
 
 

University of Birmingham

DeepRetroMoCo
Mobarak-Abadi, Mahdi; Mahmoudi-Aznave, Ahmad; Dehghani, Hamed; Zarei, Mojtaba;
Vahdat, Shahabeddin; Doyon, Julien ; Khatibi, Ali
DOI:
10.1101/2022.09.06.506787

License:
Creative Commons: Attribution (CC BY)

Document Version
Other version

Citation for published version (Harvard):
Mobarak-Abadi, M, Mahmoudi-Aznave, A, Dehghani, H, Zarei, M, Vahdat, S, Doyon, J & Khatibi, A 2022
'DeepRetroMoCo: deep neural network-based retrospective motion correction algorithm for spinal cord
functional MRI' bioRxiv. https://doi.org/10.1101/2022.09.06.506787

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1101/2022.09.06.506787
https://doi.org/10.1101/2022.09.06.506787
https://birmingham.elsevierpure.com/en/publications/345175f1-7729-4020-84fb-138a7c9c2683


 1 

DeepRetroMoCo: Deep neural network-based 

Retrospective Motion Correction Algorithm for Spinal 

Cord functional MRI 

 

Mahdi Mobarak-Abadi a, Ahmad Mahmoudi-Aznave a, Hamed Dehghani b, Mojtaba Zarei a, Shahabeddin 
Vahdat c, Julien Doyon d, Ali Khatibi e,f* 

 

a Institute of Medical Science and Technology Shahid Beheshti University, Velenjak, Tehran, Iran 

b Neuro Imaging and Analysis Group (NIAG), Research Center for Molecular and Cellular Imaging    
(RCMCI), Tehran University of Medical Sciences, Tehran, Iran 

c Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA  

d McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, 
Canada 

e Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), University of Birmingham, UK 

f  Centre for Human Brain Health, University of Birmingham, UK   

 

 

 

* Corresponding Author 

Ali Khatibi, PhD 

Centre of precision Rehabilitation for Spinal Pain 

University of Birmingham, Birmingham, UK 

m.khatibitabatabaei@bham.ac.uk 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506787doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506787
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract  

There are unique challenges in the preprocessing of spinal cord fMRI data, particularly 

voluntary or involuntary movement artifacts during image acquisition. Despite advances 

in data processing techniques for movement detection and correction, there are 

challenges in extrapolating motion correction algorithm developments in the brain cortex 

to the brainstem and spinal cord. We trained a Deep Learning-based convolutional neural 

network (CNN) via an unsupervised learning algorithm, called DeepRetroMoCo, to detect 

and correct motions in axial T2*-weighted spinal cord data. Spinal cord fMRI data from 

27 participants were used for training of the network (135 runs for training and 81 runs 

for testing). We used average temporal signal-to-noise-ratio (tSNR) and Delta Variation 

Signal (DVARS) of raw and motion-corrected images to compare the outcome of 

DeepRetroMoco with sct_fmri_moco implemented in the spinal cord toolbox. The 

average tSNR in the cervical cord was significantly higher when DeepRetroMoco was 

used for motion correction compared to sct_fmri_moco method. Average DVARS was 

lower in images corrected by DeepRetroMoco than those corrected by sct_fmri_moco. 

The average processing time for DeepRetroMoco was also significantly shorter than 

sct_fmri_moco. Our results suggest that DeepRetroMoCo improves motion correction 

procedures in fMRI data acquired from the cervical spinal cord.  

Keywords: fMRI; Spinal Cord; Motion Correction; Deep Learning, Unsupervised 
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1. Introduction 
Spinal cord functional magnetic resonance imaging (fMRI) has become increasingly 

popular for exploring intrinsic neural networks and their role in pain modulation, motor 

learning and sexual arousal (Alexander et al., 2016; Kinany et al., 2019). There are unique 

challenges in data acquisition and preprocessing, such as relatively small cross-sectional 

dimension, the variable articulated structure of the spine between individuals, low signal 

intensity in standard gradient-echo echo-planar T2⁎-weighted fMRI and voluntary (bulk 

motion) or involuntary (fluctuation of cerebrospinal fluid due to respiration and 

heartbeat) movements during image acquisition (Dehghani, Oghabian, Batouli, Arab 

Kheradmand, & Khatibi, 2020; Kinany et al., 2022; Powers, Ioachim, & Stroman, 2018). 

Spinal cord motions can cause signal alterations across volumes, which decrease the 

temporal stability of the signal and ultimately increase false positive and negative 

discovery rates (Cohen-Adad, Piche, Rainville, Benali, & Rossignol, 2007; Dehghani, 

Weber, Batouli, Oghabian, & Khatibi, 2020; Stroman, Figley, & Cahill, 2008). 

Despite advances in fMRI motion correction, there are problems in extrapolating the 

motion correction algorithm developments in the brain to the brainstem and spinal cord. 

In brain fMRI, we generally utilize six degrees of freedom rigid-body registration of a 

single volume to a reference, which can be a preselected volume or an average volume 

(Maknojia, Churchill, Schweizer, & Graham, 2019; Oakes et al., 2005). This method is non-

robust and insufficient for spinal cord fMRI preprocessing due to the non-rigid motion of 

the spinal column and physiological motion from swallowing and the respiratory cycle 

(Dehghani, Oghabian, et al., 2020; Fratini, Moraschi, Maraviglia, & Giove, 2014). Along 

with the release of the Spinal Cord Toolbox (SCT), sct_fmri_moco was introduced for 

motion correction in the spinal cord (De Leener et al., 2017). The basis of sct_fmri_moco 

is slice-by-slice regularized registration for spinal cord algorithm (SliceReg) that estimates 

slice-by-slice translations of axial slices while ensuring regularization constraints along the 

z-axis (Paquin et al., 2018).  
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In the past few years, we have seen an interest in the application of artificial intelligence 

in medical image processing (Anaya-Isaza, Mera-Jiménez, & Zequera-Diaz, 2021; 

Varoquaux & Cheplygina, 2022; Wen et al., 2018). In spinal cord imaging, deep learning 

has been used for the segmentation of the spinal cord and CSF in structural T1 and T2 

weighted images. DeepSeg as a fully automated framework based on convolutional 

neural networks (CNNs), is proposed to apply spinal cord morphometry for segmenting 

the spinal cord, as part of SCT (Gros et al., 2019; Perone, Calabrese, & Cohen-Adad, 2018; 

Prados et al., 2017). More recently, the K-means clustering algorithm has been used for 

the segmental spinal cord in the thoracolumbar region (Sabaghian, Dehghani, Batouli, 

Khatibi, & Oghabian, 2020). A robust and automated CNN model with two temporal 

convolutional layers is introduced for motion correction in brain fMRI, and the 

following regression employs derived motion regressors.  (Yang, Zhuang, Sreenivasan, 

Mishra, & Cordes, 2019) 

Studies in the field of registration are generally divided into two categories: learning- 

based and non-learning based. In the non-learning category, extensive work has been 

done in the field of 3D medical image registration (Ashburner, 2007; Avants, Epstein, 

Grossman, & Gee, 2008; Bajcsy & Kovačič, 1989; Dalca, Bobu, Rost, & Golland, 2016; 

Sokooti, Saygili, Glocker, Lelieveldt, & Staring, 2016; Thirion, 1995). Some models are 

based on optimizing the field space of displacement vectors, which include elastic models 

(Bajcsy & Kovačič, 1989; Kybic & Unser, 2003), statistical parametric mapping ( 

Ashburner, Andersson, & Friston, 2000) ,  free-form deformations with b-spline 

(Ashburner et al., 2000), and demons(Thirion, 1995). Common formulations include Large 

Diffeomorphic Distance Metric Mapping (LDDMM) (Ceritoglu et al., 2010; Risser et al., 

2011), DARTEL (Ashburner, 2007) and standard symmetric normalization (SyN) (Avants et 

al., 2008). There are several recent articles in learning-based studies that have suggested 

neural networks for registering medical images, and most of them require ground truth 

data or any additional information such as segmentation results  (Krebs et al., 2017; 
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Rohé, Datar, Heimann, Sermesant, & Pennec, 2017; Sokooti et al., 2017; Yang, Bian, Yu, 

Ni, & Heng, 2017) 

To the best of our knowledge, no prior study utilized AI for motion correction in the 

spinal cord fMRI. This study aimed to train a deep learning-based CNN via unsupervised 

learning to detect and correct motions in axial T2*-weighted spinal cord data. We 

hypothesize that our method can improve the outcome of motion correction and 

reduces the preprocessing time as compared to the existing methods. 

2. Material and Methods 
2.1 Methods 
2.1.1. Unsupervised deep learning network architecture 
 

Convolutional Neural Network (CNN) architecture: 

Assume M and F are two images of the same slice defined in the N-dimensional spatial 

domain Ω ⊂ 𝑅!. We are focusing on N = 2 because the type of data we are using is 

"functional," containing single-channel grayscale data. Additionally, our network focuses 

on the Axial view. The fixed image F is the reference volume, so it can be the first, middle, 

average, or any of the volumes, and M is the rest of the time-series images. Before 

training the network, we align F and M using our fixing Centerline method, which we 

describe in the following section, so that the only misalignment between the volumes is 

nonlinear. We then use a convolutional neural network structure similar to UNet (Isola, 

Zhu, Zhou, & Efros, 2017; Ronneberger, Fischer, & Brox, 2015) to model a 𝑁"(𝐹,𝑀) = ∅	  

function, which includes an encoder and decoder with skip connection (Figure 1): where 

∅ is the register map between the two input images and the 𝜃 learned parameter of the 

network. In this map, for each voxel p ∈ Ω, there is a position where F(p) and the warped 

image 𝑀.∅(𝑝)0 have the same anatomical position. Therefore, our network takes the 

concatenated images F and M as input and calculates the registration flow field based on 
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𝜃. In the next step, it uses the spatial transformation operator to warp the moving image 

based on the flow field and evaluates the similarity between M and F and 𝜃 update. 

Figure 3 shows our introduced architecture and an integrated input by concatenating F 

and M in two channels of the 2D image. 

In both the encoder and decoder stages, we use two-dimensional convolution with a 3x3 

kernel size and leaky Relu activation. The hierarchical properties of the concatenated 

image pair are captured by the convolution layer, which is required to estimate ∅. We 

also use stride convolution to decrease the spatial dimensions and get to the smallest 

layer. During the encoding steps, features are extracted by down sampling, and during 

the decoding and up sampling steps, the network propagates the trained features from 

the previous step directly to the layer that generates the registry by using a skip 

connection. A decoder's output size	(∅) is equal to the input image M.  

We used two architectures to examine a trade-off between speed and accuracy. These 

two structures are DRM_1 and DRM_2, which differ in size at the end of the decoder. 

DRM_1 uses more layers at the end of the decoder, and more channels are used 

throughout the model (Figure 1). 
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Figure 1- Proposed convolutional architectures implementing 𝒈𝜽(𝑭,𝑴)	. Each rectangle shows a 2D 
volume in which two fixed and moving images are connected. The number of channels inside each 
rectangle is shown and the spatial resolution is printed below it according to the input volume. The first 
model has a larger architecture and more channels than the second model. 

To find the optimal theta parameter, we used the stochastic gradient descent method to 

minimize the loss function ℒ: 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
!
*𝐸(#,%)~(,ℒ.𝐹,𝑀, 𝑔!(𝐹,𝑀)456																																																																														(1) 

Where D is the data scatter. It should be noted that we do not need supervisor 

information such as Atlas or T1 images. 

The ℒ#$%&'()*+%(,	consists of two parts:	ℒ%+-	, which measures the similarity between F 

and 𝑀(∅), and 	ℒ)(/	, which measures the smoothness of the registration field. So, our 

total loss function is as follows: 

ℒ(𝐹,𝑀, ∅) = ℒ)*+	.𝐹,𝑀(∅)4 + 𝜆ℒ-./	(∅)																																																																																	(2) 

And 𝜆 is the regulation parameter.  
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We used two different cost functions for ℒ%+-	 : mean square error and normalize cross-

correlation, which is a common metric due to robust intensity variations. The first cost 

function, the mean square error is as follows: 

𝑀𝑆𝐸 =
1

(𝐼𝑚𝑎𝑔𝑒	𝑠𝑖𝑔𝑚𝑎)! ×
1
𝑁 × 2 3𝐹(𝑝") −𝑀7∅(𝑝")9:

!

#!∈%

 

Here 𝑝+ is the position of the pixels and Image sigma is equal to one in this work. Also, the 

fact that MSE is close to zero indicates better alignment. The second cost function, 

normalizing cross-correlation, is as follows:  

𝐶𝐶 = ∑
0∑ 2#(3&)4#5(3)6'& 7%2∅(3&)64%92∅(3)6:;

(

7∑ 2#(3&)4#5(3)6'& :7∑ 7%2∅(3&)64%92∅(3)6:'& :3∈= 																																																																							(3) 

 

Let 𝐹(𝑝+) and 𝑀.∅(𝑝+)0 be the image intensities of fixed and moving images 

respectively, and 𝐹3(𝑝), 𝑀4.∅(𝑝)0 be the local mean at position p, respectively. The local 

mean is computed over a local 𝑛0 window centered at each position p with n=9 in this 

work. Therefore, 𝑝+ represent the position within 𝑛1 local windows centered at p.  

By minimizing ℒ%+-	, we seek to approximate 𝑀.∅(𝑝)0 from 𝐹(𝑝), but it may cause a 

discontinuity in ∅, so we used Spatial gradients to regulate the deformation field 

between the voxel’s neighborhood, as follows: 

ℒ)(/&23)+435+6$	 = ∑ ‖𝛻∅(𝑝)‖0 = ∑97∅
79
9
0
+ 97∅

7:
9
0
+ 97∅

74
9
0

'∈< 																																										(4) 

This cost function is applied to the network's output vectors and controls the size of the 

vectors by deriving the vectors in each direction. 

Spatial Transformation Function: 

The Spatial Transformation Function method learns the optimal parameter by minimizing 

the difference between the warped image and the reference image. In this way it learns 
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the transformation from the training network and creates a sample grid by the predicted 

transformation parameters 𝜃, which is a set of points that samples the input image to 

give the output image (Jaderberg, Simonyan, Zisserman, & Kavukcuoglu, 2015). 

Therefore, to perform a spatial transformation on the input image, the Spatial 

Transformation Function sampler must take a number of sample points of moving image 

M to produce the transformed image 𝑀(∅). Also, because the 𝑀(∅) image is only 

defined in integer locations, we perform bilinear interpolation in 8 neighboring voxels for 

the sampler. 

2.1.2. Fixing centerline as preprocessing    
Before predicting with the network, we align the data in each slice over time using a 

centerline in the spinal cord. We used the spinal cord toolbox to extract the centerlines, 

but we had to use interpolation to adjust the points because some of them were outside 

the anticipated range or were missing. We organized the centerline coordinates by 

utilizing third-degree b-spline interpolation after identifying the outliers using the 

interquartile range approach to discover the lower and upper boundaries of the 

centerline coordinates. 

In this step, data is only corrected in 2D, x and y, and we can choose one or both 

dimensions (x, y, both) for alignment in this approach ( 

Figure 2). we chose to only correct along the y-direction due to two reasons: 1) we 

observed that most of the movements in the Axial view of spinal cord data are in the y-

direction, also consistent with more distortions along the phase encoding direction. 2) 

using numerical analysis of the coordinates of the center lines in the x and y directions 

based on the specific reference, we reached the average variance of 0.52 for x and 1.1 

for y, so the scattering of the middle coordinates for the x-direction is about twice less 

than the y-direction. 
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Figure 2- Axial (bottom right), Coronal (bottom left), and Sagittal (top right) views of data with the centerline. The 

image on the top left also shows tSNR with the x and y guidelines. 

 

Figure 3- Overview of DeepRetroMoco. As a preprocess, we align the data in two dimensions based on the 
centerline, and then we register the moving image (M) to the fixed image (F) by learning function parameters ( ). 

During training, an ST was used to warp the moving image with the registration field, and in this operation, the loss 
function compares 𝐌(∅) and F using the smoothness of ∅.   
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2.2. Experiments 
2.2.1. Dataset 
The data used for this experiment includes 30 subjects with T2*-weighted MRI scans 

acquired from 3T TIM Trio Siemens scanner (Siemens Healthcare, Erlangen, Germany) 

equipped with a 32-channel head coil and a 4-channel neck coil was used for the imaging 

to investigate the functional activity in the brain and the spinal cord (Khatibi et al., 2022). 

All subjects were scanned twice. Five runs were collected in the first session and three 

runs in the second session. Sessions were acquired one week apart. This resulted in 240 

runs. We only used the data from the neck coil and cervical spinal cord in this study. 

The dataset included 8–10 slices that covered the cervical spinal cord from C3 to T1 

spinal segmental levels and were orientated parallel to the spinal cord at the C6 level. 

The FoV of the slices was 132 × 132	𝑚𝑚0, with voxel sizes of 1.2 × 1.2 × 5	𝑚𝑚1 and a 

4 mm gap between them. The flip angle was 90 °, and the bandwidth per pixel was 1263 

Hz, resulting in an echo spacing of 0.90 ms. 7/8 partial Fourier and parallel imaging (R = 2, 

48 reference lines) was utilized again, resulting in a 43.3 ms echo train length and a 33 

ms echo time. Finally, the TR for all slices was 3140 ms, with the exception of three 

subjects, who had TRs of 3050 ms or 3200 ms (depending on each participant's coverage 

within the field of view). We eliminated the lost data due to low quality and differences in 

data points when compared to other data, and selected data from 27 subjects and 216 

runs: 135 runs for training and a total of 81 runs for testing datasets. For training and 

validation, the training data was divided by 70 to 30%. The data from the validation part 

was utilized to select and assess the proposed models. 

2.2.2. Evaluation 

Since there is no gold standard for direct evaluation of functional registration or motion 

correction performance, we used two functional measures to check the signal strength of 
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each subject or to examine signal variations in the group of volumes after predicting 

them by the network. 

 

1-temporal signal to noise ratio (tSNR): 

Temporal SNR (tSNR) is used to quantify the stability of the BOLD signal time series and is 

calculated by dividing the mean signal by the standard deviation of the signal over time.   

𝑡𝑆𝑁𝑅 = =̅
?!_#$%&'

																																																																																																																	(5) 

where 𝑆̅ is the mean signal over time and 𝜎 is the standard deviation across time. A 

better motion correction algorithm will result in greater tSNR values by reducing signal 

variations in the BOLD time-series due to motion. 

2-DVARS: 

DVARS (D, temporal derivative of time courses, VARS, variance over voxels) shows the 

signal rate changes in each fMRI data frame. In an ideal data series, its value depends on 

the temporal standard deviation and temporal autocorrelation of the data (Nichols, 

2017) and calculates the changes in the values of each voxel at each time point compared 

to its previous time point (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). DVARS 

was calculated in the whole image to find a metric that demonstrated the standard 

deviation of temporal difference images in the 4D raw data (Power et al., 2014). DVARS 

was calculated using the following equation: 

𝐷𝑉𝐴𝑅𝑆(∆𝐼)+ = K.∆𝐼+(𝑥)0
0 = K.𝐼+(𝑥) − 𝐼+@A(𝑥)0

0	                                                           (6) 

In this equation, ∆I+(𝑥)	is used as local image intensity on the frame. DVARS could result 

in more accurate modeling of the temporal correlation and standardization because it is 
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obtained by the most short-scale changes (Nichols, 2017). The best value for this 

parameter is zero, and the closer it is to zero, the better the result. 

We extracted the tSNR and DVARS parameters of output results by using the SCT toolbox 

and the FSL toolbox (Woolrich et al., 2009). For more accurate analysis of the tSNR 

parameter, we manually segmented the data into two parts, spinal cord and CSF, using 

the FSLeyes toolbox. Analyses compared the outcome of SCT and our method 

(DeepRetroMoco). 

 

2.2.3. Statistical Analysis 
All statistical analyses were carried out using IBM SPSS Statistics (V. 25 IBM Corp., 

Armonk, NY, USA) with α < 0.05 as the statistical significance threshold. The Kolmogorov-

Smirnov test was used to determine the normality of the parameters. For statistically 

significant results, the mean of normal data for each method was processed using one-

way ANOVA with repeated measures in within-subjects comparison, followed by a 

multiple comparison post-hoc test with Bonferroni correction. 

2.2.4. Implementation 
In our experiment, we trained our deep learning network with and without using Fixing 

Centerline as preprocessing for the network. The number of our training epochs is 200 

with 150 iterations for each epoch. We used Keras with TensorFlow backend (Abadi et al., 

2016) on NVIDIA GEFORCE RTX 1080 to train our network, and it took an average of 23 

hours to run the network.   We also used Google Colab to review models and learn 

various parameters, which we worked on much faster. 

The optimization parameter we used was Adam, with a learning rate of 1𝑒@B (Kingma & 

Ba, 2015). We trained our two simple (DRM_2) and complex (DRM_1) models designed 

by two different cost functions (NCC, MSE) and different lambda up to convergence time. 
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In our study, we designed a data generator to deliver fMRI data to the network. The data 

generator randomly selects the subject and slice and then selects a pair (fixed and 

moving) from the corresponding volume to the size of the data batch.  

In comparison between the models, we chose the model that has better results in terms 

of our desired metric (tSNR) on the validation data. Then, we select one of the cost 

functions. Our code and model parameters are available online at 

https://github.com/mahdimplus/DeepRetroMoco 

 

Table 1- Average tSNR for two types of our model, DRM-1 and DRM-2. Standard deviations are in parentheses. The 
averages are computed over all validation data. And in both models, regardless of the type of cost function, the first 
model is selected. (df=39) 

Model Loss type Mean. tSNR (std) F-value P-value 

DRM_1 MSE 6.18(0.6)  

12.408 

 

<0.001 DRM_2 5.96(0.7) 

DRM_1 NCC 10.13(1)  

2.632 

 

<0.05 DRM_2 10.07(1.3) 

 

3. Result 
3.1 Model selection 
Table 1 displays the average of our method’s tSNR values in the validation data utilizing 

two distinct cost functions. The first model, DRM 1, outperforms DRM 2 in both Losses 

MSE and NCC by a slight margin. Furthermore, when the validation data of two cost 

functions in the first model are examined, NCC with an average of 10.13 ± 1, has better 

outcomes for the motion correction target based on the tSNR and statistical analysis, 

t(39) = 2.63, p<0.05.  
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3.2 Test statistic report 
A repeating one-way measurement ANOVA was used to compare the influence of motion 

correction techniques on test data in sct_fmri_moco (De Leener et al., 2017) and 

DeepRetroMoco, a deep neural network-based motion correction tool. 

 

 

 

Table 3- Summary of DVARS as an Image quality parameter between different motion correction methods (df=4) 

DVARS Mean (std) F value p-value 

Main Image .0343(.009) 

176.446 <0.001 sct_fmri_moco .0316(.009) 

DeepRetroMoCo .0182(.006) 

 

Table 2- Summary of tSNR as an Image quality parameter between different motion correction methods 

(df=4) 

tSNR Mean (std) F value p-value 

Spinal cord 

Main Image 7.1043(2.41) 

1004.249 <0.001 sct_fmri_moco 12.90(2.44) 

DeepRetroMoCo 16.072(3.09) 

CSF 

Main Image 4.0387(1.17) 

938.842 <0.001 sct_fmri_moco 7.1469(1.31) 

DeepRetroMoCo 10.3156(2.25) 
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In a statistical comparison of tSNR parameters in the spinal cord, this parameter increased 

significantly from 7.104 ± 2.41 to 16.072 ± 3.09 arbitrary units (AU) (Table 3). Mauchly's 

Test of Sphericity revealed that the assumption of sphericity had been violated, χ2(9) = 

2.324, p < .313, and thus a Greenhouse-Geisser correction was used. The motion 

correction algorithm had a significant effect on the tSNR parameter in the spinal cord, F 

(2, 160) = 862.572, p < .0001. Post hoc multiple comparisons using the Bonferroni 

correction revealed that the DeepRetroMoCo had a significantly higher mean tSNR in the 

spinal cord than the other motion correction method and raw data (p<.0001). Figure 4 

depicts the significant difference between the groups using a violin plot.   

The tSNR in CSF increased significantly from 4.038 ± 1.17 to 10.315 ± 2.25 arbitrary units 

(AU) (Table 2 and Table 3). Mauchly's Test of Sphericity revealed that the sphericity 

assumption had been violated, χ2(9) = 27.772, p < .0001, and thus a Greenhouse-Geisser 

correction was applied. The motion correction algorithm had a significant effect on the 

tSNR parameter in CSF F (2, 160) = 949.72, p < .0001. Post hoc multiple comparisons 

using the Bonferroni correction revealed that the DeepRetroMoCo's mean tSNR in CSF 

was significantly higher than the other motion correction method and raw data 

(p<.0001). Figure 4 depicts the significant difference between the groups using a violin 

plot. 

DVARS decreased statistically significantly from 0.034 ± 0.009 to 0.182± 0.006 arbitrary 

units (AU) (Table 4). Mauchly's Test of Sphericity revealed that the sphericity assumption 

had been violated, χ2(9) = 64.966, p < .0001, and thus a Greenhouse-Geisser correction 

was applied. The motion correction algorithm had a significant effect on the DVARS 

parameter, F(2, 160) = 309.349, p < .0001. Post hoc multiple comparisons using the 

Bonferroni correction revealed that the DeepRetroMoCo had significantly lower DVARS 

than the other motion correction methods and raw data (p<.0001). Figure 4 depicts the 

significant difference between the groups using a violin plot. 
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Figure 4- This figure depicts the mean and standard deviation of the SNR on the Spine and CSF sections (two top 
figures) that were manually segmented, as well as DVARS (bottom figure) with three types of results. RAW data that 
hasn't been corrected, SCT results, and DeepRetroMoco results are the three groups. The absolute mean difference + 
standard error (p value) between groups is also reported. 

*. The mean difference is significant at the .05 level. 
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3.3 Compare with other methods 
Further, we used the FSL gold standard method and MC_FLIRT for the estimation of 

movements in three groups of our data. Group one contains the RAW data which is not 

corrected for motion. Group two includes the result of the SCT toolbox, sct_fmri_moco 

and the third group contains the DeepRetroMoCo results. The reference volume was set 

to the first volume and the DOF was 6.  

We used the MSE parameter to analyze the results, setting the reference line for actual 

movement to zero and the predicted movement to the numbers reported by FSL. As 

reported in Table 5, the raw data had the most movement in all directions, followed by 

the SCT and DeepRetroMoCo results, which had the most movement respectively. 

Table 4- Mean square error of 3 groups of our data in 6 directions such as Translation in X, Y, Z and Rotation in X, Y, 
and Z directions. 

Rotation Translation MSE 

RZ RY RX Z Y X Dir 

0.0023 0.0001 0.0010 5.43e-07 2.06e-07 1.41e-07 DeepRertoMoco 

0.0054 0.0103 0.0012 1.47e-06 3.91e-07 5.54e-06 SCT 

0.0017 0.1073 0.1435 1.55e-06 1.15e-05 5.61e-06 RAW data 

 

3.4 Processing speed 
The implementation and calculation are carried out in a workstation with Intel® Core 

(TM) i7-4720HQ CPU at 2.60Hz and 16.0GB memory. No explicit parallelization was 

implemented in the Python script. The computation time of the motion correction 

procedure in sct_fmri_moco and DeepRetroMoco changes with the number of volumes 

of fMRI raw data. Average computation times (± Stdv) were 222.54±63.64 seconds and 
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131.91±35.94 seconds for sct_fmri_moco and DeepRetroMoco respectively and 

demonstrates a significant reduction of ~40.72% in computation time. This operation for 

SCT contains the slice-by-slice registration plus regularization across the Z, and for 

DeepRetroMoCo contains fixing centerline plus registration via a network. 

Figure 5- Comparing the speed of the two methods sct_fmri_moco (SCT) and DeepRetroMoco (DRM). Processing 
time is measured in seconds to correct the motion on all volumes. 

 

3.5 Regularization Analysis 
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With different lambda parameters, we examined the mean tSNR for the test data. With 

the NCC cost function, the optimal tSNR for model 1 occurred when lambda was 0.01. In 

this section, the mean tSNR is applied to the entire spinal cord; lambda=0 indicates no 

regularization. As shown, the results deteriorate dramatically as the regularization term is 

increased. As a result, lambda's actions do not help to improve performance and may 

have a negative impact on the results for the NCC cost function and the first model, 

which is more complex. 

 

Figure 6- Effect of different 𝝀 modes for DRM_1 based on tSNR. Lambda 0.01 has a maximum tSNR and shows the 
best results. 

 

3.6 Correlation Coefficient Analysis 

We further calculated the Pearson correlation coefficient (CC) between the corrected 

and reference volumes to examine the similarity of the two images in a linear fashion. For 
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both the raw data and the motion-corrected data, we calculated the average CC per 

subject. Since linear relationships between variables are preserved by a linear 

transformation, the correlation between x and y would remain unchanged following a 

linear translation (Carroll et al., 1985). We found a large average CC value in our 

algorithm (0.90±0.02) compared to the raw data (0.70±0.17), which shows that our 

trained network (DeepRetroMoco) uses a significant proportion of linear transformations 

due to our rigorous regularization. 

 

4. Discussion 
Since the spinal column’s voluntary and non-voluntary movements lead to non-optimal 

shimming, the effects of motion artefacts cannot be fully eliminated even after perfect 

conventional retrospective motion correction of successive functional volumes in image 

space (Eippert, Kong, Jenkinson, Tracey, & Brooks, 2017). If spinal column movements 

are small, motion correction is a useful step to improve the data quality for subsequent 

statistical data analysis. Our findings demonstrate that deep learning-based motion 

correction, DeepRetroMoco improves the quality of spinal cord fMRI data acquired in the 

axial field of view that has an effect on the pre-processing step. These improvements are 

at least in part due to improved tSNR and DVARS parameters compared to conventional 

algorithms introduced in the SCT data processing toolbox.  

  Instead, here we aimed to use a deep learning-based method potential to decrease 

preprocessing step for spinal cord fMRI data that strongly affected by motion. We found 

significant differences in the time of processing to implement DeepRetroMoco compared 

to the sct_fmri_moco algorithm. 

As previously mentioned, the majority of leaning-based methodologies require additional 

data or ground truth. We don't need this information, which is another clear distinction 

between our approach and earlier research. The previous two works (Li & Fan, 2017; Vos, 
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Berendsen, Viergever, Staring, & Išgum, 2017) reported unsupervised methods that are 

close to ours. Both use the CNN neural network with spatial transformation function 

(Jaderberg et al., 2015),  which warps images on top of each other and has significant 

problems: they only operate on a limited subset of volumes and only support small 

transformations. In addition a recent study (Balakrishnan, Zhao, Sabuncu, Dalca, & 

Guttag, 2018) and our network improved the problems mentioned and helped to solve 

them by designing a satisfactory model in the spinal cord data. Other methods (Vos et al., 

2017) use regularization that is determined only by interpolation methods. 

The DeepRetroMoco replaces a costly optimization problem for each image pair, with a 

function optimization that is collected over a data set during a training step. This notion 

could be replaced with previous motion correction algorithms, especially on spinal cord 

data which traditionally relies on complex, non-learning-based optimization algorithms 

for each input.  Although implementing this network requires a one-time network 

training on a single NVIDIA TITAN X GPU with training data, it takes less than a second to 

register a pair of images. Due to the growing need for medical images for further 

investigation in less time, our solution, which is a learning-based method, is preferable to 

non-learning-based methods. 

 5. Limitation and Future Works 
The acquisition of spinal cord fMRI data is made in two ways: GRE-EPI acquisition 

sequence in axial and FSE or SE-HASTE acquisition sequence in sagittal field of view. The 

field of view and data-set orientation were axial in this study, and all motion correction 

methods and preprocessing steps were performed specifically on axially oriented data in 

the cervical spine; however, some studies performed spinal cord fMRI acquisition in the 

sagittal orientation. Respiration and heartbeat cause changes in CSF flow around the 

spinal cord, which results in magnetic susceptibility during the GRE-EPI image acquisition 

and preprocessing steps. 
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Furthermore, we had access to two variables during this method: the centerline 

reference and the fixed image reference. It was set to the first volume in our network. 

We discovered that the proper selection of these two parameters could have a significant 

impact on the final results. Because our network is flexible enough to accept any 

reference, including first, mean, middle, and any other desired volume, we propose that 

the best reference for each data be selected by designing the appropriate method for 

future work.  

6.Conclusion 
Owing to the bulk and physiological motion corrupted spinal cord fMRI data, the 

statistical significance of the activation maps decreases, and the likelihood of false 

activations increases. As a result, a motion correction algorithm is required for acceptable 

single and group fMRI data analysis. In this study, we proposed DeepRetroMoco, an 

unsupervised learning-based approach based on advanced CNN models, that requires no 

supervised information such as ground truth registration fields or anatomical landmarks. 

Additionally, when compared to conventional methods, the use of DeepRetroMoco 

motion correction in spinal cord fMRI appears to be impressive in terms of increasing 

tSNR, reducing false positives, and increasing sensitivity, especially in cases of significant 

spinal cord motion. Furthermore, the statistical evaluation of DVARS as an fMRI quality 

measure, as well as the time of implementation on a cervical spinal cord fMRI dataset, 

demonstrated the superiority of the proposed framework in our experimental study and 

also is an easy-to-integrate tool for more accurate and faster motion correction for 

denoising in spinal cord fMRI applications. 
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