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A core unresolved challenge in rectified diffusion is the lack of predictive models, which
allow accurate modelling of the growth of bubbles over millions of cycles of oscillation.
The spherically symmetric problem involves two asymptotic regions in space for the
convection and diffusion of the dissolved gas in the liquid, an inner region adjacent to
the bubble and an outer region. It also involves three time scales: the shortest time scale
associated with the bubble oscillation, the intermediate and the longest time scales for
the mass transport across the bubble interface and the outer region, respectively. The
problem is analysed systematically using matched asymptotic expansions in space and
multi-scales in time, the large parameter being the Péclet number for mass transfer.
A tractable mathematical model is formulated for rectified diffusion. It comprises the
Rayleigh–Plesset equation for the spherical oscillations of the bubble on the shortest
time scale, an ordinary differential equation for the mass of gas in the bubble on the
intermediate time scale and a diffusion equation on the longest time scale and the
long length scale. Predictions of this simplified model have excellent agreement with
experimental results for a single spherical bubble in the bulk over millions of cycles
of oscillation. A parametric study is undertaken with several new phenomena/features
observed for acoustic frequencies in the range 12 to 62 kHz, acoustic field 0.12 to
0.22 bar and the initial gas concentration in the liquid being 0.95 to 1.0 of the saturation
concentration.

Key words: cavitation

1. Introduction

A complete explanation for rectified diffusion of spherical bubbles in the bulk does not yet
exist. Rectified diffusion cannot be traced with computational fluid dynamics packages
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because this requires solving the spherically symmetric partial differential equations
involved for billions of time steps in order to simulate millions of cycles of oscillation.
It is impossible to record the detailed process of the bubble growth experimentally. As
a compromise, the conditions or thresholds for rectified diffusion occurrence have been
provided approximately by experiments for specific applications and specific set-ups,
which do not provide systematic understanding. The number of applications of rectified
diffusion grows daily and the gap in understanding holds back many important areas
of technology. A clear understanding of the mechanisms providing these interesting
cavitation effects is required to optimize such applications and thereby to make them safer,
more precise, more efficacious and more affordable.

A bubble exchanges gas molecules across its interface with the surrounding liquid.
Due to surface tension, the gas pressure inside a bubble is higher than the partial gas
pressure and thus a bubble dissolves. Blake (1949) first established that, if a gas bubble
undergoes large-amplitude oscillations, then it may increase in mass. Essentially, more gas
diffuses into the bubble than out of the bubble across the bubble interface. The presence
of ultrasonic pressure oscillations may lead to bubble growth depending on whether the
amplitude of the pressure oscillations is above a threshold value (Plesset & Prosperetti
1977; Young 1989; Leighton 1994; Lauterborn & Kurz 2010; Brennen 2013). Fyrillas &
Szeri (1994) consider the case where the slow time scale of diffusion can be separated
from the fast time scale of the bubble oscillation, which is still considered to be the
state-of-the-art work in this field (Lauterborn & Kurz 2010). Both the oscillatory and
smooth problems are then treated by singular perturbation methods. Their results for
bubble growth rates are quite seriously under-predicted for larger bubbles. The existing
literature is limited to threshold conditions in which there is no transport of gas across the
bubble interface or to small-amplitude oscillations.

Fyrillas & Szeri (1994) describe the theoretical difficulty as hinging on the
determination of the net flux of dissolved gas at the bubble interface; in particular,
the influence of convection associated with bubble volume oscillations. Based on the
Lagrangian change of variables developed by Plesset & Zwick (1952), Smith & Wang
(2022) recently found an exact solution for the gas flux at the bubble interface including
the influence of convection, but only for the initial rapid bubble growth over hundreds of
cycles of oscillations. Smith & Wang (2022) performed matched asymptotic expansions in
space. In this article, our approach is to extend the result in Smith & Wang (2022) to allow
for the simulation of millions of cycles of oscillation. We will establish the model below
using both matched asymptotic expansions in space and multi-scales in time.

Recent experimental research by Ashokkumar and co-workers has improved the
database of observations for the growth of a single bubble by rectified diffusion in the
bulk (Lee, Kentish & Ashokkumar 2005; Leong et al. 2010, 2011). Prior to this research,
the bubble radius was measured indirectly through the rise velocity of the bubble with the
sound field switched off (Eller 1969; Gould 1974; Crum 1980, 1984). Lee et al. (2005)
and Leong et al. (2010, 2011) used a strobe technique which enabled the bubble radius
within an acoustic cycle to be imaged directly. We utilize both sets of experimental results
to validate our tractable mathematical model for the rectified diffusion in the bulk of
air–water systems.

The analysis of the basic model for rectified diffusion (and more sophisticated models
such as the inclusion of thermal effects) has been made possible by the latest developments
in singular perturbation theory. In the last few years, these state-of-the-art techniques
have led to new results in the strongly nonlinear analysis of the oscillations of spherical
bubbles damped by viscosity (Smith & Wang 2017), the oscillations of spherical bubbles
damped by acoustic radiation (Smith & Wang 2018), the axisymmetric oscillations of
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Figure 1. A schematic of the typical regimes involved in rectified diffusion as a function of the bubble volume
(Young 1989). The spherically symmetric model is valid for bubble volumes less than the shape mode threshold.
The shape mode threshold is typically on the microscale and it follows from (4.1).

liquid drops damped by viscosity (Smith 2010), the finite-amplitude travelling waves
in two-dimensional plane Poiseuille flow (Smith & Wissink 2015), the finite-amplitude
travelling and standing waves in two-dimensional Kolmogorov flow (Smith & Wissink
2018) and steady states and quasi-steady states in vortex dynamics (Smith & Wang 2021).
In rectified diffusion, the time scales in the mass transport boundary layer adjacent to the
bubble may only be systematically analysed with these techniques.

The remainder of the paper is organized as follows. The basic mathematical model for
the bubble growth is described in § 2. In § 3, the basic model is analysed using strongly
nonlinear analysis in time and matched asymptotic expansions in space in which the
large parameter is the Péclet number for mass transfer. A self-contained summary of
the resulting simplified model has been included in § 3.6 for the convenience of those
readers who would prefer to bypass the asymptotic analysis. In § 4, the numerical method
is discussed and numerical solutions are compared against experimental observations. In
§ 5, a parametric analysis is then carried out with the above theory for the applied pressure
frequency, the applied pressure amplitude and the initial gas concentration in the liquid.
Finally, in § 6, this study is summarized and the key outcomes are identified.

2. Physical and mathematical model

2.1. Physical model
Bubbles of approximately 100 nm diameter are always present in most practical liquids. In
almost all of the applications of sonochemistry, the bubble grows from above the threshold
for rectified diffusion to the microscale (see figure 1). Bubbles take a spherical shape for
the majority of this long process of rectified diffusion. This is due to two main reasons:
(a) the surface tension effects are strong because they are inversely proportional to the
short bubble radius; and (b) the Bjerknes force is weak because it is proportional to the
small bubble volume (Wang & Blake 2010, 2011). As the spherical bubble grows larger,
the Bjerknes force increases and the surface tension decreases. When the balance between
these two competing aspects shifts, the bubble will become unstable to shape modes (the
shape mode threshold in figure 1). Further growth only exacerbates the imbalance, the
shape modes grow until the bubble eventually fragments (Brennen 2002). The smaller
daughter bubbles created during the fragmentation are again spherical and the long process
of rectified diffusion recommences. The spherically symmetric model is appropriate for
this long process of rectified diffusion before the growth of shape modes and after the
fragmentation.

Louisnard & Gomez (2003) considered an alternative to the scenario described in
figure 1. In nearly saturated liquids, subject to low acoustic frequencies and high acoustic
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amplitudes, the transient cavitation threshold occurs at lower bubble volumes than the
shape mode threshold. Furthermore, the transient cavitation threshold may merge with
the rectified diffusion threshold, which means that all of the spherical bubble growth is
explosive growth.

Computational studies for non-spherical bubbles have been mainly undertaken for a
few cycles of oscillation (Wang 1998, 2014; Tiwari, Pentano & Freund 2015; Lechner
et al. 2017; Zeng et al. 2018), limited by computational resources, accumulated numerical
errors and/or robustness of numerical modelling. Wang et al. (2022) recently simulated
non-spherical bubble oscillations for dozens of cycles of oscillation. These studies are
far away from simulating the millions of cycles of oscillation that are required for the
modelling of rectified diffusion for non-spherical bubbles.

The physical mechanisms underlying bubble growth (or rectified diffusion) in the
absence of surfactants are threefold (Fyrillas & Szeri 1994). Firstly, the gas pressure
inside the bubble varies during each cycle of the bubble oscillation which changes the
concentration of gas in the liquid at the bubble wall via Henry’s law. Dissolved gas will
diffuse into the bubble during the part of the oscillation cycle when the partial pressure of
gas in the bubble is lower. Similarly, gas will diffuse into the liquid during the remainder of
the cycle because the partial pressure of gas is higher. History effects make this mechanism
more complicated than this simple description (Peñas-López et al. 2016), but it serves as a
guide. Secondly, the rate of diffusion is proportional to the surface area. Therefore, more
gas will enter the bubble when the surface area is greater than its mean value than leave
the bubble when the surface area is smaller than its mean value. This second mechanism is
known as the area effect (Young 1989). Thirdly, the flux of gas in the liquid is proportional
to the concentration gradient of the dissolved gas. As the bubble expands, convection of the
liquid surrounding the bubble causes the concentration gradient of the gas in the liquid to
increase. Conversely, as the bubble contracts, convection of the adjacent liquid causes the
concentration gradient of the gas in the liquid to decrease. The net effect of this convection
is to promote bubble growth which slowly accumulates over many oscillations. This third
mechanism is known as the shell effect (Young 1989).

Compressibility of the liquid damps the oscillation of bubbles by the emission
of acoustic radiation. It is significant for large-amplitude oscillations when the time
derivatives of the bubble radius become very large, usually during the collapse (Wang
2016; Smith & Wang 2018). The published experimental results for rectified diffusion do
not consider such cases.

The current model is not able to take into account the effect of surfactants. Henry’s
law is no longer applicable in the presence of surfactants. It must be replaced by a
flux boundary condition in which the non-equilibrium partitioning of the gas across the
interface drives the mass transport (Fyrillas & Szeri 1995).

Our research is focussed on rectified diffusion in the bulk, that is bubble growth
subject to acoustic waves, under the following hypothesis. We assume that (i) bubbles
are spherical, since their sizes during rectified diffusion are typically small compared
with other physical scales including the distances between a bubble and its neighbouring
bubbles or boundaries, and the wavelength of acoustic waves; (ii) in the bubble, the
concentration of gas is uniform (Eller & Flynn 1965); (iii) the pressure of the gas in the
bubble satisfies a polytropic relation; (iv) the concentration of gas in the liquid and the flow
of liquid surrounding the bubble are assumed to be spherically symmetric; (v) the bubbles
do not move relative to the host liquid; (vi) the liquid is incompressible and Newtonian;
(vii) the viscous heating of the liquid is assumed to take place on a longer time scale
than those considered herein; and (viii) phase change at the bubble interface is neglected.
The localized inaccuracy of the polytropic bubble model near resonance as discussed in
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Rectified diffusion

Appendix C of Fyrillas & Szeri (1994) should have a limited influence on our results over
many millions of bubble oscillations.

2.2. Mathematical model
The Rayleigh–Plesset equation for a gas bubble in an incompressible Newtonian liquid is

R̄
d2R̄
dt̄2

+ 3
2

(
dR̄
dt̄

)2

= p̄l

ρ
, (2.1)

in which p̄l is the pressure of the liquid at the bubble surface minus the external pressure
in the liquid (Prosperetti 1984)

p̄l = p̄g − 2σ

R̄
− (p̄∞ − p̄v) − 4μ

R̄
dR̄
dt̄

− p̄a sin(2πν̄at̄), (2.2)

and p̄g is the partial pressure of the gas inside the bubble

p̄g = p̄g0

(
m̄
m̄i

)κ
(

R̄eqi

R̄

)3κ

, (2.3)

where R̄(t̄) is the spherical bubble radius at time t̄, m̄(t̄) is the mass of gas in the bubble,
R̄eqi the initial equilibrium bubble radius, m̄i the initial mass of gas in the bubble, ρ the
liquid density, p̄∞ the hydrostatic pressure of the liquid, p̄v the vapour pressure of the
liquid, p̄g0 the initial partial pressure of the bubble gas, κ > 1 the polytropic index, σ

the surface tension, μ the liquid viscosity and p̄a (ν̄a) is the amplitude (frequency) of
the external pressure. The concentration of gas in the liquid, c̄(r̄, t̄), is governed by a
spherically symmetric convection–diffusion equation in a domain with a moving boundary
of the form

∂ c̄
∂ t̄

+ dR̄
dt̄

(
R̄
r̄

)2
∂ c̄
∂ r̄

= D
r̄2

∂

∂ r̄

(
r̄2 ∂ c̄

∂ r̄

)
for r̄ > R̄(t̄), (2.4)

where r̄ is the radial distance from the centre of the bubble and D is the mass diffusivity
(Eller & Flynn 1965). The far-field boundary condition is

c̄ → C̄i as r̄ → ∞, (2.5)

where C̄i is the initial uniform concentration of the gas in the liquid. The boundary
condition at the bubble interface is provided by Henry’s law, which relates the
concentration of the gas in the liquid at the bubble interface, c̄(R̄(t̄), t̄), to the partial
pressure of the gas inside the bubble, p̄g (Eller & Flynn 1965; Fyrillas & Szeri 1994;
Brennen 2013). We have

c̄(R̄(t̄), t̄) = p̄g

kH
= 1

kH
p̄g0

(
m̄
m̄i

)κ
(

R̄eqi

R̄

)3κ

, (2.6)

where kH is Henry’s law constant. The mass of gas in the bubble must satisfy the
conservation law

dm̄
dt̄

= 4πR̄2D
∂ c̄
∂ r̄

(R̄(t̄), t̄). (2.7)
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The initial conditions are given by

R̄(0) = R̄eqi,
dR̄
dt̄

(0) = 0, c̄(r̄, 0) = C̄i, m̄(0) = m̄i, (2.8a–d)

for r̄ > R̄eqi. As we are only interested in solutions which are periodic on the time scale
for bubble oscillation, we shall also impose periodicity on this time scale. The physical
system (2.1)–(2.8a–d) has a global statement of conservation of gas in the form

4π

∫ ∞

r̄=R̄(t̄)
(c̄ − C̄i)r̄2 dr̄ = m̄i − m̄. (2.9)

In summary, the basic model comprises the following four aspects (Epstein & Plesset
1950; Eller & Flynn 1965; Fyrillas & Szeri 1994). (i) The time dependence of the
spherical bubble radius is modelled by the Rayleigh–Plesset equation, which is a nonlinear
ordinary differential equation. Both viscous effects and surface tension will be considered.
(ii) Henry’s law will be used to model the concentration of gas at the bubble surface.
(iii) The concentration of gas in the liquid is governed by a spherically symmetric
convection–diffusion equation, which is a nonlinear partial differential equation in the
moving liquid domain. (iv) The mass of gas in the bubble satisfies a conservation law
given by the gas flux across the bubble surface, which is a second nonlinear ordinary
differential equation. The mass of the gas couples into the other equations via the partial
pressure of the gas, this being the only significant difference between this mathematical
model and the model solved by Fyrillas & Szeri (1994). The initial concentration of gas in
the liquid is uniform, which is also the boundary condition for the concentration of gas at
infinity. This mathematical model simulates bubble growth, bubble dissolution and bubble
oscillation.

Equations (2.1)–(2.9) are scaled using R̄ = R̄eqiR̂, c̄ = C̄i + C̄iĉ, m̄ = m̄im̂,

t̄ = R̄eqi

U
t̂, r̄ = R̄eqir, (2.10a,b)

where

� = p̄∞ − p̄v, U =
√

�

ρ
, (2.11a,b)

in which � is the characteristic pressure of the liquid and U is a reference velocity.
The overbars denote dimensional dependent variables and the hats their dimensionless
counterparts. The dimensionless Rayleigh–Plesset equation takes the form

R̂
d2R̂
dt̂2

+ 3
2

(
dR̂
dt̂

)2

= pg0m̂κ

R̂3κ
− 2

WeR̂
− 1 − 4

ReR̂

dR̂
dt̂

− pa sin(2πνat̂), (2.12)

in which Re = ρUR̄eqi/μ is the Reynolds number, We = R̄eqi�/σ is the Weber number,
pg0 = p̄g0/� is the dimensionless initial partial pressure of the bubble gases and pa =
p̄a/� (νa = ν̄aR̄eqi/U) is the dimensionless amplitude (frequency) of the applied external
pressure. The convection–diffusion equation for the gas concentration in the liquid
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becomes

∂ ĉ
∂ t̂

+ dR̂
dt̂

(
R̂
r

)2
∂ ĉ
∂r

= 1
Pe

1
r2

∂

∂r

(
r2 ∂ ĉ

∂r

)
for r > R̂(t̂), (2.13)

where Pe = UR̄eqi/D is the large Péclet number for mass transfer. The boundary
conditions are given by

ĉ → 0 as r → ∞, (2.14)

and

ĉ(R̂(t̂), t̂) = −1 + dpg0
m̂κ

R̂3κ
, (2.15)

in which d = �/kHC̄i. Conservation of the mass of gas in the bubble becomes

dm̂
dt̂

= 4πM
Pe

R̂2 ∂ ĉ
∂r

(R̂(t̂), t̂), (2.16)

where

M =
R̄3

eqiC̄i

m̄i
. (2.17)

The initial conditions are given by

R̂(0) = 1,
dR̂
dt̂

(0) = 0, ĉ(r, 0) = 0, m̂(0) = 1, (2.18a–d)

for r > 1. Finally, we impose periodicity on the time scale for bubble oscillation. The
dimensionless global conservation of gas becomes

4πM
∫ ∞

r=R̂(t̂)
ĉr2 dr = 1 − m̂. (2.19)

Equations (2.12)–(2.18a–d) constitute the dimensionless version of the mathematical
model for our three unknowns R̂(t̂), ĉ(r, t̂) and m̂(t̂) to be studied herein.

In principle, (2.12)–(2.18a–d) can be solved numerically. Firstly, the initial boundary
value problem (2.13)–(2.15) and (2.18a–d) may be solved for the concentration of gas in the
liquid. Secondly, the initial value problem (2.16) and (2.18a–d) may be solved for the mass
of gas in the bubble. Lastly, the initial value problem (2.12) and (2.18a–d) may be solved
for the bubble radius. However, the process takes millions of cycles of oscillation and the
numerical simulations require billions of time steps. While it is practical to accurately
integrate the two ordinary differential equations for bubble radius and bubble mass for
billions of time steps, unfortunately, it is impractical to accurately integrate the initial
boundary value problem for the concentration of gas in the liquid (2.13)–(2.15) with the
appropriate initial conditions in (2.18a–d) for billions of time steps even with modern
supercomputers. To resolve this challenge, we will develop a tractable model for rectified
diffusion in § 3.

3. Asymptotic analysis

The problem is characterized by having several physical processes: the inertial bubble
oscillation, the mass transport at the bubble surface and the convection and diffusion of
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Outer region

Inner region

r
r = R̂(t̂) + O(1)

r = R̂(t̂ ) + O(Pe−1/2)

Bubble

Figure 2. A schematic of the spatial asymptotic structure. The bubble interface, r = R̂(t̂), oscillates on the
shortest time scale and grows/dissolves due to the mass flux on the intermediate time scale. The concentration
of gas in the inner region oscillates on the shortest time scale as governed by Henry’s law and convects on
the shortest time scale due to the bubble motion. The concentration of gas in the outer region convects on the
shortest time scale due to the bubble motion, but diffusion of gas only takes place on the longest time scale.

the dissolved gas in the liquid. These processes act simultaneously and interactively with
different scales.

The typical value of the Péclet number for mass transfer, Pe, is greater than one hundred
thousand. Therefore, this problem is susceptible to perturbation theory. We divide the
liquid domain into an inner region and an outer region, as illustrated in figure 2. The
inner region is the concentration boundary layer adjacent to the bubble surface with
a thickness O(Pe−1/2), where r = R̂(t̂) + O(Pe−1/2). The outer region is outside the
concentration boundary layer, where r = R̂(t̂) + O(1). We now study these two regions
and the asymptotic matching between them (Bender & Orszag 1987).

The dimensionless diffusion time scale over a dimensionless length scale L̂ is Pe L̂2.
The dimensionless diffusion time scales are O(1) in the inner region with a thickness
O(Pe−1/2) and O(Pe) in the outer region with a length scale of O(1). In addition, it is
known from (2.16) that the time scale for the mass transfer across the bubble surface is
O(Pe1/2).

The analysis is organized as follows. In § 3.1, a Lagrangian change of independent
variables is introduced and multiple scale analyses are applied in the inner region. Multiple
scale analyses are also applied in the outer region in § 3.2. Matching between the inner and
outer regions is undertaken in § 3.3. The gradient of the concentration of gas at the bubble
interface is determined in § 3.4. In § 3.5, the far-field concentration of gas in the outer
liquid region is evaluated in the form of a similarity solution.

3.1. Inner region

3.1.1. Leading-order problem
In the inner region, r = R̂(t̂) + O(Pe−1/2), we introduce the following Lagrangian change
of independent variables (x = O(1)) first used by Plesset & Zwick (1952):

x = Pe1/2

3
[r3 − R̂(t̂)3], τ = t̂, (3.1)

where the new dependent variables are the bubble radius R(τ ) = R̂(t̂), the concentration
of gas in the inner liquid region c(x, τ ) = ĉ(r, t̂) and the mass of gas in the bubble m(τ ) =
m̂(t̂). The dependent variables without bars or hats correspond to dimensionless variables
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Rectified diffusion

in the Lagrangian frame of reference. The convection and diffusion equation (2.13) for the
concentration of gas in the liquid may be rewritten as a diffusion equation

∂c
∂τ

= ∂

∂x

[(
R3 + 3x

Pe1/2

)4/3
∂c
∂x

]
for x > 0. (3.2)

The Rayleigh–Plesset equation (2.12) for the bubble radius becomes

R
d2R
dτ 2 + 3

2

(
dR
dτ

)2

= pg0mκ

R3κ
− 2

WeR
− 1 − 4

ReR
dR
dτ

− pa sin(2πνaτ). (3.3)

Equation (2.16) for conservation of mass of the gas in the bubble transforms to

dm
dτ

= 4πM
Pe1/2 R4 ∂c

∂x
(0, τ ). (3.4)

The growth of bubbles in a fluid is modelled using three time scales. The concentration
of gas in the liquid, c, varies over a short time scale t corresponding to the period of inertial
bubble oscillation, an intermediate time scale Λ associated with the time scale for mass
transfer across the bubble surface and a long time scale λ which follows from diffusion on
the long length scale of the outer region. Accordingly, we introduce three time variables.
The short time variable for the bubble oscillation is

t = τ ; (3.5a)

the intermediate time variable of the mass transfer at the bubble surface is

Λ = τ

Pe1/2 ; (3.5b)

and the long time variable for the diffusion of the gas in the outer liquid region is

λ = τ

Pe
. (3.5c)

As real time τ increases, the short time scale t increases at the same rate, while the
intermediate time scale Λ increases slowly and the long time scale λ increases slowest.
Thus, we have

∂

∂τ
= ∂

∂t
+ 1

Pe1/2
∂

∂Λ
+ 1

Pe
∂

∂λ
. (3.6)

Our choice of a short time scale will leave the period of the leading-order solution
varying on the longer time scales. This is inconsistent with formal perturbation theory;
however, there will be no changes to our subsequent results and it is convenient to retain
our short time scale.

We introduce expansions of the first two orders, since the disturbances are O(Pe−1/2) as
shown in (3.2), (3.3) and (3.4):

c ∼ c0 + c1

Pe1/2 , R ∼ R0 + R1

Pe1/2 , m ∼ m0 + m1

Pe1/2 , (3.7a–c)

as Pe → ∞. In the above, the subscript 0 corresponds to the leading-order approximation
and subscript 1 to the first correction. Substituting into the governing equations (3.2)–(3.4)

951 A12-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

84
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.849


W.R. Smith and Q. Wang

and comparing coefficients of Pe, we find a sequence of problems. At leading order,
(3.2)–(3.4) become

∂c0

∂t
= R4

0
∂2c0

∂x2 , (3.8)

R0
∂2R0

∂t2
+ 3

2

(
∂R0

∂t

)2

= pg0mκ
0

R3κ
0

− 2
WeR0

− 1 − 4
ReR0

∂R0

∂t
− pa sin(2πνat), (3.9)

∂m0

∂t
= 0. (3.10)

Equation (3.10) shows that the mass of gas in the bubble does not change with the fast
time but changes in Λ and λ through the accumulated effect of weak diffusion. It is readily
integrated to yield m0 = m0(Λ, λ). Equation (3.8) is not straightforward to integrate and
will be solved below in § 3.4. The boundary condition at the bubble interface (2.15) when
x = 0 is given by

c0(0, t, Λ, λ) = f (t, Λ, λ) ≡ −1 + dpg0
mκ

0

R3κ
0

. (3.11)

A second boundary condition will be determined by matching with the outer region in
§ 3.3. The initial conditions from (2.18a–d) are given by

R0(0, 0, 0) = 1,
∂R0

∂t
(0, 0, 0) = 0, c0(x, 0, 0, 0) = 0, m0(0, 0) = 1 (3.12a–d)

for x > 0.
As m0 = m0(Λ, λ) does not vary over the short time scale t, the bubble oscillates

repeatedly according to (3.9) over this time scale. As R0 is a periodic function on the short
time scale t, the concentration of the dissolved gas c0 at a fixed point in the liquid domain
oscillates repeatedly according to (3.8). The period of this oscillation P is a function of
the intermediate time scale Λ and long time scale λ for an initial transient, after which it
settles down to the acoustic frequency.

3.1.2. First correction
In the leading-order analysis, we obtain the variation on the short time scale, but not the
variation on the intermediate time scale. For this purpose, we will discuss the first-order
correction. The equations at next order O(Pe−1/2) for (3.2)–(3.4) are complicated. They
are expressed in the concise matrix format. At next order, we obtain

Lz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−∂c0

∂Λ
+ 4R0

∂

∂x

{
x
∂c0

∂x

}

−2R0
∂2R0

∂t∂Λ
− ∂R0

∂Λ

{
3
∂R0

∂t
+ 4

ReR0

}

−∂m0

∂Λ
+ 4πMR4

0
∂c0

∂x
(0, t, Λ, λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.13)
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Rectified diffusion

in which the matrix differential operator L and unknown vector function z are

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂t
− R4

0
∂2

∂x2 −4R3
0
∂2c0

∂x2 0

0 L̄ −pg0κmκ−1
0

R3κ
0

0 0
∂

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, z =
⎛
⎝ c1

R1
m1

⎞
⎠ . (3.14)

In the operator L, L̄ is defined as

L̄R1 = R0
∂2R1

∂t2
+ ∂R1

∂t

[
3
∂R0

∂t
+ 4

ReR0

]

+ R1

[
∂2R0

∂t2
+ 3pg0κmκ

0

R3κ+1
0

− 2
WeR2

0
− 4

ReR2
0

∂R0

∂t

]
. (3.15)

As discussed in § 2, the periodicity conditions on the shortest time scale corresponds to
c1(x, t, Λ, λ) = c1(x, t + P, Λ, λ), (3.16)

[R1, m1](t, Λ, λ) = [R1, m1](t + P, Λ, λ). (3.17)
These periodicity conditions suppress the secular terms in (3.13) and are necessary to
ensure the uniformity of the asymptotic expansions. There are also boundary conditions
on c1, but we do not specify these conditions as we will not require them in what follows.

We determine an adjoint matrix differential equation operator L∗ with unknown vector
function r:

L∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∂

∂t
− R4

0
∂2

∂x2 0 0

−4R3
0
∂2c0

∂x2 L̂ 0

0 −pg0κmκ−1
0

R3κ
0

− ∂

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r =
⎛
⎝α

β

γ

⎞
⎠ , (3.18)

such that the right-hand side of the following equation is in the form

rTLz − zTL∗r = ∂

∂t

[
αc1 + βR0

∂R1

∂t
− R1

∂

∂t
(βR0)

+ 3β
∂R0

∂t
R1 + 4βR1

ReR0
+ γ m1

]
+ ∂

∂x

[
−αR4

0
∂c1

∂x
+ c1R4

0
∂α

∂x

]
. (3.19)

The left-hand side of (3.19) takes a standard form adopted when seeking conditions for
which the first correction (3.13) has solutions. In the operator L∗, L̂ is defined as

L̂β = ∂2

∂t2
(βR0) − 3

∂

∂t

(
β

∂R0

∂t

)
− 4

Re
∂

∂t

(
β

R0

)

+ β

[
∂2R0

∂t2
+ 3pg0κmκ

0

R3κ+1
0

− 2
WeR2

0
− 4

ReR2
0

∂R0

∂t

]
. (3.20)

At this point of the analysis, it would usually be necessary to specify the periodicity and
boundary conditions on r. We do not require the periodicity and boundary conditions in
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W.R. Smith and Q. Wang

this case, as the problem simplifies. In order to suppress secular terms on the right-hand
side of the first correction (3.13), we require solutions of L∗r = 0. The second equation in
L∗r = 0 is only satisfied when α = 0, because the coefficient of α is spatially dependent,
whereas the remaining terms are independent of space. The only solution of L̂β = 0 that
we have been able to find is β = 0. Therefore,

r = (0, 0, 1)T (3.21)

is the one linearly independent solution of L∗r = 0. Using this solution, (3.19) simplifies
to

− ∂m0

∂Λ
+ 4πMR4

0
∂c0

∂x
(0, t, Λ, λ) = ∂m1

∂t
. (3.22)

In order to suppress the secular terms in (3.13), we use the periodicity conditions (3.17) to
establish that 〈

∂m1

∂t

〉
= 0, (3.23)

in which

〈 · 〉 = 1
P

∫ t+P

t
· dt (3.24)

denotes the average value over a single cycle of oscillation, where P is the period.
Therefore, we obtain

∂m0

∂Λ
= 4πM

〈
R4

0
∂c0

∂x
(0, t, Λ, λ)

〉
. (3.25)

The mass of gas in the bubble varies following (3.25). The bubble is being compelled
to retain only a short-term memory of the concentration gradient by integrating on the
order-one time scale. This equation will be used to update the bubble gas mass on the
intermediate time scale Λ.

3.2. Outer region

In the outer expansion, r = R̂(t̂) + O(1), we introduce the following Lagrangian change
of variables (y = O(1)):

y = x
Pe1/2 = 1

3
[r3 − R̂(t̂)3], τ = t̂. (3.26)

The concentration of gas in the outer liquid region, C, is described using two time scales
on this long length scale. We therefore introduce two time variables, t = τ corresponding
to the period of inertial bubble oscillation and λ = τ/Pe associated with the diffusion time
scale in the outer region, as follows:

∂

∂τ
= ∂

∂t
+ 1

Pe
∂

∂λ
. (3.27)

The convection–diffusion equation for mass transport (2.13) for C( y, t, λ) = ĉ(r, t̂)
becomes

∂C
∂t

+ 1
Pe

∂C
∂λ

= 1
Pe

∂

∂y

[
(R3 + 3y)4/3 ∂C

∂y

]
for y > 0 (3.28)
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Rectified diffusion

with far-field boundary condition

C → 0 as y → ∞, (3.29)

the initial condition
C = 0 on t = λ = 0 (3.30)

and the periodicity condition

C( y, t, λ) = C( y, t + P, λ) (3.31)

as discussed in § 2. A second boundary condition must be determined by matching with
the inner region. Equation (3.28) shows that the diffusion in the outer region is of the order
of O(Pe−1) and it justifies the choice of the long time scale λ.

Since the disturbance is O(Pe−1) as shown in (3.28), we introduce an expansion of the
following form:

C ∼ C0 + C1

Pe
, R ∼ R0, (3.32a,b)

as Pe → ∞. We will need to study (3.28) at both the leading order and the first correction,
so two terms are required in the expansion for the concentration of gas in the outer liquid
region C. Only the leading-order term in the bubble radius R is required in the analysis
which follows. At leading order in (3.28), we obtain

∂C0

∂t
= 0, (3.33)

which is readily integrated to yield C0 = C0( y, λ).
To determine C0( y, λ), we need to consider the first-order correction. At next order in

(3.28), we have

∂C1

∂t
+ ∂C0

∂λ
= ∂

∂y

[
(R3

0 + 3y)4/3 ∂C0

∂y

]
for y > 0. (3.34)

From (3.31), C1 is periodic in the short time scale t. We thus have the periodicity condition

C1( y, t, λ) = C1( y, t + P, λ). (3.35)

In order to suppress the secular terms in (3.34) on the shortest time scale, we use the
periodicity condition (3.35) to establish that〈

∂C1

∂t

〉
= 0. (3.36)

Therefore, we obtain the following secularity condition:

∂C0

∂λ
= ∂

∂y

[
〈(R3

0 + 3y)4/3〉∂C0

∂y

]
for y > 0, (3.37)

with the far-field boundary condition

C0 → 0 as y → ∞, (3.38)

which follows from (3.29) and the initial condition

C0( y, 0) = 0, (3.39)

which follows from (3.30).

951 A12-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

84
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.849


W.R. Smith and Q. Wang

In the outer region, the concentration of gas in the liquid has been shown to vary on
the long time scale λ. Fyrillas & Szeri (1994) obtained the same equation for their smooth
problem on the same length and time scales. Fyrillas & Szeri (1994) then solved this
equation when the time derivatives are zero, which corresponds to near the threshold of
rectified diffusion. They subsequently found that their theoretical results are accurate in
comparison with the experimental threshold of Eller (1969). The theoretical predictions
of threshold (Fyrillas & Szeri 1994) have also been successful in applications related to
stable single bubble sonoluminescence (Brenner, Hilgenfeldt & Lohse 2002).

The concentration C0( y, λ) is governed by the diffusion equation (3.37) with a boundary
condition at infinity (3.38) and initial condition at λ = 0 (3.39). Another boundary
condition is still needed at y = 0, which will be obtained by matching with the inner
solution, to be discussed in § 3.3.

3.3. Matching
Firstly, we consider the outer problem for y 	 1. In this limit, (3.37) takes the form

∂

∂y

[
〈(R3

0 + 3y)4/3〉∂C0

∂y

]
= 0. (3.40)

We solve this equation to find that the matching condition is

C0( y, λ) ∼ g(λ) as y → 0, (3.41)

where g(λ) remains to be determined and g(0) = 0 due to the initial condition (3.39).
Therefore, according to Prandtl’s limit matching technique, the matching condition for the
inner problem is

c0(x, t, Λ, λ) → g(λ) as x → ∞. (3.42)

As such, the concentration in the transition region only depends on the long time scale.
In the absence of a general solution to the inner problem, we adopt the global statement

for conservation of mass (2.19) in the form

4πM
{

1
Pe1/2

∫ ∞

x=0
c dx +

∫ ∞

y=0
C dy

}
= 1 − m, (3.43)

where we assume that the integrals in the inner and outer regions converge to finite values.
The liquid domain here is split in terms of r from R̂ to greater than R̂ + O(Pe−1/2) for the
inner region and from R̂ + o(1) to the far field for the outer region. This corresponds to
x from 0 to ∞ and y from 0 to ∞, respectively. At leading order, global conservation of
mass becomes

4πM
∫ ∞

y=0
C0 dy = 1 − m0. (3.44)

Equation (3.44) allows us to evaluate the matching condition g(λ) in the transition region
between inner and outer regions.

3.4. Leading-order inner solution
Our approach is to find an exact solution to the diffusion equation (3.8) for the
leading-order concentration of gas in the liquid. Using this exact solution, the flux of
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Rectified diffusion

gas at the bubble surface may be evaluated. We consider the variable C(x, t, Λ, λ) =
c0(x, t, Λ, λ) − g(λ) which satisfies the initial boundary value problem

∂C
∂t

= R4
0
∂2C
∂x2 for x > 0, (3.45)

subject to the boundary conditions

C → 0 as x → ∞, C(0, t, Λ, λ) = f (t, Λ, λ) − g(λ), (3.46)

and the initial condition
C(x, 0, Λ, λ) = 0 for x > 0. (3.47)

The far-field boundary condition in (3.46) follows from the matching condition (3.42) and
the boundary condition at the bubble interface follows from (3.11). The initial condition
(3.47) has been chosen to be consistent with the matching condition (3.42).

The following is a modified version of the initial-stage analysis described by Smith
& Wang (2022). The initial boundary value problem (3.45)–(3.47) is nonlinear, but the
bubble radius in (3.45) only depends on time. As the spatial domain is semi-infinite, the
spectrum of this problem is continuous. We take a Fourier sine transform of (3.45)–(3.47)
in space to obtain the initial value problem

∂ c̃
∂t

+ s2R4
0c̃ = sR4

0( f − g) with c̃(s, 0, Λ, λ) = 0, (3.48)

in which

c̃(s, t, Λ, λ) =
∫ ∞

x=0
C(x, t, Λ, λ) sin(sx) dx. (3.49)

This initial value problem is readily solved to obtain

c̃(s, t, Λ, λ) =
∫ t

ξ=0
[ f (ξ, Λ, λ) − g(λ)]R0(ξ, Λ, λ)4s exp

(
−s2

∫ t

ξ

R0(η, Λ, λ)4 dη

)
dξ.

(3.50)

Using the inverse Fourier sine transform, we have a solution for the concentration of gas
in the liquid in the form

C(x, t, Λ, λ) = 2
π

∫ ∞

s=0

∫ t

ξ=0
[ f (ξ, Λ, λ) − g(λ)]R0(ξ, Λ, λ)4

× exp
(

−s2
∫ t

ξ

R0(η, Λ, λ)4 dη

)
dξs sin(sx) ds. (3.51)

We wish to change the order of the integration, but it is unclear whether the integral of
the absolute value exists, which is a requirement to apply Fubini’s theorem. Therefore, we
apply integration by parts to the inner integral which yields

C(x, t, Λ, λ) = 2
π

∫ ∞

s=0

{
−
∫ t

ξ=0

∂f
∂ξ

(ξ, Λ, λ) exp
(

−s2
∫ t

ξ

R0(η, Λ, λ)4 dη

)
dξ

+ f (t, Λ, λ) − g(λ) − [ f (0, Λ, λ) − g(λ)]

× exp
(

−s2
∫ t

0
R0(η, Λ, λ)4 dη

)}
sin(sx)

s
ds. (3.52)

Fubini’s theorem may now be applied to change the order of the integration. Using tables
of integral transforms (Erdélyi et al. 1954), or otherwise, we evaluate the integrals in s to
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find

C(x, t,Λ, λ) = f (t,Λ, λ) − g(λ) − [ f (0,Λ, λ) − g(λ)] erf

(
x
2

{∫ t

0
R0(η,Λ, λ)4 dη

}−1/2
)

−
∫ t

ξ=0

∂f
∂ξ

(ξ,Λ, λ) erf

(
x
2

{∫ t

ξ

R0(η,Λ, λ)4 dη

}−1/2
)

dξ, (3.53)

in which

erf(ξ) = 2√
π

∫ ξ

y=0
exp(−y2) dy. (3.54)

It is straightforward to check that this result is an exact solution of the leading-order
approximation by substituting this formula back into (3.45)–(3.47). We take the partial
derivative of this analytical solution with respect to x to obtain the concentration gradient
at the bubble interface located at x = 0

∂c0

∂x
(0, t, Λ, λ) = − [ f (0, Λ, λ) − g(λ)]√

π

{∫ t

0
R0(η, Λ, λ)4 dη

}−1/2

− 1√
π

∫ t

ξ=0

∂f
∂ξ

(ξ, Λ, λ)

{∫ t

ξ

R0(η, Λ, λ)4 dη

}−1/2

dξ, (3.55)

in which

f (0, Λ, λ) = −1 + dpg0
m0(Λ, λ)κ

R0(0, Λ, λ)3κ
, (3.56)

∂f
∂ξ

= −3κdpg0
mκ

0

R3κ+1
0

∂R0

∂ξ
. (3.57)

Therefore, the flux of dissolved gas has been determined as an exact solution of the
leading-order approximation. The first term on the right-hand side of (3.55) is the memory
of the initial and matching conditions. The second is the history term (Peñas-López
et al. 2016), which accounts for the preceding time history of the first derivative of the
concentration at the bubble interface. We note that these memory integrals only span the
shortest of our three time scales; in other words, they represent a short-term memory.

3.5. Leading-order far-field outer solution
Noticing the far field of the outer solution is at y = ∞, a boundary condition at a truncated
far field y = L � 1 is needed to improve the accuracy and reduce the computational cost
of solving (3.37) for the concentration. In this section, we will find the leading-order outer
solution for y � 1. This is then exploited to derive the far-field boundary condition for the
outer problem. When y is sufficiently large, R3

0 becomes negligible compared with 3y in
(3.37). The resulting far-field partial differential equation is

∂C0

∂λ
= ∂

∂y

[
(3y)4/3 ∂C0

∂y

]
for y � 1, (3.58)

with boundary condition (3.38) and initial condition (3.39). The similarity solution to this
problem is of the form

C0 = φ(η), η = y
λ3/2 . (3.59a,b)
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The unknown function φ(η) satisfies the ordinary differential equation

d2φ

dη2 +
[

4
3η

+ 1
2(3η)1/3

]
dφ

dη
= 0, (3.60)

with boundary condition

φ → 0 as η → ∞. (3.61)

This ordinary differential equation may be integrated to yield

dφ

dη
= A

η4/3 exp
(

−32/3

4
η2/3

)
, (3.62)

in which A is a constant of integration. We may integrate again and use the boundary
condition (3.61) to find that

C0 = −
∫ ∞

s=y/λ3/2

A
s4/3 exp

(
−32/3

4
s2/3

)
ds. (3.63)

The domain for the leading-order outer solution may now be truncated by implementing
the far-field boundary condition in the form

∂C0

∂y
(L, λ) = −C0(L, λ)λ1/2

L4/3 exp
(

−(3L)2/3

4λ

){∫ ∞

s=L/λ3/2

1
s4/3 exp

(
−32/3

4
s2/3

)
ds
}−1

,

(3.64)

in which the value of L � 1 needs to be chosen such that R3
0 is negligible in comparison

with 3L.
The analytical solution (3.63) is used to determine the integrand in the global

conservation of mass (3.44) for y > L, where the value of A follows from the value of
C0(L, λ).

3.6. Summary of the tractable model
For the convenience of readers, we now summarize the leading-order model to be solved
numerically, in a self-contained manner. The bubble radius, R0(t, Λ, λ), satisfies the
Rayleigh–Plesset equation (3.9) on the shortest time scale t

R0
∂2R0

∂t2
+ 3

2

(
∂R0

∂t

)2

= pg0mκ
0

R3κ
0

− 2
WeR0

− 1 − 4
ReR0

∂R0

∂t
− pa sin(2πνat), (3.65)

in which Re is the Reynolds number, We is the Weber number, pg0 is the dimensionless
initial partial pressure of the bubble gases and pa (νa) is the dimensionless amplitude
(frequency) of the applied external pressure. The mass of gas in the bubble, m0(Λ, λ), is
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governed by conservation of mass (3.25) on the intermediate time scale Λ

∂m0

∂Λ
= 4πM

〈
R4

0
∂c0

∂x
(0, t, Λ, λ)

〉
, (3.66)

in which the concentration gradient is determined from (3.55) as follows:

∂c0

∂x
(0, t, Λ, λ) = − [ f (0, Λ, λ) − g(λ)]√

π

{∫ t

0
R0(η, Λ, λ)4 dη

}−1/2

− 1√
π

∫ t

ξ=0

∂f
∂ξ

(ξ, Λ, λ)

{∫ t

ξ

R0(η, Λ, λ)4 dη

}−1/2

dξ, (3.67)

where

〈 · 〉 = 1
P

∫ t+P

t
· dt, (3.68)

f (0, Λ, λ) = −1 + dpg0
m0(Λ, λ)κ

R0(0, Λ, λ)3κ
, (3.69)

∂f
∂ξ

= −3κdpg0
mκ

0

R3κ+1
0

∂R0

∂ξ
, (3.70)

and the period of bubble oscillation is P(Λ, λ). The concentration of gas in the outer liquid
region, C0( y, λ), is determined by the diffusion equation (3.37) on the longest time scale
λ

∂C0

∂λ
= ∂

∂y

[
〈(R3

0 + 3y)4/3〉∂C0

∂y

]
for 0 < y < L, (3.71)

with matching condition C0(0, λ) = g(λ) and far-field boundary condition from (3.64)

∂C0

∂y
(L, λ) = −C0(L, λ)λ1/2

L4/3 exp
(

−(3L)2/3

4λ

){∫ ∞

s=L/λ3/2

1
s4/3 exp

(
−32/3

4
s2/3

)
ds
}−1

(3.72)

to truncate the domain at L � 1. Equation (3.44),

4πM
∫ ∞

y=0
C0 dy = 1 − m0, (3.73)

determines g(λ) in the matching condition C0(0, λ) = g(λ), where C0 is evaluated on the
semi-infinite interval [L, ∞) via the analytical solution (3.63)

C0 = −
∫ ∞

s=y/λ3/2

A
s4/3 exp

(
−32/3

4
s2/3

)
ds, (3.74)

in which the value of A is taken to be

A = −C0(L, λ)

{∫ ∞

s=L/λ3/2

1
s4/3 exp

(
−32/3

4
s2/3

)
ds
}−1

. (3.75)

The initial conditions are given by

R0(0, 0, 0) = 1,
∂R0

∂t
(0, 0, 0) = 0, C0(y, 0) = 0, m0(0, 0) = 1, (3.76a–d)

for 0 < y < L.

951 A12-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

84
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.849


Rectified diffusion

4. Numerical method

4.1. Algorithm
The computational algorithm includes the integration of the Rayleigh–Plesset equation
(3.9) on the shortest time scale t, the integration of the conservation of mass (3.25) on the
intermediate time scale Λ and solving the diffusion equation (3.37) on the longest time
λ. The NAG routine D02EJF is employed to solve the Rayleigh–Plesset equation (3.9) on
the shortest time scale (Numerical Algorithms Group 2019b). This is the only one of our
equations on this shortest time scale which requires billions of time steps to simulate the
many millions of bubble oscillations.

The mid-point rule is utilized to integrate the first derivative with respect to Λ in (3.25)
for the mass of gas in the bubble. The time integrals on the right-hand side of (3.25) and
in the expression for the concentration gradient (3.55) are evaluated with the trapezoidal
composite rule. The mass of gas in the bubble is updated on the completion of each cycle
of bubble oscillation.

The method of lines reduces the diffusion equation (3.37) to a system of ordinary
differential equations (Smith 1985) which may then be solved with the NAG routine
D02EJF. The domain is chosen such that L = 50. The concentration of gas in the outer
liquid region is updated on the completion of each cycle of bubble oscillation.

The trapezoidal composite rule is applied to evaluate the spatial integral in the matching
condition (3.44) in the interval [0, L) (Burden & Faires 1985). The remainder of the
integral in (3.44) on the semi-infinite interval [L, ∞) uses the analytical solution (3.63)
and the NAG routine D01AMF (Numerical Algorithms Group 2019a). The constant A in
the analytical solution (3.63) is evaluated from the value of C0 at y = L. The matching
condition g(λ) is updated on the completion of each cycle of bubble oscillation.

The simulations were undertaken for the growth of bubbles over several million
oscillations. The calculations were performed on the supercomputer BlueBEAR
(University of Birmingham 2022). The basic mathematical model definitely cannot be
traced with any CFD packages or known numerical methods, because it requires accurately
solving the partial differential equation involved for billions of time steps in order to
simulate millions of cycles of oscillation.

4.2. Comparison with experiment
To evaluate the present theoretical model, we will compare the computational results
with two sets of experiments. Direct comparisons are undertaken for the maximum and
equilibrium bubble radii during each cycle of oscillation. The growth and dissolution of
bubbles subject to acoustic waves over millions of cycles are considered. This displays the
excellent agreement of the theory with experiments.

The first set of experiments considered is for air-saturated water in a single bubble
levitation cell (Lee et al. 2005). A hollow cylindrical lead zirconate titanate piezo ceramic
transducer at the bottom of the cell was used to excite a standing acoustic wave at
22.35 kHz and a strobe was used to capture the maximum bubble radius during its
oscillations. A syringe was used to introduce a single bubble. The following values for gas
bubbles in water are adopted following the experimental conditions � = 105 kg m−1s−2,
σ = 0.072 Nm−1, κ = 1.4, μ = 0.001 Pa s, ρ = 103 kg m−3, ν̄a = 22.35 × 103 Hz, p̄a =
2.2 × 104 kg m−1 s−2, D = 2 × 10−9 m2 s−1 and kH = 2.5 × 106 m2 s−2. The initial
pressure of the bubble gas is given by p̄g0 = � + 2σ/R̄eqi, being in the equilibrium state.
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Figure 3. Comparison of the time histories of the maximum bubble radius, R̄max, using two numerical
solutions of the simplified model in subsection 4.1 and experimental results (Lee et al. 2005). In this
experiment, a bubble grows in air-saturated water subject to a standing acoustic wave at 22.35 kHz. The
numerical solution is shown for two values of the initial volume fraction of air in the bubble: φair = 0.8
and 0.9. Other parameter values are Re ≈ 330, We ≈ 45, pg0 ≈ 1.0, pa ≈ 0.22, νa ≈ 0.073, Pe ≈ 1.6 × 105,
d ≈ 0.99, M ≈ 9.2 × 10−3 and κ = 1.4.

The initial mass of gas in the bubble is given by

m̄i = φairρair
4
3
πR̄3

eqi,

in which ρair is the density and φair is the initial volume fraction of air in the bubble. As
the solubility of oxygen in water is higher than the solubility of nitrogen, the air in water
is assumed to be 36% oxygen so that ρair = 1.3 kg m−3 (Engineering ToolBox 2004). The
saturation concentration of the gas in the liquid, C̄sat = 4.057 × 10−2 kg m−3, has been
chosen to fit the experimental observations of bubble growth (Lee et al. 2005) for the
initial maximum bubble radius of approximately 22 μm. We choose the initial uniform
concentration of the gas in the liquid C̄i = C̄sat (Lee et al. 2005). The only unknown
parameter value is the initial volume fraction of air in the bubble which would almost
certainly take different values in experiments.

In order to validate our simplified model, a numerical solution was obtained for the
above parameter values, two values of the initial volume fraction of air in the bubble
(φair = 0.8 and 0.9) and an initial equilibrium bubble radius of R̄eqi = 32.5 μm. The initial
equilibrium bubble radius of R̄eqi = 32.5 μm corresponds to the initial maximum bubble
radius of approximately 35 μm in the experimental results of Lee et al. (2005). We have
Pe ≈ 1.6 × 105, which is very large. Lee et al. (2005) estimated that the bubble remains
spherical for the first 150 s of its growth, so we only simulate for this time period. Figure 3
compares two numerical simulations for the time history of the maximum bubble radius
during each cycle of oscillation with experimental results. The computational results agree
with the experimental results for the long time history, for both values of the initial volume
fraction. The bubble grows nonlinearly with time for the period considered and the growth
rate decreases with increases in the initial volume fraction of air in the bubble.

We note that, if we had simulated over a longer time period of 210 s, then
the bubble typically exhibits instability (variations between no oscillations and very
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Figure 4. The time histories of (a) the equilibrium bubble radius R̄eq and (b) the dimensionless mass of gas
in the bubble m0. The numerical solutions are shown for two values of the initial volume fraction of air in the
bubble corresponding to figure 3.

large oscillations). This instability occurs as the equilibrium bubble radius approaches
approximately 50 μm. Lamb (1932) determined the natural frequency f̄n of shape mode n
to be given by

f̄n = 1
2πR̄eq

√
(n − 1)(n + 1)(n + 2)

σ

ρR̄eq
, (4.1)

for n ≥ 2 (see also figure 1). Using (4.1), for a frequency of 22.35 kHz, the resonant radius
of shape mode n = 3 occurs at 53 μm. The transition to non-spherical oscillations in
figure 1 of Lee et al. (2005) may be discerned to be shape mode n = 3, albeit for an
aqueous surfactant solution. There may be a correspondence between our instability at
approximately 50 μm and the transition to non-spherical oscillations in experiments.

The dimensional equilibrium bubble radius, R̄eq, is evaluated as the solution to the
following algebraic equation

p̄g0

(
m̄
m̄i

)κ
(

R̄eqi

R̄eq

)3κ

− 2σ

R̄eq
− (p̄∞ − p̄v) = 0.

Figure 3 also shows an oscillation at a maximum bubble radius of approximately 40 μm.
The maximum bubble radius is not monotonically increasing. Figure 4 shows that this
oscillation does not appear in the time history of the equilibrium bubble radius or the
mass of gas in the bubble. The oscillation corresponds to the dynamics of the bubble and
not its underlying growth. The experimental observations of Lee et al. (2005) exhibit a
range of values at a maximum bubble radius of approximately 40 μm, but these occur
at earlier times than the oscillation which we have discovered in the theoretical results.
Figures 3 and 4 demonstrate that the maximum bubble radius represents changes in the
underlying growth except when the maximum radius is approximately 40 μm. The growth
rate is slowed significantly around 80–100 s for φair = 0.8 and 95–115 s for φair = 0.9. We
will investigate these two features by studying the bubble oscillation over short periods.

Approximately three million oscillations are simulated over the time period of 150 s
in figures 3 and 4. Figure 5 shows six short time periods of 10−4 s, three before and
three after the oscillation in the maximum bubble radius in figure 3 for φair = 0.8. The
periods of oscillation in figure 5 agree with the period of the applied external pressure of
approximately 4.5 × 10−5 s. A second common feature is that the bubble splits its time
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Figure 5. Short time periods of 10−4 s of the histories of the bubble radius R̄ for (a) t̄ = 30 s, (b) t̄ = 60 s,
(c) t̄ = 95 s before the oscillation at approximately 40 μm, (d) t̄ = 105 s after the oscillation at approximately
40 μm, (e) t̄ = 120 s and ( f ) t̄ = 150 s. The equilibrium bubble radius is also shown for comparison. The
volume fraction of the gas in the bubble φair = 0.8 and the remaining parameter values are the same as figure 3.

approximately equally between greater and less than the equilibrium radius except for
figure 5(c). A more intriguing common feature in figure 5 is that the maxima are further
above the equilibrium bubble radius than the minima are below. This third common feature
supports the area and shell mechanisms discussed in the introduction. In order to quantify
this feature, we introduce the ratio

δ = R̄max − R̄eq

R̄eq − R̄min
,

where R̄min in the dimensional minimum bubble radius. In figure 5( f ), δ = 1.39 at t̄ =
150 s.

Figure 5(d) corresponds to a much greater bubble growth than figure 5(c). The ratio
in figure 5(c) of δ = 1.44 is slightly greater than in figure 5(d) of δ = 1.3. However,
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figure 5(c) has a large high frequency mode (bubble resonance) which is not present in
figure 5(d). The disappearance of this high frequency mode is responsible for the increased
bubble growth rate at t̄ = 105 s in comparison with t̄ = 95 s.

The natural frequency for spherical oscillation of a bubble, f̄0, is given by Brennen
(2013)

f̄0 = 1
2πρR̄eq

√√√√ρ

[
3κ(p̄∞ − p̄v) + 2(3κ − 1)σ

R̄eq

]
− 4μ2

R̄2
eq

. (4.2)

Using (4.2), the natural frequency corresponding to figure 5(c) is approximately 90 kHz
for R̄eq = 36.7 μm. The bubble resonance frequency is four times the acoustic frequency
in figure 5(c). This drives the natural oscillation of the bubble, as observed in the figure.

The oscillation at a maximum bubble radius of approximately 40 μm occurs later in our
theoretical results than in the experimental observations doubtless due to the proximity
of the bubble resonance. As discussed in Appendix C of Fyrillas & Szeri (1994), the
polytropic bubble model is inaccurate near to the bubble resonance which would be
expected to influence the accuracy of the maximum bubble radius.

Figures 5(a) and 5(b) examine the evolution of the bubble oscillations from the initiation
of the acoustic wave until the oscillation in the maximum bubble radius. The amplitude
of the bubble oscillation (R̄max − R̄min) increases from less than 4 μm in figure 5(a) to
more than 5 μm in figure 5(c). The high frequency mode is not visible in figure 5(a), but
its growth is already evident in figure 5(b). It is noteworthy that the maxima are sharp
in figure 5(a) whilst the minima are flat. In the times following the oscillation in the
maximum bubble radius shown in figures 5(e) and 5( f ), the bubble oscillation maintains
the temporal shape in figure 5(d) but its amplitude increases.

Figure 6 shows the variation of the concentration of gas in the outer region for four
different times (with the numerical solution being extended using the far-field analytical
solution (3.63)). The spatial variation starts near to the bubble interface and extends to
the constant far-field value for each time. The extent of the outer region increases as time
progresses, which is consistent with the process of diffusion. As the dissolved gas enters
the bubble, the gas concentration decreases at the bubble interface. The dissolved gas
in the liquid diffuses towards the bubble interface. This results in a monotonic spatial
decrease in the gas concentration towards the bubble interface. The spatial gradient of
the gas concentration increases rapidly near the bubble interface. However, the mass flux
from the outer region into the inner region does not vary monotonically in time. It has a
local minimum at approximately t̄ = 95 s corresponding to bubble resonance and a local
maximum at approximately t̄ = 105 s. The concentration of the gas in the liquid does not
change significantly if the radius is larger than 0.0008 m. The extent of the outer region
is an important factor limiting the application of results on a single bubble to a cloud of
bubbles. The distance between a bubble and its neighbouring bubbles should be less than
the sum of the spatial lengths of their respective outer regions.

The second experimental case to be considered is air-saturated water in a hollow glass
cylinder between two hollow cylindrical transducers (Crum 1980). Bubbles were produced
by increasing the gain on the amplifier until the threshold for gaseous cavitation was
reached. The desired initial radii were obtained in a few minutes by adjustment of the
amplitude of the acoustic pressure. These bubbles were levitated near the anti-node of an
acoustic stationary wave at a frequency of 22.1 kHz. The equilibrium bubble radius was
deduced by measuring its terminal velocity through the liquid. The following values for gas
bubbles in water are adopted following the experimental conditions � = 105 kg m−1 s−2,
σ = 0.068 Nm−1, κ = 1.4, μ = 0.001 Pa s, ρ = 103 kg m−3, ν̄a = 22.1 × 103 Hz, p̄a =
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Figure 6. The concentration of gas in the outer region c̄ at t̄ = 50 s, t̄ = 95 s, t̄ = 105 s and t̄ = 150 s. The
bubble interface corresponds to the equilibrium bubble radius. The numerical solutions are shown for an initial
volume fraction of air in the bubble φair = 0.8 and the remaining parameter values are the same as figure 3.

2.7 × 104 kg m−1 s−2, D = 2.4 × 10−9 m2 s−1 and kH = 2.5 × 106 m2 s−2. The initial
pressure of the bubble gas p̄g0 and the initial mass of gas in the bubble m̄i are given by
the same formulas as above. The initial uniform concentration of the gas in the liquid,
C̄i = C̄sat = 3.888 × 10−2 kg m−3, has been chosen to fit the observations for the initial
maximum bubble radius of approximately 30 μm. In practice, it is very difficult to locate
the exact value of the saturation concentration of the gas in the liquid. We choose the
initial volume fraction of air in the bubble φair to achieve agreement with the experimental
results. We have Pe ≈ 1.5 × 105, which is very large. Due to the invasive nature of the
measurement of the equilibrium bubble radius, the concentration of gas in the liquid is
reset to the initial uniform concentration each time that the experimental observations are
provided in Crum (1980).

Further validation of our simplified model is sought via a comparison of the time
histories of the equilibrium bubble radius with the experimental results of Crum (1980).
Three representative initial equilibrium bubble radii R̄eqi = 35.6, 24.7 or 29.4 μm are
considered, for which the bubble grows, dissolves or remains at a steady state, respectively,
in the experiments. Our computations repeated these three processes remarkably, both
qualitatively and quantitatively. The bubble growth is simulated for a time period of
160 s (approximately three and a half million oscillations) in figure 7. After 160 s, the
equilibrium bubble radius exhibits instability, which may correspond to a transition to
non-spherical oscillations. Figure 7 also shows bubble dissolution for a time period
of 160 s. The equilibrium bubble radius decreases faster as time increases in both the
numerical simulation and the experiment. However, the numerical values decrease slightly
more rapidly than the experimental observations.

Figure 8 shows the variation of the concentration of gas in the outer region at times
corresponding to the experimental observations of Crum (1980) for both growth and
dissolution at approximately 40 s in figure 7. The mass flux from the inner region into
the outer region for bubble dissolution is greater than the mass flux from the outer region
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Figure 7. Comparison of the time histories of the equilibrium bubble radius, R̄eq, using three numerical
solutions of the simplified model in subsection 4.1 and experimental results (Crum 1980). In this experiment,
a bubble grows, dissolves or remains at a steady state depending on the initial equilibrium bubble radius
R̄eqi = 35.6, 24.7 or 29.4 μm, respectively. The dissolving bubble uses an initial volume fraction of air in
the bubble φair = 0.99 and the other two simulations use φair = 0.9. Other parameter values are Re ≈ 360,
We ≈ 52, pg0 ≈ 1.0, pa ≈ 0.27, νa ≈ 0.079, Pe ≈ 1.5 × 105, d ≈ 1.0, M ≈ 7.9 × 10−3 and κ = 1.4.
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Figure 8. The concentration of gas in the outer region c̄ at t̄ = 43.1 s for bubble growth and at t̄ = 41.0 s for
bubble dissolution. The bubble interface corresponds to the equilibrium bubble radius. The parameter values
are the same as figure 7.
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Figure 9. Convergence tests for the mesh in the outer region: (a) the dimensionless concentration of gas in the
outer region C0 at t̄ = 50 s with 0 < y < L, (b) the time history of the maximum bubble radius R̄max, (c) the
time history of the equilibrium bubble radius R̄eq and (d) the time history of the dimensionless mass of gas in
the bubble m0. The volume fraction of the gas in the bubble φair = 0.8 and the remaining parameter values are
the same as figure 3 with number of mesh points 250, 500 and 1000.

into the inner region for bubble growth. We also note that the spatial length of the outer
region is similar for the growth and dissolution of bubbles.

4.3. Convergence tests
In order to evaluate the convergence of the method of lines, tests were performed for the
volume fraction of the gas in the bubble φair = 0.8 and the remaining parameter values
as in figure 3. The growth of bubbles was simulated with 250, 500 and 1000 mesh points.
Figure 9(a) shows the results for the spatial distribution of the dimensionless concentration
of gas in the outer region at 50 s. Figure 9(b–d) shows the times histories of the maximum
bubble radius, equilibrium bubble radius and dimensionless mass of gas in the bubble,
respectively. These results converge well for a number of mesh points greater than or equal
to 250. All the other calculations in this article have been performed with 500 mesh points.

5. Parametric studies

In each of the following subsections, the effects of varying a single parameter will be
examined. The parameters will be the applied pressure frequency, the applied pressure
amplitude and the initial gas concentration in the liquid. Our reference will be the
parameter values used in figure 3 with an initial volume fraction of the gas in the bubble
φair = 0.8.
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Figure 10. Comparison of the time histories of the equilibrium bubble radius, R̄eq, for five values of the
applied pressure frequency ν̄a. The initial volume fraction of the gas in the bubble φair = 0.8 and the remaining
parameter values, with the exception of ν̄a, are the same as figure 3.

We must ensure that thermal effects remain negligible for our adopted parameter values.
The temperature dependence of the gas solubility, the vapour pressure, the diffusivity and
the surface tension may have significant influence on the growth of bubbles by rectified
diffusion (Webb et al. 2010). The repercussion of not including thermal effects is that any
theoretical model may only integrate over time periods such that the temperature rise is
insignificant. The thermal source term for ultrasonic absorption varies quadratically with
the applied pressure amplitude (Pierce 1981) and quadratically with the applied pressure
frequency via the absorption coefficient (Liebermann 1948). Therefore, we examine a
reduction in the applied pressure amplitude and a moderate increase in the applied pressure
frequency to guarantee that the temperature does not rise by more than 0.4◦C, which was
observed by Lee et al. (2005).

5.1. Effects of applied pressure frequency
In addition to the simulation at ν̄a = 22.35 kHz in figure 3, results are obtained at
the applied pressure frequencies of ν̄a = 62 kHz, ν̄a = 42 kHz, ν̄a = 17 kHz and ν̄a =
12 kHz. The time histories of the equilibrium bubble radius are compared in figure 10. The
bubble growth rate increases with the applied pressure frequency in this range of values.
At the frequency of ν̄a = 17 kHz, the high frequency mode (or bubble resonance) appears
later and at larger equilibrium bubble radius in comparison with the ν̄a = 22.35 kHz
simulation (see also figure 11c), the time scales for the growth and elimination of the high
frequency mode being comparable. Using (4.2), the natural frequency corresponding to
figure 11(c) is approximately 85 kHz for R̄eq = 38.8 μm. The bubble resonance frequency
is five times the acoustic frequency in figure 11(c). The high frequency mode for the
ν̄a = 12 kHz case has not appeared in the first 150 s.
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Figure 11. Short time periods of 10−4 s of the histories of the bubble radius R̄ for (a) t̄ = 30 s, (b) t̄ = 60 s,
(c) t̄ = 120 s and (d) t̄ = 150 s. The equilibrium bubble radius is also shown for comparison. The applied
pressure frequency ν̄a = 17 kHz, the initial volume fraction of the gas in the bubble φair = 0.8 and the
remaining parameter values are the same as figure 3.

For the frequencies above ν̄a = 22.35 kHz, the amplitude of oscillation increases and,
as a result, the effects of nonlinearity are more evident in the time histories of the
equilibrium bubble radius. At the frequency ν̄a = 42 kHz, the high frequency mode (or
bubble resonance) occurs much earlier than at the frequency ν̄a = 22.35 kHz, but at a
similar equilibrium bubble radius. After the usual rapid increase following the bubble
resonance, there is a small decrease in equilibrium bubble radius, before the new, faster
growth rate. The nonlinear dynamics of the bubble radius must be responsible for this
short period of dissolution. At the frequency ν̄a = 62 kHz, there are no bubble resonances.
There is an initial period of rapid growth followed by a decrease in the equilibrium bubble
radius and then a longer time period of slower growth.

Approximately two and a half million oscillations are simulated over the time period
of 150 s for ν̄a = 17 kHz. Figure 11 shows four short time periods of 10−4 s, three before
and one after the resonant oscillation. The periods of oscillation in figure 11 agree with
the period of the applied external pressure of approximately 5.9 × 10−5 s. The results in
figure 11 share the common features of figure 5; however, there are two notable differences.
Firstly, the minima in figure 11(a,b) are not flat as in figure 5(a). Secondly, the minima
become flat in figure 11(d), whereas the minima are sharp in figure 5(d–f ). The former
doubtless contributes to the ratio δ = 1.37 for figure 11(a) which is smaller than δ = 1.45
for figure 5(a), whilst the latter contributes to the ratio δ = 1.41 for figure 11(d) which
is greater than δ = 1.39 for figure 5( f ). Therefore, the area and shell mechanisms are
responsible for the smaller growth rate in figure 10 for ν̄a = 17 kHz in comparison with
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Figure 12. Comparison of the time histories of the equilibrium bubble radius, R̄eq, for three values of the
applied pressure amplitude p̄a. The initial volume fraction of the gas in the bubble φair = 0.8 and the remaining
parameter values, with the exception of p̄a, are the same as figure 3.

ν̄a = 22.35 kHz at t̄ = 30 s and the larger growth rate in figure 10 for ν̄a = 17 kHz in
comparison with ν̄a = 22.35 kHz at t̄ = 150 s.

Louisnard & Gomez (2003) state that the growth rate scales as the reciprocal of the
frequency which is the opposite trend to the one which we have found in our simulations.
They consider acoustic amplitudes in the range between 1 and 5 bars, whereas our results
are for 0.22 bar. Our results, before the shape mode and transient cavitation thresholds, are
qualitatively different, but these results are also outside the range studied by Louisnard
& Gomez (2003). There is no contradiction between the two conclusions. Further
experiments over the range of applied pressure frequencies studied in these theoretical
models would be interesting future work.

5.2. Effects of applied pressure amplitude
In addition to the simulation at p̄a = 0.22 bar in figure 3, results are obtained at the
applied pressure amplitudes of p̄a = 0.17 bar and p̄a = 0.12 bar. The time histories of the
equilibrium bubble radius are compared in figure 12. The bubble growth rate increases
with the applied pressure amplitude, the growth rate being considerably more sensitive
to changes in the applied pressure amplitude than the applied pressure frequency. For
p̄a = 0.22 bar and p̄a = 0.17 bar, the bubble grows; whereas, for p̄a = 0.12 bar, the bubble
dissolves. There is no oscillation in the maximum bubble radius (or bubble resonance) in
the first 150 s for either p̄a = 0.17 bar or p̄a = 0.12 bar.

Approximately three million oscillations are simulated over the time period of 150 s
for p̄a = 0.12 bar. Figure 13 shows four short time periods of 10−4 s. The oscillations
in figure 13 are quite unlike the oscillations in figure 5: the maxima and minima have
similar temporal shapes at every time in figure 13. The values of the ratio δ in figure 13
corresponding to bubble dissolution are clearly less than those in figure 5 corresponding to
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Figure 13. Short time periods of 10−4 s of the histories of the bubble radius R̄ for (a) t̄ = 30 s, (b) t̄ = 60 s,
(c) t̄ = 120 s and (d) t̄ = 150 s. The equilibrium bubble radius is also shown for comparison. The applied
pressure amplitude p̄a = 0.12 bar, the initial volume fraction of the gas in the bubble φair = 0.8 and the
remaining parameter values are the same as figure 3.

bubble growth. In figure 13(d), the value of the ratio is δ = 1.18, which is much less than
δ = 1.39 in figure 5( f ). The bubble shrinks due to the area and shell mechanisms being
no longer sufficient to counteract the natural process of bubble dissolution (Blake 1949).

5.3. Effects of initial gas concentration
In addition to the simulation at C̄i/C̄sat = 1 in figure 3, results are obtained at the initial
uniform concentration of the gas in the liquid C̄i/C̄sat = 0.975 and C̄i/C̄sat = 0.95. The
time histories of the equilibrium bubble radius are compared in figure 14. The bubble
growth rate increases with the initial uniform concentration of the gas in the liquid, the
growth rate being extremely sensitive to changes as small as one per cent. For C̄i/C̄sat = 1,
the bubble grows; whereas, for C̄i/C̄sat = 0.95, the bubble rapidly dissolves. In the case of
C̄i/C̄sat = 0.975, the bubble grows very slowly indeed. The crucial factor appears to be the
ratio of two pressures p̄g0 and kHC̄i. We note that Church (1988) found that the thresholds
of rectified diffusion are quite sensitive to changes in the initial gas concentration.

Figure 14 also shows an oscillation in the maximum bubble radius (or bubble resonance)
for C̄i/C̄sat = 0.95 at approximately t̄ = 60 s (see also the high frequency mode in
figure 15b). This oscillation in the maximum bubble radius occurs long before the one in
the case C̄i/C̄sat = 1. Using (4.2), the natural frequency corresponding to figure 15(b) is
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Figure 14. Comparison of the time histories of the equilibrium bubble radius, R̄eq, for three values of the initial
uniform concentration of the gas in the liquid divided by the saturation concentration of the gas in the liquid
C̄i/C̄sat. The initial volume fraction of the gas in the bubble φair = 0.8 and the remaining parameter values,
with the exception of C̄i, are the same as figure 3.

approximately 112 kHz for R̄eq = 29.6 μm. The bubble resonance frequency is five times
the acoustic frequency in figure 15(b).

Figure 15 shows four short time periods of 10−4 s for C̄i/C̄sat = 0.95. The oscillations in
figure 15 have a number of similarities with the oscillations in figure 5: the sharp maxima
and flat minima prior to the resonant oscillation in the maximum bubble radius, the growth
of a high frequency mode and the bubble oscillation maintaining its temporal shape in the
times following the oscillation in the maximum bubble radius. However, in figure 15(c,d),
the oscillation amplitude (R̄max − R̄min) decreases, which is consistent with the steadily
increasing bubble dissolution rate in figure 14. We recall that large nonlinear oscillations
are required to counter the natural process of bubble dissolution (Blake 1949).

6. Summary and conclusions

Rectified diffusion is associated with wide, important and countless applications; however,
a quantitative understanding of its development has remained largely elusive for over a
century. A theoretical study has been undertaken to investigate the growth and dissolution
of spherical bubbles subject to acoustic forcing. This study reveals the temporal and spatial
structure of various physical processes involved. This is a multi-scaled problem with the
shortest time scale, t = τ , associated with bubble oscillation, the intermediate scale, Λ =
Pe−1/2τ , associated with the variation of the mass of gas in the bubble and the longest
time scale, λ = Pe−1τ , associated with the diffusion of gas in the liquid. Here, Pe is the
Péclet number for mass transfer and τ is dimensionless time. There are also two spatial
length scales: the short scale, Pe−1/2R̄eqi, adjacent to the bubble, and the long scale, R̄eqi,
for the outer liquid region, where R̄eqi is the initial equilibrium bubble radius.

A multi-scaled perturbation method is thus employed in time and matched asymptotic
expansions in space. The liquid surrounding the spherical bubble is divided into an inner
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Figure 15. Short time periods of 10−4 s of the histories of the bubble radius R̄ for (a) t̄ = 30 s, (b) t̄ = 60 s,
(c) t̄ = 120 s and (d) t̄ = 150 s. The equilibrium bubble radius is also shown for comparison. The initial uniform
concentration of the gas in the liquid C̄i/C̄sat = 0.95, the initial volume fraction of the gas in the bubble
φair = 0.8 and the remaining parameter values are the same as figure 3.

region adjacent to the bubble and an outer region. In the inner region, a Lagrangian
change of variables, the Fourier sine transform and Fubini’s theorem are applied to
determine an exact solution for the leading-order concentration of gas in the liquid.
Using this exact solution, the basic mathematical model is simplified by the removal
of the convection–diffusion equation on the shortest time scale. In the outer region,
the concentration of gas in the liquid is shown to vary on the longest time scale.
A far-field similarity solution has been found for the leading-order concentration of gas
in the liquid, so that the diffusion equation may be numerically integrated on a truncated
domain. Asymptotic matching is achieved by exploiting a global conservation of mass. Our
techniques result in a tractable and accurate mathematical model for rectified diffusion. It
consists of the Rayleigh–Plesset equation for the spherical oscillations of the bubble on
the shortest time scale; an ordinary differential equation for the mass of gas in the bubble
on the intermediate time scale; and a diffusion equation for the concentration of gas in
the liquid on the longest time scale and the long length scale. As the Péclet number for
mass transfer is usually very large, asymptotic errors are small and this simplified model
is essentially equivalent to the basic mathematical model.

Predictions of our simplified model agree with experimental results for a single spherical
bubble in the bulk over millions of cycles of oscillation. Theoretical and numerical
studies are undertaken for the growth rate of the bubble, the bubble oscillations and the
concentration of gas in the liquid in terms of the applied pressure frequency (12–62 kHz),
the applied pressure amplitude (0.12–0.22 bar) and the initial gas concentration in the
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liquid (0.95–1.0 of the saturation concentration). The following new phenomena/features
are observed.

• Bubble growth rate increases with the applied pressure frequency, the applied
pressure amplitude and the initial gas concentration in the liquid. The bubble growth
rate is considerably more sensitive to changes in the applied pressure amplitude than
the applied pressure frequency, but it is extremely sensitive to changes in the initial
gas concentration in the liquid. Our recommendation to optimize bubble growth in
applications is to increase the concentration of gas in the liquid.

• Bubble growth rate decreases with increases in the initial volume fraction of gas in
the bubble. Depending on how a bubble is generated, the initial volume fraction of
gas may differ. Therefore, it may be difficult to obtain consistent results for bubble
growth from different experiments. However, the threshold conditions appear to be
insensitive to changes in the initial volume fraction of gas in the bubble.

• In the absence of surfactants, the area and shell effects are the primary mechanisms
in rectified diffusion, but some modifications are required to our understanding in
order to account for nonlinear bubble oscillations. In the nonlinear oscillations, the
maxima are further above the equilibrium bubble radius than the minima are below
the equilibrium bubble radius. Therefore, the area and shell effects are promoted
over and above what has been predicted in the literature (Young 1989).

• In several numerical results for the bubble growth, there is a fall in the growth
rate after some time, followed by a rapid increase, then a new, faster growth rate.
The fall in the growth rate is associated with the local minimum amplitude of
the gradient of the gas concentration at the bubble surface. A decrease in the
shell effect is responsible for this fall in the growth rate. The shell effect may be
reduced by the growth of a high frequency mode in the nonlinear oscillations of
the bubble radius (or bubble resonance). At the resonance, the bubble oscillates
with the driving acoustic frequency as well as the natural frequency, the latter being
typically several times the driving acoustic frequency. As a result, the concentration
of gas in the inner region of the liquid does not have enough time to adjust in order
to support the shell effect. After the resonance, the rapid increase is due to the local
maximum amplitude of the gradient of the gas concentration at the bubble surface.
The subsequent new, faster growth rate corresponds to the increased area effects as
the bubble has a larger radius.

Our numerical results have justified the experimental use of the maximum bubble
radius to determine the underlying bubble growth for the air–water system. The only
exception was found during the bubble resonance when the dynamics of the bubble radius
produces oscillatory behaviour in the maximum bubble radius which is not reflected in the
equilibrium bubble radius or the mass of gas in the bubble.

The analysis in this article may be extended to consider thermal effects. Thermal effects
play an important role in non-invasive medical procedures and sonochemistry. Future
research will incorporate a spherically symmetric equation for conservation of energy in
the liquid and a spatially uniform equation for conservation of energy in the bubble (Young
1989). This thermal problem has three space scales and five time scales. The framework
of the asymptotic analysis described in this article is essential for the understanding of the
thermal problem.

The theoretical research in this article allows the investigation of the growth of
an air bubble in water under quite general conditions. Smaller bubbles, which are of
interest in sonoluminescence, may be studied without the advanced instrumentation
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required for experimental measurements (Lauterborn & Kurz 2010). A physical model
for sonoluminescence must incorporate into the model in this article: thermal effects,
compressibility of the liquid and plasma physics in the bubble. Such a sonoluminescence
model may be developed building on the model in this article.
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