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Letter 
 

Driver-Centric Velocity Prediction with Multidimensional 

Fuzzy Granulation 
Ji Li, Quan Zhou, Xu He and Hongming Xu 

 

Dear editor, 

This letter deals with a real-world problem regarding chaotic time 

series prediction, where a driver-centric velocity prediction model is 

presented for vehicle intelligent control and advanced driver 

assistance, i.e., multi-dimension fuzzy predictor. Inspired by fuzzy 

granulation technology, a finite-state Markov chain (MC) is 

reinforced to capture probabilities of the transitions between velocity 

and acceleration and present signals that vary in a continuous range. 

The predictability of the multi-dimensional fuzzy predictor is 

examined by comparing two existing MC-based predictors over the 

two laboratory cycles and one virtual driving cycle, both of which 

have high accuracy. 

There are idiosyncrasies in the driving behavior of drivers. 

Different drivers differ in using the accelerator, brake pedal, and 

steering wheel [1]. Given these differences, energy management 

based on individual driving habits can be more efficient [2]. In order 

to successfully implement this differential energy management, one 

approach is to control the vehicle by analyzing a representative driver 

model to help each driver [3]. Individual driver models or models 

under a subset of driving behavior categories can be trained offline or 

online. For supporting the target driver efficiently, a vehicle controller 

chooses a suitable driver model by differentiating drivers or assigning 

a model appropriate to their driving behavior. 

Unlike previously, Augustynowicz divided the driver behavior into 

the region (-1,1); within 1, 0, and -1 mean offensive, moderate, and 

mild separately [4]. This is usually calculated based on fuel 

consumption, and the operating efficiency of vehicles reflected the 

aggressiveness level of driver behavior. Manzoni et al. [5] calculated 

the percentage of excessive consumption reflected the additional cost 

by comparing the estimated fuel consumption during the trip and a 

benchmarked consumption. Neubauer and Wood [6] calculated the 

vehicle efficiency to represent the driving behavior by using fuel 

consumption. Corti et al. [7] introduced a cost function faced to 

energy to assess the driving behavior and predict fuel 

overconsumption. However, the feasibility of implementing this 

continuous index or discrete class-based classification approach for 

HEV energy management needs to be further analyzed and validated. 

 

Related work: Considering the related algorithms for driver 

recognition, the driver torque demand is assumed to be exponentially 

varying over the predictive horizon based on the empirical formula 

[8]. In contrast, the RB algorithm limits the number of managed 

parameters. The RB algorithm can produce redundant and complex 

rules when dealing with larger data sets of variables. Fuzzy logic (FL) 

graphs are used instead of RB algorithms to address this situation. 

Syed et al. introduced an FL algorithm to optimize the application of 

pedals in hybrid vehicles [3]. Li et al. introduce type-2 fuzzy sets to 

describe the driving style used for driver-oriented energy 

management [9]. Based on these two algorithms, the results are 

simplistic and uniform in an acceptable way, but the classification 

quality is closely related to the threshold value.  

The RB algorithm threshold defines the resulting robustness and 

needs a huge number of data to be analyzed. Unsupervised algorithms 

can work efficiently without a clear understanding of the underlying 

process. Miyajima et al. implemented a Gaussian mixture model by 

analyzing the vehicle-following behavior and the signal spectrum of 

pedal operation [10]. In the work of Li et al., the spectrum-informed 

long short-term memory networks have been developed that achieve 

the real-time recognition of drivers under the same driving scenario 

[11]. The Markov model has also proven to be suitable for driving 

behavior recognition. Therefore, the driving behavior representation 

can be generated from the random patterns of previous data. 

 

Fuzzy Granulation for Markov Chains: Firstly, the velocity and 

acceleration of vehicles are expressed as a finite state MC [12]. The 

state spaces of these two parameters are represented as 𝑉 =
{𝑣𝑖  | 𝑖 = 1,… ,𝑀} ⊂ 𝑋 ⊂ 𝑅  and 𝑊 = {𝑎𝑗 | 𝑗 = 1,… , 𝑁} ⊂ 𝑌 ⊂ 𝑅 . 𝑉 

and 𝑊 denote the state space of velocity and acceleration, separately; 

𝑀 and N denote the sample numbers of velocity and acceleration, 

separately. Meanwhile, 𝑋 and 𝑌 denote the finite set of variables, and 

𝑅 denotes the set of real numbers. Considering the balance of 

accuracy and computational efficiency, the collected samples of 

vehicle speed with the range of 0-135km/h are uniformly discretized 

as 135 elements. The collected samples of vehicle acceleration with 

the range of -6-3m/s2 are uniformly discretized as 90 elements. The 

frequencies of its transition could be evaluated based on the 

possibilities of transition observation as follow. 

{
 
 

 
 𝑝𝑖𝑗 = 𝑃(𝑎

+ = 𝑎𝑗|𝑣 = 𝑣𝑖) =
𝐻𝑖𝑗

𝐻𝑖

𝐻𝑖 =∑𝐻𝑖𝑗

𝑁

𝑗=1

                        (1) 

where 𝑣 means the velocity; 𝑎+ means the acceleration of the next 

time step; 𝑝𝑖𝑗 means the transition probability between 𝑣𝑖 to 𝑎𝑗; 𝐻𝑖𝑗 

denotes the number of transitions from  𝑣𝑖  to 𝑎𝑗 ; 𝐻𝑖  means the 

number of total transitions from 𝑣𝑖 ; the matrix ∏  represents the 

transition probability matrix which is occupied with 𝑝𝑖𝑗. Followed by 

(2), the probability vector of the next step is obtained as 

(𝜆+(𝑎))
𝑇
= (𝜆(𝑣))

𝑇
∏ = ∏𝑗

𝑇                          (2) 

where, 𝜆𝑇(𝑣) = [0…1…0]  means a multi-dimensional probability 

vector with the 𝑗th element to denote a discontinuous state  𝑎𝑗  in 

disjoint zones 𝐼𝑗 , 𝑗 = 1, . . . , 𝑁; ∏𝑗
𝑇 means the 𝑗th row of the matrix ∏. 

X and Y are subdivided into finite groups, respectively, with fuzzy 

subsets Φ𝑖 , 𝑖 = 1, . . . , 𝑀  and Φ𝑗𝑗 = 1, . . . , 𝑁  when using fuzzy 

granulation technology. The fuzzy subset Φ𝑖  and Φ𝑗  are pairs of 

(𝑋, 𝜇𝑖(∙)) and (𝑌, 𝜇𝑗(∙)), wherein 𝜇𝑖(∙), 𝜇𝑗(∙) are Lebesgue member 

functions which can be measured to satisfy the following equation:    

{
𝜇𝑖: 𝑋 → [0,1] 𝑠. 𝑡. ∀𝑣 ∈ 𝑋, ∃𝑖, 1 ≤ 𝑖 ≤ 𝑀, 𝜇𝑖(𝑣) > 0

𝜇𝑗: 𝑌 → [0,1] 𝑠. 𝑡. ∀𝑎 ∈ 𝑌, ∃𝑗, 1 ≤ 𝑗 ≤ 𝑁, 𝜇𝑗(𝑎) > 0
      (3) 

where, 𝜇𝑖(𝑣) displays the membership degree of 𝑣 ∈ 𝑋 in 𝜇𝑖; 𝜇𝑗(𝑎) 

denotes the membership degree of 𝑎 ∈ 𝑌  in 𝜇𝑗 . Followed by the 

theory of approximate reasoning [13], the transformation assigned a 

multi-dimensional probability vector for each 𝑣 ∈  𝑋 as:   

(𝑂(𝑣))
𝑇
= [

𝜇1(𝑣)

∑ 𝜇𝑖
𝑀
𝑖=1 (𝑣)

,
𝜇2(𝑣)

∑ 𝜇𝑖
𝑀
𝑖=1 (𝑣)

, … ,
𝜇𝑀(𝑣)

∑ 𝜇𝑖
𝑀
𝑖=1 (𝑣)

]     (4) 

    This transformation is applied to develop the fuzzy norms and map 

velocity in the X to vector in multi-dimensional probability vector 

space �̅�. Furthermore, the elements in the probability vector ∼ 𝑂(𝑣) 
are summed as 1. The next step's probability distribution in �̅�  is 

calculated from Eq. (5) and gathered with member function 𝜇(𝑎) to 

decode the vectors in �̅� back to the space 𝑌 as:           

𝑧+(𝑎) = (𝑂+(𝑣))
𝑇
𝜇(𝑎) = (𝑂(𝑣))

𝑇
∏𝜇(𝑎)             (5) 

where, in the transition probability matrix, 𝑝𝑖𝑗  is explained as a 

transition probability between Φ𝑖 and Φ𝑗 . The member function 𝜇(𝑎) 

is applied to encode the probability vector of the next step in space 𝑌. 

The centroid and volume of the membership function 𝜇(𝑎)  are 

expressed as: 

{
𝑐�̅� = ∫𝑦𝜇𝑗(𝑦)𝑑𝑦

𝑉𝑗 = ∫𝜇𝑗(𝑦)𝑑𝑦

(6) 
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where, 𝑐𝑖  and 𝑉𝑗  are the centroid and volume of the membership 

function 𝜇𝑗(𝑣). 

It is supposed that member functions show the same volume to 

follow that ∑ 𝑝𝑖𝑗 = 1
𝑁
𝑗=1  and ∑ 𝑂𝑖(𝑣) = 1

𝑀
𝑖=1 . The next step ahead 

velocity is obtained and simplified as:      

{
𝑎+ =

∑ 𝑂𝑖(𝑣)
𝑀
𝑖=1 ∑ 𝑝𝑖𝑗𝑉𝑗

𝑁
𝑗=1 𝑐𝑖

∑ 𝑂𝑖(𝑣)
𝑀
𝑖=1 ∑ 𝑝𝑖𝑗𝑉𝑗

𝑁
𝑗=1

= (𝑂(𝑣))
𝑇
∏𝑐

𝑣+ = 𝑣 + 𝑎+

         (7) 

 

Multi-dimensional Fuzzy Granulation: The multi-dimension fuzzy 

predictor (MDFP) with multi-dimensional fuzzy granulation is 

introduced to enhance the prediction performance of vehicle velocity 

by considering the driver behaviors for look-ahead steps. By using 

cluster algorithms, the original samples are classified into the 

personalized Markov chain models and then aggregate their outputs 

to improve sensitivity of the prediction model to sudden change of 

driving behaviors. Here, two types of clustering algorithms are 

explored, i.e., fuzzy C-mean (FCM) with soft margin and support 

vector machine (SVM) with hard margin. 

    The auto-regression (AR) model is an efficient tool for generalizing 

the signal's mean-time regressive pattern and predicting by the 

following dynamically. The applied AR model follows the structure 

displayed as [14]: 

𝑣(𝑘) = ∑𝜗𝑟𝑣(𝑘 − 𝑟) + 𝜀𝑘

𝐾

𝑟=1

                        (8) 

where, 𝜗𝑟 are the AR model coefficients; 𝐾 is the order of the AR 

model; 𝜀𝑘 reflects the ith noise; 𝑣(𝑘) means the vehicle speed at step 

𝑘. In this research, the sample period 𝜏 is 0.1s. 

    As real-world driving involves frequent transitions of the driving 

behavior, the AR models are applied to obtain driver speed 

information in moving horizontal lines, where parameters measure 

the length of these lines and the order R of the models. According to 

the Corrected Akaike Information Criterion [15], the second-order 

AR models with a 200-second horizontal line showed a consistent 

advantage. The results are related to the data vector 𝜸𝑟  of speed 

interval samples, which includes four information sets as: 

𝜸𝑟 = [𝜗𝑟1 𝜗𝑟2 𝑎𝑟_𝑎𝑣𝑔 𝑎𝑟_𝑚𝑎𝑥𝑅]                    (9) 
where the AR coefficient set 𝜗 displays the tendency of sample speed 

change; mean acceleration ratio  𝑎𝑟_𝑎𝑣𝑔 measures the mean state and 

the maximum acceleration rate 𝑎𝑟_𝑚𝑎𝑥𝑅  measures the range of 

acceleration changes.  

    Markov chain models with five layers show efficient computational 

efficiency and high predictive performance through training [14]. The 

AR model coefficient sets are divided into five groups reflecting 

different acceleration statuses to represent specific driver states in this 

research. The five groups are fuzzified to display the acceleration 

range relationship for different driver behaviors. These behaviors are 

marked as Over Mild; Mild; Moderate; Offensive and Over Offensive. 

Given the unknowability of a priori information about vehicle 

performance and driving behavior preferences, two clustering 

algorithms of FCM and SVM in the unsupervised learning process are 

used to classify information with inaccurate internal boundaries as 

well as unknowable external boundaries [16][17].  

The results show the data member distributions for all of the groups. 

Based on the driving behavior classification, the transition probability 

matrix ∏ in Eq. (2) is detailed to be five specific transition probability 

matrixes as follows:    
|∏1 ∏2 ∏3 ∏4 ∏5|                            (10) 

The acceleration probability distribution with different driving 

behaviors can be obtained more exactly by these detailed transition 

probability matrixes. Based on these matrixes, the next one-step-

ahead accelerations by driver groups can be displayed as:     

                                             𝑎𝑛
+ = (𝑂𝑛(𝑣))

𝑇
∏𝑛𝑐𝑛                                (11) 

    Here, the weighted sum coefficient is the member criterion 

aggregating acceleration prediction from five driver MC models. Eq. 

(12) shows the next one-step-ahead velocity calculated as:  

{
𝑎+ = ∑(𝑂𝑛(𝑣))

𝑇
∏𝑛 𝑐�̅� ∙ 𝜔𝑛(𝑣)

𝐵

𝑛=1

𝑣+ = 𝑣 + 𝑎+

                    (12) 

where, the member criterion vector 𝜔𝑛(𝑣) reflects the data vector 𝜸𝑟 

of the speed zone sample obtained by FCM; but the weights obtained 

by SVM, which only has 0 or 1 due to its binary classification, are 

introduced to replace 𝜔𝑛(𝑣).  
 

Experiments: In this study, the experiments are based on a cockpit 

package where five drivers are invited as observation subjects for 

8000 seconds of virtual driving [18]. The entire route consisted of a 

mix of highways and local roads with multiple stop signs, traffic lights 

and speed limit changes provided by IPG CarMaker. A Thrustmaster 

T500RS cockpit package and a host PC with I5-6500 3.2GHz 

processor and 8 GB RAM are connected by a 3.0 USB cable to 

provide a static system experience platform driving simulators to 

human drivers. 

 
Fig. 1. Speed prediction results of three MC-based predictors: the speed 

prediction errors by (a) using SVM; and (b) by using FCM; the speed 

prediction results under WLTC by (c) using FCM; and (d) using SVM; (e) 
the speed prediction results by using SVM under CLTC 

 

In this paper, existing MC-based predictors are introduced for 

analysis, including the Markov chain predictor (MCP) [19] and the 

single-dimension fuzzy predictor (SDFP) [20]. Fig. 1 shows the 

prediction speeds obtained by three predictors based on the 

personalized Worldwide harmonized Light vehicles Test Cycles 

(WLTC) and personalized China Light-Duty Vehicle Test Cycle 

(CLTC) by using FCM and SVM. MCP is proven with weak 

prediction performance in the low-speed zone because of the minute 

Table 1. Velocity prediction comparison of three MC-based predictors in the WLTC 

Predictor 
Behavior recognition Maximum error ITAE (105) Reduction (%) 

FCM SVM FCM SVM FCM SVM FCM SVM 

MCP NA 46.9517 326.376 3.3412 0.0805 - - 

SDFP NA 44.0925 15.192 2.7074 0.0689 18.97% 14.41% 

MDFP Yes 47.9171 11.343 2.4237 0.0370 27.46% 54.04% 
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transition probability calculated by using one discrete MC model in 

this zone. The fuzzy granulation helps the SDFP fix the problem 

above in the low-speed zone. However, maintaining uniformity in the 

handling of different driving habits makes the predictability 

unsatisfied in the medium-high-speed zone. Due to the training 

dataset of the predictive model is continuously updating during virtual 

driving, MDFP displays a better prediction performance compared to 

the other two predictors mentioned above. More details about the 

comparison are shown in Table 1. Compared to FCM, SVM helps 

MDFP to reduce 98.4% of ITAE and 76.3% of maximum error. 

Fig. 2 shows the driving simulation results of the DiL experiment 

with human drivers operating in a simulated driving scenario, where 

the absolute errors between prediction and reference speed are 

displayed. After 600 seconds of initialization, the MDFP begins to 

generate a 10s look-ahead horizon, and its prediction model is updated 

in real-time every 5 seconds. The MDFP relies on the last driving step 

independent of the driver change while predicting speed, which helps 

the model to adaptively adjust speed based on the new pedal action if 

the individual driver's driving behavior changes dramatically. It needs 

to be emphasized that the data recorded by the MDFP will be 

completely overwritten within 600 seconds. Therefore, the required 

cool downtime after a new driver replaced is 10 minutes. 

 
Fig. 2. Online prediction results over virtual driving by SVM 

Conclusions: This letter presents a driver-centric velocity prediction 

model for vehicle intelligent control and advanced driver assistance, 

i.e., multi-dimension fuzzy predictor. Its predictability is proven and 

examined with existing MC-based predictors. Two laboratory cycles 

and one virtual driving cycle are implemented for vehicle 

performance validation. The proposed multi-dimension fuzzy 

predictor has an ability to distinguish driving behaviors in real time. 

The contributions of this study are: 1) A novel method of online 

predictors is imported. and its performance is compared with the MC-

based predictors. 2) The performance of imported energy 

management strategy and its online calculation efficiency are 

demonstrated by a DiL experiment. 
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