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Multi-steroid profiling by UHPLC-MS/MS with post-column infusion of 
ammonium fluoride 
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A B S T R A C T   

Background: Multi-steroid profiling is a powerful analytical tool that simultaneously quantifies steroids from 
different biosynthetic pathways. Here we present an ultra-high performance liquid chromatography-tandem 
mass spectrometry (UHPLC-MS/MS) assay for the profiling of 23 steroids using post-column infusion of 
ammonium fluoride. 
Methods: Following liquid–liquid extraction, steroids were chromatographically separated over 5 min using a 
Phenomenex Luna Omega C18 column and a water (0.1 % formic acid) methanol gradient. Quantification was 
performed on a Waters Acquity UHPLC and Xevo® TQ-XS mass spectrometer. Ammonium fluoride (6 mmol/L, 
post-column infusion) and formic acid (0.1 % (vol/vol), mobile phase additive) were compared as additives to 
aid ionisation. 
Results: Post-column infusion of ammonium fluoride enhanced ionisation in a steroid structure-dependent fashion 
compared to formic acid (122–140 % for 3βOH-Δ5 steroids and 477–1274 % for 3-keto-Δ4 steroids). Therefore, 
we analytically validated post-column infusion of ammonium fluoride. Lower limits of quantification ranged 
from 0.3 to 3 nmol/L; All analytes were quantifiable with acceptable accuracy (bias range − 14 % to 11.9 % for 
21/23, − 21 % to 11.9 % for all analytes). Average recovery ranged from 91.6 % to 113.6 % and average matrix 
effects from − 29.9 % to 19.9 %. Imprecision ranged from 2.3 % to 23 % for all analytes and was < 15 % for 18/ 
23 analytes. The serum multi-steroid profile of 10 healthy men and 10 healthy women was measured. 
Conclusions: UHPLC-MS/MS with post-column infusion of ammonium fluoride enables comprehensive multi- 
steroid profiling through enhanced ionisation particularly benefiting the detection of 3-keto-Δ4 steroids.   

1. Introduction 

Steroid hormones are biosynthesised in the adrenal cortex and go-
nads via cascade-like, interlinked enzymatic pathways and undergo 
extensive metabolism with both activation and inactivation in periph-
eral tissues (Fig. 1) leading to a complex circulating steroid metabolome 
[1]. Steroid flux through the different pathways can be severely dysre-
gulated in various conditions, requiring comprehensive steroid assess-
ment to develop a mechanistic understanding of the condition and for 
diagnosis and treatment monitoring. Disorders of steroidogenesis with 
distinct steroid metabolome profiles include those with autonomous 
adrenal steroid production such as Cushing’s syndrome or primary 
aldosteronism [2], adrenocortical carcinoma [3,4], polycystic ovary 

syndrome [5,6], idiopathic intracranial hypertension [7] and inborn 
enzymatic deficiencies such as congenital adrenal hyperplasia [2]. 
Steroid-dependent cancers, such as prostate cancer, can locally activate 
steroids and are treated with various pharmacological or surgical ap-
proaches to deplete the relevant steroids and their precursors in circu-
lation [8]. 

Traditionally, individual steroids have been used for the assessment 
of a suspected underlying conditions (e.g. testosterone (T) for female 
androgen excess [9] and 17α-hydroxyprogesterone (17OHP) for 
congenital adrenal hyperplasia [10]). Mechanistic in-vitro studies often 
rely on the measurement of the end products of a biosynthesis pathway 
only. However, the determination of a multi-steroid profile has several 
advantages over the use of selected individual markers. First, steroid 
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Fig. 1. Pathways of adrenal steroidogenesis (A) and androgen biosynthesis (B). General steroid precursors are shown in yellow, mineralocorticoids in green, 
glucocorticoids in orange, androgens in blue. Dark shades of each colour indicate active steroids, light shades inactive precursors. Abbreviations for steroids included 
in the UHPLC-MS/MS assay are shown in bold. 
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precursor/product ratios can be calculated to identify distinct effects on 
individual enzymes [11] and to assess the degree of steroid precursor 
activation in conditions of steroid excess. For example, in serum the 
ratio of T to its less active precursor androstenedione (A4) and the ratio 
of T to the more potent androgen 5α-dihydrotestosterone (DHT) have 
been shown to be excellent markers for androgen excess and the asso-
ciated adverse metabolic phenotype in polycystic ovary syndrome 
[6,12,13]. Secondly, multi-steroid profiling enables different pathways 
of steroidogenesis to be assessed simultaneously, which is essential due 
to the interlinked nature of steroidogenesis and the contribution of in-
dividual enzymes to several pathways (Fig. 1). Thirdly, multi-steroid 
profiling can be used to investigate off-target effects of inhibitors of 
steroidogenesis. Finally, multi-steroid profiling can be combined with 
machine learning approaches to generate powerful, unbiased and 
automated diagnostic steroid metabolomics tools [3,4]. 

In contrast to immunoassays, liquid chromatograhpy tandem-mass 
spectrometry allows for the high-throughput multiplexing of analytes 
that is required to effectively use multi-steroid profiling in clinical and 
research laboratories. Steroid analysis by mass spectrometry is often 
limited by poor sensitivity due to low analyte concentrations in bio-
logical samples and low ionisation efficiency of the analytes. Mobile 
phase additives can improve the chromatography (peak separation and 
shape), enhance the signal and, thereby, sensitivity. Formic (methanoic) 
acid, acetic acid and ammonium acetate or ammonium formate are 
common additives for corticosteroids and androgen analysis in the 
positive ionisation mode [14–17] as they can promote the formation of 
protonated molecular ions [M + H]+. Ammonium fluoride (NH4F) can 
aid the ionisation of steroids in electrospray ionisation (ESI) in negative 
mode [18] and hence improve the sensitivity of oestrogen measure-
ments [19,20]. Additionally, NH4F has been reported to augment the 
ionisation of steroids using ESI in positive ion mode in a structure- 
dependent manner, when coupled to supercritical fluid chromatog-
raphy [21]. Here, we present an ultra-high performance liquid 
chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay to 
measure 23 steroids (Table 1) from the mineralocorticoid, glucocorti-
coid and androgen biosynthetic pathways, including the 11-oxygenated 
androgen pathway and alternative pathway of DHT biosynthesis. The 
separation was achieved in 5 min using post-column infusion of NH4F in 
positive ionisation mode to enhance ionisation. 

2. Material and methods 

2.1. Preparation of external standards and quality controls 

Reference standards of all analytes were purchased as powders from 
Sigma-Aldrich (Gillingham, UK) and Steraloids (Newport, USA); for 
details see Supplemental Table 1. As certified reference material was not 
available for each steroid, we analysed all by gas chromatography mass 
spectrometry after derivatisation to form methyloxime-trimethylsilyl 
ethers [22]. Additional peaks indicating impurities were excluded by 
analysis of the chromatograms and mass spectra. Individual stock so-
lutions at 1 mg/mL were prepared in UHPLC grade methanol (Biosolve, 

Table 1 
Nomenclature of the 25 steroids analysed in this UHPLC-MS/MS assay.  

Steroid 
abbreviation 

Trivial name Chemical 
name 

Functional class 

Preg Pregnenolone 5-pregnene- 
3β-ol-20-one 

General steroid 
precursor 

Prog Progesterone 4-pregnene- 
3,20-dione 

Progestogen/ 
general steroid 
precursor 

DOC 11-deoxycorticosterone 4-pregnene- 
21-ol-3,20- 
dione 

Mineralocorticoid 
precursor 

B Corticosterone 4-pregnene- 
11β,21-diol- 
3,20-dione 

Mineralocorticoid 
precursor 

Aldo Aldosterone 4-pregnene- 
11β,21-diol- 
3,20-dione- 
18-ol 

Mineralocorticoid 

17Preg 17α- 
hydroxypregnenolone 

5-pregnene- 
3β,17α-diol- 
20-one 

Glucocorticoid or 
androgen precursor 

17OHP 17α- 
hydroxyprogesterone 

4-pregnene- 
17β-ol-3,20- 
dione 

Glucocorticoid 
precursor 

S 11-deoxycortisol 4-pregnene- 
17α,21-diol- 
3,20-dione 

Glucocorticoid 
precursor 

F Cortisol 4-pregnene- 
11β,17α,21- 
triol-3,20- 
dione 

Glucocorticoid 

E Cortisone 4-pregnene- 
17α,21-diol- 
3,11,20- 
trione 

Glucocorticoid 
metabolite 

DHEA Dehydroepiandrosterone 5- 
androstene- 
3β-ol-17-one 

Classic androgen 
precursor 

A4 Androstenedione 4- 
androstene- 
3,17-dione 

Classic androgen 
precursor 

T Testosterone 4- 
androstene- 
17β-ol-3-one 

Classic androgen 

DHT 5α-dihydrotestosterone 5α- 
androstane- 
17β-ol-3-one 

Classic androgen 

5α-dione 5α-androstanedione 5α- 
androstane- 
3,17-dione 

Classic androgen 
metabolite  

3α-adiol 
5α-androstanediol 5α- 

androstane- 
3α,17β-diol 

Classic androgen 
metabolite/ 
alternative DHT 
pathway 
intermediate 

An 5α-androsterone 5α- 
androstane- 
3α-ol-17-one 

Classic androgen 
metabolite/ 
alternative DHT 
pathway 
intermediate 

11KA4 11-ketoandrostenedione 4- 
androstene- 
3,11,17- 
trione 

11-oxygenated 
androgen precursor 

11KT 11-ketotestosterone 4- 
androstene- 
17β-ol-3,11- 
dione 

11-oxygenated 
androgen 

11OHA4 11β- 
hydroxyandrostenedione 

4- 
androstene- 
11β-ol-3,17- 
dione 

11-oxygenated 
androgen precursor 

11OHT 11β-hydroxytestosterone 4- 
androstene- 
11β,17β- 
diol-3-one 

11-oxygenated 
androgen  

Table 1 (continued ) 

Steroid 
abbreviation 

Trivial name Chemical 
name 

Functional class 

5αDHP 5α-dihydroprogesterone 5α- 
pregnane- 
3,20-dione 

Progestogen 
metabolite 
/alternative DHT 
pathway 
intermediate 

AlloP Allopregnanolone 5α- 
pregnane- 
3α-ol-20-one 

Progestogen 
metabolite/ 
alternative DHT 
pathway 
intermediate  
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Dieuze, France) and stored at − 80 ◦C. Using the stock solutions, com-
bined calibrators for all analytes were prepared by spiking phosphate 
buffered saline (PBS) pH 7.4 supplemented with 0.1 % (wt/vol) bovine 
serum albumin (BSA) (Sigma-Aldrich, Gillingham, UK) yielding 12 final 
concentrations from 0 to 250 ng/mL (Supplemental Table 2). PBS sup-
plemented with BSA is a typical matrix used to mimic a serum envi-
ronment in clinical biochemistry [14,23]. A combined internal standard 
stock solution containing 0.5 μg/mL of each internal standard was 
prepared in deuterated methanol (Sigma-Aldrich) to avoid hydro-
gen–deuterium exchange. 

Quality control (QC) samples were prepared by spiking PBS 0.1 % 
BSA at four different concentrations covering the expected concentra-
tion range in human serum using independently prepared 1 mg/mL 
stock solutions (Supplemental Table 2). Additionally, pooled adult male 
human serum (Sigma-Aldrich) was aliquoted, stored at − 80 ◦C and used 
as a biological QC in each analytical run. All calibrators, internal stan-
dards and QCs were stored at − 20 ◦C. 

2.2. Collection of serum samples 

The collection of blood samples was approved by the authors’ 
Institutional Review Board (Science, Technology, Engineering and 
Mathematics Ethical Review Committee of the University of Birming-
ham, ERN_17-0494). Informed, written consent was obtained from all 
individuals included in this study. Following venous puncture, blood 
was collected into gold top SST Vacutainers® (Becton, Dickinson, 
Wokingham, UK). Samples were spun and the serum removed and stored 
at − 80 ◦C until analysis. The method was applied to 20 serum samples 
from healthy volunteers 10 female and 10 males (20–40 years). 

2.3. Sample preparation 

Steroids were extracted by liquid–liquid extraction. A set of cali-
brators, QCs and biological QCs were extracted with each batch of 
samples. Sample, calibrator, or QC (200 μL) were transferred into a 
hexamethyldisilazane-treated glass tube with 10 µL of the internal 
standard mixture containing all stable isotope labelled internal stan-
dards listed in Table S1. 50 μL of acetonitrile (Biosolve, Dieuze, FR) was 
added to precipitate the proteins and the samples were vortexed. 1 mL of 
tert-butyl methyl ether (Acros Organics, Fisher Scientific UK ltd, 
Loughborough, UK) was added to each sample and the samples were 
vortexed at 1000 rpm for 10 min on a Fisherbrand multi-tube vortex 
(Fisher, Loughborough, UK). The samples were then incubated at room 
temperature for at least 30 min to aid phase separation. The organic 
phase was subsequently transferred into the wells of a 2 mL square well 
96-well plate (Porvair Sciences ltd, Wrexham, UK) containing 700 µL 
glass inserts (Randox, Crumlin, UK) and dried under a nitrogen stream at 
45 ◦C. The dried extract was reconstituted in 100 µL of 50 % (vol/vol) 
UHPLC grade methanol (Biosolve) in UHPLC grade water (Biosolve) 
prior to analysis. 

2.4. Ultra-high performance liquid chromatography 

Chromatography was performed on a Classic Waters Acquity ultra 
performance liquid chromatography system with a 50 μL loop (UHPLC; 
Waters Ltd, Wilmslow, UK) using a Phenomenex Luna Omega column, 

Table 2 
Retention times, quantifier and qualifier mass transitions, collision en-
ergies and cone voltages of target analytes and internal standards. Stable 
isotope labelled versions of each steroid were used as internal standards. 
Labelled versions were unavailable only for 5α-dione and 11OHT (*) therefore 
DHT-d3 and 11OHA4-d7 were used, respectively.  

Analyte Retention 
time 
(min) 

Mass transition 
(m/z) 
Quantifier 
Qualifier 

Cone 
voltage 
(V) 

Collision 
energy 
(eV) 

Preg 3.65 299.2 > 281.1 
317.1 > 281.1 

36 
16 

12 
14 

Prog 3.37 315.1 > 97.1 
315.1 > 109.1 

20 
20 

20 
24 

DOC 2.21 331.1 > 97.1 
331.1 > 109.1 

26 
26 

20 
24 

B 1.52 347.2 > 121.1 
347.2 > 97.1 

20 
16 

24 
20 

Aldo 0.86 361.2 > 343.2 
361.2 > 315.1 

40 
40 

16 
18 

17Preg 2.42 315.2 > 297.2 
297.2 > 279.2 

8 
4 

12 
14 

17OHP 2.45 331.1 > 97.1 
331.1 > 109.1 

16 
16 

22 
26 

S 1.64 347.1 > 109.1 
347.1 > 97.1 

42 
42 

26 
22 

F 1.06 363.3 > 121.1 
363.1 > 91.1 

42 
42 

22 
50 

E 0.96 361.1 > 163.1 
361.1 > 121.01 

46 
46 

22 
38 

DHEA 2.35 271.2 > 253.2 
289.2 > 253.2 

30 
12 

10 
8 

A4 2.03 287.2 > 109.1 
287.2 > 97.1 

26 
26 

22 
22 

T 2.26 289.2 > 97.1 
289.2 > 109.1 

40 
40 

20 
24 

DHT 2.80 291.2 > 255.1 
291.2 > 159.1 

42 
42 

14 
22 

5α-dione*  2.63 289.2 > 253.1 
289.2 > 271.1 

40 
40 

16 
10 

3α-adiol 3.21 275.2 > 257 
275.2 > 81 

28 
28 

10 
28 

An 3.34 291.2 > 273.2 
291.2 > 255.2 

24 
24 

8 
12 

11KA4 1.06 301.1 > 121.1 
301.1 > 257.1 

44 
44 

22 
22 

11KT 1.21 303.1 > 121 
303.1 > 259.1 

20 
20 

22 
22 

11OHA4 1.34 303.1 > 285.1 
303.1 > 267.1 

30 
30 

14 
16 

11OHT*  1.48 305.2 > 269.2 
305.2 > 121.1 

16 
16 

14 
20 

5αDHP 4.01 317.1 > 281.1 
317.1 > 85.1 

38 
24 

12 
14 

alloP 4.33 319.1 > 301.2 
319.1 > 283.2 

22 
22 

8 
14 

Internal 
standard 

Retention 
time 
(min) 

Mass transition 
(m/z) 
Quantifier 
Qualifier 

Cone 
voltage 
(V) 

Collision 
energy 
(eV) 

Preg-d2-13C2 3.64 321.1 > 303.1 28 8 
Prog-d9 3.34 324.2 > 100.1 28 24 
DOC-d8 2.18 339.1 > 100.1 26 24 
B-d8 1.49 355.1 > 337.2 46 14 
Aldo-d8 0.85 369.2 > 351.1 34 16 
17Preg-d3 2.4 336.2 > 300.2 12 10 
17OHP-d8 2.42 339.1 > 100.1 26 24 
S-d2 1.62 349.1 > 97.1 42 22 
F-d4 1.06 367.2 > 121.1 28 26 
E-d7 0.95 369.1 > 169.1 40 24 
DHEA-d6 2.33 277.2 > 219.1 22 14 
A4-d7 2.01 294.2 > 109.1 26 22 
T-d3 2.25 292.2 > 97.1 46 22 
DHT-d3 2.79 294.1 > 258.1 22 16 
3α-adiol-d3 3.20 278.2 > 150.2 20 20 
An-d4 3.33 295.1 > 277.2 24 12 
11K4-d10 1.04 311 > 265 46 16  

Table 2 (continued ) 

Analyte Retention 
time 
(min) 

Mass transition 
(m/z) 
Quantifier 
Qualifier 

Cone 
voltage 
(V) 

Collision 
energy 
(eV) 

11KT-d3 1.20 306.2 > 262.1 20 22 
11OHA4-d7 1.30 310.1 > 292.1 30 14 
5αDHP-d4 3.96 323.1 > 305.1 22 8 
alloP-d4 4.31 323.1 > 305.1 22 8  
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1.6 µm, polar C18, 100 Å, 2.1 × 50 mm; (Phenomenex, Macclesfield, 
UK) at 60 ◦C. 10 µL of the reconstituted sample was injected. Mobile 
phase A consisted of UHPLC grade water (Biosolve) and mobile phase B 
of UHPLC grade methanol (Biosolve). An optimised method with a linear 
gradient from 45 % to 75 % of mobile phase B was applied over five 
minutes at a flow rate of 0.6 mL/min to separate the analytes followed 
by a wash step with 95 % B until 5.2 min and equilibration at starting 
conditions from 5.5 min until injection of the next sample. Total run 
time injection-to-injection was thus 6 min. The auto sampler was 
maintained at 10 ◦C. To investigate ionisation 0.1 % (vol/vol) formic 
acid (added to mobile phase A or both A and B) was compared to PCI of 
NH4F. 

2.5. Tandem mass spectrometry 

The UHPLC eluate was injected into a XEVO® TQ-XS mass spec-
trometer (Waters Ltd) using ESI in positive ion mode. Post-column 
infusion 6 mmol/L NH4F in 50 % (vol/vol) methanol in water was 
combined using the fluidics system on the mass spectrometer under full 
software control. The capillary voltage was maintained at 1.5 kV, the 
source temperature was 150 ◦C, desolvation temperature and gas flow 
were 600 ◦C and 1200 L/h, cone gas was 150 L/h. MassLynx 4.2 soft-
ware (Waters ltd) was used for systems control and optimisation of mass 
transitions. Qualifier and quantifier mass transitions, cone voltages and 
collision energies (Table 2) were further manually optimised using 
direct infusion (20 μL/min) of a 500 nM solution of each steroid in 50 % 
(vol/vol) methanol in water containing 1 mM NH4F and a UHPLC flow 
rate of 0.3 mL/min with a methanol/water mixture mimicking the 
elution conditions of the respective analyte. Dwell time was automati-
cally calculated by MassLynx© for each transition with a minimum of 
twelve analytical points across each peak required for quantitative 
analysis. 

TargetLynx software was used for data processing and quantifica-
tion. Peak area ratios of analyte to internal standard were plotted against 
the nominal concentrations of the calibrators and 1/x weighting and 
linear least square regression were used to produce the standard curve. 
Ion-ratio error indicators are automatically calculated by the TargetLynx 
to allow for the detection of co-eluting steroid with cross-reactivity. 

2.6. Validation 

Validation was performed following protocols from published 
guidelines [24–26]. For each steroid, validation has been performed at 

different concentrations representing low, medium and high concen-
trations of that steroid in serum. While this method has utility for many 
biological matrices, we opted to validate for a serum application. 

2.6.1. Recovery and matrix effects 
Matrix effects and recovery were determined as previously described 

[27,28]. Six different human serum samples (four male and two female) 
were extracted (endogenous). A second aliquot from the same sample 
was then spiked at 5 ng/mL before extraction (pre extract) and after 
extraction and reconstitution (post extract). Additionally, the reconsti-
tution solvent (50 % (vol/vol) UHPLC grade methanol in UHPLC grade 
water) was spiked with the same amounts of analytes (non extract). 
Percentage matrix effects and recoveries were calculated using the for-
mulas below, comparing responses (matrix effects) or concentrations 
(recovery) from these samples. Quantification was completed after 
normalisation to the internal standard to realistically determine the 
impact of the matrix on the assay performance. 

%MatrixEffect =
(
(post extraction − endogenous) − non extraction

non extraction

)

× 100  

%Recovery =

(
Concentration (pre extract)
Concentration (post extract)

)

× 100 

For matrix effects mean values between − 15 and 15 % were 
considered ideal and − 20 % and 20 % were acceptable. For recovery 
mean values between 80 % and 120 % were defined acceptable. 

2.6.2. Limits of quantification 
The lower limit of quantification (LLOQ) was defined as the lowest 

concentration for which 10 replicate samples of spiked surrogate matrix 
could be measured with an intra-assay (within-run) imprecision CV <
20 % and an accuracy (bias) between +20 % and − 20 %. 

The upper limit of quantification (ULOQ) as defined as the highest 
concentration for which 10 replicate samples of spiked surrogate matrix 
could be run with an intra-assay (within-run) imprecision CV < 15 % 
with an accuracy (bias) between +15 % and − 15 %. 

2.6.3. Linearity 
Three calibration series were prepared by different scientists. For 

each analyte the ratio of analyte peak area to internal standard peak area 
was plotted against the nominal concentrations of the standard as 
described above. To be deemed an acceptable linear calibration series 
each data point above the LLOQ and below the ULOQ should have an 

Fig. 2. Ammonium fluoride (NH4F) post- 
column infusion enhances ionisation of 
steroids in a structure-dependent fashion 
as compared to mobile phase formic acid. 
The percentage increase in peak area of the 
quantifier transition when comparing post- 
column infusion of NH4F (6 mmol/L, 5 μL/ 
min) to the use of 0.1 % (vol/vol) formic acid 
in both the methanol and water mobile 
phase. Bars represent the mean percentage 
peak area and whiskers the relative standard 
deviation for serum samples from different 
individuals. Samples from all individuals 
with detectable peaks were included (Prog, 
DOC, B, 17Preg, 17OHP, S, F, E, DHEA, A4, 
T, DHT, An, 11KA4, 11KT, 11OHA4, 11OHT 
n = 74; Preg n = 73; Aldo n = 71; 3α-adiol n 
= 56; 5αDHP n = 48; alloP n = 15; 5α-dione 
n = 14). The red line indicates a relative peak 
area of 100 % (identical ionisation with both 
methods). The colour of the bars indicates 

the functional class of each analyte; yellow, general steroid precursor; light green, mineralocorticoid precursor; dark green, mineralocorticoid; orange, glucocorticoid 
precursor; red, glucocorticoid; turquoise, androgen precursor; dark blue, androgen; light blue, alternative DHT biosynthesis pathway intermediate.   

L. Schiffer et al.                                                                                                                                                                                                                                 



Journal of Chromatography B 1209 (2022) 123413

6

accuracy (bias) not exceeding ± 15 % compared to the nominal con-
centration. In addition, the correlation coefficient of the regression, R2, 
generated from the calibration curve should be > 0.99. 

2.6.4. Determination of imprecision 
Intra-assay (within-run) imprecision. 
Pooled surrogate matrix samples spiked with all analytes at four 

different concentrations (0.3, 1, 3 and 30 ng/mL) as well as pooled adult 
male serum samples (Sigma Aldrich) and pooled adult male serum 
(Sigma Aldrich) samples spiked with 5 ng/mL for all analytes were run 
ten times in the same batch to assess intra-assay (within-run) impreci-
sion. The data for both biological and surrogate matrices is presented 
separately. A percentage deviation (CV) ≤ 15 % was considered 
acceptable. 

Inter-assay (between-run) imprecision 
Pooled adult male serum samples and pooled adult male serum 

samples spiked with 5 ng/mL of all analytes were extracted 10 times in 
two independent batches to assess inter-assay (between-run) impreci-
sion. A percentage deviation (CV) ≤ 15 % was considered acceptable. 

2.6.5. Accuracy 
10 samples of surrogate matrix were spiked individually at four 

different concentrations (0.3, 1, 3 and 30 ng/mL). A percentage bias of 
the observed concentration to the nominal concentration between − 15 
% and + 15 % was considered optimal. 

2.6.6. Carryover 
Carryover was assessed by running a blank sample immediately after 

the injection of 250 and 1000 ng/mL steroid mixtures. Percentage 
carryover was calculated from the peak area of the analyte in the blank 
samples relative to the concentrated sample. Carryover of <2 % was 
deemed acceptable. 

3. Results 

3.1. Chromatographic separation 

Analytes were separated using a linear gradient over five minutes 
followed by 0.5 min at starting conditions for equilibration resulting in a 
total run time injection-to-injection of 6 min. All analytes eluted as 
distinct, identifiable peaks (Supplemental Fig. 1). Two pairs of analytes 
co-eluted: (cortisol (m/z 363) and 11KA4 (m/z 301); 17OHP (m/z 330) 
and 17Preg (m/z 332)). No interference was observed due to the dif-
ferences in m/z (Table 2). To confirm selectivity, the co-elution of 
endogenous steroids, that may be present at high concentrations, e.g. 
21-deoxycortisol and 11-dehydrodeoxycorticosterone, were assessed. 
Due to the cross-reactivity of synthetic steroids, samples from patients 
on prednisone, prednisolone and dexamethasone cannot be analysed by 
the assay. 

3.2. Comparison of additives to improve ionisation 

The effect of NH4F on signal intensity was assessed in comparison to 
our previously published method using 0.1 % (vol/vol) formic acid as 
mobile phase additive in both the methanol and water phases [6,7]. We 
chose to add NH4F by post-column infusion as preliminary experiments 
with NH4F as an additive led to increases in system pressure indicative of 
damage to the column material, with < 200 injections before the column 
pressure exceeded the limits of the system (>17000 psi) and chroma-
tography was no longer reproducible. The intra-assay (within-run) 
imprecision using this modification was acceptable with a mean CV of 
the peak area of 7.0 % for all analytes (CV range 3.9 to 13.7 %; n = 60 
injections of the same sample). Peak areas of all analytes in serum (n =
73) were compared between the assay with formic acid in both mobile 
phases and the assay using post-column infusion of NH4F. NH4F 
increased peak area in a structure-dependent fashion (Fig. 2, Supple-
mental Fig. 2). In comparison to formic acid, NH4F induced significant 
increases in the peak area of steroids with 3-keto-Δ4 structure (Prog, 
DOC, B, Aldo, 17OHP, S, E, F, A4, 11OHA4, 11KA4, T, 11KT, 11OHT), 
with mean increases varying from 477 % (17OHP) to 1274 % (Aldo). 
NH4F had a lower impact on the peak area of the majority of A-ring 
reduced steroids with changes varying between 100 % and 352 % (DHT, 
5α-dione, 3α-diol, An, 5α-DHP), with the exceptions of alloP (841 %). 
NH4F post-column infusion had only a very minor impact on the peak 
areas of 3β-OH-Δ5 steroids (Preg, 17Preg, DHEA). Our final optimised 
method employed 6 mmol/L NH4F in 50 % (vol/vol) methanol in water 
introduced via post-column infusion at a flow rate of 5 µL/min, with 0.1 
% (vol/vol) formic acid in the water mobile phase to limit the risk of 
microbial contamination. 

3.3. Validation of the analytical performance 

Matrix effects and recovery were assessed for six different serum 
samples (Table 3). Mean matrix effects ranged from − 19.5 % to 19.9 % 
for all analytes, except for 5αDHP (-29.9 %), which was outside the 
desired range from − 20 % to 20 %. Mean recovery was acceptable with a 

Table 3 
Matrix effects, recovery and carry over for all steroids. Matrix effects and 
recovery were assessed at 5 ng/mL (approximately 17 nmol/L) in serum samples 
from six different donors.  

Analyte Matrix effects (%) 
mean  
(min–max) 

Recovery (%) 
mean  
(min–max) 

Carry over 
(%) 
(250 ng/ 
mL) 

Carry over 
(%) 
(1000 ng/ 
mL)  

Preg 19.9 (-0.4–43.8) 93.9 (75.3–110)  0.056  0.003 
Prog 7.4 (-8.2–19.7) 98.9 (91.3–110)  0.201  0.012 
DOC 14.4 (9.1–20.9) 113.6 

(102.9–131.4)  
0.124  0.017 

B 13.5 (5.3–22.5) 91.3 
(74.3–110.3)  

0.091  0.021 

Aldo 12.6 (8.7–17.5) 103.5 
(92.4–111.8)  

0.066  0.023 

17Preg − 15.9 (-57.9–27.8) 105.5 
(59.0–129.7)  

0.064  0.024 

17OHP − 11.4 (-31.3–24.2) 94.5 
(78.0–108.6)  

0.063  0.026 

S 4.3 (-5.0–14.4) 99.9 
(88.3–107.9)  

0.069  0.028 

F − 19.5 (–32.5–16.7 101.7 
(7.5–108.4)  

0.072  0.030 

E 7.1 (-4.3–19.9) 100.7 
(95.7–102.8)  

0.064  0.031 

DHEA − 1.4 (-20.1–12.9) 105.1 
(95.0–118.2)  

0.039  0.032 

A4 12.7 (0.3–29.0) 95.2 
(85.8–112.0)  

0.129  0.035 

T 0.5 (-8.3–4.9) 102.8 
(97.9–106.7)  

0.147  0.048 

DHT 2.4 (-9.0–10.0) 102.7 
(96.6–111.7)  

0.058  0.049 

5α- 
dione 

19.2 (7.8–29.7) 104.6 
(88.6–113.9)  

0.024  0.056 

3α-adiol 4.2 (-44.1–32.8) 109.1 
(96.4–138.8)  

0.684  0.057 

An 13.0 (5.9–23.0) 98.1 (87.0–107)  0.008  0.073 
11KA4 − 2.6 (-25.4–33.6) 109.0 

(77.3–133.9)  
0.101  0.147 

11KT 10.1 (4.7–16.6) 98.0 
(89.3–102.1)  

0.090  0.152 

11OHA4 − 3.6 (-17.4–17.2) 105.9 
(94.1–117.8)  

0.077  0.172 

11OHT 1.7 (-6.7–6.1) 101.8 
(96.5–110.2)  

0.082  0.186 

5αDHP − 29.9 (-49.9- 
− 8.4) 

113.3 
(80.9–184.4)  

0.015  0.201 

alloP 16.0 (–22.3–40.6) 91.6 
(74.0–124.1)  

0.198  0.214  
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range from 91.6 % to 113.6 %. Lower limits of quantification ranged 
between 0.1 ng/mL (~0.3 nmol/L) and 0.5 ng/mL (~1.5 nmol/L) for all 
analytes except for 17Preg and 3α-adiol, which had a limit of quantifi-
cation of 1 ng/mL (corresponding to 3.01 and 3.42 nmol/L, respectively) 
(Table 4). ULOQ was 100 ng/mL for 11OHT, DOC, 17OHP and Prog; 50 
ng/mL for T and A4 and 250 ng/mL for all other analytes (Table 4). 
Calibration curves were linear from the LLOQ to the ULOQ with an 
accuracy (bias) for each point not exceeding ± 15 % compared to the 
nominal concentration and an R2 ≥ 0.99 for all analytes. Carryover was 
≤ 0.68 % for all analytes at both concentrations tested (Table 3). 

The accuracy (bias) and imprecision of the assay were assessed with 
spiked PBS 0.1 % BSA samples at four different concentrations. The bias 
between the observed and nominal concentrations was calculated as a 
measure of accuracy and the coefficient of variation (CV) as a measure of 
imprecision (Table 4). Bias was within acceptable limits for the majority 
of analytes at all concentrations above the LLOQ ranging from − 14.0 to 
11.9 %, with the exception of 5αDHP at 0.3 ng/mL (-21 %) and 
17OHPreg at 1 ng/mL (-17.0 %). Intra-assay imprecision determined for 
the spiked PBS 0.1 % BSA samples was within acceptable limits for the 

majority of analytes at concentrations above the LLOQ ranging from 2.3 
to 15.2 % with the exception of 3α-adiol (17.8 % at 1 ng/mL), 17OHPreg 
(16.5 % at 3 ng/mL) and alloP (at all concentrations imprecision ranged 
from 15.1 to 20.5 %). 

Additionally, imprecision was assessed using a pooled serum sample 
(Table 5). The levels in this pooled serum sample were below the limit of 
quantification for 9 analytes (Preg, Prog, Aldo, DOC, 5α-dione, 3α-adiol, 
An, 5αDHP and alloP). For the remaining analytes the intra-assay CV 
ranged from 2.4 to 16.3 % and the inter-assay CV from 3.5 to 16.1 %. For 
a pooled serum sample spiked with 5 ng/mL of all analytes the intra- 
assay CV was between 2.3 % and 12.5 % for all analytes. The inter- 
assay CV was < 15 % (3.2 to 14.7 %) for all steroids except 3α-adiol 
(23.0 %) and 5α-DHP (22 %). 

3.4. Serum steroid profiling in healthy volunteers 

Following validation, we applied this assay to the measurement of 
serum samples from 10 female (aged 23–39 years) and 10 male healthy 
volunteers (aged 28–37 years). The highest concentrations were 

Table 4 
Accuracy (bias) and intra-assay (within-run) imprecision and limits of quantification. Accuracy and imprecision were determined at four concentrations spiked 
into surrogate matrix (n = 10). n/a, not applicable as concentration < LLOQ. The lower limit of quantification (LLOQ) was defined as the lowest concentration that can 
be assessed with appropriate accuracy (bias within ± 20 %) and imprecision (CV < 20 %). The upper limit of quantification (ULOQ) was defined as the highest 
concentration that can be assessed with appropriate accuracy (bias within ± 15 %) and imprecision (CV < 15 %).   

Bias (%) Imprecision, CV (%) LLOQng/mL  
(nM) 

ULOQ ng/mL 
(nM) 

Concentration (ng/mL) 0.3 1 3 30 0.3 1 3 30 

Preg − 9.6 − 0.4  − 1.4  − 3.9 8.0  5.4  13.1  4.6 0.2 
(0.6) 

250 
(791) 

Prog − 6.2 1.6  1.3  − 5.0 7.0  5.3  9.1  3.3 0.1 
(0.3) 

100 
(318) 

DOC − 0.7 − 2.0  3.3  − 0.2 7.4  7.6  11.6  6.0 0.2 
(0.5) 

100 
(303) 

B − 5.4 − 6.5  − 1.8  9.2 9.4  5.8  12.1  4.8 0.1 
(0.3) 

250 
(722) 

Aldo − 7.7 − 2.1  0.1  0.8 7.0  5.1  9.6  5.0 0.2 
(0.4) 

250 
(694) 

17Preg n/a − 17  3.8  − 3.6 n/a  10.4  16.5  11.1 1.0 
(3.0) 

250 
(753) 

17OHP 4.9 − 0.2  − 5.6  0.2 5.7  10.0  9.4  6.2 0.2 
(0.6) 

100 
(303) 

S 8.4 3.9  6.8  1.8 5.5  4.8  8.3  3.8 0.2 
(0.4) 

250 
(722) 

F 2.6 7.7  10.3  2.7 5.5  4.9  4.1  2.3 0.1 
(0.3) 

250 
(690) 

E 0.7 4.7  7.2  5.0 6.7  4.5  8.2  4.3 0.1 
(0.3) 

250 
(694) 

DHEA 10.6 4.8  0.6  2.3 13.3  10.1  8.0  3.8 0.2 
(0.7) 

250 
(868) 

A4 6.1 − 5.1  − 0.4  − 4.6 11.3  8.2  6.9  3.7 0.2 
(0.7) 

50 
(175) 

T − 1.8 5.3  7.5  0.6 7.6  5.6  8.2  3.8 0.1 
(0.4) 

50 
(174) 

DHT 1.3 6.4  10.2  11.9 6.7  5.1  8.4  3.2 0.1 
(0.3) 

250 
(862) 

5α-dione − 2.2 2.0  3.4  − 8.0 7.8  9.5  11.2  8.0 0.2 
(0.5) 

250 
(868) 

3α-adiol n/a 4.4  − 6.1  2.5 n/a  17.8  11.5  6.5 1.0 
(3.4) 

250 
(862) 

An 2.5 1.8  − 0.5  − 2.9 15.2  12.2  9.1  3.5 0.2 
(0.7) 

250 
(862) 

11KA4 − 9.8 − 5.7  − 0.5  − 0.9 8.3  6.1  11.2  5.3 0.1 
(0.3) 

250 
(833) 

11KT − 8.5 0.5  2.3  − 1.6 10.5  4.8  11.6  2.7 0.1 
(0.3) 

250 
(828) 

11OHA4 − 4.1 1.6  2.8  − 1.9 6.8  5.7  7.5  3.6 0.1 
(0.3) 

250 
(828) 

11OHT 0.2 5.6  10.9  4.0 11.6  6.8  8.0  5.0 0.1 
(0.3) 

100 
(329) 

5αDHP − 21.0 − 8.2  − 3.4  − 4.6 14.3  12.5  11.6  14.4 0.2 
(0.6) 

250 
(791) 

alloP − 14.0 − 10.7  − 14.0  − 11.5 20.5  16.1  15.7  15.1 0.2 
(0.6) 

250 
(786)  
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observed for glucocorticoids (F and E), the adrenal androgen precursor 
DHEA and the mineralocorticoid precursor B. As expected, men had 
higher levels of T and DHT than women, the levels of all other adrenal 
derived steroids were similar in men and women (Fig. 3). Concentra-
tions of Prog and its metabolites 5αDHP and alloP were below the LLOQ 
in men and in 8 of 10 women, which reflects that Prog is only produced 
at relevant levels in women during luteal phase of the menstrual cycle. 
In addition to these three analytes, serum levels of DOC, Aldo, DHT (in 
women), 5α-dione and 3α-diol were below the LLOQ for most samples. 

4. Discussion 

Multi-steroid profiling provides a wider insight than quantification 
of a single steroid marker. A multiplexed approach has extensive utility 
for the diagnosis, monitoring, and the development of a mechanistic 

understanding of steroid-associated conditions as it allows for the inte-
gration of steroid flux across all pathways of steroid biosynthesis and 
metabolism [2,29]. This has led several clinical laboratories to increase 
the number of analytes that are multiplexed in a single assay 
[14,30–32]. Here, we describe the development and validation of an 
UHPLC-MS/MS assay for the simultaneous measurement of 23 steroids 
from the mineralocorticoid, glucocorticoid and androgen biosynthetic 
pathways with a total run-time of 6 min. 

Formic acid is a standard mobile phase additive for the analysis of 
steroids in positive ionisation mode as 3-keto-Δ4 steroids predominantly 
form protonated molecular ions [M + H]+. However, the sensitivity 
achieved with formic acid as an additive can still be insufficient to 
accurately quantify the low levels of certain steroids present in serum. 
Hence, we tested the effect of post-column infusion of NH4F on the signal 
of all 23 steroids in our assay and established large increases in peak area 
for all 3-keto-Δ4 analytes in the presence of NH4F compared to formic 
acid, with lower impact observed on the ionisation of A-ring reduced 
and 3βOH-Δ5 steroids. These findings are consistent with published 
results on the effect of NH4F on the ionisation of selected steroids in a 
supercritical fluid chromatography set up with ESI in positive mode 
[21]. 3-keto-Δ4 steroids predominantly form quasi molecular ions [M +
H]+ during ESI. Parr et al. [21] speculate that the signal enhancement 
observed for 3-keto-Δ4 is due to the aided formation of [M + H]+ ions in 
the presence of NH4F, as the proton affinity of 3-keto-Δ4 steroids is 
higher than that of ammonium. Ammonium, which is acidic in the gas 
phase, could function as a potential source of protons responsible to the 
increase in signal of [M + H]+ ions. Another possible mechanism is that 
F- ions capture potential Na+ contaminations in the mobile phases, 
hence preventing the formation of [M + Na]+ adducts. 

While other assays for steroid analysis by ESI in positive mode use 
NH4F as mobile phase additives [20,33], we chose to supply NH4F by 
post-column infusion to allow for cost- and time efficient incorporation 
of the assay into lab workflows. As indicated by the system pressure 
increased in our own preliminary experiments with NH4F in the mobile 
phase, NH4F can have detrimental effects on column lifetime [34], 
which is circumvented by post-column infusion. If running different 
assays on the same LC-MS/MS system, post-column infusion of additives 
limits their variability in mobile phase compositions and could reduce 
the time needed for equilibration when switching between assays that 
require different additives. The use of the in-built fluidics system of this 
mass spectrometer for the post-column infusion is simple, robust, and 
fully automated. 

Suitable analytical performance of the assay has been confirmed for 
all 23 analytes for concentrations between LLOQ and ULOQ through the 
validation described here. However, the application of the assay to 
serum samples from healthy male and female volunteers revealed that 

Table 5 
Intra-assay (within-run) and inter-assay (between-run) imprecision of a 
pooled serum sample and a pooled serum sample spiked with 5 ng/mL of 
all analytes. (n ¼ 10). n/a, not applicable as concentration below the lower 
limit of quantification (<LLOQ).   

Pooled serum Pooled serum spiked at 
5 ng/mL 

Analyte Mean (ng/ 
mL) 

Inter- 
assay 
CV (%) 

Intra- 
assay 
CV (%) 

Inter- 
assay 
CV (%) 

Intra- 
assay 
CV (%) 

Preg <LLOQ n/a n/a 8.2  4.9 
Prog <LLOQ n/a n/a 10.8  12.5 
DOC <LLOQ n/a n/a 5.9  2.7 
B 2.3 11.2 7.3 12.5  3.7 
Aldo <LLOQ n/a n/a 5.6  3.7 
17Preg 4.8 16.1 16.3 14.7  8.1 
17OHP 1.2 5.5 4.2 12.1  4.5 
S 0.2 8.1 6.9 5.8  3.5 
F 75.2 3.5 2.4 3.7  2.5 
E 9.7 4.2 3.4 4.5  3.1 
DHEA 2.0 6.5 6.0 6.4  6.1 
A4 0.6 15.3 8.0 9.8  9.0 
T 4.0 4.7 3.5 3.2  2.3 
DHT 0.4 7.5 5.4 5.4  4.1 
5α- 

dione 
<LLOQ n/a n/a 12.8  6.1 

3α-adiol <LLOQ n/a n/a 23.0  10.0 
An <LLOQ n/a n/a 4.0  2.8 
11KA4 0.2 16.0 16.2 8.0  6.0 
11KT 0.1 10.1 5.9 4.7  3.0 
11OHA4 1.3 12.7 10.2 9.5  5.1 
11OHT 0.1 14.9 8.2 5.3  3.2 
5αDHP <LLOQ n/a n/a 22  4.1 
alloP <LLOQ n/a n/a 8.1  6.1  

Fig. 3. Human Serum Steroid Profiles. Serum steroid profiles in healthy volunteers, female (red circles; n = 10, age range 20–40 years) and male (blue circles, n =
10, age range 30–40 years). Each symbol represents one participant; values < LLOQ are represented by open circles and undetectable levels were not included in the 
visualisation. 
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out of the 23 analytes only 14 for women and 15 for men can be 
quantified at the concentration ranges of the circulating steroid 
metabolome in healthy adults. Prog, DOC, Aldo, DHT (in women only), 
5α-dione, 3α-diol, 5αDHP and alloP levels are below the LLOQ in a 
typical serum sample from the cohort studied here. Of note, these ana-
lytes might be quantifiable in steroid excess conditions potentially 
allowing for the assay to discriminate between samples from healthy 
individuals and those with excess activity of specific steroidogenic 
pathways. 

When comparing the sensitivity of our assay with other assays in the 
literature it has to be considered that our assay represents a multi- 
analyte profiling method delivering information on the levels of analy-
tes from all pathways of steroidogenesis in a single run. In order to 
achieve this, the assay has been optimised to provide sufficient analyt-
ical performance, including sensitivity, for all analytes as shown by the 
application to human adult serum samples resulting in a pareto-optimal 
solution. To accommodate the breadth of analytes it is not possible to 
have optimal extraction and mass spectrometry conditions for each in-
dividual analyte. However, when comparing LLOQs between our assay 
and more specialist assays in the literature, that target a lower number of 
analytes and/or structurally more similar analytes [35–38], our LLOQs 
are directly comparable or range within one order of magnitude 
demonstrating the competitive sensitivity of our assay despite the larger 
and structurally broader panel of analytes. Importantly, our sample 
preparation does not contain a derivatisation step as opposed to assays 
with similar LLOQs [35,36] thus reducing sources of variability and 
ensuring high selectivity of the MRMs. 

It should be noted that the assay as presented here has been tailored 
to steroid analytes and concentrations relevant to adult circulation and 
has neither been designed nor validated to measure paediatric samples. 

To the best of our knowledge, only two LC-MS/MS assays, which 
analyse 20 or more steroids in serum or plasma, have been published to 
date [39,40]. However, the run-times of these assays (16 min [39] and 8 
min [40]) are significantly longer than that of our assay. Published as-
says with run-times < 6 min cover a maximum of 16 analytes 
[37,41–43]. Additionally, while other assays focus mainly on adrenal 
steroids [16,32,41,44,45] or androgen panels [14,23], our assay 
comprehensively covers multiple steroid classes (Fig. 1). In addition to 
classic androgens, such as A4 and T, our assay covers the alternative 
pathway of DHT biosynthesis, which contributes to androgen excess in 
CAH [46,47], and the 11-oxygenated androgens, which have only 
recently been shown to have major relevance for the diagnosis and 
mechanistic understanding of androgen excess conditions [5,48–50]. 

Here we explored the application of this method to interrogate the 
complex matrix of serum, but with appropriate and newly validated 
adaptations of the sample preparation this UHPLC-MS/MS method can 
be applied to other matrices such as bio-fluids (saliva, follicular fluid, 
micro-dialysis fluid etc.), tissues (adipose, brain, prostate etc.) and in- 
vitro cell/organ culture experiments. 

With possibly over 60 steroids that can be detected in biological 
samples [51] and the high frequency of patients taking synthetic steroids 
cross-reactivity of other steroids present in the sample needs to be 
excluded. As part of our validation, we established that the assay cannot 
be applied to serum from patients with intake of the synthetic steroids 
prednisone, prednisolone and dexamethasone and excluded cross reac-
tivity of some endogenous steroids present in serum at high concentra-
tions. In addition, in order to detect possible cross-reactivity in each 
sample run our data processing pipeline automatically generates ion- 
ratio error indicators for every analyte. 

Our assay has limitations that might be considered to hamper its use 
in some laboratories: It uses liquid–liquid extraction, which is inex-
pensive, but time-consuming and labour-intensive, when performed 
manually, and can be challenging to automate. This assay can however 
be adjusted for an extraction technique with higher throughput and 
better potential for (semi)automation like supported liquid extraction or 
C18 solid phase extraction, used with satisfying results by other serum 

multi-steroid assays [14,16,32]. Moreover, post-column infusion as a 
mode of additive delivery is not available on all mass spectrometers, 
where this is the case external pumps can be purchased to enable post- 
column infusion. 

Finally, not all analytes in our assay have their own stable isotope- 
labelled internal standard, which is usually considered a prerequisite 
to appropriately control for matrix effects and extraction losses and to 
allow for accurate and precise quantification [31,52]. At the time this 
assay was developed, no internal standards were commercially available 
for 5α-dione and 11OHT. Therefore, quantification was performed using 
the internal standard eluting closest to the analyte and our validation 
data proves this approach to be sufficient, however use of customised 
deuterium- or 13C-labelled internal standards could improve accuracy 
and imprecision of these analytes. 

5. Conclusions 

UHPLC-MS/MS with post-column infusion of ammonium fluoride 
enables the high throughput profiling of 23 steroids. Use of NH4F 
significantly increased sensitivity for most steroids. The method was 
analytically validated and applied to human serum. 
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