescence have been reviewed extensively (238) we will focus on 869 

those elements that may support the increased inflammatory status seen in old age and the 870 

development of frailty.  871 

Immunesenescence  872 

The innate immune system is the first line of defence against pathogens and includes cells such 873 

as macrophages. These are tissue-resident sentinel cells that rapidly alert the rest of the immune 874 

system to infection by producing inflammatory cytokines. During early life, the innate immune 875 

system is able to return to a quiescent state post-antigen exposure. However, with advancing age, 876 

these cells are in a state of low-level constitutive activation resulting in the secretion of pro-877 

inflammatory cytokines in the absence of infection, contributing to inflammaging (239, 240). 878 

The adaptive immune system is also altered with age, driven primarily by the atrophy of the 879 

thymus in early adulthood. This results in a reduced production of naïve T cells and a consequent 880 

expansion of memory T cells to maintain the lymphocyte pool (Figure 8). With repeat 881 

stimulation across the lifecourse these memory T cells experience telomere attrition and enter a 882 

state of terminal differentiation as EMRA (Effector Memory expressing RA) cells marked by 883 

loss of CD28 and CD27 and expression of CD57 and CD45RA (238). These cells have poor 884 

proliferative capacity and are highly pro-inflammatory, adding to the inflammatory burden (241, 885 

242). Other hallmarks of immunesenescence that contribute to inflammaging include an 886 

increased propensity of T cells to differentiate towards the pro-inflammatory Th1 and Th17 887 

phenotypes (243). Single cell RNA sequencing has recently identified a subset of age-associated 888 

granzyme K expressing CD8 T cells that amplify the inflammatory phenotype and contribute to 889 

inflammaging (244). Further, the immune system has a variety of mechanisms to prevent 890 

persistence of an inflammatory state but these also decline with age. For example, cells including 891 

macrophages and regulatory T and B lymphocytes have an anti-inflammatory role secreting 892 

cytokines such as IL-10, but with age, their function declines (238, 245) reducing the 893 

homeostatic resolution of inflammation. In addition, the immune system plays a key role in 894 

removing senescent cells, which are pro-inflammatory (see below), with Natural Killer cells and 895 
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CD8 T cells recognising these cells via the NKG2D receptor (246). As their cytototoxic ability 896 

declines with age this will contribute to the accumulation of senescent cells (247). 897 

That immunesenescence plays a role in frailty in humans is unclear as few studies have assessed 898 

indicators of immune ageing in frail and non-frail individuals and the majority simply compare 899 

healthy young and old subjects. However, the Singapore Longitudinal Ageing Study assessed 900 

markers of T cell ageing in 421 older adults who were non-frail, pre-frail and frail, showing that 901 

loss of CD28 on CD4 and CD8 T cells were positively associated with frailty and CD28 negative 902 

CD8 T cells were predictive of a pre-frail state (248). A recent two year longitudinal study 903 

assessed the neutrophil to lymphocyte ratio (NLR) and systemic inflammation index (SII), as 904 

indicators of immunesenescence, in 1822 older adults for their association with incident frailty 905 

using the physical frailty phenotype. Both log NLR and log SII were positively associated with 906 

incident frailty, the association remained when adjusted for multimorbidities (249). In contrast, a 907 

five year longitudinal study in 657 over 85 year olds, found no association of T cell senescence 908 

with loss of muscle function or prevalent or incident sarcopenia (250). Although this study did 909 

not report data for frailty, it does support the need for further longitudinal studies and a broad 910 

assessment of immunesenescence to identify specific elements that may be contributing to frailty 911 

and could be targeted in future interventional studies with compounds such as nucleoside 912 

riboside. 913 

Inflammaging  914 

Physiological ageing is characterised by a chronic state of elevated sub-clinical levels of pro-915 

inflammatory cytokines (e.g., TNFα, IL-6, CRP) termed inflammaging (251). Although the 916 

majority of studies of inflammaging do not include measurements of anti-inflammatory 917 

cytokines such as IL-10, levels of this cytokine have been reported to decline with age in 918 

longitudinal studies (252). It should be noted that other studies have reported a rise in IL-10 with 919 

age, suggesting a compensatory mechanism to counterbalance inflammaging (253, 254) (Figure 920 

8). This dynamic progression to a pro-inflammatory state has been recognised as a biomarker of 921 

biological ageing associated with an increased risk of a broad range of age-related diseases 922 

(255). For example, inflammaging has been associated with increased cognitive impairment 923 

(256), cardiac dysregulation (224), sarcopenia (257), cancer (258) and Alzheimer’s disease 924 

(259). In contrast, studies in centenarians (260) and naturally long-lived mice (261) show a 925 

cytokine profile similar to younger people/mice with no inflammaging. Furthermore, even in 926 
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those who are not among the exceptionally long lived, inflammaging is not an inevitable 927 

consequence of advancing age, for example several studies have shown that maintaining high 928 

levels of physical activity in to old age will prevent inflammaging (262). Inflammaging is 929 

therefore not inevitable and may well be an index of adiposity (see section 3.1.6), or an early 930 

indicator of biological ageing and decline towards frailty.  931 

The majority of studies in humans investigating associations between inflammation and frailty 932 

are cross-sectional in nature, with fewer longitudinal studies or clinical trials using anti-933 

inflammatory drugs to test for causality. Nevertheless, indirect support for a causative role of 934 

inflammation in frailty can be deduced from the IL-10 deficient mouse which develops a frail 935 

phenotype with many similarities to humans (263) and the IKK2 knockout mouse, which has 936 

compromised NFkB activation, and shows preservation of muscle mass (264).  937 

Cross-sectional studies: Evidence from multiple cross-sectional studies supports a positive 938 

relationship between increased systemic inflammation with age and frailty, some directly 939 

assessing frailty but others providing indirect evidence by focussing on elements of sarcopenia 940 

(for reviews see (265-267)). Elevated circulating levels of pro-inflammatory cytokines (e.g., 941 

TNFα, IL-6, CRP) have been associated with loss of muscle mass and strength (268), poor 942 

physical performance (269), loss of aerobic fitness (270) and disability (271). Interestingly, 943 

studies examining sex-specific differences have observed a stronger association between markers 944 

for inflammation and frailty in women than in men, potentially driven by sex differences in body 945 

fat quantity and distribution (272). Fried’s multiparameter analysis of systems affected in frail 946 

older adults also showed that older women with three or more divergent systems, including 947 

inflammation, were more likely to be frail (273).  948 

A systematic review of 50 studies has revealed that several elements of an increased 949 

inflammatory status, i.e., raised IL-6, TNFα, CRP, neopterin, fibrinogen, neutrophil and 950 

monocyte counts, are present in frail adults (274). A 2016 systematic review and meta-analysis 951 

of 32 cross-sectional studies also showed that the pre-frail and frail states were associated with 952 

higher levels of CRP, IL-6, fibrinogen and leukocyte counts (257). Furthermore, a recent 953 

analysis of the plasma proteome to determine biomarkers of frailty in 752 older adults from the 954 

InCHIANTI study, found four proteins (creatine kinase M-type, B-type CKB, C-X-C motif 955 

chemokine ligand 13 (CXCL13), and thrombospondin 2) were associated with frailty (275). In 956 

addition to associations with circulating levels of cytokines, a strong linkage between several 957 
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single nucleotide polymorphisms (SNPs) in the CRP gene (rs3093059, rs2794520, rs1205) and 958 

reduced handgrip strength in older adults have been identified (276). Another study reported that 959 

frail individuals carry a CRP (1846G>A) gene polymorphism, an underpinning factor 960 

contributing towards elevated frailty (277). Additionally, an inverse correlation has also been 961 

observed between the production of pro-inflammatory cytokines (such as TNFα) and handgrip 962 

strength in older adults (278).    963 

Longitudinal studies: Longitudinal studies, though less numerous than cross-sectional, have been 964 

performed to assess associations between increased blood inflammation status and frailty. A 965 

longitudinal study in 901 healthy older adults assessing physical functioning in the participants 966 

nine years apart reported a significant increase in IL-6 levels and a 21% decline in grip strength 967 

and gait speed over the study period (279). Similar longitudinal relationships between higher 968 

CRP and lower grip strength have been reported in large scale birth cohort studies (280). In the 969 

Inchianti cohort study mentioned above, two proteins, cyclin-dependent kinase 5 and IL-1α, were 970 

associated with worsening of frailty in a longitudinal analysis (275) supporting a role of 971 

inflammation. A smaller longitudinal study sampled 144 adults from middle age every 5 years up 972 

to 65-75 years of age. The data revealed elevated levels of IL-6 pathway markers, namely CRP 973 

and sIL-6R, were associated with more frailty and reduced physical strength. Other associations 974 

were detected in women, notably increasing sCD14 levels and frailty, an indicator of monocyte 975 

over activation (281). In contrast, in a recent longitudinal study of a large birth cohort (n=1091), 976 

the physical frailty phenotype and frailty index were both used to assess frailty in participants 12 977 

years apart. They found higher CRP associated with increased frailty at follow up assessed by the 978 

frailty index, but not by the physical frailty phenotype (282). Some of the discrepancies in 979 

findings may therefore reflect differences in the frailty assessment used.  980 

Evidence from anti-inflammatory interventions: There are few interventional studies using anti-981 

inflammatory drugs in humans with frailty as an endpoint, with most assessing different aspects 982 

of sarcopenia. A systematic review considered 28 studies assessing the impact of anti-983 

inflammatory drugs on inflammation and skeletal muscle. Not all of the studies were in older 984 

adults but those that were found that celecoxib and piroxicam, two non-steroidal anti-985 

inflammatory drugs, could reduce inflammation and improve physical performance in older 986 

adults with raised systemic inflammation. They also found that ibuprofen increased exercise-987 

induced muscle hypertrophy and muscle strength and in general, concluded that the effects on 988 
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muscle were achieved most consistently when combined with exercise (283). Pharmacological 989 

blockade of IL-6 by Tocilizumab and inhibition of Jak/STAT3 pathway by Ruxolitinib have 990 

been shown to suppress muscle atrophy by downregulating the expression of the atrophy genes 991 

MuRF1 and MAFbx in vitro and in an animal atrophy model (284). In addition, senolytic drugs, 992 

which remove pro-inflammatory senescent cells reduce frailty in mice (285) and improve 993 

physical function in humans (286). It is important to point out that the beneficial effects of 994 

blocking inflammation for muscle adaptation to exercise may not extend to older adults not 995 

exhibiting raised systemic inflammation (287). Whilst the effect of NSAIDS on muscle protein 996 

synthesis have shown mixed results, they have been suggested to compromise satellite cell 997 

activity (288). 998 

Taken together, these studies suggest that the emergence of inflammaging is coincident with 999 

elevated frailty in humans with age, but further evidence, especially from longitudinal and 1000 

interventional studies that include the transition from the non-frail to frail state, are required to 1001 

support any causal relationship in humans.    1002 

Potential mechanisms contributing to inflammaging 1003 

In addition to the contribution made by immunesenescence, inflammaging is a multifactorial 1004 

process with a range of genetic (289) and environmental factors identified that contribute 1005 

towards its development (290) (Figure 8).  1006 

Cell senescence: Cell senescence is a state of irreversible cell cycle arrest induced by various 1007 

stressors, including DNA damage, telomere shortening, and protein aggregation. Cell senescence 1008 

has been identified as one of the nine Hallmarks of Ageing that underlie the development of the 1009 

aged phenotype (291). Removal of these cells, either genetically (292) or pharmacologically 1010 

through the use of senolytic drugs (293), has been shown to extend lifespan and healthspan in 1011 

mice. Trials are now underway in humans with senolytic drugs, the first of which (Dasatinib and 1012 

Quercetin) reported improved physical function in patients with idiopathic pulmonary fibrosis 1013 

(286). Importantly, although senescent cells are proliferatively quiescent, they are highly 1014 

metabolically active. In particular, they produce a secretome, the senescence-associated secretory 1015 

phenotype (SASP), containing a broad range of pro-inflammatory cytokines and chemokines as 1016 

well as proteases and growth factors. These cells accumulate in the body with age and therefore 1017 

contribute to inflammaging through their SASP (294). 1018 
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Microbial dysbiosis: Gut microbial composition changes dramatically with advancing age, 1019 

including a reduced abundance of anti-inflammatory bacterial species (e.g., Bifidobacterium 1020 

spp., and F. prausnitzii) and an expansion of pro-inflammatory pathogenic microbes (e.g. 1021 

Streptococcus spp., and Staphylococcus spp.), termed microbial dysbiosis (295). Additionally, 1022 

the intestinal barrier deteriorates with age resulting in increased mucosal barrier permeability, 1023 

allowing translocation of microbes and toxins into the circulation (296), with an associated 1024 

increase in systemic immune cell activation and inflammation (297, 298). Studies in mice have 1025 

revealed that co-housing aged mice with young germ free mice increase systemic inflammation 1026 

and immunesenescence in the young mice as they ingest faeces of the aged mice and acquire 1027 

their gut microbiome (299). These data together suggest that age-related dysbiosis contributes to 1028 

immunesenescence and inflammaging, though these findings need to be confirmed in humans. 1029 

Physical inactivity: A wealth of observational studies have confirmed that regular physical 1030 

activity is associated with lower levels of circulating pro-inflammatory cytokines, such as CRP 1031 

and IL-6 (300, 301). In a recent meta-analysis, data from eight exercise intervention studies 1032 

(resistance, aerobic and combined) showed a positive effect of exercise in reducing the 1033 

inflammatory profile in older adults (302). The potential mechanisms by which physical activity 1034 

exerts an anti-inflammaging effect include reduction in fat mass, we discuss the potential role of 1035 

adiposity in inflammaging and frailty further in section 3.4. Part of the pro-inflammatory nature 1036 

of adipose tissue is based upon the infiltration of monocytes/macrophages and senescent cells, 1037 

which then produce pro-inflammatory cytokines (303). Studies in mice have shown that enforced 1038 

physical inactivity (withdrawal of a running wheel) led to an increased senescent cell load in 1039 

adipose tissue which was prevented by exercise (304). Importantly, exercising muscle is anti-1040 

inflammatory. When released from exercising muscle, IL-6 is termed a myokine and, in this 1041 

context, produces systemic anti-inflammatory effects (305) via a variety of actions including 1042 

increased levels of anti-inflammatory cytokines IL-10 and IL-1RA as well as cortisol (306). IL-6 1043 

is thus a dual functioning cytokine with its actions very much context-dependent; when produced 1044 

by immune cells and at a high circulating level, such as during infection, it is pro-inflammatory, 1045 

but when produced at lower levels, such as during exercise, it acts on macrophages to switch 1046 

them to an M2 phenotype producing anti-inflammatory cytokines (307).  1047 

3.1.6 Adipose tissue 1048 
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Ageing is associated with increased adiposity, such as an increased whole body and abdominal 1049 

fat deposition (308-311). This age-related increase in abdominal adiposity is reportedly mainly 1050 

attributable to increased visceral, as opposed to subcutaneous, fat deposition (312, 313). The 1051 

health implications of increased adiposity with age are complex and still poorly understood, with 1052 

adiposity in overweight and obese older people being positively associated with mortality in 1053 

some studies (314, 315), but not others (316). Being overweight and obese has even been 1054 

associated with better outcomes in various medical conditions (316-318) and a reduced risk of 1055 

clinical events in frail individuals (319). Nonetheless, the links between adiposity and physical 1056 

function deterioration and disability (320, 321), in conjunction with the presence of weight loss 1057 

as a component criterion of the physical frailty phenotype (16), warrants the investigation of 1058 

adipose tissue within the context of frailty.  1059 

Crude indices of obesity (e.g., BMI ≥ 30 kg/m2 and waist circumference) have been adopted as 1060 

indirect assessments of adiposity within studies of frailty, producing conflicting results. A 1061 

systematic review of 6 longitudinal studies revealed a direct association between obesity and the 1062 

incidence of frailty (23). For example, a longitudinal study among 28,181 older women reported 1063 

an almost four-fold increased risk of developing frailty in obese individuals compared to those 1064 

with a normal BMI, after a 3-year follow-up (322). This finding has been confirmed in another 1065 

large sample study, showing an increased risk of frailty with each additional year of obesity 1066 

(323). Cross sectional data also highlights that obesity is associated with a higher risk of pre-1067 

frailty and frailty in women aged 70-79 years (324). Whether this is a direct causative 1068 

relationship is unknown, but the association remained statistically significant after adjustment for 1069 

multiple conditions (diabetes mellitus, heart failure etc.) and inflammation status (324).  1070 

In contrast to the above findings, longitudinal studies illustrate that low BMI (<18.5 kg/m2) is 1071 

associated with the risk of frailty, when compared with normal BMI (18.5-24.9 kg/m2) (322). 1072 

This observation is corroborated by cross-sectional data highlighting a significantly lower BMI 1073 

in frail versus non-frail individuals (325). Accordingly, a U-shaped relationship between frailty 1074 

and adiposity may be evident, with low and high (as opposed to normal) levels of adipose tissue 1075 

contributing to increased risk of frailty, which would be consistent with BMI data (322). 1076 

However, the adoption of crude and indirect assessments of adiposity (i.e., body mass and waist 1077 

circumference) in these studies limits insight into the relationship between frailty and adiposity. 1078 
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Studies quantifying adiposity with imaging techniques during frailty are rare. Idaote et al., (62) 1079 

highlighted greater pericardial and visceral adipose tissue in the lumbar region of non-frail 1080 

compared to frail older participants following CT scanning, providing support for the 1081 

longitudinal data highlighting associations between low BMI and frailty (322). Reduced 1082 

adiposity may therefore underpin the typical non-intentional weight loss trait exhibited by frail 1083 

persons (16). However, a large sample study adopting CT scanning observed similar lower leg 1084 

adipose tissue CSA in non-frail and frail individuals (61). Direct comparison of the results of this 1085 

study to those of Idaote et al., (62) is difficult due to differences in quantification of adipose 1086 

tissue stores in different body regions. Consequently, research in this area would benefit from 1087 

utilising imaging techniques to directly quantify whole body and regional adiposity with 1088 

longitudinal study designs, in order to better understand the complex relationship between frailty 1089 

and adipose tissue.  1090 

DEXA estimates of fat mass also reveal mixed findings regarding the link between frailty and 1091 

adiposity, with one study reporting a greater body fat percentage (i.e., total fat mass in relation to 1092 

total body mass) in frail compared to non-frail participants (49). However, when expressed as an 1093 

absolute estimate (measured in grams) the difference in total body fat mass was non-significant. 1094 

DEXA estimates of total fat mass have also been highlighted as similar between non-frail, pre-1095 

frail and frail individuals in a large Taiwanese sample (50) and a smaller cohort from the 1096 

Women’s Health and Aging study (52). Thus, these conflicting results underscore poor 1097 

understanding of the relationship between frailty and adiposity, reinforcing the requirement for 1098 

uniform measurement approaches and large sample longitudinal studies to progress this area. 1099 

Potential mechanisms of altered adiposity during frailty 1100 

Physical inactivity and high levels of sedentary behaviour contribute to increased fat mass (326, 1101 

327). Considering these behaviours are associated with frailty (83, 328), and low physical 1102 

activity is a component criterion of the physical frailty phenotype (16), inactivity may contribute 1103 

to increased fat mass during the syndrome. Mechanisms mediating physical inactivity induced 1104 

elevations in adiposity may include a reduction in skeletal muscle insulin sensitivity, leading to 1105 

the accumulation of central and visceral adipose tissue (329, 330). For example, bed rest models 1106 

of inactivity highlight a reduction in insulin sensitivity and dysregulated lipid and glucose 1107 

oxidation in tandem with increased adiposity and IMAT accumulation (331), particularly under 1108 

conditions of positive energy balance (332, 333). These findings are reinforced by reports of 1109 
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greater rates of hepatic free fatty acid uptake in individuals with low physical activity levels 1110 

(334), whereas habitual endurance training is associated with a reduced hepatic free fatty acid 1111 

uptake (335). Although these findings are not specific to frailty, they present potential 1112 

mechanisms by which inactivity contributes to increased adiposity in frail individuals.  1113 

Increased adiposity may be contributing to the enhanced inflammatory state evident in frail 1114 

individuals (336, 337). Higher levels of circulating IL-6 have been attributed to increased fat 1115 

mass and obesity (338), with previous work demonstrating that up to 30% of circulating levels of 1116 

IL-6 may be released from subcutaneous adipose tissue in obese subjects (339). Proinflammatory 1117 

cytokines may in turn negatively influence other physiological systems, such as muscle mass and 1118 

function (268). IMAT is also a proposed site of inflammatory cytokine release. Accordingly, 1119 

increased IMAT and IL-6 protein content in the vastus lateralis has been observed during frailty 1120 

(59), perhaps suggesting larger IMAT stores may further contribute to an enhanced inflammatory 1121 

environment and facilitate skeletal muscle atrophy in frail individuals. Indeed, obese older men, 1122 

who presented with heightened systemic inflammation and far greater adiposity compared their 1123 

non-obese age-matched counterparts, also experienced a blunting of the acute muscle protein 1124 

synthetic response to increased nutrient delivery (340). However, these same individuals 1125 

presented with greater lean tissue mass and had no impairment of muscle strength or work done 1126 

during repeated knee extensor contractions. Analysis of muscle mRNA expression in these obese 1127 

older men, showed reduced levels of transcripts for cytochrome c, peroxisome proliferator–1128 

activated receptor-α, peroxisome proliferator–activated receptor-γ coactivator 1-α, and TFAM 1129 

which are associated with mitochondrial biogenesis or oxidative phosphorylation, whereas 1130 

expression of myostatin, a negative regulator of muscle growth, was greater in obese skeletal 1131 

muscle (340). Whether these observations in non-frail men are representative of frail people is 1132 

unknown, but the mRNA pattern was consistent with muscle deconditioning being a driver of 1133 

metabolic dysregulation (340), which is pertinent to frailty. Importantly, it is unknown whether 1134 

any of these muscle level characteristics are drivers of muscle deterioration in obesity or a 1135 

consequence of it.   1136 

3.1.7 Multisystem dysregulation 1137 

Research on ageing and frailty biomarkers, including most studies cited above, has traditionally 1138 

focused on individual biomarkers. However, investigations into single mechanism explanations 1139 

of ageing, such as inflammation and oxidative stress, have produced multi-factorial explanations, 1140 
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in which multiple physiological processes interact (341, 342). This has led to the proposal of 1141 

nine Hallmarks of Ageing, comprising a sequence of processes that lead to the aged phenotype in 1142 

various organ systems. The sequence is initiated by the accumulation of damage within cells, 1143 

producing responses such as mitochondrial dysfunction and cell senescence, with endpoints of 1144 

inflammation and reduced stem cell turnover effecting biological ageing (291). This 1145 

understanding has led to a change in how ageing, and in turn frailty, mechanisms are perceived, 1146 

with many researchers now acknowledging multisystem physiological dysregulation as a key 1147 

biological underpinning of health decline during ageing.  1148 

The rationale for considering frailty as a state of several disordered systems is provided by the 1149 

links between frailty and different syndromes such as sarcopenia (343), vascular dementia (128) 1150 

and heart failure (193) (Figure 4). Further, results from the Cardiovascular Health Study cohort 1151 

revealed associations between frailty and dysregulation in the cardiac, vascular and cerebral 1152 

systems (193). Although, in this study, these systems were not evaluated together regarding their 1153 

contribution to frailty presence. Nonetheless, collectively these findings point to dysregulation in 1154 

multiple physiological systems during frailty, which has instigated a focus of research in this 1155 

area.  1156 

Multisystem dysregulation was first investigated by analysing 12 biomarkers in eight different 1157 

physiological systems (anaemia, inflammation, IGF-1, DHEAS, haemoglobin A1c, 1158 

micronutrients, adiposity and fine motor speed) of frail and non-frail older women (273). It was 1159 

demonstrated that an increasing number of abnormal physiological systems were related to an 1160 

increased likelihood of being frail, with abnormality in three or more systems deemed a 1161 

significant predictor of frailty (273). Notably, the cumulative number of dysregulated systems, as 1162 

opposed to any specific system, was the dominating factor predicting frailty severity. The 1163 

relationship between accelerating frailty and an increasing number of abnormal systems was 1164 

non-linear (273), suggesting there may be a threshold beyond which an adverse downward spiral 1165 

of frailty progression is evident. This would be consistent with the concept of ‘majority rules’ in 1166 

systems biology (344, 345), whereby the aggregate of impaired systems may adversely affect the 1167 

function of other unimpaired systems driving the whole system to a more dysregulated state.  1168 

Frailty at a multi-system level has also been investigated using a statistical approach that 1169 

estimates physiological dysregulation during ageing by assessing the difference between a 1170 

discrete biomarker value and the average value for a population mean (341). Using data from 1171 
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nearly 33,000 individuals, and analysis of 37 biomarkers grouped into six physiological systems 1172 

(lipids, immune, oxygen transport, liver function, vitamins and electrolytes), Li et al., revealed 1173 

dysregulation in several systems, and proposed the establishment of a global dysregulation score 1174 

(collated estimates on all biomarkers) that predicts the magnitude of frailty presence (346). 1175 

Interestingly, no individual system was markedly better at predicting frailty than another (346). 1176 

Using this statistical approach, and similar physiological system groupings for biomarkers, a 1177 

study of 1754 volunteers also reported multisystem dysregulation during frailty (347) and also 1178 

concluded no individual systems were more important than others. This is particularly relevant 1179 

given the study assessed a different group of physiological systems to that used by Fried et al., 1180 

(273). However, some noteworthy discrepancies can be seen between these two studies. Firstly, 1181 

the nonlinearity effect of enhanced frailty risk with an increasing number of dysregulated 1182 

systems, reported by Fried et al., (273), was not corroborated and was attributed to the limited 1183 

sample size of frail individuals (347). Secondly, this study did not confirm that the number of 1184 

systems dysregulated was predictive of frailty presence. This inconsistency may be partially 1185 

explained by the different definitions of frailty criteria adopted across studies, which has been 1186 

shown to affect the agreement and predictive ability of the physical frailty phenotype (348). 1187 

Further, the sample in Fried et al., (273) was comprised of all female participants whereas the 1188 

cohorts studied by Ghacem et al., (347) included men and women. The widely reported greater 1189 

prevalence of frailty in females (349) suggests there may be a gender difference in the 1190 

physiological characteristics of frailty, which may contribute to differential findings across these 1191 

studies.  1192 

Multisystem dysregulation has also been reported by other research groups. Using previously 1193 

established cutoff points, against which measured values for different systems were compared, 1194 

the prevalence of frailty was found to be directly related to the number of abnormal organ 1195 

systems (when considering cardiac, vascular, pulmonary, renal, haematological and adipose 1196 

systems) (196). Additionally, this study found that cardiac abnormalities showed the strongest 1197 

association with frailty compared to the other organ systems measured, supporting the premise 1198 

outlined earlier that the heart is a key organ contributing to frailty development.  1199 

The observations of multisystem dysregulation support the concept of frailty as a condition of 1200 

numerous abnormalities in a complex system (i.e., the human body). However, current findings 1201 

from studies comparing physiological characteristics across systems and organs may be 1202 
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compromised by less precise and inaccurate assessment methodologies. For example, whole 1203 

body adiposity has been measured using skinfold thickness (273) and BIA methods (196), which 1204 

are less robust than DEXA and MRI but were likely adopted due to their feasibility of 1205 

application in studies involving large participant numbers. Furthermore, the physiological 1206 

systems assessed in many studies are distinguished based on circulating biomarkers, which are 1207 

by their very nature likely to be less representative of the associated organ and tissue functions. 1208 

Thus, to further understand the contribution of different physiological systems to the frailty 1209 

phenotype and to more accurately model and predict frailty progression, future studies should 1210 

strive to gather more direct measures of key organ structure and function to expand on initial 1211 

circulating biomarker-based reports.  1212 

3.2 The physiological phenotype of frailty: using a stress stimulus paradigm  1213 

The literature described thus far has identified numerous physiological traits associated with 1214 

frailty. Despite this, the distinct physiological characteristics of frailty remain poorly understood. 1215 

This lack of clarity may be because many studies are performed under resting-state conditions, 1216 

thus failing to capture the dysregulation of dynamic homeostasis that is central to the definition 1217 

of frailty (350). In short, in the absence of acute infection, illness and injury, without the 1218 

presence of external stressors such as physical activity, the dysregulation of physiological 1219 

homeostasis in frailty may be subtle or undetectable, particularly in the absence of robust and 1220 

sensitive measurement techniques to quantify physiological resilience. Thus, the phenotypic 1221 

traits of frailty would likely manifest more overtly than in the resting state if individuals were 1222 

studied during a physiological stress challenge, such as exercise (Figure 7), particularly if using 1223 

state-of-the-art dynamic measurement approaches to quantify physiological responses. Indeed, 1224 

frailty is considered as a state during which an individual’s ability to cope with and combat 1225 

stressors is reduced (13), i.e., reduced resilience. Accordingly, the measurement of dynamic 1226 

responsiveness to physiological stressors has been identified as a fundamental next step in frailty 1227 

research (351). Despite this, understanding of the physiological responses to stressors during 1228 

frailty remains limited, with much less available data relative to measures made in the resting 1229 

state (outlined above). Nonetheless, a recent review by Fried and colleagues (352) discussed 1230 

various physiological responses to stressors during frailty, which, promisingly, indicates that this 1231 

area of research is gaining attention. The following section will attempt to summarise the current 1232 

evidence and understanding of the physiological responses to stressors during frailty. 1233 
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A highly effective method of inducing physiological stress in vivo is acute exercise. A bout of 1234 

exercise will induce rapid and marked changes in physiological function involving multiple 1235 

organs (for review see (353)). For example, Figure 7 illustrates the change in cardiac output and 1236 

its distribution transitioning from rest to vigorous exercise across multiple organ systems. 1237 

3.2.1 Skeletal muscle energy metabolism 1238 

Exercise necessitates a rapid and sustained increase in muscle ATP turnover, from circa 0.07 mol 1239 

ATP/min at rest to > 2 mol ATP/min in heavy exercise (354). When the rate of ATP demand 1240 

exceeds that of mitochondrial ATP production, energy is derived from non-mitochondrial routes, 1241 

namely anaerobic glycolysis and phosphocreatine (PCr) hydrolysis (Figure 9). Muscle lactate 1242 

accumulation and PCr hydrolysis during exercise are robust markers of muscle myopathy (355, 1243 

356) and mitochondrial dysfunction (357). Furthermore, muscle deconditioning and 1244 

mitochondrial loss in ageing and chronic disease are associated with increased non-1245 

mitochondrial muscle ATP production during exercise stress (38, 358). Finally, as muscle PCr 1246 

resynthesis following exercise is entirely mitochondrial-dependent, the slowing of PCr 1247 

resynthesis kinetics during recovery from exercise can be viewed as a robust index of 1248 

mitochondrial function and/or mass (359, 360). Changes in muscle energy metabolism during 1249 

exercise and recovery are therefore likely to provide valuable insight into muscle metabolic and 1250 

functional decline during frailty.  1251 
31Phosphorous magnetic resonance spectroscopy (MRS) represents a robust, non-invasive in vivo 1252 

approach to quantify muscle PCr and pH changes during exercise and recovery, making it well 1253 

suited to study age and frailty related decline. A recent study employed this approach in age 1254 

matched non-frail and frail older individuals, who performed graded multi-stage plantar flexion 1255 

exercise within the bore of a 3 Tesla magnet using 31P MRS focussed on the gastrocnemius and 1256 

soleus muscles of the calf (63). During exercise, muscle PCr hydrolysis was four-fold greater in 1257 

the frail participants (and ten-fold greater than middle-aged controls), when normalised to the 1258 

work of activity performed. Further, this increased rate of PCr hydrolysis was strongly inversely 1259 

associated with performance in a six-minute walk test  and peak oxygen uptake (63). These 1260 

results help illuminate potential physiological mechanisms underpinning the reduced physical 1261 

function and subjective sense of fatigue in frailty (16). Of interest, this study also reported no 1262 

difference in MRI derived calf muscle CSA when comparing frail and non-frail individuals. 1263 

Instead, the muscle CSA fat fraction (expressed as a proportion of total muscle area) of frail 1264 
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individuals was greater than their non-frail counterparts (63). Furthermore, the fat fraction was 1265 

positively associated with PCr hydrolysis, suggesting differences in muscle metabolic quality, 1266 

rather than mass, can differentiate the frail phenotype. It also begs the question as to whether 1267 

increased habitual physical activity intervention in frail people could improve muscle metabolic 1268 

resilience and thereby functionality in everyday living.  1269 

Considering exercise recovery, Andreux and colleagues compared calf muscle PCr recovery 1270 

following plantar flexion exercise in pre-frail and non-frail older individuals using 31P MRS at 7 1271 

Tesla (361). Pre-frail individuals exhibited longer PCr recovery times than physically active non-1272 

frail counterparts, suggesting reduced mitochondrial respiration/content is a feature of the pre-1273 

frail state. However, this study did not report the muscle PCr concentration immediately post-1274 

exercise, making it difficult to interpret the findings, i.e., was the slower recovery a consequence 1275 

of differences in the rate of ATP turnover, and thereby PCr degradation, during exercise? Given 1276 

that cellular ADP concentration is a primary driver of post-exercise mitochondrial resynthesis, 1277 

this is a pivotal question to resolve.  1278 

A noteworthy limitation of the work described above concerns the lack of efforts to normalise 1279 

PCr recovery kinetics to total mitochondrial content across the muscle of interest. Without this 1280 

normalisation, mitochondrial dysfunction cannot be assumed because a lower mitochondrial 1281 

content would also slow PCr recovery kinetics. Indeed, the available data indicate that 1282 

dysfunction in mitochondrial respiration that is apparent in ageing (38) and chronic disease (e.g. 1283 

COPD (362); diabetes (363)) fails to persist when mitochondrial respiration is corrected for 1284 

muscle mitochondrial content. Accordingly, ‘mitochondrial dysfunction’ in older people was 1285 

reversed by exercise training increasing mitochondrial content (38). Assessing succinate 1286 

dehydrogenase as a marker, lower mitochondrial content has been observed in pre-frail 1287 

compared to non-frail men in all fibre types of the vastus lateralis (364). A lower vastus lateralis 1288 

muscle mitochondrial content has also been demonstrated in pre-frail and frail women, when 1289 

compared to young inactive participants (365). Additionally, large cohort studies have revealed 1290 

inverse associations between mitochondrial DNA (mtDNA) copy number (an index of 1291 

mitochondrial number) and polymorphisms in mtDNA with frailty (366, 367). Furthermore, 1292 

lower abundance and maximal activity of mitochondrial respiratory complexes has been reported 1293 

in muscle of frail and pre-frail compared to non-frail individuals (361, 368).  1294 
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Collectively, these findings point to greater research being needed to differentiate between the 1295 

relative contribution of mitochondrial dysfunction vs decline in mitochondrial content to the loss 1296 

of metabolic resilience in frailty. However, irrespective of this point, emerging evidence 1297 

indicates altered muscle energy metabolism is a key underlying feature of generalised 1298 

physiological decline and fatigue in frailty (Figure 9). Furthermore, as the change in tissue 1299 

energy metabolism is seemingly associated with dysregulation across numerous different organ 1300 

systems, this may be a common biological feature of frailty related decline.  1301 

3.2.2 Responses to feeding   1302 

Alternative to exercise stress, a substantial physiological response can also be elicited by 1303 

feeding. Following ingestion of carbohydrates, plasma glucose concentrations increase, 1304 

stimulating pancreatic insulin secretion. Insulin facilitates skeletal muscle and hepatic glucose 1305 

uptake for storage and/or use; thus, insulin secretion and action are key responses mediating 1306 

glucose tolerance. Ageing is associated with changes in the response to feeding, with older adults 1307 

demonstrating decreased insulin sensitivity and elevated blood glucose levels after an oral 1308 

glucose challenge (369, 370). Whilst many studies have demonstrated insulin resistance in 1309 

healthy older participants, fewer studies have controlled for typical physiological characteristics 1310 

of ageing that may influence the interpretation of results, such as muscle mass, a decline in 1311 

habitual physical activity, changes in liver size and delays in gut carbohydrate absorption. These 1312 

limitations make it difficult to infer if impaired glucose tolerance is a feature of normal ageing 1313 

per se or a consequence of age-related changes in lifestyle factors that vary in presence and 1314 

magnitude between individuals.  1315 

An oral glucose tolerance test (OGTT) has been used to elicit a physiological response across 1316 

different frailty states. Kalyani and colleagues reported no differences in fasted blood glucose 1317 

and insulin concentrations between frailty states. However, following an oral glucose challenge, 1318 

frail females exhibited exaggerated increases in blood glucose and insulin concentrations over 1319 

180 min compared to pre-frail and non-frail women, demonstrating impaired glucose tolerance 1320 

(371). These findings are consistent with the observation that plasma glucose concentration was 1321 

elevated 2 hours post oral glucose ingestion in frail volunteers compared to non-frail individuals, 1322 

but not in the baseline fasted state (372). Similarly, following a standardised 700 kcal liquid 1323 

mixed-meal test, the area under the curve values for five hours post-consumption for glucose and 1324 

insulin were elevated in frail compared to non-frail women (373). Whilst these findings may 1325 
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reinforce an apparent reduction in glucose tolerance in frail individuals, frailty in this study was 1326 

defined using only the slow gait speed and low physical activity criteria of the physical frailty 1327 

phenotype (16), and thus may be deemed an inappropriate evaluation of frailty ascertainment. 1328 

That said, there is evidence these two frailty criteria are the most predictive components of the 1329 

frailty phenotype assessment (374), potentially supporting the assessment of frailty in this way.  1330 

The studies outlined above suggest glucose tolerance is impaired during frailty. However, 1331 

nutrient absorption in the gastrointestinal tract often deteriorates with age (375) and therefore 1332 

will influence glucose absorption following an OGTT or meal test. Furthermore, body size will 1333 

influence the blood glucose response when a fixed dose of carbohydrate is administered, e.g., in 1334 

the OGTT. For this reason, researchers may employ an intravenous glucose tolerance test or  the 1335 

euglycaemic insulin clamp technique to control for the effects of gut absorption and body 1336 

size/lean mass on blood glucose disposal (and insulin action in the case of the insulin clamp 1337 

technique). When this has been done, the rate of glucose disposal normalised to body surface 1338 

area (and across a range of steady-state insulin infusion rates) was less in healthy, non-obese 1339 

older volunteers compared to younger volunteers (376). The same is true when comparing older 1340 

lean and obese individuals at the level of whole body and leg glucose uptake (340). Although 1341 

equivalent data in frail volunteers are missing, these lower rates of normalised whole-body and 1342 

leg glucose disposal in older vs young people demonstrates insulin resistance with age is a real 1343 

phenomenon, and likely to be multi-factorial. It appears that methods such as the Quantitative 1344 

Insulin Sensitivity Check Index and homeostasis model assessment scores have been most 1345 

frequently adopted to assess insulin sensitivity in frailty (377-379). However, these approaches 1346 

are estimates based on fasting blood glucose and insulin concentration and therefore do not 1347 

reflect the dynamic gluco-regulatory response to feeding. Accordingly, in the Baltimore 1348 

Longitudinal Study of Aging, glucose level at two hours post-OGTT was a better predictor of 1349 

mortality risk than fasting glucose alone (370, 380), with similar findings evident in the 1350 

Cardiovascular Health Study concerning incident cardiovascular events (381). Although not 1351 

specific to frailty, these findings reinforce the importance and efficacy of studying physiological 1352 

characteristics under conditions of stress in order to effectively interpret results. 1353 

4.0 Exercise interventions in frailty prevention 1354 

In the last 10-years there has been a noticeable increase in exercise-based interventions to limit, 1355 

reverse or prevent frailty in older adults (Table 2). This is because it is becoming increasingly 1356 
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recognised that regular exercise induces positive adaptation in most, if not all, 1357 

organ/physiological systems. As described above, muscle weakness, low physical activity and 1358 

slowness are the most discriminant physical components of frailty, suggesting they are important 1359 

modifiable targets for interventions (382-384). As such, multifactorial interventions (e.g., 1360 

nutrition, psychosocial and balance) that include increased exposure to exercise are strong 1361 

candidates for targeting components of frailty (385). Several meta-analyses have examined the 1362 

strength and outcomes of exercise trials that aim to change frailty status or reduce frailty 1363 

prevalence (386-391) (Table 2). Although there is heterogeneity among trials, those that include 1364 

exercise interventions generally favour better outcomes over non-exercise based interventions 1365 

(389). Reasons for such variance are the heterogeneity of study design and study populations. In 1366 

general, the study populations are also multimorbid, with many participants having 10 or more 1367 

chronic diseases (389). Additionally, although several studies have assessed the impact of 1368 

exercise interventions on individual components of frailty in non-frail older adults (e.g., walk 1369 

speed and grip strength) and observed positive effects, results require careful interpretation (389, 1370 

390). Specifically, as frailty is a complex construct, focusing effects on one dimension of frailty 1371 

may not adequately address an individual’s underlying drivers of frailty. In the following section, 1372 

we review the findings of exercise interventions that have determined changes specifically on 1373 

frailty, in pre-frail or frail older adults (Table 2). We will discuss the components of frailty that 1374 

were changed by exercise interventions and attempt to link findings to pathophysiological drivers 1375 

of frailty.  1376 

4.1 Reversing Frailty in Frail Adults 1377 

Prior to the Fried physical frailty phenotype, one of the most impressive interventions showing 1378 

positive results in long-term nursing home men and women was the Boston FICSIT study (37, 1379 

39). Although frailty was less well defined, the majority of participants were likely frail due to 1380 

low mobility, strength and nutritional intake measurements. In the first of these studies, 8-weeks 1381 

of high-intensity (around 80% of 1 repetition maximum) supervised progressive lower-body 1382 

resistance training resulted in significant muscle strength, mass, and function gains (39). In the 1383 

randomised control follow-up study, 10-weeks of the same exercise programme with or without 1384 

a dietary supplement also increased muscle strength, mass, and function (37). Together, the 1385 

Boston FICSIT suggested that high-intensity supervised resistance training could improve 1386 

physical function in predominantly frail or dysfunctional very old adults.  1387 
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Given there were few adverse events, and the intervention was feasible, the results of the below 1388 

trials using predominantly moderate-intensity exercise, highlights a continuing debate. Can a 1389 

frail person perform, and should we expect them to perform exercise at the necessary intensity 1390 

and duration to induce frailty improvements? To the best of our knowledge, only three 1391 

adequately powered and randomised control studies (392-394) and one randomized sub-study 1392 

(395) have been conducted specifically in frail adults with the aim of reversing frailty. Using the 1393 

Fried frailty phenotype, frailty reversal was considered if status changed from frail (score ≥ 3) to 1394 

either pre-frail (score = 1 – 2) or non-frail (score = 0) at post-intervention and/or follow-up.   1395 

Kim et al., assessed 131 women randomized to one of four 3 month interventions followed by a 1396 

4-month post-intervention follow-up (393). Groups consisted of combinations of either a milk-1397 

based nutritional supplement (MFGM) or placebo and twice-weekly 60-minute moderate-1398 

intensity instructor-led exercise classes that included 30-minutes of strengthening exercises and 1399 

20-minutes of balance and gait training. At the three-month time point, between 28.1% and 1400 

57.6% of participants were reclassified as not frail, with the exercise and nutritional supplement 1401 

observing the largest changes in frailty scores. At the four-month follow-up, both exercise 1402 

groups continued to have significantly more reclassified participants than the placebo group 1403 

suggesting a positive longevity effect of exercise. Although weight loss, exhaustion, low 1404 

physical activity, and slow walk speed were improved by exercise, muscle strength and mass 1405 

were unchanged. Even though the strengthening exercises included arm, leg, and upper body 1406 

exercises, it is unclear whether these lack of changes resulted from inadequate amounts or 1407 

intensity of exercise. The Boston FICSIT study clearly shows that increases in muscle mass and 1408 

strength can be achieved in poorly functioning older adults if the right exercise intervention is 1409 

used and in healthy community-dwelling older adults, exercise training can increase muscle mass 1410 

and strength in interventions as short as 3-months (396).  1411 

In an attempt to understand the physiological mechanisms responsible for the improvements 1412 

seen, Kim et al., measured blood biomarkers associated with general muscle health and brain 1413 

function. BDNF increased in all groups indicating that frailty improvements are associated 1414 

partially with improved neurocognitive capabilities and other studies have shown that exercise 1415 

can increase BDNF and neurocognitive functions in healthy older adults (397). Additionally, 1416 

only the exercise + MFGM group observed reduced myostatin and ratio of IGFBP3 post 1417 

intervention. Although this would indicate improved muscle health that perhaps contributes to 1418 
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the reduction in frailty, the lack of strength and lean mass changes do not support this. As the 1419 

IGFBP3/IGF-1 is presented as a ratio, understanding these directional changes is more complex, 1420 

as it would be expected that lower myostatin and higher IGF-1 would increase muscle mass 1421 

(398). Myostatin is a negative regulator, while IGF-1 is a positive regulator of muscle mass and 1422 

levels of these blood biomarkers are associated with frailty (79). However, inconsistent group 1423 

findings for myostatin and IGFBP3/IGF-1 in this study make it challenging to determine the 1424 

relevance of the results.  1425 

Although these results provide evidence that exercise training can reverse frailty in some frail 1426 

adults, it is unclear why the effects were not observed in all participants. One possible 1427 

explanation is the exercise program was not specific for each physical dysfunction that 1428 

contributed to frailty. To address issue, Cameron et al., assessed 216 men and women 1429 

randomized to either 12-months of usual care or a frailty criteria specific multifactorial 1430 

intervention (392). The intervention focused on each participant’s deficit in individual 1431 

components of frailty. For example, if the weight-loss criteria was identified, participants were 1432 

referred to the study dietician for appropriate nutritional recommendations. The exercise 1433 

component was prescribed if participants met weakness, slowness, and/or low energy 1434 

expenditure requirements. The exercise program consisted of 10 home-based physiotherapist 1435 

sessions and an individualised home-based program which focuses on balance, strengthening, 1436 

and aerobic exercises using progressive moderate-intensities (399).  1437 

There were significantly more participants in the exercise group following the intervention than 1438 

controls that were no longer frail, though the proportion with reversal of frailty was lower than 1439 

seen by Kim et al., Similar to Kim et al., there were no differences in muscle strength. Cameron 1440 

et al., also measured the short physical performance battery and observed improved balance, 1441 

chair stand and walk scores at 12-months suggesting that muscle health was improving. In most 1442 

other settings, supervised exercise training is superior to home-based training for positive 1443 

changes in outcomes and may be so in frail adults. Furthermore, only 44% of participants 1444 

completed the intervention with more than 50% adherence (400), with greater adherence 1445 

associated with better frailty outcomes, suggesting that the amount of exercise needed to see 1446 

meaningful effects is critical.  1447 

In a third study, Tarazona-Santabalbina et al., assessed 100 men and women randomised to 1448 

either 6-months of usual care or a multicomponent exercise program (MEP) (394). The MEP 1449 
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consisted of 5 x 65-minute group sessions per week, combining short periods of proprioception 1450 

and balance, low-to-moderate intensities of aerobic exercise and muscle strengthening exercises. 1451 

More MEP participants were no longer classified as frail following the intervention, while all 1452 

control participants remained frail. However, it is unclear from the study which frailty criteria 1453 

were reduced. Instead, improvements were observed for functional measures, including walk 1454 

speed and physical performance test, and also cognitive function as measured by the mini-mental 1455 

state exam (MMSE). Again no changes were observed for lean mass, although lean mass was 1456 

reported as a percentage and not absolute values, limiting our interpretation of the intervention.  1457 

Finally, Cesari et al., conducted exploratory analyses from the Lifestyle Interventions and 1458 

Independence for Elders pilot (LIFE-P) study (395, 401). Here, 424 community-dwelling men 1459 

and women were randomised to either 12-months of successful ageing education (controls) or a 1460 

progressive physical activity intervention consisting of supervised and home-based activities. At 1461 

12-months, the intervention group was over twice less likely to be frail than controls. 1462 

Furthermore, in this paper, no indications of physiological measures were given limiting our 1463 

ability to relate the study to others, other than a reduction in the incidence of frailty. However, 1464 

the LIFE-P study was not designed to prevent or reduce frailty, and not all the participants were 1465 

frail. Therefore, it is likely that this study design was inappropriate for targeting frailty. It is 1466 

important to note that it is a limitation of such large scale intervention studies that they rarely 1467 

include well controlled exercise protocols, for practical reasons, and moreover the end point 1468 

measures do not give mechanistic insight.  1469 

4.2 Lowering the progression to frailty in pre-frail adults 1470 

Specifically targeting pre-frail adults has the potential to slow down or prevent progression to 1471 

frailty and adverse frailty outcomes. We are aware of only two large, randomised control studies 1472 

that assessed the prevalence of frailty specifically in adults who were pre-frail at baseline (402, 1473 

403) (Table 2). Serra-Prat et al., assessed 172 men and women classified as pre-frail and 1474 

randomised to either 12-months of usual care or a nutritional and exercise intervention (403). 1475 

Only those at risk of malnutrition were referred to clinical nutritional care, while everyone was 1476 

assigned the exercise program. At 12-months, the intervention group had fewer participants who 1477 

had progressed to becoming frail, compared to the control group. No measures of lean mass were 1478 

performed, and BMI was similar between groups at 12-months.  1479 
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More recently, Chen et al., assessed 70 men and women who were randomised to either 8-weeks 1480 

of usual care or an exercise intervention consisting of three weekly-supervised sessions of 45 – 1481 

60 minutes/session of elastic band strengthening exercises (402). After 8-weeks, the intervention 1482 

group had more participants who were no longer pre-frail, compared to the control group. No 1483 

measures of lean mass were performed. Interestingly,  the intervention group improved absolute 1484 

grip strength, walking speed and physical activity levels. Unlike the aforementioned studies the 1485 

increased grip strength was unique and suggests that muscle health can be targeted and 1486 

improved.  1487 

That said, Chen et al., like Serra-Prat et al., targeted grip strength and improved it, suggesting 1488 

that in pre-frail adults, targeting one major frailty criteria is enough to reduce the progression of 1489 

frailty.  1490 

These and the frailty only studies would suggest that exercise training can slow frailty 1491 

development in pre-frail, while reversing frailty in frail adults and that an intensive supervised 1492 

group program rather than unsupervised home-based exercise is associated with better 1493 

improvements in frailty status in pre-frail adults.   1494 

4.3 Interventions in mixed frailty populations 1495 

The previous studies suggest differential responses to exercise depending on the program's 1496 

duration and intensity, supervision and the severity of the frailty classification (i.e., pre-frail v 1497 

frail). To date, most randomised studies have assessed the effects of an intervention in a mixed 1498 

group of frail and pre-frail older adults. As a result the findings are inconsistent because of the 1499 

heterogeneity of people within the study and the type and duration of interventions.  1500 

One of the most comprehensive interventions observed significant reductions in frailty scores 1501 

and reclassification of frailty status across each intervention group (404). Reclassification was 1502 

considered if participants changed from frail to pre-frail, frail to non-frail or pre-frail to non-frail. 1503 

Ng et al., assessed 246 mostly pre-frail and frail men and women randomised to one of five 6-1504 

month interventions and a 6-month follow-up. Interventions were: 1) usual care with a placebo 1505 

supplement; 2) a nutritional supplement; 3) cognitive training; 4) exercise training; or 5) a 1506 

combination of the nutritional supplement, cognitive and exercise training. At 6 months, frailty 1507 

composite scores were lower in both exercise training groups compared to controls. At 12-1508 

months, frailty was significantly reclassified in all the groups except the control group, with both 1509 

exercise groups having the most likelihood of changing their frailty status.  1510 
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Unlike the studies that used grip strength, compared to controls, the frailty criteria of strength 1511 

improved for the exercise and combined groups. Although Ng et al., used leg strength as a 1512 

muscle weakness indicator, which may have biased frailty outcomes, it reinforces our suggestion 1513 

that specificity in measurements limits our ability to interpret physiological changes. Although 1514 

lean mass was not measured and BMI remained unchanged, all other frailty criteria improved 1515 

across certain interventions. This study provides evidence that a period of intensive supervised 1516 

training at the beginning of the intervention provides the best chance of long-term frailty 1517 

outcomes.  1518 

In a second study, Chan et al., randomised 117 adults who were mostly pre-frail or frail to 3-1519 

months of either an exercise and nutrition intervention, a problem-solving therapy (PST) 1520 

intervention or one of 2 controls of each intervention (405). At the end of the study only the 1521 

exercise group had significantly more participants who had frailty reclassified to a lower status, 1522 

with 32% of pre-frail participants improved to non-frail and 40% and 20% of frail participants 1523 

improved to pre-frail and non-frail, respectively. These data suggest that exercise may equally 1524 

improve frailty status across differing frailty definitions. However, in terms of the physiological 1525 

responses, fat-free mass decreased, leg strength increased, but no neurocognitive functions were 1526 

changed in any of the groups. The frailty criteria used was a modified Fried phenotype with a 1527 

classification status based on comorbidities. The actual number of co-morbidities was relatively 1528 

low across the groups (average of 3.5 each) and as such, the participants were a relatively 1529 

‘healthy’ cohort of frail and pre-frail participants.   1530 

Similarly, Seino et al., used a frailty index designed and validated by themselves and recruited 1531 

77 men and women in a randomised 3-month immediate start or delayed start crossover design 1532 

(406). The Check-List 15 (CL15) criteria (407, 408) identified 56 participants as pre-frail and 21 1533 

as frail. Similar to Ng et al., (404), the intervention consisted of exercise, nutritional and 1534 

psychosocial guidance. For all participants, regardless of when the intervention started, it 1535 

reduced frailty scores, 18.4% (immediate) and 12.8% (delayed) of frail participants improved to 1536 

pre-frail or non-frail, respectively. Similar to Kim et al., (393), there was a legacy effect at the 6-1537 

month follow-up. In terms of physiological responses, although lean mass was not assessed, the 1538 

intervention increased weight and BMI and improved timed-up-and go (TUG). At the same time, 1539 

grip strength was ambiguous and cognitive function remained unchanged. As such, it is difficult 1540 

to determine which physiological improvements were driving lowered frailty scores and 1541 
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increased reclassification in frailty. Taken together, the three studies above suggest that exercise 1542 

training may equally lower frailty scores and status in frail and pre-frail older adults, with frail 1543 

adults more likely to improve status.  1544 

We identified three trials with no effects compared to controls. Nagai et al., assessed whether the 1545 

addition of aerobic exercises to a resistance training program would improve frailty (409). With 1546 

both groups receiving resistance training, the 24-week study in 41 frail and pre-frail men and 1547 

women observed reduced frailty scores in those with the addition of aerobic training. However, 1548 

this did not translate to significant differences between groups for frailty classification. The 1549 

combined group improved the frailty criteria for weight loss and grip strength, while the 1550 

exhaustion criteria worsened in the control group. In terms of physiological changes, the 1551 

combined group increased leg strength and power, time spent in low-intensity physical activity, 1552 

and cognitive behaviour changed more than the controls. Both groups equally improved their 1553 

walking speed and TUG times. These effects suggest that resistance plus aerobic training for 24 1554 

weeks can improve muscle strength, components of cardiovascular fitness and cognitive function 1555 

more than resistance, while physical performance is equally improved with resistance training.  1556 

Chan et al., completed the follow-up to their 2012 pilot study (reviewed earlier in this section) 1557 

and utilized similar intervention components, except combined into one intervention with two 1558 

groups (410). Here, they assessed 289, mainly pre-frail and frail men and women randomized to 1559 

6-months of either a predominantly home-based DVD or an intensive supervised exercise and 1560 

problem-solving sessions, and the home DVD. At 6-months, with around 40% of all participants 1561 

changing frailty status, both groups observed similar effects between home-based and supervised 1562 

interventions. Using the modified frailty index that reflected the Taiwanese population, at most 1563 

time points there were frailty criteria improvements observed for exhaustion, energy expenditure, 1564 

5-meter walking time and grip strength. Although these modified frailty scores were improved, 1565 

only the TUG and one-leg-stand time improved, while lean mass remained unchanged for the 1566 

Fried Frailty Phenotype. As such, both an intensive and less intensive intervention may improve 1567 

frailty criteria.  1568 

Finally, Luger et al., assessed 80 mostly pre-frail and frail men and women randomized to 12-1569 

weeks of either social support (controls) or a whole-body resistance-based exercise and nutrition 1570 

intervention (411). After 12-weeks, both groups combined significantly reduced the prevalence 1571 

of frailty, but no differences between groups were observed. This study focussed on nutritional 1572 
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health, and as such no measures of individual frailty criteria or muscle mass were completed, 1573 

limiting our ability to determine physiological responses.  1574 

4.4 Longevity of the impact of interventions 1575 

A final aspect of interventions is the longevity, or legacy, of the observed effect. Few studies 1576 

have considered this element, but recently Oh et al., reported on a non-randomised 1577 

multicomponent intervention in 383 socioeconomically vulnerable older Korean men and women 1578 

(412). One hundred and eighty-seven participants chose the 6-month intervention consisting of 1579 

supervised group exercise sessions. In addition, participants received a daily nutritional 1580 

supplement, medication assessment to reduce polypharmacy, therapy for depression if this was 1581 

diagnosed, and home environment assessment to minimise trip hazards. Frailty was assessed by 1582 

the Fried frailty phenotype and the deficit-accumulation frailty index at baseline (6 months 1583 

before the start of the intervention) and at the end of the intervention, plus 6 months after the 1584 

intervention completion and again 12 months later. The baseline scores for frailty phenotype and 1585 

frailty index suggest the groups were largely pre-frail. The intervention group were frailer, 1586 

suggesting that less frail individuals are less likely to desire an intervention. At the end of the 6-1587 

month intervention, the intervention group had a lower frailty index and phenotype scores than 1588 

controls. However, when participants were reassessed 6 and 18 months after the intervention, the 1589 

differences between groups were non-significant. Nevertheless, at the end of the intervention, the 1590 

intervention group had significantly higher physical performance scores (SPPB) and these scores 1591 

remained higher than controls until the completion of the study 18 months later.  As such, these 1592 

findings are in line with other studies in pre-frail adults but critically suggest that interventions 1593 

must be maintained for the benefit to persist, which is to be expected. 1594 

4.5 Summary exercise interventions in frailty prevention  1595 

Taken together, when exercise is included as part of a frailty prevention or reduction program, 1596 

positive effects compared to usual care control groups are generally observed. Specifically, if 1597 

exercise is part of a multimodal approach that also targets other components of frailty, including 1598 

nutritional deficits, psychosocial education or cognitive function, effects are larger and appear 1599 

more robust over time. Frailty scores and frailty status appear to be improved more when the 1600 

program is designed for frailty, rather than other conditions such as poor mobility. Additionally, 1601 

adherence is often low and may explain, in part, the heterogeneity of responses. Increasing 1602 

adherence, either through simplifying the program or conducting it in a supervised environment 1603 
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will likely improve outcomes. However, not all supervised interventions improved frailty status. 1604 

We noticed that the majority of studies prescribe exercise using non-specific often-qualitative 1605 

physiological measures, including RPE or predicted maximum heart rate. Although this approach 1606 

is more generalisable, it often over-, or under-estimates exercise intensity making it challenging 1607 

to compare results and determine possible underlying physiological mechanisms. For example, 1608 

we observed there is mostly a lack of effect of exercise on individual frailty criteria, muscle mass 1609 

and muscle strength. Non-frail older adults typically respond more positively to exercise training 1610 

studies prescribed from exact fitness measures. However, from the current literature, it is unclear 1611 

if the lack of effects on muscle results from too low exercise intensities caused by non-specific 1612 

prescription, or an effect from the underlying pathophysiological causes of an individual’s 1613 

frailty. The work from Boston FICSIT Study would suggest that it may be too low exercise 1614 

intensities.  1615 

5. Knowledge gaps and recommendations for future research 1616 

Frailty is currently defined by clinical criteria based either on the physical phenotype or the 1617 

accumulation of deficits, with little assessment of the physiological changes that drive the 1618 

criteria. We suggest that this is limiting our ability to adequately stratify pre-frail and frail older 1619 

adults and design targeted interventions to reduce or prevent frailty developing. Importantly from 1620 

a physiological standpoint, the majority of studies have involved assessment of the 1621 

characteristics of individual organs and have been carried out under resting-state conditions. This 1622 

is not optimal for understanding frailty, which is a complex multi-organ condition whose 1623 

definition is based upon a decline in robustness or resilience to stressors.  1624 

Recommendation 1: We suggest that going forward, we require integrative modelling of 1625 

individual physiological components at rest and under challenge, including through exercise, to 1626 

define the physiological phenotype of frailty. In addition to this overarching change in approach 1627 

to frailty we suggest there are distinct gaps in our understanding or approach to frailty research 1628 

that should be addressed in future research studies: 1629 

Clinical: Clinical studies should focus on reporting the phenotypic differences between non-frail 1630 

and frail older individuals so it is clear moving forward what we define as normal, or healthy 1631 

ageing – a chronological process that does not affect function - as opposed to unhealthy ageing, a 1632 

pathological process that leads to reduction in function (of a person, physiological system, or 1633 
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organ system). These clinical studies need deliberate matching to concurrent study of the 1634 

underlying physiology we discuss below.  1635 

Brain: Several aspects of age-related changes to brain anatomy and physiology are under-1636 

researched in relation to their contribution to frailty, for example, is frailty per se, or elements of 1637 

the syndrome’s component criteria underpinned by reduced brain volumes in specific brain 1638 

regions? Using a range of brain imaging methods will be important to determine how brain 1639 

alterations lead to physical presentations. For example, decreased cerebral oxygenation may 1640 

explain the apparent attenuations in neuromuscular function during frailty (111). Reduced 1641 

cerebral blood flow and cerebrovascular reactivity have been reported during normal ageing 1642 

(413) and may also present as a feature of the frailty state, potentially contributing to brain 1643 

structure deterioration during frailty (414).  1644 

Skeletal muscle: There are clear associations between skeletal muscle deficits and frailty, with 1645 

studies to date suggesting muscle quality and mass are drivers of poor physical function and 1646 

weakness seen in frail adults. Further studies are needed to define, for example, the roles of 1647 

anabolic resistance, increased fat infiltration, insulin resistance, compromised satellite cell 1648 

function and reduced NMJ number and function. In relation to mitochondrial function and 1649 

metabolic resilience in frailty, more research is needed to differentiate between the relative 1650 

contribution of mitochondrial dysfunction and the decline in mitochondrial content seen in the 1651 

muscle of frail adults. Whatever the outcome of this research, the current literature indicates 1652 

altered muscle metabolism is a key underlying feature of physiological decline and fatigue in 1653 

frailty.  1654 

Study design: Frailty research to date has mainly involved a single cross-sectional assessment of 1655 

frailty(415). Some studies have assessed the longitudinal associations between frailty and brain 1656 

architecture variables, such as WMH volume, microstructural integrity and macroinfarcts (159, 1657 

416, 417). However, interpretation of findings from these studies is restricted by factors such as 1658 

an inadequate number of frail individuals recruited and prospective study designs incorporating 1659 

only a single assessment of physiological parameters. Similarly, a small number of studies have 1660 

attempted to investigate associations between alterations in body composition characteristics and 1661 

frailty over time. However, this literature is confounded by indirect measures of body 1662 

composition and skeletal muscle mass  (418). These limitations underpin a poor understanding of 1663 

the temporal relationships between frailty development and underlying physiological changes.  1664 
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Recommendation 2: To try and understand the factors influencing the trajectory from a non-frail 1665 

state to frailty, large and robust longitudinal studies assessing temporal relationships between a 1666 

broad range of physiological parameters and frailty in the same individuals should be prioritised.  1667 

Recommendation 3: Key to elucidating mechanisms of frailty development will be the design 1668 

and implementation of intervention studies, with for example well controlled exercise protocols 1669 

and end point measures, in longitudinal study designs with associated mechanistic analyses.  1670 

 If specific pathophysiological characteristics and frailty status are improved in tandem by 1671 

intervention, these physiological processes may be deemed contributing factors to frailty 1672 

progression. One example in this area is a study using 6 months of a resistance exercise training 1673 

programme in non-frail and pre-frail older adults and showing improved leg strength in both 1674 

groups. Transcriptomic analysis of muscle biopsies revealed the improvement in strength was 1675 

associated with the protocadherin gamma gene cluster which may be related to muscle 1676 

denervation and re-innervation (32). 1677 

Recommendation 4: Whilst inflammation increases with age and is associated with increased 1678 

risk of frailty in large population-level studies and meta-analyses (257), it is still not clear that 1679 

there is a causative role of inflammation in the development of frailty. Direct interventional 1680 

studies in humans assessing the impact on frailty as an endpoint are required and must progress 1681 

beyond the current literature which is largely focussed on sarcopenia. We recognise that such 1682 

studies will not be straightforward as many frail older adults are already prescribed drugs that 1683 

will modify their inflammatory status. Furthermore, given the multi-tissue compromise seen in 1684 

frailty (e.g. muscle, brain, heart), future studies should consider both local and systemic 1685 

inflammatory profiles and take a systems modelling approach to understanding the range of 1686 

influences on frailty at the individual level.  1687 

Conclusion: In summary, frailty is a complex multi-organ condition that is currently described in 1688 

clinical rather than physiological terms. To better understand and treat frailty, we suggest that a 1689 

multi-organ approach is required, harnessing state-of-art technologies to quantify organ structure 1690 

and function. Inflammation is associated with frailty development, but proof of causation is 1691 

lacking. Studies to address this issue may be confounded by the multimorbid, multi-medicated 1692 

nature of many frail adults. On a positive note, there is evidence that interventions that include 1693 

exercise can reduce and reverse frailty. However, the most successful are delivered in person 1694 

rather than via remote home-based programmes.  1695 
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Legends to Figures  1706 

Figure 1. Key stages in the development of frailty. The cascade of functional decline in older 1707 

adults from an independent (resilient) non-frail state through to frailty and disability (in the 1708 

absence of intervention). Figure adapted from Dent et al., (13) with permission under the 1709 

Creative Commons license: https://creativecommons.org/licenses/by/4.0/. 1710 

Figure 2. Risk factors for the development of Frailty. There are several important risk factors 1711 

that increase the risk of a person developing frailty. These include sex (female), non-white 1712 

ethnicity, level of education, socio-economic status, obesity, and smoking.  Protective factors 1713 

include eating a Mediterranean diet and maintaining physical activity in to old age. 1714 

Figure 3. The clinical manifestations of Frailty. People with frailty have high rates of heart 1715 

failure, hypertension, COPD and anaemia. They are also more likely to have multimorbidity (the 1716 

co-occurrence of two or more diseases), polypharmacy, and sarcopenia. CI; confidence interval, 1717 

COPD; chronic obstructive pulmonary disease  1718 

Figure 4. Summary of the typical physiological characteristics of a frail person based on a 1719 

systems physiology approach. BMI, body mass index; CSA, cross sectional area; IL10, 1720 

interleukin 10; IMAT, intramuscular adipose tissue; LAVI, left atrial volume index; LV, left 1721 

ventricular; MU, motor unit; SkM, skeletal muscle; WMH, white matter hyperintensity. 1722 

 1723 

Figure 5. Neuromuscular function in frailty. Schematic overview of the measurement of 1724 

motor unit potential (MUP) using intramuscular electromyography. Compared to the non-frail 1725 

condition, frailty is associated with a smaller MUP thought to arise from smaller motor units. 1726 

NMJ, neuromuscular junction.  1727 

Figure 6. Overview of magnetic resonance imaging (MRI) techniques routinely used to 1728 

quantify brain architecture in frailty. DTI, diffusion tensor imaging; WMH, white matter 1729 

hyperintensity.  1730 

Figure 7. Schematic representation of increased cardiac output and the redistribution of blood 1731 

flow across organs during exercise, when compared to rest.  1732 

 1733 
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Figure 8. Factors contributing to the age-related increase in systemic inflammation 1734 

(inflammaging). Increased systemic inflammation with age, inflammaging, is multifactorial in 1735 

origin. Key contributors include: an increase in senescent cells which have a pro-inflammatory 1736 

secretome, the Senescence associated secretory phenotype (SASP); reduced physical activity 1737 

which contributes to increased adiposity, with adipose tissue being a source of inflammatory 1738 

mediators such as adipokines; gut dysbiosis and reduced intestinal integrity lead to leaking of 1739 

microbes in to the circulation which then induces an inflammatory immune response. The degree 1740 

of inflammaging is associated with increased risk of moving from a non-frail to a frail state. 1741 

 1742 

Figure 9. Schematic illustration of the effect of frailty on substrates and pathways involved 1743 

in skeletal muscle energy turnover.  When the rate of ATP demand during muscle contraction 1744 

exceeds that of mitochondrial ATP production, ATP turnover is maintained from non-1745 

mitochondrial routes, namely glycolysis and phosphocreatine (PCr) hydrolysis. ATP, adenosine 1746 

triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; Ca2+, calcium; CK, 1747 

creatine kinase; CPT1, carnitine palmitoyltransferase I; Cr, creatine; H+, hydrogen ion; H2O, 1748 

water; IMP, inosine monophosphate; NADH, reduced nicotinamide adenine dinucleotide; NAD+, 1749 

oxidised nicotinamide adenine dinucleotide; PDC, pyruvate dehydrogenase complex;  PCr, 1750 

phosphocreatine; Pi, inorganic phosphate; TCA cycle, tricarboxylic acid cycle.1751 
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Table 1: Summary of systematic reviews and studies examining the prevalence of age related conditions in people with frailty.   
 
 Condition Study characteristics OR of frailty in 

people with 
condition 
(95% CI) 

OR of condition, in 
people with frailty 
(95% CI) 

% of patients with 
frailty who have 
condition 
(95% CI) 

 

Systematic reviews 

  - -  

Marengoni et al 2020 

(419) 

 

Heart failure 20 studies in meta-
analysis 

3.44 (0.75–15.7) - 31% (17-45) 

Palmer et al 2019 

(420) 

 

Cerebrovascul
ar disease* 

18 studies 2.32 (2.11-2.55) - 10% (6-13) 

Palmer et al 2019 

(421) 

 

Polypharmacy 18 studies in meta-
analysis 

1.59 (0.90-2.83) 2.62 (1.81–3.79) 59% (42-76) 

Vetrano et al 2018 

(221) 

 

Hypertension 27 studies 1.33 (0.94-1.89) - 72% (66-79) 

Palmer et al 2018 

(422) 

 

Anaemia 12 studies in meta-
analysis 

2.24 (1.53-3.30) - 36% (24-48) 

Marengoni et al 2018 

(21) 

 

COPD 6 studies in meta-
analysis 

1.97 (1.53-2.53) - 22% (15-28) 

Vetrano et al 2019 

(423) 

Multimorbidity 25 studies in meta-
analysis 

2.27 (1.97–2.62) - 72% (63-81%) 
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Individual studies 

     

Davies et al 2018 

(424) 

 

Sarcopenia 
EWGSOP 
criteriaƚ 

Toledo Study of 
Healthy Aging 
community based, 
Spain, >65 yrs 

N=1611 

1.67 (0.95-2.96) - 40.1% 

 Sarcopenia 
FNIH criteriaǂ 

 10.61 (5.8-19.4) - 72.2% 

Avila-Funes et al 2009 

(425) 

 

Cognitive 
impairment 
(Lowest 
Quintile) 

Community based, 
Spain >65 yrs 

N=6030,  

- 1.14 (0.58–2.21) 21.9% 

Armstrong et al 2010 

(426) 

 

Dementia 23,952 home care 
recipients, Canada 

- - 40.0% 

*All studies included stroke only. ƚ European Working Group on Sarcopenia in Older People (EWGSOP) algorithm . ǂ Foundation for the National Institutes 
of Health Biomarkers Consortium Sarcopenia Project. Systematic reviews included here were selected using search terms for frailty and each condition run 
together and those that reported a prevalence of each condition in people with frailty with estimated confidence intervals were selected. The most recent 
review was selected if there were more than one. 
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Table 2. Large cohort exercise intervention studies to reduce frailty. 
 

Population 

N 
(% Female) 

Frailty Intervention 

Effects on Frailty 
Age 

(mean ± SD) 
Measure 

Baseline 
Prevalance 

Study Groups 
Exercise 

Prescription 
Duration + 
Follow-Up 

Aligned 
with 

Activity 
Guidelinesc 

Frail Only 

Kim et al. 2015 
(RCT)  
(393) 

131 (100%) 
 
80.9 ± 2.9 

Fried Frailty 

Frail 
(100%). 
Mean Score 
= 3.7 ± 0.7 

1. Control (dietary 
placebo) 

2. Dietary 
supplement 
(MFGM) 

3. MFGM + 
exercise training 

4. Placebo + 
exercise training. 

2 x week 
60-min/session 
Moderate-Intensity 
Strengthening, 
balance, gait 
Supervised 
 

3 months + 
4 month 
follow-up 

No (No 
specified 
aerobic) 

Frailty re-
classified (3 
months) 
1. 30.3% 
2. 28.1% 
3. 57.6%* 
4. 51.5% 
 
Frailty re-
classified 
(Follow-Up) 
1. 15.2% 
2. 25.0% 
3. 45.5%* 
4. 39.4%* 

MFGM + Ex 
> Placebo & 
MFGM alone 
 
MFGM + Ex 
& Placebo + 
Ex > Placebo 

Tarazona-
Santabalbina et 
al. 2016 (RCT) 
(394) 

100 (54%) 
 
80.0 ± 3.7 

Fried Frailty 

Frail 
(100%). 
Mean Score 
= 3.7 ± 0.7 

1. Exercise 
2. Control 

5 x week 
65-min/session 
Proprioception & 
balance 
Aerobic & strength 
Stretching 

24 weeks Yes 

Frailty re-
classified 
1. 31.4%* 
2. 0 

Ex > Control 

Cameron et al. 
2013 (RCT) 
(392) 

216 (68%) 
 
83.3 ± 5.9 

Fried Frailty 

Frail 
(100%). 
Mean Score 
= 3.4 ± 0.7  

1. Multifactorial 
and frailty 
specific 

2. Control 

10 x supervised 
sessions and 
WEBBa 
recommendations 
(balance, strength, 
aerobic). 

12 months 
No (No 
specified 
aerobic) 

Frailty re-
classified 
1. 38%* 
2. 24% 

Intervention 
> Control 

Cesari et al. 
2015 (RCT) 
(395) 

424 (68.9%) 
 
76.8 ± 4.2 

Fried Frailty 

Unclear but 
assumed to 
be between 
20 & 25% 
considered 
frail at 
baseline 

1. Physical Activity 
2. Health 

Education 
(Control) 

3 x supervised 
week (wk 1-8) 
2 x supervised 
week (wks 9-24) + 
3 x home based 
Home based after 
week 25 
Walking, 
flexibility, strength 

12 months Yes 

Prevalance of 
Frailty 
1. 10%* 
2. 19.1% 

Intervention 
< Controls 
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Pre-Frail Only 

Serra-Prat et al. 
2017 (RCT) 
(403) 

172 (56.4%) 
 
78.3 ± 4.9 

Fried Frailty 

Pre-Frail 
(100%). 
Mean Score 
= 1.45 ± 0.5 

1. Intervention 
2. Control 

Aerobic Exercise 
4 x week 
30-45 min/session 
Walking 
Home-based 
 
Strength & 
Balance 
4 x week 
20-25 min/session 
Progressive 
Home-based 

12 months Yes 

Frail v Non-
Frail 
1. 4.9%* 
2. 15.3% 
Robust v Non-
Robust 
1. 15.3% 
2. 21.3% 

Intervention 
< Control 

Chen et al. 
2019 (RCT) 
(402) 
 

70 (65%) 
 
76.1 ± 5.6 

Fried Frailty 
Pre-Frail 
(100%).  

1. Exercise 
2. Control 

3 x week 
45-60 min/session 
Elastic Band 
resistance 

8 weeks 
No (No 
specified 
aerobic) 

Frailty re-
classified 
1. 81.8%* 
2. 9.1% + 1 

person 
becoming 
frail 

Intervention 
> Control 

Mixed Frailty 

Ng et al. 2015 
(RCT) 
(404) 

246 (61.4%) 
 
70.0 ± 4.7 

Fried Frailty 

Pre-Frail 
(72%) and 
Frail (28%). 
Mean Score 
= 2.0 ± 0.8 

1. Usual Care 
Controls 

2. Cognitive 
Training 

3. Nutritional 
Supplements 

4. Physical 
Training 

5. Combination 
Treatment 

2 x week 
90-min/session 
Moderate-Intensity 
Strengthening & 
balance. 
Supervised (1st 3-
months) 
Home-based (2nd 
3-months) 
 

6 months + 
6 months 
follow-up 

Yes 

Frailty re-
classified (12 
Months) 
1. 15.2% 
2. 35.6%* 
3. 35.6%* 
4. 41.3%* 
5. 47.8%* 
 

Each 
intervention > 
Control 

Chan et al. 
2012 (Pilot 
RCT) 
(405) 

117 (59%) 
 
71.4 ± 3.7 

Fried Frailty 
Pre-Frail 
(87%) and 
Frail (13%). 

1. Exercise + 
nutrition 

2. Problem Solving 
Therapy 

3. Control of 1 
4. Control of 2 

3 x week 
60-min/session 
Brisk walking, 
stretching, 
strengthening, 
balance 
Supervised 

3 months + 
6, 9, 12 
month 
follow-up 

Yes 

Frailty re-
classified (3 
Months) 
1. 45%* 
2. 44% 
3. 27% 
4. 28% 

Ex + nutrition 
> Control 1 

Seino et al. 
2017 (RCT – 
CO) 
(406) 

77 (31.2%) 
 
74.6 ± 5.5 

Completed the 
HCS + CL15 
frailty score ≥ 2 

Pre-Frail 
(72.7%) and 
Frail 
(27.3%). 
Mean Score 
= 3 ± 1.4 

Exercise + 
Nutritional + 
Psychosocial 
1. Immediate 
2. Delayed (3 

months) 

2 x week 
60-min/session 
Resistance 
Program 

3 months + 
3 month 
control 

No (No 
specified 
aerobic) 

Intervention 
reduced CL15 
scores that 
continued 
during 3-
month post 
intervention 

Intervention 
> Controls 
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control. 
Intervention 
reclassified 
fralty to pre-
frailty in 45%-
58% of frail 
participants. 

Nagai et al. 
2018 (RCT) 
(409) 

41 (90.5%) 
 
81.5 ± 7.2 

Fried Frailty 

Pre-Frail 
(41.5%) and 
Frail 
(58.5%) 

1. Exercise 
2. Exercise + 

Guidance 

2 x week 
Resistance 
Training 

24 weeks 

Similar 
(focused on 
resistance 
and gave 
guidance for 
physical 
activity) 

Frailty re-
classified 
1. 15% 
2. 28.6% 

No difference 

Chan et al. 
2017 (RCT) 
(410) 

289 (53%) 
 
71.6 ± 4.3 

Fried Frailty 
Pre-Frail 
(79%) and 
Frail (21%). 

1. Control 
(education) 

2. Intervention 
(exerecise + 
problem solving) 

48 sessions 
60 min/session 
Brisk walking, 
stretching, 
resistance, balance. 
 

6 months + 
3 and 12 
month 
follow-up 

Yes 

Frailty re-
classified (6-
months) 
1. 39% 
2. 42% 
 
Frailty re-
classified (12-
months) 
1. 36% 
2. 42% 

No difference 

Luger et al. 
2016 (RCT) 
(411) 

80 (84%) 
 
82.8 ± 8.0 

Fried Frailty 

Robust 
(1%), Pre-
Frail (35%), 
Frail (64%) 

1. Exercise + 
Nutrition 

2. Social Support 

2 x week 
60 min/session 
Muscle 
Strengthening 

12 weeks 
No (No 
specified 
aerobic) 

Frailty re-
classified 
1. 17%  
2. 16% 

No difference 

Oh et al. 2021 
(non-
randomised 
control) (412) 

383 (72%) 
234 (75%)b 
 
76.3 ± 5.7b 
 

Fried Frailty 
Phenotype 
and 
Deficit 
Accumulation 
Index 

Unclear 
2.2 ± 1.2 
phenotypeb 

 

0.26 ± 0.11 
indexb 

1. Multicomponent 

3. Comparison 

2 x week 
60 min/session 
Resistance (20 
min) 
Balance (20 min) 
Aerobic (20 min) 

24 weeks + 
6, 18 month 
follow up 

Similar 
(similar 
strengthening 
but less 
aerobic) 

The 
intervention 
reduced frailty 
index and 
phenotype 
scores post-
intervention. 
Differences 
were not 
maintained at 
future 
assessments 

Intervention 
> Controls 

(RCT) Randomized Control Trial; (RCT-CO) RCT-Crossover; (HCS) Hatoyama Cohort Study; (CL15) Check-List 15;. aWeight-bearing for better balance 
program (WEBB) (399). bafter propensity matching.calignment with physical activity guidelines for older adults. *p<0.05 significantly different than control 
group.
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Clinical manifestations of frailty 

Frailty is associated with… 

What is the physiological phenotype 

of frailty? 

Potential drivers of frailty  

development 

Chronic inflammation 

Chronic physical inactivity 

Interventions to prevent and 

reduce frailty 

Exercise 

•  Multi-organ syndrome? 

• Does cumulative physiological 
dysregulation underpin the development 
of whole-body functional decline? 

• Interventions should ideally 
be intense, supervised and 
maintained for frailty 
prevention to persist 

• Multimodal approaches may be 
more effective than individual 
component approaches 

Female gender 

A lower 
socioeconomic 
background 

A lower level of 
education 

Demographics Conditions  

 Polypharmacy 

Sarcopenia 

Multimorbidity 

Frailty = higher risk of adverse outcomes 

e.g. hospitalisation, falls, disability 

Frailty 

• Promotes deconditioning, 
insulin resistance, muscle 
anabolic resistance and a pro-
inflammatory profile 

• Reduces neuromuscular 
function 

• Increases adiposity and 
senescent cell load 

• Many studies report the 
pre-frail to frail transition 
is associated with greater 
inflammation 
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