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Immunology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom

Background: Patients with primary and secondary antibody deficiency are vulnerable to
COVID-19 and demonstrate diminished responses following two-dose SARS-CoV-2
vaccine schedules. Third primary vaccinations have been deployed to enhance their
humoral and cellular immunity.

Objectives: To determine the immunogenicity of the third primary SARS-CoV-2
immunisation in a heterogeneous cohort of patients with antibody deficiency.

Methods: Participants enrolled in the COV-AD study were sampled before and after their
third vaccine dose. Serological and cellular responses were determined using ELISA, live-
virus neutralisation and ELISPOT assays.

Results: Following a two-dose schedule, 100% of healthy controls mounted a serological
response to SARS-CoV-2 vaccination, however, 38.6% of individuals with antibody
deficiency remained seronegative. A third primary SARS-CoV-2 vaccine significantly
increased anti-spike glycoprotein antibody seroprevalence from 61.4% to 76.0%, the
org June 2022 | Volume 13 | Article 9125711
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magnitude of the antibody response, its neutralising capacity and induced seroconversion
in individuals who were seronegative after two vaccine doses. Vaccine-induced
serological responses were broadly cross-reactive against the SARS-CoV-2 B.1.1.529
variant of concern, however, seroprevalence and antibody levels remained significantly
lower than healthy controls. No differences in serological responses were observed
between individuals who received AstraZeneca ChAdOx1 nCoV-19 and Pfizer
BioNTech 162b2 during their initial two-dose vaccine schedule. SARS-CoV-2 infection-
naive participants who had received a heterologous vaccine as a third dose were
significantly more likely to have a detectable T cell response following their third vaccine
dose (61.5% vs 11.1%).

Conclusion: These data support the widespread use of third primary immunisations to
enhance humoral immunity against SARS-CoV-2 in individuals with antibody deficiency.
Keywords: COVID-19, CVID, inborn errors of immunity, primary immunodeficiency, secondary immunodeficiency,
vaccination, SARS-CoV-2
INTRODUCTION

The immunogenicity and efficacy of the initial two-dose SARS-
CoV-2 vaccination schedule and booster immunisations have
been comprehensively studied in healthy adults (1–4). Compared
to healthy individuals, the immunogenicity of two doses of the
AstraZeneca ChAdOx1 nCoV-19 and Pfizer BioNTech 162b2
SARS-CoV-2 vaccines are significantly diminished in individuals
with primary (PID) and secondary immunodeficiencies (SID)
(5). The COVID-19 in patients with antibody deficiency (COV-
AD) study has previously shown that the seroprevalence of anti-
SARS-CoV-2 antibodies is 54.8% following two vaccine doses,
with seroprevalence being higher in recipients of the Pfizer
vaccine, compared to the AstraZeneca (5). Other studies have
estimated post-vaccine seroprevalence to lie between 20% and
80% in patients with inborn errors of immunity (6–10).

The emergence of the delta (B.1.167.2) and omicron
(B.1.1.529) SARS-CoV-2 variants of concern, against which
post-vaccination sera demonstrate reduced neutralising
capacity (11, 12), has led to concern that the initial two-dose
schedule would be insufficient to protect individuals with
suboptimal vaccine responses. In September 2021, the United
Kingdom Joint Committee on Vaccination and Immunisation
(JCVI) recommended that individuals with significant primary
or acquired immunodeficiency states receive a third primary
erting enzyme 2; APDS-1, Activated
ned immunodeficiency; COV-AD,
deficiency; COVID-19, Coronavirus
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immunisation with an mRNA based vaccine to consolidate
immune responses generated from the initial two-dose
immunisation schedule (13).

The immunogenicity of a third primary immunisation has
been studied in certain immunocompromised cohorts; in a
cohort of renal dialysis patients, seroprevalence increased from
58.9% to 98.8% following a third vaccine dose with broad cross-
reactivity demonstrated against both the delta and omicron
variants (14). Increases in the prevalence of neutralising
antibodies have also been reported in renal dialysis patients
and cancer patients following the third primary immunisation
(15, 16). In a small cohort of fourteen patients with functional B
cell disorders, a third mRNA vaccine dose has been shown to
increase the ability of plasma samples to disrupt the interaction
between the SARS-CoV-2 receptor-binding domain and the
ACE2 receptor using in vitro binding assays as a surrogate for
viral neutralisation (17). However, the immunogenicity of a third
primary immunisation has not been studied in larger cohorts of
individuals with PID and SID, particularly with respect to the
induction of cross-reactive humoral immunity against SARS-
CoV-2 variants of concern and the relative immunogenicity of
heterologous versus homologous vaccine schedules.

Herein, we report the extended results of the COV-AD study,
describing the waning of antibodies levels following the second
vaccine dose and the response of 161 individuals with antibody
deficiency to a third SARS-CoV-2 vaccine dose compared to
healthy controls.
METHODS

Patient Eligibility and Recruitment
Recruitment to the COV-AD study has been described elsewhere
(5). Briefly, from March 2021, patients with primary or
secondary antibody deficiency were recruited from
Immunology centres across the United Kingdom. Patients were
eligible for study entry if: i) they were over 18 years of age and
June 2022 | Volume 13 | Article 912571
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ii) they were receiving immunoglobulin replacement therapy or
they had a serum IgG concentration less than 4g/L and were
receiving regular antibiotic prophylaxis to prevent infections.
Participants’ underlying immunological diagnosis was made
according to the European Society of Immunodeficiency
Clinical Working Party criteria. In this manuscript, “other
primary antibody deficiency” has been used to encompass
individuals who do not fulfil the diagnostic criteria for CVID,
XLA or any monogenic immunodeficiency but are still believed
to have a primary humoral immunodeficiency.

Study participants were followed longitudinally through the
United Kingdom routine SARS-CoV-2 vaccination schedule.
Participants received two doses of either the AstraZeneca
ChAdOx1 nCoV-19 (Vaxzevria) or the Pfizer BioNTech 162b2
(Tozinameran) vaccine according to the extended vaccine
schedule mandated by the UK Chief Medical Officers (https://
www.gov.uk/government/publications/prioritising-the-first-
covid-19-vaccine-dose-jcvi-statement/optimising-the-covid-19-
vaccination-programme-for-maximum-short-term-impact)
between January and April 2021, followed by an mRNA third
primary vaccine dose (either Pfizer BioNTech 162b2 or Moderna
mRNA-1273 (Spikevax)) between September and October 2021.

Where possible, participants were sampled 1-2 months
following their second vaccine dose (post V2 timepoint), up to
4 weeks prior to their third dose (pre V3 timepoint) and 1-2
months following their third vaccine dose (post V3 timepoint).
When this was not possible, a single sample was taken at no fixed
time point following their second vaccine dose. Participants were
given the option of being sampled remotely using dried blood
spots (DBS) or via venous blood, to enable cellular studies in
addition to serology. The concordance of these methods has
previously been demonstrated (18).

Prior SARS-CoV-2 infection in this study was defined as any
individual who had previous PCR confirmed SARS-CoV-2
infection. In addition, any individual who demonstrated
positive reactivity to pooled peptides derived from the SARS-
CoV-2 nucleocapsid protein was also considered to have
evidence of prior SARS-CoV-2 infection.

Healthy Control Cohort
A cohort of 205 healthy control participants were recruited from
the COVID-19 Convalescent (COCO) study. These participants
were otherwise healthy health care workers, recruited from
University Hospitals Birmingham NHS Foundation Trust
(median age 44 years, (range 22-66 years), 28% male),
vaccinated with Pfizer BioNTech 162b2 on the extended UK
dosing schedule and sampled 1-2 month after vaccination. This
cohort has also been followed longitudinally; 67 participants
were sampled up to 1 month prior to, and 1-2 month after their
third vaccine (median age 49 years (range 25-64), 28% male)

Serological studies
A detailed account of the methods used for serological and
cellular studies is available elsewhere (5). Briefly, serum or
dried blood samples were tested for the presence of total anti-
spike glycoprotein antibodies (The Binding Site, Birmingham,
UK). Results are reported as an IgGAM ratio (optical density
Frontiers in Immunology | www.frontiersin.org 3
compared with calibrator) and results ≥1.0 are defined as
seropositive. The ratio provides a semi-quantitative assessment
of the magnitude of the antibody responses. Serological results
are presented as the percentage of participants who are
seropositive and the median of the IgGAM ratio in
seropositive participants. IgG serological responses directed
against the Wuhan spike protein and the B.1.1.529 (Omicron)
SARS-CoV-2 variant of concern were measured using an in-
house ELISA as previously described; target proteins were
sourced from SinoBiological as previously described (5). Live
virus neutralisation assays were performed using Vero cells on
paired serum samples before and after vaccination at a 1/50
serum dilution as previously described (5).

T Cell Studies
T cell responses were assessed using the T-SPOT®.COVID assay
(Oxford Immunotec, Abingdon, UK), an ELISPOT based IFN-
gamma release assay utilising peptide pools derived from the
SARS-CoV-2 spike and nucleocapsid proteins; 0-4 spots per well
is considered negative, 5-7 spots per cell, borderline, and greater
than 7 spots per well a positive response.

Statistical Analysis
Data were analysed using Graph Pad Prism 9.3.1 (GraphPad
Software, San Diego, California USA). Continuous variables were
analysed using the 2-tailed Mann-Witney U test, or the Kruskal-
Wallis test with Dunn’s post-test comparison. Categorical
variables analysed using the c2 test and the relationship
between antibody response, time and vaccine received by 2-
way ANOVA with Tukey’s multiple comparison test.

Ethical Approval and Funding
This study was approved by the London - Dulwich Research
Ethics Committee (REC reference: 21/LO/0162) and funded by
United Kingdom Research and Innovation (MR/W002663/1).
Serological responses from healthy individuals are from
participants recruited to the COVID-19 Convalescent (COCO)
immunity study (REC reference 20/HRA/1817). All participants
provided written informed consent prior to participation in
this study.
RESULTS

We present analysis of the response to SARS-CoV-2 vaccination
of 182 COV-AD participants sampled up to 2 months following
their second vaccine dose (post V2 timepoint - median time from
second vaccination: 45 days), 111 participants sampled 1 month
before their third primary immunisation (pre V3 timepoint -
median: 174 days from second vaccine, 17 days before third
vaccine) and 161 participants sampled up to 3 months after their
third primary immunisation (post V3 timepoint - median: 47
days from third vaccine). Demographic information for these
groups are provided in Table 1. The overwhelming majority of
participants (88.8-93.4%) in each group were receiving
immunoglobulin replacement therapy for antibody deficiency.
Between 59.3% and 63.3% of participants in each group received
June 2022 | Volume 13 | Article 912571
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the AstraZeneca ChAdOx1 nCoV-19 vaccine for their initial two
doses. 97.7% of participants received an mRNA-based third
primary immunisation, 94.4% of them the Pfizer BioNTech
162b2 vaccine.

In the six month period following the second vaccine dose,
anti-SARS-CoV-2 spike antibody levels, but not seropositivity,
significantly decreased (2-way ANOVA, p=0.0002) (Figure 1A).
A third primary immunisation significantly increased
seropositivity in the COV-AD cohort (Seropositive %: Pre V3 -
61.4% vs. Post V3 - 76.0%, Chi Square 6.15, p=0.013) but the
percentage of participants with detectable antibody responses
remained lower than healthy controls, all of whom were
seropositive, at all time points (Chi square: COV-AD vs
healthy controls at Post V2, Pre V3 and Post V3; p<0.0001). A
third vaccine dose also increased the magnitude of the antibody
responses in COV-AD participants (2-Way ANOVA; Tukey’s
multiple comparison test - IgGAM ratio: Pre V3 1.88 vs. Post V3
4.54, p=0.0007). However, in comparison to healthy controls,
these responses were significantly lower at every sampling point
Frontiers in Immunology | www.frontiersin.org 4
(2-way ANOVA, p<0.0001) (Figure 1B; Table 2). A third
vaccine dose increased seroprevalence and humoral responses
in all major disease subgroups: CVID, primary antibody
deficiency, SPAD and secondary immunodeficiency (Table 2;
Supplementary Figure 1). Immunological correlates of post-
vaccine seropositivity following the third vaccine dose were
similar to those we have previously reported (5): vaccine
responders had higher pre-treatment IgG level (mean IgG
3.7g/L vs. 2.02g/L, p<0.0001) and larger populations of
peripheral blood CD19+ B cells (mean CD19 population
0.50x109/L vs 0.12x109/L, p=0.042). There were no significant
differences in trough IgG concentrations between seropositive
and seronegative participants receiving immunoglobulin
replacement (9.75g/L vs 9.25g/L, p=0.276) and no significant
differences in trough IgG concentrations amongst vaccine
responders when these participants were analysed by quartiles,
based on their level of anti-SARS-CoV-2 spike antibodies post
V3 (Kruskal-Wallis statistic 7.38, p=0.12). It is therefore unlikely
that any antibodies potentially present in immunoglobulin
TABLE 1 | Demographics of COV-AD study participants.

Post V2 Pre V3 Post V3

Participants (n) 182 111 161
Age (yr, IQR) 59 (42-69) 64 (46-72) 63 (51-71)
Sex (n, % Male) 72 (39.6) 46 (41.4) 69 (42.8)
Prior PCR+ infection (n, %) 11 (6.0) 10 (9.0) 11 (6.8)
Initial vaccination (n, %)
AstraZeneca CHADOX1 nCOV-19 108 (59.3) 63 (56.8) 102 (63.3)
Pfizer BNT162b2 72 (39.6) 48 (43.2) 59 (36.6)
Unknown 2 (1.1) 0 (0.0) 0 (0.0)
Third primary vaccination (n, %)
AstraZeneca CHADOX1 nCOV-19 - - 2 (1.2)
Moderna mRNA-1273 - - 7 (4.3)
Pfizer BNT162b2 - - 152 (94.4)
Unknown - - 1 (0.6)
Median sampling time (d) 45.0

(Post V2)
174.0(Post V2)
17.0 (Pre V3)

47.0
(Post V3)

Immunoglobulin replacement (n, %)
IVIG 105 (57.7) 51 (45.9) 62 (38.5)
SCIG 65 (35.7) 48 (43.2) 81 (50.3)
Antibiotic prophylaxis only 11 (6.0) 10 (9.1) 12 (7.4)
Unknown 1 (0.5) 2 (1.8) 6 (3.7)
Pre-treatment IgG (g/L) 3.5 3.7 3.2
Diagnoses
Primary immunodeficiency (n,%) 117 (64.3) 81 (73.0) 107 (67.1)
Common variable immunodeficiency 73 47 69
Primary antibody deficiency 14 18 15
Specific polysaccharide antibody deficiency 7 7 8
X-linked agammaglobulinaemia 7 4 3
X-linked hyper IgM syndrome 4 1 1
GATA2 immunodeficiency 0 1 0
Goods syndrome 1 1 2
Undefined combined immunodeficiency 4 1 5
APDS1 1 1 1
Autoimmunelymphoproliferative syndrome 0 0 0
CTLA-4 haploinsufficiency 2 0 0
STAT1 gain of function 1 0 0
NFKB2 haploinsufficiency 1 0 0
SAMD9L loss of function 1 0 0
X-linked SCID post gene therapy 1 0 0
Secondary immunodeficiency (n,%) 65 (35.7) 30 (27.0) 53 (32.9)
Other/not specified 0 0 2
June 2022 | Volume 13 | Arti
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products significantly contribute to the serological responses
observed during this study.

Two doses of the Pfizer BioNTech 162b2 vaccine has
previously demonstrated superior humoral immunogenicity in
individuals with antibody deficiency compared to two doses of
AstraZeneca ChAdOx1 nCoV-19 (5). In the 6 months following
V2, this superiority was maintained, but the effect lessened over
time (2-way ANOVA; p=0.0011) (Figure 1A). At 6 months post
V2, there was no significant difference in seroprevalence (AZ
56.1% vs. Pfizer 55.6%, NS) or the magnitude of the antibody
response (IgGAM ratio: AZ 1.8 vs. Pfizer 1.58, NS) between
recipients of the two vaccines. Furthermore, following the third
primary immunisation, there was no significant difference in the
percentage of seropositive individuals or the magnitude of the
antibody response amongst individuals who initially received
two doses of AstraZeneca and those who received two doses of
Pfizer (% Seropositive: AZ 76.8% vs. Pfizer 73.6%, NS; IgGAM
ratio: AZ 4.35 vs. Pfizer 4.63, NS) (Figure 1C). Prior PCR proven
SARS-CoV-2 infection also did not significantly increase the
magnitude of the serological response, although the numbers of
patients with prior infection was low (Figure 1D).

Heterogeneity in the antibody response to vaccination was
observed amongst individuals with primary and secondary
immunodeficiencies (Figure 1E). Individuals with X-linked
agammaglobulinaemia (XLA) did not mount an antibody
response to vaccination, in keeping with the molecular
Frontiers in Immunology | www.frontiersin.org 5
mechanism underlying their immunodeficiency. Amongst the
other major disease groups, individuals with CVID
demonstrated the lowest post-third vaccine dose seroprevalence
and lowest median antibody response following the third vaccine
dose. In contrast, individuals with SPAD, who by definition have
not responded to prior pneumococcal vaccination, all responded
to COVID vaccination. (Table 2; Supplementary Figure 1).

Paired samples were available from 64 participants bled 1-2
months after their second dose and 1-2 months after their third
dose (Figure 1F). Overall seroprevalence in these participants
rose from 59.4% after V2, to 75.0% after V3 demonstrating the
immunogenicity of a third primary vaccination in non-
responders to the first two doses. Paired samples from the
same participant were available from 37 participants before
and after the third vaccine dose. Using ELISAs, these samples
were analysed for levels of IgG directed against the original
Wuhan SARS-CoV-2 spike protein and the B.1.1.529 SARS-
CoV-2 variant of concern (Omicron) (Figures 1G, H).
Seroprevalence of IgG antibodies directed against the Wuhan
and Omicron spike proteins was 62.2% and 40.5% respectively
prior to the third vaccine dose. Following third primary
immunisation, the seroprevalence of antibodies directed
against the Wuhan spike protein increased to 78.4% (Chi
square 1.62, not significant) and significantly increased to
67.5% against the Omicron spike protein (Chi square 4.44,
p=0.02), demonstrating the ability of a third primary
A B D

E F G IH

C

FIGURE 1 | Serological response to third primary immunisation in COV-AD participants: (A) Total anti-SARS-CoV-2 spike glycoprotein antibodies in all participants
sampled throughout the COV-AD study presented by time of sampling relative to V2 and V3. (B) Comparison of total anti-SARS-CoV-2 spike serological responses
of infection naive COV-AD participants and healthy controls 1-2 months post second vaccine dose (Post V2), up to 1 month prior to third vaccine dose (Pre V3) and
1-2 months post third vaccine dose (Post V3). (C) Comparison of total anti-SARS-CoV-2 spike serological responses of infection naive COV-AD participants 1-2
months post third vaccine dose by initial two-dose vaccine received. (D) Comparison of total anti-spike serological responses of COV-AD participants 1-2 months
post third vaccine dose by prior infection status. (E) Comparison of total anti-spike serological responses of infection naive COV-AD participants 1-2 most post third
vaccine dose by underlying immunodeficiency. (F) Comparison of total anti-spike antibody levels of paired samples taken 1-2 months after the second vaccine dose
and 1-2 months after the third vaccine dose. (G) Comparison of IgG binding to the original Wuhan SARS-CoV-2 spike glycoprotein between paired samples taken
before and after third primary immunisation. (H) Comparison of IgG binding to the B.1.1.529 (Omicron) SARS-CoV-2 spike glycoprotein between paired samples
taken before and after third primary immunisation. (I) Neutralisation capacity of paired serum samples taken before and after third vaccine dose against SARS-CoV-2
in a live virus neutralisation assay. In all cases, the grey shaded area represents the assay cutoff.
June 2022 | Volume 13 | Article 912571

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shields et al. SARS-CoV-2 Vaccine Responses in Antibody Deficiency
immunisation to induce cross-reactive antibodies directed
against dominant SARS-CoV-2 variant of concern in early
2022. However, seroprevalence against the Omicron variant
amongst COV-AD participant remains significantly lower than
healthy controls (COV-AD vs healthy controls: 67.5% vs 100%,
Chi Square 22.2, p<0.0001). The functionality of the antibody
response was investigated using live virus neutralisation
assays directed against the Wuhan SARS-CoV-2 strain: third
primary immunisation was associated with a significant increase
in serum neutralisation capacity (median % neutralisation: Pre
V3 44.8% vs. Post V3 99.8%, p=0.0479, n=14 paired serum
samples) (Figure 1I).

T cell responses to infection and vaccination were measured
by ELISPOT (Figure 2). Overall, T cell responses were detectable
in 47.5% (n=47/95) of individuals after the second vaccine dose,
46.4% of individuals prior to their third vaccine dose (n=13/28)
and 59.6% (n=28/47) of individuals after their third vaccine dose.
Individuals with prior PCR-proven SARS-CoV-2 infection were
more likely to have a detectable T cell response (Post V2: 94.1%
vs 38.8%, Pre V3: 70.0% vs 33.3%, Post V3: 91.6% vs 48.6% - Chi
Square p<0.05 Post V2 and Post V3) and that T cell response was
quantitatively greater (Kruskal-Wallis 24.5, p=0.002; Dunn’s
multiple comparison tests: Post V2 prior infection vs infection
naive: p=0.0002. Post V3 prior infection vs infection naive:
p=0.03) (Figure 2A). T cell responses were more frequently
detectable in individuals with prior infection regardless of their
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vaccine schedule (Figure 2B). However, in SARS-CoV-2
infection-naive individuals, a greater percentage had a
detectable T cell response at the V3 timepoint if they had
received a heterologous third vaccine dose (i.e. two doses of
ChAdOx1 nCoV-19 followed by an mRNA vaccine) compared
to those who had received three consecutive doses of mRNA
vaccines (heterologous vs homologous: 61.5% vs 11.1%, Chi
square 6.81, p=0.009). There was no statistically significant
relationship between the magnitude of the antibody response
to vaccination and the presence or absence of a detectable T cell
response (Figure 2C).

In the subgroup of participants with both antibody and T cell
results after V3 (n=47), only 10.6% (n=5/47) failed to make
either an antibody response or a T cell response. There were no
common demographic or clinical characteristics shared between
these non-responders: three individuals had CVID (2 with
bronchiectasis, 1 with GL-ILD), one had XLA and one
s econda ry an t ibody defi c i ency fo l l ow ing ca rd i a c
transplantation. The age of these participants ranged from 34
to 84 years; 80% were male. Three participants received two
doses of the AZ vaccine followed by a third dose of Pfizer, the
others received three doses of the Pfizer vaccines. All had CD4+
T cell count within the normal range and 60% had a normal B
cell count. The only participant receiving immunosuppression
medication was the individual with secondary immune
deficiency (daily corticosteroids and tacrolimus).
A B C

FIGURE 2 | T cell response to third primary immunisation in COV-AD participants: (A) Longitudinal comparison of T cell responses measured using the T-SPOT®.COVID
assay in COV-AD participants by prior infection status. (B) Longitudinal comparison of T cell responses measured using an interferon-gamma release assay in COV-AD
participants by initial two-dose vaccine schedule received. Data points represented by stars are individuals with evidence of prior infection. In both cases, the grey shaded area
represents the assay cutoff. (C) Comparison of IgGAM ratios of individuals with detectable and undetectable T cell responses.
TABLE 2 | Summary of serological response to third primary immunisation in infection-naive COV-AD participants.

Timepoint Post V2 (n=171) Pre V3 (n=101) Post V3 (n=150)

N Sero-positivity (%) Median IgGAM N Sero-positivity (%) Median IgGAM N Sero-positivity (%) Median IgGAM
Healthy controls 205 100% 5.51 68 100% 4.97 68 100% 7.61
All COVAD participants 171 55.6% 2.81 101 61.4% 1.88 150 76.0% 4.54
CVID 70 52.9% 2.81 43 60.5% 1.58 62 66.1% 3.79
PAD 12 75.0% 2.45 15 53.3% 2.47 13 92.3% 5.45
SPAD 6 100% 2.71 7 100% 1.89 7 100% 5.11
Secondary 62 59.6% 3.03 28 64.3% 2.37 51 82.3% 4.30
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DISCUSSION

Vaccination remains the most effective intervention to prevent
SARS-CoV-2 morbidity and mortality in the general population.
To date, the most robust correlate of protection against SARS-
CoV-2 infection and severe COVID-19 is the presence of anti-
viral neutralising antibodies (19, 20). We have previously
demonstrated that individuals with primary and secondary
antibody deficiency demonstrate reduced seroprevalence of
anti-spike antibodies following the initial two-dose vaccination
schedule and, compared to healthy controls, reduced magnitude
of antibody responses and reduced in vitro neutralising capacity
(5). Through longitudinal monitoring we demonstrate
significant waning of the magnitude of the antibody response
following a two-dose vaccine schedule and the immunogenicity
of a third vaccine dose.

Following third primary immunisation with an mRNA-based
vaccine, the overall seroprevalence of anti-spike glycoprotein
antibodies in the COV-AD cohort rose from 61.4% immediately
before, to 76.0% after vaccination and was accompanied by a
significant increase in the median antibody levels amongst
vaccine responders. The serological response induced by the
third primary immunisation was broadly cross-reactive against
the omicron SARS-CoV-2 variant of concern and the
neutralisation capacity of paired serum samples also increased,
an important observation given neutralising antibodies are
associated with protection against SARS-CoV-2 infection and
severe disease (20). These data are concordant with similar
studies in renal dialysis (14, 15) and cancer patients (16) and
small studies of individuals with functional B cell defects (17).
Nevertheless, seroprevalence and the magnitude of antibody
responses in this cohort remain significantly lower than
healthy controls. Even after the third vaccine dose, 32.5% of
individuals in this study failed to demonstrate antibody binding
to the currently dominant Omicron variant.

Our study highlights the heterogeneity of vaccine
responsiveness in primary and secondary antibody deficiencies.
A third of individuals with CVID demonstrate no humoral
response to SARS-CoV-2 vaccination, and the magnitude of
the response is variable amongst responders. In contrast, all
indiv iduals with SPAD were SARS-CoV-2 vaccine
responsiveness, albeit at lower levels that healthy controls,
despite having failed to respond to prior pneumococcal
vaccination. Given the rapid emergence of novel SARS-CoV-2
variants, it will be important to understand the prevalence and
clinical characteristics of individuals who are intrinsically vaccine
unresponsiveness and those whose immunity may be improved
by heterologous or variant-specific vaccination strategies.
Understanding the molecular mechanisms governing this
heterogeneity may also allow stratification of the severity of
immune deficiency and inform future vaccine design.

Heterologous vaccination strategies have been associated
with greater serological responses following a third vaccine
dose in healthy control cohorts (1, 21), In contrast, we did not
observe a significant difference in the serological responses to a
third dose of mRNA vaccine based upon whether an individual
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initially received two doses of the adenovirally-vectored
ChAdOx1 nCov-19 or the mRNA Pfizer BioNTech 162b2
vaccines. This is concordant with a study of cancer patients,
where neutralising antibody titres after a third vaccine dose
were not affected by the initial vaccine schedule in multiple
logistic regression analysis (16). However, in infection naive
individuals, a heterologous vaccination strategy was associated
with a significantly greater percentage of individuals having a
detectable T cell response. These results should be interpreted
cautiously; an ELISPOT assay only describes one aspect of the T
cell response to infection and/or vaccination. However, previous
studies have shown superior spike-specific T cell responses in
the over-80s following the ChAdOx1 nCov-19 vaccine (22),
more durable preservation of spike-specific CD8+ following the
adenovirally vectored Ad26.COV2.S (Johnson and Johnson)
immunisation (23) and induction of superior T cell responses
using heterologous third dose vaccine schedules (24). Although,
the relationship between T cell responses to vaccination and
protection from SARS-CoV-2 infection and severe disease
remain uncertain, these findings may be relevant to
individuals incapable of making any humoral immune
responses, for example those with XLA.

It remains uncertain whether individuals who have failed to
mount a serological response to vaccination after three vaccine
doses would benefit from further immunisations, and, if so, with
what vaccine. In the absence of established serological thresholds
that correlate with protection against infection and severe
disease, particularly against novel variants of concern, it also
remains uncertain whether the wider antibody deficient cohort
would also benefit from further vaccinations to enhance antibody
titres and seropositivity. In this cohort, humoral vaccine non-
responsiveness was associated with lower peripheral B cell
numbers and lower pre-treatment IgG concentrations. Yet, we
and others have documented survival and SARS-CoV-2 viral
clearance in the absence of either B cells or detectable humoral
immunity (5, 25), suggesting SARS-CoV-2 neutralising
antibodies are but one aspect of protective immunity against
the virus. Longitudinal vaccine efficacy studies in individuals
with immunodeficiency are necessary to develop a
comprehensive understanding of the relationship between
measurable in vitro immunological parameters and protection
against severe disease, and allow further stratification of the
ongoing risk posed by COVID-19 (26, 27).

In the absence of this understanding, we recommend ongoing
caution with respect to the risk of SARS-CoV-2 in individuals with
PID and SID, particularly amongst those who have no detectable
immune response to vaccination. Such individuals should be
prioritised for urgent access to clinically proven antiviral
treatments (28) and/or monoclonal antibodies (29) in the event of
testing positive for SARS-CoV-2, and where available, pre-exposure
prophylaxis with monoclonal antibodies (30). Given the waning
following the 2nd dose of vaccination it is important to understand
whether the kinetics of the antibody waning will be similar after the
3rd dose of vaccination and the booster 4th dose due to be given in
the UK in the spring of 2022. This will be essential to understanding
how regularly we should be vaccinating this cohort going forward.
June 2022 | Volume 13 | Article 912571

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shields et al. SARS-CoV-2 Vaccine Responses in Antibody Deficiency
In conclusion, we present evidence that, in a cohort of
patients with antibody deficiency, a third primary SARS-CoV-2
immunisation is associated with increased seroprevalence and
antibody levels, the induction of cross-reactive antibodies against
SARS-CoV-2 variants of concern and enhanced neutralisation
capacity against the SARS-CoV-2 virus. Although vaccine
responsiveness remains significantly lower than healthy
controls, these data strongly support the widespread use of a
third primary immunisation in immunodeficient patients.
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