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Patterns in external sensory stimuli can rapidly entrain neuronally generated oscillations
observed in electrophysiological data. Here, we manipulated the temporal dynamics of
visual stimuli with cross-frequency coupling (CFC) characteristics to generate steady-
state visual evoked potentials (SSVEPs). Although CFC plays a pivotal role in neural
communication, some cases reporting CFC may be false positives due to non-sinusoidal
oscillations that can generate artificially inflated coupling values. Additionally, temporal
characteristics of dynamic and non-linear neural oscillations cannot be fully derived
with conventional Fourier-based analyses mainly due to trade off of temporal resolution
for frequency precision. In an attempt to resolve these limitations of linear analytical
methods, Holo-Hilbert Spectral Analysis (HHSA) was investigated as a potential
approach for examination of non-linear and non-stationary CFC dynamics in this
study. Results from both simulation and SSVEPs demonstrated that temporal dynamic
and non-linear CFC features can be revealed with HHSA. Specifically, the results of
simulation showed that the HHSA is less affected by the non-sinusoidal oscillation
and showed possible cross frequency interactions embedded in the simulation without
any a priori assumptions. In the SSVEPs, we found that the time-varying cross-
frequency interaction and the bidirectional coupling between delta and alpha/beta bands
can be observed using HHSA, confirming dynamic physiological signatures of neural
entrainment related to cross-frequency coupling. These findings not only validate the
efficacy of the HHSA in revealing the natural characteristics of signals, but also shed new
light on further applications in analysis of brain electrophysiological data with the aim of
understanding the functional roles of neuronal oscillation in various cognitive functions.

Keywords: the dynamic visual entrainment, Holo-Hilbert spectral analysis, cross-frequency coupling, steady-
state visual evoked potential, phase-amplitude coupling

Frontiers in Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 673369

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.673369
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.673369
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.673369&domain=pdf&date_stamp=2021-08-05
https://www.frontiersin.org/articles/10.3389/fnins.2021.673369/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-673369 August 4, 2021 Time: 11:37 # 2

Juan et al. Dynamic Nature of Neural Entrainment

INTRODUCTION

Background
Neural activity related to human behaviors are prominently
implemented in a dynamic and non-linear manner (Buzsáki
and Mizuseki, 2014; Clarke et al., 2015). Various forms of
neural oscillations may play a critical role in these processes
(e.g., Buzsaki, 2006) and these are typically categorized into
activity in different frequency bands (i.e., delta, theta, alpha,
beta, gamma, and high gamma) and commonly reported for
magneto/electroencephalograms (MEG and EEG) and local field
potentials (LFP) (e.g., Cole and Voytek, 2017). Neural cross-
frequency coupling (CFC) represents the interactions between
two neuronal oscillations of different frequencies and can occur
both within a neural area or as inter-area communication (Singer,
1999; Salinas and Sejnowski, 2001; Varela et al., 2001; Fries,
2005; Canolty et al., 2006; Jensen and Colgin, 2007; Roach
and Mathalon, 2008; Canolty and Knight, 2010; Giraud and
Poeppel, 2012; Siegel et al., 2012; Hsu et al., 2014; Lopes-dos-
Santos et al., 2018; Cole and Voytek, 2019; Hanslmayr et al.,
2019; Nguyen et al., 2019; Siebenhühner et al., 2020; Giehl et al.,
2021; Liang et al., 2021). One of the most examined forms of
CFC is phase-amplitude coupling (PAC), where the phase of a
lower frequency oscillation modulates the amplitude of a high
frequency oscillation (Canolty et al., 2006; Canolty and Knight,
2010). It has been suggested that PAC can not only be observed
locally within the same signal in local field potentials in rats
and in human intracranial EEG, but could also reflect the long-
range interactions between regions (Jensen and Colgin, 2007;
Nandi et al., 2019; Siebenhühner et al., 2020). For example, a
seminal work by Canolty et al. (2006) found that the amplitude of
gamma activity was coupled with the phase of theta oscillations
in humans. However, although multiple competing algorithms
and approaches have been proposed for conducting PAC analysis,
such methods may still result in false positives due to suboptimal
analysis practices and/or the presence of artifacts within the data
(Aru et al., 2015; Hyafil, 2015).

The Limitation of Current PAC Methods
Ideally, the representation of frequency information would not
result in confounds of spectral content as a result of factors
such as non-sinusoidal waveforms in the signal. However, for
most current approaches this does not stand true if the signal
contains non-linear waves with non-sinusoidal forms and shapes
(for reviews, see Aru et al., 2015; Cole and Voytek, 2017).
Standard approaches for computing PAC such as the mean-
vector modulation index (Canolty et al., 2006) can be applied
across a range of frequency bands in the low frequency phase
and high frequency amplitude components to construct a 2-
dimensional comodulogram. These measures critically depend
on the bandwidth of the filters used in the estimation procedure
which may not be obvious from the comodulogram itself.
However, they do not involve consideration of the actual nature
of the raw signal (i.e., whether it is non-linear and/or non-
stationary). Therefore, the theoretical validity of this approach
is limited by the fact that it requires an assumption of the

signal being both linear and stationary. This ungrounded
assumption means such approaches fail to measure non-
sinusoidal oscillations, and several studies have demonstrated
that spurious PAC values can be seen from non-linear and non-
stationary signals per se without genuine modulations (Kramer
et al., 2008; Penny et al., 2008; Özkurt and Schnitzler, 2011;
Kramer and Eden, 2013; Voytek et al., 2013; Pittman-Polletta
et al., 2014; Aru et al., 2015; Gerber et al., 2016; Jensen et al., 2016;
Lozano-Soldevilla et al., 2016; Cole and Voytek, 2017; Pullon
et al., 2019). Although several methods have been proposed to
estimate PAC values, none has fully solved these issues (e.g.,
Canolty et al., 2006; Tort et al., 2010).

The Aim of the Current Study: Use
Holo-Hilbert Spectral Analysis to Fully
Measure the Spectral Information of
Cross-Frequency Interactions in
Neuronal Oscillation Signals
To overcome the limitations of the previous methods, we applied
Holo-Hilbert Spectral Analysis (HHSA) as a data-driven method,
to investigate complex brain oscillations (Huang et al., 2016;
Nguyen et al., 2019; Liang et al., 2021).

Holo-Hilbert spectral analysis is a non-linear analysis tool
based on empirical mode decomposition (EMD) to resolve the
identification of intrinsic amplitude modulations by representing
the data in multiple dimensions (i.e., amplitude modulation,
carrier, and time). It should be noted that the carrier frequency
of HHSA would correspond to the frequency dimension in
conventional spectral analyses. The advantage of EMD is that it
can adaptively extract information based on the intrinsic nature
of the raw signal (Huang et al., 1998; Sweeney-Reed and Nasuto,
2007) without assumptions of a linear and stationary nature of
such a signal. Additionally, the energy content is not restricted by
bandwidth selection as it is for current PAC methods. Therefore,
this approach is suitable to analyze the spectral properties of non-
sinusoidal oscillations and waveform shapes as suggested by Cole
and Voytek (2017), van Ede et al. (2018). Based on instantaneous
frequency information, HHSA does not merely measure pairwise
couplings, but naturally provides energy and content of all
possible modulating and carrier frequencies of data resulting
from non-stationary and non-linear processes. In addition, the
energy of precise frequency values at any time can be extracted
to track the temporal characteristics of neuronal oscillations.
Therefore, possible types of cross-frequency interactions (inter-
mode and intra-mode frequency interaction) and temporal
information can be revealed with HHSA.

As mentioned above, for the current PAC analysis methods, a
prerequisite for obtaining reliable measures is that the slow- and
fast oscillations with their amplitude modulation should appear
in the spectral analysis. In the HHSA, these characteristics are
presented clearly in a two-dimensional frequency spectrum, in
which one dimension is the amplitude-modulating frequency and
the other is the frequency of the carrier. For instance, Nguyen
and colleagues (Nguyen et al., 2019) used visual stimuli with
a 14 Hz carrier and a 2 Hz amplitude modulation to induce
steady state visual evoked potentials (SSVEPs) with analysis using

Frontiers in Neuroscience | www.frontiersin.org 2 August 2021 | Volume 15 | Article 673369

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-673369 August 4, 2021 Time: 11:37 # 3

Juan et al. Dynamic Nature of Neural Entrainment

Holo Hilbert Spectra. The HHSA outperformed the conventional
Fourier approach (i.e., fast-Fourier transform and Bispectrum
analysis) by revealing full-dimensional non-linear features and
interactions of the induced SSVEPs. This means that HHSA can
reveal amplitude modulation occurring in signals recorded from
the visual cortex that were induced by entrainment with external
visual stimuli (Hyafil et al., 2015). Thus, the current study used
HHSA to investigate whether the stimulation by external physical
stimuli can dynamically entrain and interact with intrinsic brain
waves and generate phase-amplitude couplings.

To examine the variability and reliablity of different
analytical methods, we compared the outcomes of FFT analysis,
a comodulogram approach and HHSA. These were first
applied to a set of controlled simulations of non-sinusoidal
waveform shapes. The analysis methods were then applied
to SSVEP recordings generated by multiple-input stimulation.
The stimulation conditions used in the current study were
sinusoidal flicker, amplitude-modulated flicker, and phase-
amplitude coupling flicker presenting identical visual stimuli
to both eyes (i.e., binocular stimulation). For the human
visual system, single-or-multiple frequency input can generate
SSVEP responses at the stimulus frequencies and at harmonic
frequencies (e.g., Adrian and Matthews, 1934; Norcia et al.,
2015; Nguyen et al., 2019). Therefore, our analysis of SSVEP
phenomenon with different PAC and HHSA methods aimed
to allow assessment of any merits of HHSA for assessment
of multiple cross-frequency interactions in comparison to
other comodulograms.

MATERIALS AND METHODS

Holo-Hilbert Spectral Analysis
Holo-Hilbert spectral analysis provides a fully informational
spectrum in a two-dimensional frequency representation. That is,
both the carrier frequencies (fc) and the amplitude modulation
frequencies (fam) in the signal can be examined simultaneously
in the Holo-Hilbert spectrum (HHS) (Huang et al., 2016; Nguyen
et al., 2019). To build these axes, two-layer EMD was employed
(see the illustration of two-layer EMD in Figure 1). This two-
layer EMD was analyzed by a direct quadrature (DQ) transform
(Huang et al., 2009) to obtain the instantaneous frequency and
amplitude (for details, see Huang et al., 2016; Nguyen et al., 2019;
Liang et al., 2021). EMD is a data-driven approach to decompose
the signal into several intrinsic mode functions (IMFs) without
the selection of band-pass filter cut-offs. Thus, every EMD
algorithm serves as a natural dyadic filtering bank (Flandrin
et al., 2004), yet it keeps the property of “completeness” and
“orthogonality” among IMFs, i.e., the dot product between any
two IMFs sufficiently approaching zero and summing over all
IMFs reconstructs the original signals. Therefore, in the scheme
of instantaneous frequency, the frequency band of each IMF
is wide enough to form a continuous band with its previous
and next IMFs. This is also why the EMD results could be
mapped to a spectral representation. Due to the higher temporal
and frequency resolution (achieved by instantaneous frequency
defined by the derivative of instantaneous phases) compared

to Fourier-based analysis, EMD-based methods (HHT, HHSA)
are especially suitable for analyzing non-stationary and non-
linear brain signals (Gregoriou et al., 2009; Park et al., 2011;
Bajaj and Pachori, 2012; Lopes-dos-Santos et al., 2018). In this
study, an enhanced algorithm of EMD, referred to as masking
EMD, was used to resolve the mode-mixing problem in the
original EMD that might potentially reduce the distortion of
HHSA results (Deering and Kaiser, 2005; Tsai et al., 2016; Nguyen
et al., 2019). The masking EMD has been proved to be able to
robustly decompose the signal into physically meaningful non-
linear components (Nguyen et al., 2019). Thus, using masking
EMD to implement HHSA also offers a viable method to detect
the signals at different noise levels (i.e., SNR = −5, 0, 5, 10) (see
the illustration in Supplementary Figure 1).

In general, the analysis flow was conducted as follows:

(1) The original signal x (t) is decomposed into several IMFs
by using masking EMD, with these known as the first layer
IMFs, and expressed as follows:

x (t) =
n∑

j=1

cj̇ (t)+ rn =

n∑
j=1

aj̇ (t) cos θj(t)+ rn

(2) Then the DQ method is applied to estimate instantaneous
frequencies and amplitudes of the IMFs. This step gives the
time-frequency characteristics of the original signal and is
known as the Hilbert-Huang Transform (HHT). To avoid
confusion with the terminology regarding frequencies, we
will refer to the instantaneous frequency obtained from
the first layer EMD as the “carrier frequency” and it is
presented along the x-axis in the Holo-Hilbert spectrum.

(3) Construct the amplitude function of each given IMF as
defined by Huang et al. (2009, 2013, 2013; 2016).

• Obtain the absolute value of the IMF.
• Identify all the maxima of the absolute-valued IMF.
• Assemble the envelope by employing a natural spline

through all the maxima.

(4) The second layer EMD is obtained by applying the masking
EMD to the amplitude function aj̇ (t), given as:

aj (t) =
m∑

k=1

cj̇k (t)+ Rjm =

m∑
k=1

aj̇k (t) cos 2jk(t)+ Rjm

Where cj̇k(t) is the second layer IMF, aj̇k (t) is the second
layer amplitude functions, cos 2jk(t) is the second layer
phase function, and Rjm is the trend of each second layer
IMF. Thus, the whole expansion of two-layer EMD can be
expressed as:

x (t) =
n∑

j=1

[ m∑
k=1

aj̇k (t) cos 2jk(t)+ Rjm

]
cos θj(t)+ rn

(5) The DQ is applied to these IMFs to determine the
instantaneous frequency and amplitude of amplitude
modulation (fam). The instantaneous frequency and
amplitude of this two-layer IMF was projected to (fam, fc,
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FIGURE 1 | Illustration of the process of Holo-Hilbert spectrum analysis. (A) The PAC simulated signal is decomposed into three intrinsic mode functions (IMFs) by
Mask EMD to produce the first layer IMFs. (B) In this layer, IMF1 corresponds to the high-frequency signal (i.e., amplitude-modulated signal with 16 Hz signal
modulated by 3 Hz, see section “Experimental Data”), while IMF2 corresponds to the low-frequency signal (3 Hz). The marginal amplitude spectrum of the first layer
IMF shows amplitude peaks at 3 and 16 Hz, respectively. (C) The envelope of each IMF is extracted using cubic spline interpolation. The Mask EMD is then applied
to each envelope again to acquire second layer IMFs. (D) In this case, we only illustrate the second layer IMFs of the first envelope. The amplitude modulation
spectrum shows the peak amplitude of IMF1 at 3 Hz, which correspond to the 3 Hz amplitude modulation of the amplitude-modulated input signal. The carrier
spectrum and amplitude modulation spectrum are combined to build the two-dimensional frequency spectrum, as known as HHS, in which the x-axis represents the
carrier frequency (fc), and the y-axis represents the amplitude modulation frequency (fam). The HHS shows separate peak amplitudes at 3 Hz (at 0.5 Hz y-axis) of
the sinusoidal signal, and 16 Hz (at 0.5 Hz y-axis) and 3 Hz AM of the amplitude-modulated signal. In the current study, all AM power below 0.5 Hz has been
collapsed to the 0.5 Hz AM frequency bin in the HHS. The display of carrier frequencies at 0.5 Hz on the y-axis (AM frequency) might not affect the observations of
higher AM frequency in the signal. The frequency axes are in dyadic scale.

time) space to obtain the three-dimensional Holo-Hilbert
Spectrum which describes a complete power spectrum of
cross-frequency dynamics varied with time series.

(6) To aid interpretability, the three-dimensional power
spectra were marginally summed over the time space
to obtain two-dimensional HHS, in which the y-axis
represents fam, and the x-axis shows fc. Supplementary
Figure 2 illustrates an example of the frequency resolution
of dyadic frequency bands, in which the edges of these
bands are constructed by the formula 2n (where n = −1,
0, 1, 2, 3, 4, 5,. . .). To assign the power of the carrier
and AM frequencies obtained from two-layer IMFs to a
specific frequency band (the red rectangle as shown in
the Supplementary Figure 2), we marginally summed the
power spectra across time points (t) such that 25.875

≤

fc(t) ≤ 26 and 23.875
≤ fam(t) ≤ 24. Please note that the

display of carrier frequencies, which were collapsed across

time, at 0.5 Hz on the y-axis (envelope frequency)
might not affect the observations of higher amplitude
modulation in the signal.

Conventional Phase Amplitude Coupling
(PAC) Analysis
In this section, we describe the general steps for measuring
the phase-amplitude coupling, using the Modulation Index (MI)
value from Tort et al. (2010) as an example. The procedure is
outlined in Supplementary Figure 3. The general procedure is
separated into four main steps:

(1) The band-pass filter using a Butterworth filter (3rd band-
pass filter) is applied to the signal with the region of interest
of frequency to extract the slow oscillation (SO) and fast
oscillation (FO). The filters for extracting FO need to cover
the center frequency ± the SO frequency. We therefore
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FIGURE 2 | The experimental procedure for Experiment 1. Participants opened their eyes after hearing a beep sound. Various light flicker stimuli were presented to
participants in a randomized order with a time duration of 2500 ms for each. After stimulation, participants could close their eyes and rest until the next trial. Light
flicker stimulation was presented to both eyes (binocular).

used the variable bandwidth, defined as ±0.333 times the
center frequency (Berman et al., 2012; Seymour et al.,
2017). In contrast, the bandwidth for SO is set to 1 Hz ±
the center frequency.

(2) The Hilbert transform is applied to SO and FO to obtain
the instantaneous phase and the amplitude envelope,
respectively (Le Van Quyen et al., 2001).

(3) We quantified the coupling measure between SO and FO
using the Kullback-Lieber modulation index, as described
in Tort et al. (2010). This approach puts the FO amplitude
into 18 bins of SO phase. The modulation index is
calculated by comparing the amplitude-phase distribution
(P) against the null hypothesis of a uniformly amplitude-
phase distribution (Q).

(4) We have performed a block-resampling method to assess
the statistical significance of the measured MI values

by comparing the raw MI against the distribution of a
surrogate dataset, namely surrogated MI (He et al., 2010).
That is, the time-series of FO amplitude for each frequency
pair was first split into 60 equal-length segments with
50 ms for each segment, and then these segments were
shuffled yielding 100 shuffled amplitude time-series in
total. This approach preserves the temporal structure of the
original signal and therefore is able to produce a rigorous
assessments of statistical significance of PAC measures (He
et al., 2010; Aru et al., 2015). Finally, the mean and standard
deviation of the 100 shuffled MI were computed to obtain
a z-score statistic of MI and expressed as:

MIz =
Raw MI − µshuffle

σshuffle
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Due to the expensive computation, we did not use
surrogates for the majority of the PAC measures from
the synthetic data. To assess the changes of the PAC
measures between two conditions across participants,
the comodulograms were compared using a distribution
of 2000 permutations of non-parametric cluster-based
statistics (Maris and Oostenveld, 2007).

Experimental Data
Synthesized Data
The General PAC Signal
The general simulated data time-series were generated using the
sum of two sinusoidal signals (i.e., SO and FO with its amplitude
modulation) (Eq. 1). The phase of SO (fP) was coupled with the
amplitude of FO (fA) according to Eqs. 2, 3, respectively.

x(t) = xfP(t)+ xfA(t) (1)

xfP(t) = AfP sin(2πfPt) (2)

xfA(t) = AfA(t) sin(2πfAt) (3)

Where AfA(t) = Kβ sin(2πfAMt − φ AM).
AfP and K are fixed scalars that determine the peak amplitude

of SO and FO, respectively. The initial phase of amplitude
modulation is φAM with a fixed value of −π /2. fAM indicates
the frequency of amplitude modulation. β ∈ [0, 1] determines the
coupling strength, in which a value of 1 indicates the maximum
coupling strength. In all cases of synthesized data, the sampling
rate was set to 1000.

Non-sinusoidal Simulations
To validate the effect of degree of non-linearity on HHS, we
generated a 10 Hz signal with non-linear waveforms. These
waveforms were simulated using an analytic formulation of a
non-linear wave (Abreu et al., 2010). An oscillatory time-series
X(t) was generated with:

X (t) = Uwf

[
sin (ωt) r sin φ

1
√

1− r2

]
1− r cos (ωt + φ)

in which Uw represents amplitude, t represents time and ω is
frequency. The waveform shape parameters r(−1 < r < 1) and
φ
(
−

π
2 ≥ φ ≥ π

2
)

determine the degree of non-linearity and the
direction of skew, respectively. f is a function of r controlling
amplitude

√
1− r2. A positive value of φ creates an oscillation

with a faster rising edge and a slower falling edge and vice versa
for a negative value. A value of 0 would yield equivalent rising
and falling profiles. The extent of non-sinusoidal features was
manipulated by the value of r. and the degree of non-linearity can
be parametrically varied to generate a wide range of non-linear
waveform shapes (Abreu et al., 2010).

The simulated waveforms with a biologically plausible non-
linear waveform with a larger peak than trough and a faster
rising edge than falling were generated by fixing φ to a value
of π

4 . Values of r were varied from 0 to 0.9 in steps of 0.1 in
which a value of 0 indicates a completely linear (sinusoidal)
oscillation and 0.9 is highly distorted. The resulting signals are

qualitatively similar to the skewness seen in several types of
neuronal oscillation. Thus, the possibility of spurious measures
of coupling was emphasized.

Electrophysiological Data (Steady-State Visually
Evoked Potentials)
Participants
Ten students (5 females; mean age = 23.1 years, SD = 2.1 years)
participated in the first experiment. Eight students (3 females;
mean age = 26.1 years, SD = 5.4 years) participated in the
second experiment. All participants had normal or corrected-
to-normal vision and were neurologically healthy. This study
was carried out in accordance with the Social and Behavioral
Research Ethical Principles and Regulations of National Taiwan
University and was approved by the Research Ethics Committee
of National Taiwan University. All participants gave written
informed consent before participation.

Stimuli and Procedures
The stimuli were viewed through two black tubes of 13 cm in
length, with one tube for each eye. Each tube contained a white
light-emitting diode (LED) covered with a 4 cm × 4 cm diffuser
plate at one end of the tube to allow presentation of a stimulus
with a visual angle of ∼18.2◦ and a luminance of up to 39.2
cd/m2. The centers of the two tubes were 4.5 cm apart from
each other and the device as a whole enabled presentation of
different light flicker waveforms for the two experiments in this
study. The LEDs were connected to a 16-bit digital-to-analog
converter (NI USB-6229 BNC, National Instruments, Austin, TX,
United States), allowing the LED signal to be modulated at a rate
of up to 40 kHz. An integrated photodiode (BPW34, OSRAM
Opto Semiconductors) was used to collect the output LED signal
and this was recorded with a BioPac MP35 (Biopac Systems, Inc.)
to verify that the emitted signal had the desired shape.

For baseline comparisons, we ran one control condition (no-
flicker condition) using a transient flash at the onset and retaining
the same luminance across time. We also generated seven testing
conditions with sinusoidal flicker, amplitude-modulated flicker
and PAC flicker. The frequencies of sinusoidal flicker were set to
3, 5, and 7 Hz. The amplitude-modulated flicker was generated
with a 16 Hz carrier and its amplitude modulation, which was
of a frequency of 3 or 5 Hz. The PAC flicker was of a frequency
of 16 Hz nested in a phase frequency of 3 or 5 Hz. These visual
stimuli were generated by using MATLAB (The MathWorks Inc.,
Natick, MA, United States) in-house programs with the following
equations:

Sinusoidal flicker : L0 + L0
(
−cos

(
2πfct

))
AM flicker : L0 + L0

[
1
2
(−cos

(
2πfamt

)
+ 1) sin

(
2πfct

)]
PAC flicker :

2
3

L0 +
2
3

L
0

[
−cos

(
2πfamt

)
+

1
2
(−cos

(
2πfamt

)
+ 1) sin

(
2πfct

)]
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Where t was a duration of sinusoidal, AM flicker and PAC flicker,
L0 was the mean of the luminance, fc was the carrier frequency,
and fam was the modulation frequency.

Overall, there was a total 240 trials from eight conditions, in
which 30 trials were used for each condition to obtain SSVEP
signals (Figure 2). Trials of each condition were randomly
presented. Participants were asked to press any key to initiate the
first trial. After the keypress, participants were required to open
their eyes when they heard a beep sound and then fixate their
sight on the black point in the center of the diffuser plate LED for
2.5s. Afterward, participants could take a rest for 2-s (Figure 2).
Another beep occurred to indicate the start of the next trial.

Electroencephalograms Data Acquisition and
Preprocessing
An elastic cap (Electrocap International) containing 36 Ag/AgCl
electrodes arranged according to the International 10-20 system
was used to obtain the EEG activity which was recorded using
a Neuroscan amplifier (Nuamps) and Neuroscan 4.2 software
with a sample rate of 1000 Hz. All the data were referenced to
the right and left mastoids. The impedance for every electrode
was kept below 5 k� during the recordings. The continuous
data were first filtered with a band-pass filter of 0.5–50 Hz. The
data were then epoched from 0 to 3000 ms relative to stimulus
onset for each trial and then detrended before excluding trials
with blinks or other artifacts (trials with amplitude changes
exceeding 100 µV). Afterwards, the preprocessed data were
averaged across trials to obtain the SSVEPs. Finally, the SSVEP
responses from the Oz channel were used as the main source of
the evoked response for further data analysis (Di Russo et al.,
2007; Bianciardi et al., 2009; Vialatte et al., 2010). Specifically,
we used the SSVEP temporal window from 500 to 2500 ms after
the onset of each stimulus to exclude any VEP and to increase
the signal to noise ratio of the SSVEP (Andersen et al., 2013;
Andersen and Müller, 2015). SPM8 (Wellcome Trust Centre for
Neuroimaging1), and customized Matlab codes (The MathWorks
Inc., Natick, MA, United States) were utilized for further data
analysis. The SSVEPs were mainly analyzed with Holo-Hilbert
spectral analysis (Huang et al., 2016; Nguyen et al., 2019) to obtain
carrier frequencies (fc), and amplitude modulation frequencies
(fam). The energy densities are presented by the contour in dyadic
frequency scales with eight log2 scale bins (e.g., [8 16] contains
eight-frequency bins). In addition, the coupling measure between
phase and amplitude oscillations of SSVEPs was also obtained
using the Kullback-Lieber modulation index, as described in
Tort et al. (2010).

RESULTS

Simulations
In Section “Holo-Hilbert Spectral Analysis Can Reflect the
Nature of the Non-sinusoidal Signal Without the Presentation
of Spurious Coupling as Seen With Conventional Approaches
to Measuring PAC,” the simulated non-sinusoidal signals with

1https://www.fil.ion.ucl.ac.uk/spm/

control of the degree of non-linearity were used to test the effect
of the waveform shape on the HHS. In the next two Sections
(“The Variations of Coupling Strength Can Be Revealed With
HHSA” and “The Time-Variance of Coupling Strength”), the
performance of HHSA approach were tested on the simulated
PAC signals with fixed coupling strength and time-varying
coupling strength. In Section “Multiple Patterns of Cross-
Frequency Interaction,” analysis of the synthesized data using
HHSA on complex signals with multiple possibilities of cross-
frequency interaction was assessed.

Holo-Hilbert Spectral Analysis Can Reflect the Nature
of the Non-sinusoidal Signal Without the Presentation
of Spurious Coupling as Seen With Conventional
Approaches to Measuring PAC
Here, the simulated non-sinusoidal signals with specific degrees
of non-linearity were used to examine the effects of the
waveform shape for different approaches, including HHSA. First,
we generated the simulated signals exhibiting non-sinusoidal
waveform shape with a frequency of 10 Hz (see Section “Non-
Sinusoidal Simulations”).

Figure 3 displays the outcomes of FFT, PAC and HHSA for
the simulated data. When analyzing the sinusoidal signal without
the PAC pattern, a clear peak at 10 Hz was present for FFT and
HHS (at 0.5 Hz on the y-axis) with the absence of a PAC value
(Figure 3A). In contrast, when the degree of non-linearity was
set to 0.4 (i.e., the signal is now non-sinusoidal), different patterns
were seen for FFT, PAC and HHSA. As illustrated in Figure 3B,
in addition to the carrier frequency (10 Hz), FFT also displays
multiples of the stimulus frequencies, namely the spurious
harmonics of the carrier frequency in the spectrum. Critically,
the waveform shape, without reflecting the cross-frequency
interaction, can exhibit multiple peaks of PAC measures. That is,
the 10 Hz phase seems to modulate multiple higher frequency
oscillations. The HHSA methods consist of two-layer EMD to
establish the two-dimensional frequency spectrum. To further
clarify the validation of our proposed approach, we replaced this
two-layer EMD with a two-layer band-pass filter and wavelet
analysis to obtain the 2D frequency spectrum. Specifically, the
band-pass filter and wavelet analysis scans large ranges of carrier
(i.e., from 2 to 64 Hz with steps of 2 Hz) and amplitude
modulation (i.e., from 2 to 16 Hz with steps of 1 Hz) frequencies.
Similar to the results of PAC and FFT, both methods decomposed
the non-sinusoidal signals into several higher harmonics in the
time-frequency spectrum and the frequency-frequency spectrum
as shown in Supplementary Figure 4B. In contrast, the HHSA
reflects the non-linear characteristics of the signal with an
amplitude increase at a broadband frequency (6-14 Hz, at 0.5 Hz
y-axis) without any increment of amplitude modulation.

In addition to the above example with degrees of non-linearity,
we also discuss another example of non-sinusoidal signal using an
exponential non-linearity in the Supplementary Material. That
is a 16 Hz FO signal (S) with 3 Hz AM and 0.5 modulation
depth occurring as an argument of an exponent of 2 (e.g., 2S)
(Supplementary Figure 5). Thus, the original signal (S) could
become the non-sinusoidal signal and consist of the 3Hz SO
due to the asymmetry of this signal together with 16 Hz FO
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FIGURE 3 | Illustration of how the shape of the waveform alters the resulting phase-to-amplitude comodulogram for different analyses. (A) Starting from the left, the
first panel shows the 10 Hz sinusoidal oscillation and its FFT. The FFT spectrum shows an amplitude at 10 Hz. Next is shown the PAC comodulogram, estimated by
the Modulation Index and finally, the Holo-Hilbert spectrum of the input oscillation is shown. The latter spectrum showed an amplitude increase centered at a 10 Hz
carrier without producing harmonics. (B) Starting from the left, the first panel shows the 10 Hz non-sinusoidal oscillation, which does not contain any coupling. The
FFT spectrum showed an amplitude at 10 Hz and its harmonics. Next, the PAC comodulogram, estimated by Modulation Index, indicated coupling between the
10 Hz phase and 20, 40, and 128 Hz amplitudes, which are all spurious PAC couplings. The Holo-Hilbert spectrum of the input oscillation showed a wider amplitude
increase centered at the 10 Hz carrier frequency without any induced harmonics.

and its 3 Hz AM. However, it should be noted that this new
non-sinusoidal signal consists of a waveform shape in which the
peaks were more narrow/sharper than the troughs. Although
the current PAC methods could obtain a true PAC, which was
3 Hz phase coupled with 16 Hz (Supplementary Figure 5B,
left and mid panels), this non-sinusoidal waveform shape also
produced multiple spurious PAC measures. That is, the 3 Hz
phase is coupled with multiple amplitude frequencies of 32,
48, and 64 Hz, etc. (Supplementary Figure 5C, left and mid
panels). These results could be also seen in the 2-layer BPF
(2L-BPF) and 2-layer WL (2L-WL) analysis (Supplementary
Figure 6). In contrast, HHSA can reflect the nature of the
non-sinusoidal signal without the presentation of spurious phase-
amplitude coupling (Supplementary Figure 5C, right panels).
That is, HHSA shows an amplitude increase at 3 Hz SO (at
0.5 Hz y-axis) and an amplitude increase at 16 Hz (at 0.5 Hz
y-axis) with a wideband frequency due to the waveform shape
and its 3 Hz AM without the increment of higher frequencies. To
further validate the sensitivity of HHSA to noise, we have added
the noise levels (i.e., SNR = −5, 0, 5, 10) to this non-sinusoidal
PAC signals. HHS was able to detect the coupling at a robust
noise (i.e., SNR=−5) while traditional PAC showed no coupling
(Supplementary Figure 7). In addition, we also evaluated the
effects of noise and data length on the performance of HHSA

compared with 2L-BF and 2L-WL (see section “Effect of Data
Length and Noise on HHSA” in the Supplementary Material).
The results showed that the HHSA, 2L-BF and 2L-WL were
affected by noise levels. However, HHSA was less affected by the
data length than 2L-BPF and 2L-WL (Supplementary Figure 8).

The Variations of Coupling Strength Can Be Revealed
With HHSA
To confirm the occurance of phase-amplitude coupling, a spectral
peak for the amplitude envelope’s frequency needs to be seen
and to match with the frequency of phase (Cohen, 2008;
Tort et al., 2010).

The coupling strength, as known as modulation depth in an
amplitude-modulated signal, has been suggested to be closely
associated with the power spectral density of the amplitude
envelope (Tort et al., 2010). Therefore, we tested the sensitivity
of the HHSA to track different levels of coupling strength by
observing the amplitude envelope’s changes. Here, we mainly
used simulated data with theta (4 Hz)-gamma (32 Hz) PAC as
examples. Three cases of the synthesized data were generated
by controlling the coupling strength with different values of 0,
0.4, and 1 (red line, Figure 4, top). A value of 0 indicates no
coupling between theta and gamma, and a value of 1 means
that the coupling between them is maximal. The HHSA of these
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FIGURE 4 | Illustration of HHSA for synthesized data with different coupling strengths, which is the ratio of the modulation depth of xfA(t) in which x(t) = xfP (t)* xfA(t).
A value of 0 indicates no modulation depth and 1 for full modulation. (Top) 3 levels differing in coupling strength (top trace) along with their corresponding HHS
(bottom panels). The modulated signals with fast oscillations are plotted underneath with the amplitude envelope increasing from the top. The synthesized signals all
consisted of summation of a 4 Hz sinusoidal signal and an amplitude-modulated signal with 32 Hz modulated by 4 Hz.

data was displayed with the increasing amplitude of amplitude
modulation at 4 Hz corresponding for coupling strength of 0, 0.4,
and 1 (Figure 4, bottom).

In general, the results from HHSA clearly showed the
amplitude spectrum of the 4 Hz slow oscillation, 32 Hz fast
oscillation and its amplitude modulation at 4 Hz in a two-
dimensional frequency spectrum. Moreover, the different levels
of coupling strength, as indicated by the amplitude spectrum of
AM, are also clearly shown as a result of this analysis.

The Time-Variance of Coupling Strength
In the previous Section (“The Variations of Coupling Strength
Can Be Revealed With HHSA”), the HHSA enabled tracking of
the coupling strength on a set of three simulated PAC signals
with constant coupling strength over time (Figure 4). In this
section, we assess the ability of HHSA to track the time-varying
coupling strength where this changed across time in the signal
(Figure 5). We used 4s of noiseless synthesized data in coupling
strength changed from a value of 0 to 1 over time (Figure 5A).
The synthesized data we used contained a 4 Hz phase frequency
(fP) and a 32 Hz amplitude frequency (fA).

Figure 5B shows an power increase at 32 Hz along with
its amplitude modualtion in the outcome of the HHT. In
addition, the power of the phase frequency stays unchanged in
the HHT spectrum. Next, how the coupling strength changes
at specific time points, namely, 0.5, 1.5s, 2.5s, and 3.5s in the
HHS is illustrated in Figure 5C. The amplitude spectra of the
phase frequency is constant with time whereas the amplitude

spectra of the fAM frequency are clearly increased at each point,
corresponding to the increase of coupling strength.

Multiple Patterns of Cross-Frequency Interaction
Here, we further evaluate the capability of HHSA in analysis of
multiple CFC patterns. We generated two more synthesized data
sets made from the sums of three oscillators (i.e., x(t) = xfP(t)
+ xfA1(t) + xfA2(t)). These data allowed two aspects of testing:
analysis of (1) low-gamma and high-gamma bands modulated by
the same AM frequencies and (2) low-gamma band modulated
by the different AM frequencies. In both data, the frequency of
phase was set to 4 Hz. Specifically, one noiseless simulated signal
was generated with fP = fAM1 = fAM2 = 4 Hz, fA1 = 32 Hz,
fA2 = 64 Hz, and the other noiseless simulated signal was
generated with fP = fAM1 = 4 Hz, fAM2 = 8 Hz, fA1 = fA2 = 32 Hz.
The data length was set to 6s with a sampling rate of 1000 Hz in
both cases. The results of HHT and HHSA for both are illustrated
in Figure 6.

In Figure 6A, refering to the first case, the HHT shows
an amplitude increase at low-gamma (32 Hz) and high-
gamma (64 Hz) frequencies with their corresponding amplitude
modulation while retaining constant amplitude of theta across
time. The HHSA shows simultaneously the amplitude spectra
of theta, low gamma, and high gamma at 0.5 Hz on the y–
axis. In addition, clear peaks of fAM1 and fAM2 can be seen
at 4 Hz on the y-axis. An extended signal with four peaks of
couplings (i.e., 3 Hz phase modulated 16 Hz, 32 Hz, 64 Hz and
128 Hz) was also analyzed with HHSA and traditional PAC.
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FIGURE 5 | Illustration of the outcome of HHSA on synthesized data with time-varying coupling strength. (A) A synthesized signal X(t) with time-varying coupling
strength from 0 to 1. The modulated signal (xfA(t)) shows a power increase corresponding to the coupling strength. (B) The time-resolved power spectrum obtained
by Hilbert-Huang transform. (C) The amplitude spectrum of envelope at 4 time points extracted using Holo-Hilbert spectra to track the 4 various levels of coupling
strength across time.

The results showed that with a sinusoidal PAC signal, multiple
peaks of couplings could be captured well by both approaches
(Supplementary Figure 9). However, when the signal was non-
sinusoidal as illustrated in Supplementary Figure 5, it was
difficult to distinguish the spurious PACs from the true PAC. In
contrast, HHSA can reflect the non-linear characteristics without
the presentation of spurious amplitude modulation.

Figure 6B shows another case with only one low-gamma
frequency (32 Hz) modulated by the different AM frequencies
at 4 Hz and 8 Hz. The HHT shows an amplitude increase at
32 Hz and its corresponding physical meaning while retaining
a constant amplitude of theta. The HHS shows the amplitude
spectra of theta, low gamma at 0.5 Hz on y–axis. In addition, the
distinct peaks of fAM1 and fAM2 can also be seen at 4 and 8 Hz on
the y-axis.

In addition to the above PAC patterns, we also discuss the
results of analysis for different AM frequencies (fAM) with a
constant fast oscillation (fA) in the Supplementary Material.
Crucially, the HHSA could track the AM frequencies (fAM) in
these signals (Supplementary Figure 10).

Steady-State Visual Evoked Potentials
Results
Instead of the synthesized data, here real-time EEG data showing
the SSVEP phenomenon was analyzed to validate the capability
of the HHSA as shown in the simulation data.

Experiment 1
Physiological Evidence of Phase Amplitude Coupling Is
SSVEPs Shown by HHSA
There was a total of seven different conditions in the SSVEP
experiments. However, for illustrative purposes, we mainly
report four conditions which actually reflect different patterns
of amplitude spectra. These are the no flicker condition, 3 Hz
sinusoidal flicker (3S), AM flicker with a 16 Hz carrier and
its 3 Hz amplitude modulation (3AM), and PAC flicker with
3 Hz phase frequency and 16 Hz amplitude frequency (3PAC).
The rest of the conditions (i.e., 5S, 5AM, 5PAC) are shown in
Supplementary Figure 11, in which 5S, 5AM and 5PAC also
showed amplitude modulation responses similar to 3S, 3AM, and
3PAC, respectively.

The HHT as well as PAC and HHSA were first applied
to analyze four different sets of data from 10 participants.
The results of this analysis are shown in Figure 7. In the no
flicker condition, no relevant pattern of amplitude responses
was observed from the amplitude density of HHT spectrum,
nor in the HHS and PAC (Figure 7A). In the 3 Hz sinusoidal
flicker condition (Figure 7B), the amplitude increase at the
stimulus frequency (i.e., 3 Hz) and also at higher frequencies
(8-16 Hz) were clearly present in the HHT spectrum. In
addition, the SSVEP amplitude at higher frequency is obviously
seen to be modulated by the frequency of stimulus (3 Hz).
Furthermore, the HHS and comodulogram of the SSVEP elicited
by 3 Hz sinusoidal flicker are also clearly shown. In the HHS,
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FIGURE 6 | Illustration of HHSA on a synthesized data with the sum of three oscillators (i.e., x(t) = xfP(t) + xfA1(t) + xfA2(t)). (A) The synthesized PAC data, in which
theta phase was coupled with low and high gamma along with their corresponding HHT and HHS (lower panels). The HHT shows time-frequency characteristics of
the simulated data, in which the amplitude increases at fP, fA1, and fA2 could be seen over time, corresponding to the original properties of the signals (amplitude
modulation). The HHS shows the distinct peaks at fP, fA1, fA2, fAM1, fAM2. (B) The synthesized PAC data, in which low gamma was modulated by 4 Hz (fAM1) and
8 Hz (fAM2) along with their corresponding HHT and HHS (lower panels).

it is possible to clearly observe the three clear components
of the amplitude increase. These are the SSVEP amplitudes at
stimulus frequency (3 Hz) and the alpha/beta band (at 0.5 in
the y-axis) along with 3 Hz amplitude modulation (at 3 Hz
in the y-axis). Additionally, the coupling increase between the
3 Hz phase and the alpha/beta amplitude can be seen in
the comodulogram.

In the case of amplitude-modulated flicker, characterized by
16 Hz carrier and 3 Hz amplitude modulation, the SSVEP
responses become more complex than those of 3 Hz sinusoidal
flicker (Figure 7C). From the HHT spectrum, we can observe
and estimate the SSVEP spectrum with an amplitude increase at
3 Hz and at 16 Hz. In contrast, the HHS shows peak amplitudes
increased at the 16 Hz carrier frequency (at 16 Hz in the x-axis
and 0.5 Hz in the y-axis) and its 3 Hz AM (at 16 Hz for the
x-axis and 3 Hz in the y-axis), as well as an amplitude increase
in delta frequency (3 Hz in the x-axis and 0.5 Hz in the y-axis).
The comodulogram reveals the coupling increase at 3 Hz phase
and 16 Hz amplitude modulation, as well as a second coupling
increase between 3 Hz phase and 32 Hz amplitude.

Furthermore, if we generate the SSVEP response to phase-
amplitude coupling flicker, which has 16 Hz amplitude nested
in 3 Hz phase (Figure 7D) we still observe a similar pattern of
SSVEP spectra in HHT as was seen in the case of amplitude-
modulated flicker. Crucially, the HHS clearly shows the peak
amplitude increase at the 16 Hz carrier frequency (at 16 Hz in
the x-axis and 0.5 Hz in the y-axis) and its 3 Hz AM (16 Hz in
the x-axis and 3 Hz in the y-axis), which exactly correspond to
the amplitude-modulated oscillation (or modulated oscillation)
of the PAC flicker. The peak amplitude at 3 Hz is also found to
increase in the same pattern as the 3 Hz phase oscillation. Further,
the delta phase (3 Hz) coupled with beta amplitude (16 Hz) can
be clearly seen in the traditional surrogate PAC. In addition, the
further analysis using 2L-BPF and 2L-WL also showed results
quite similar to those of HHSA (Supplementary Figure 12).
However, since PAC, 2L-BPF, and 2L-WL may be affected by
the non-sinusoidal signals, these methods were limited in the
confirmation of these couplings. In contrast, these couplings were
confirmed by the HHSA. Thus, these findings building upon the
HHSA method provide clear physiological evidence in support of
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FIGURE 7 | The SSVEP response induced by stimulus with no flicker (baseline), sinusoidal flicker, AM flicker and phase-amplitude coupling flicker, averaged for each
condition across subjects for Oz channel recordings. (A) The SSVEP response induced by stimulus with no flicker, which was presented at a mean luminance. The
amplitude density of the HHT spectrum is unclear. The HHS and comodulogram of the baseline condition (i.e., no flicker condition) also show an unclear pattern of
amplitude response. (B) The SSVEP response induced by stimulus with 3 Hz sinusoidal flicker. The HHT shows an amplitude increase at the stimulus frequency (i.e.
3Hz) and the higher frequencies (alpha/beta band). In addition, the SSVEP amplitude at higher frequency are modulated by the frequency of the stimulus (3 Hz). In
the HHS, the SSVEP amplitudes of stimulus frequency (3 Hz) and 3 Hz AM residing in alpha/beta oscillations are observed. The coupling increase between 3 Hz
phase and alpha/beta amplitude can be seen in the comodulogram. (C) The SSVEP response induced by amplitude-modulated flicker, which was a 16 Hz carrier
and its 3 Hz amplitude modulation. The SSVEP spectrum observed with HHT shows the amplitude increase at 3 Hz and at 16 Hz with its amplitude modulation. The
HHS shows the peak amplitudes increase at the 16 Hz carrier frequency (x-axis) and its 3 Hz AM (y-axis), which correspond to the stimulus frequency. In addition,
the peak amplitude at 3 Hz slow oscillation as a non-linear component is also observed. The comodulogram reveals the coupling increase at 3 Hz phase and 16 Hz
amplitude. A second coupling increase between 3 Hz phase and 32 Hz amplitude is also observed. (D) The SSVEP response induced by phase-amplitude coupling
flicker, which was a 16 Hz amplitude frequency nested in a 3 Hz phase. SSVEP spectra observed in HHT show a similar pattern as in panel (C). The HHS shows the
peak amplitude increase at 16 Hz carrier (x-axis) and its 3 Hz AM (y-axis), which correspond to the amplitude-modulated oscillation (or modulated oscillation). In
addition, the peak amplitude at 3 Hz oscillation also increases corresponding to the 3 Hz phase oscillation. The 3 Hz phase coupled with 16 Hz can be clearly seen
in the comodulogram. A color bar displays z-scores of MI values above the 95th percentile of shuffled distributions (z-score > 1.64).

the existence of phase amplitude coupling in the human brain (or
at least in the human visual system).

To confirm the amplitude increase in each flicker condition,
we contrasted them to the baseline condition (no flicker
condition) using Cluster-based non-parametric permutations
(CBnPP). As shown in Figure 8, the CBnPP showed significant
increases at 3 Hz amplitude modulation in the alpha/beta band
(frequency of amplitude) in three flicker conditions compared to
the no flicker condition (n = 10, p < 0.05, df = 9, two-tailed
CBnPP). Notably, such a pattern of responses was also defined
as the prerequisite for reliably measuring the PAC pattern.

Experiment 2: The SSVEPs Elicited by Time-Varying PAC
Flicker
In the previous Section (“The Time-Variance of Coupling
Strength”), the validation of HHSA was first performed on

simulation data. In this section, actual brain data was used to
further assess the ability of HHSA to track the time-varying
coupling strength (Figure 9). A 3.3 s window (from 0 to 3.3 s
relative to the stimulus onset) of SSVEPs for two conditions (50
trials per condition), no flicker (Figure 9A, top) and time-varying
PAC flicker (Figure 9B, top), were included for further analysis.
The time-varying PAC flicker contained a constant amplitude
of 3 Hz phase-frequency and a time-varying coupling increase
of 16 Hz amplitude-frequency. The SSVEPs induced by these
conditions were analyzed with HHT and time-varying HHSA.
As displayed in Figure 9, the amplitude spectra showed an
unclear pattern in the no flicker condition for both methods. In
contrast, the amplitudes of the 16 Hz carrier SSVEPs induced
by the time-varying PAC flicker condition were better observed
by Hilbert-Huang transform and HHSA. In addition, the results
using HHSA also showed an amplitude increase over time
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FIGURE 8 | The HHS contrast (top panels) and PAC contrast (bottom panels) of SSVEPs between testing conditions (3 Hz sinusoidal flicker, AM flicker and PAC
flicker) and baseline condition (no flicker). The red area within the black contour indicates areas with significant t-values (p < 0.05, df = 9, two-tailed, CBnPP test) of
the contrast. The amplitudes of 3 Hz amplitude modulation residing in alpha/beta (8-20 Hz) rhythm are significantly increased.

at 3 Hz amplitude modulation, in which the amplitude was
small at the stimulus onset. In sum, the time-varying HHSA
successfully captured the dynamic SSVEP response in the actual
brain data.

DISCUSSION

Summary of Findings
Oscillatory neural dynamics have been commonly considered
to be categorized into multiple frequency bands that interact
with each other. The current study used Holo-Hilbert Spectral
Analysis, which is an EMD-based method, as an alternative to
Fourier approaches to explore the cross-frequency interaction
of the complex signals. As described in the introduction, the
prerequisites to build the real coupling contain at least two
features: (1) the frequency of amplitude modulation oscillates
at the frequency of phase and (2) the power increase of
amplitude modulation. By using HHSA, we found a full
dimensional frequency representation of these features from the
signals. Although HHSA does not directly measure the pairwise
coupling it does provide energy and contents of all possible
modulating and modulated frequencies of data resulting from
non-stationary and non-linear processes naturally. Thus, HHSA
can be beneficial to investigate the cross-frequency interactions
of neural oscillations. In this study, we first used simulated

data to evaluate the performance of HHSA. The results showed
that HHS was able to resolve three main issues: (1) isolation
of non-sinusoidal rhythms without harmonic interference, (2)
present a high temporal resolution of cross-frequency interaction,
and (3) reveal the possible and the concurrent patterns of the
cross-frequency interaction. Subsequently, we applied the HHSA
to electrophysiological data (SSVEPs). We found an interesting
bidirectional coupling phenomenon from the SSVEP responses.
These were the SSVEPs in response to 3 Hz sinusoidal flicker
driving the alpha/beta oscillation and the SSVEPs induced by
AM flicker driving delta oscillation. These findings building
upon the HHSA method provide clear physiological evidence
in support of the existence of cross frequency interactions.
Together, using HHSA, a full spectral representation for the
non-linear and non-stationary data can be obtained, with all
the possible modes of cross-frequency interaction, both additive
and multiplicative, opening a new horizon of analysis of neural
processing in the brain.

Holo-Hilbert Spectral Analysis Shows
Meaningful Characteristics of
Non-sinusoidal Waveforms Without
Harmonics
Since the non-sinusoidal waveform shape, which has the
sharpness of peaks or troughs, is an important consideration in
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FIGURE 9 | The SSVEPs elicited by no flicker and time-varying PAC flicker, averaged for each condition across subjects. (A) The HHT and time-varying HHS analysis
of SSVEPs induced by no flicker. The amplitude spectra are unclear for both methods. (B) The HHT and time-varying HHS analysis of SSVEPs induced by
time-varying PAC flicker. The amplitudes increased at 3 Hz AM modulating 16 Hz carrier corresponding to the stimulation waveform.

phase-amplitude coupling, there is a need for novel methods
allowing intuitive exploration of the non-linear and non-
sinusoidal features of oscillations as they become prominent in
neuroscientific theory (for a review, see Cole and Voytek, 2017).
To assess the influence of waveform shape on the results of
HHS analysis, the current study employed generated simulated
signals with different degrees of non-linearity. Although analysis
here was only for some simulations, we expect these results to
generalize. The occurrence of spurious PAC means that the power
of amplitude modulation residing in fast oscillations is increased
and oscillated at the frequency of phase in the absence of fast
oscillation. In contrast, HHSA can overcome this limitation,
with no PAC pattern introduced when using HHS analysis. The
main reason accounting for the spurious values resulting from
use of the FFT or PAC method is the linear filter of these
methods (Belluscio et al., 2012; Cole et al., 2017) whereas an
adaptive filter (i.e., EMD) is used in HHSA, which retains the
nature of signal. Finally, the HHSA provides a description of

the all amplitude-modulations present within the time-series.
Complex patterns of AM might themselves contain multiple
frequency components that can be arduous to describe within
linear spectra.

The HHSA Is Able to Capture Possible
Cases of Cross-Frequency Interaction
As mentioned by Huang et al. (2016), the HHSA takes advantage
of the cross-frequency interactions, in which all possible intra-
mode and inter-mode frequency interaction of the complex signal
can be presented in a multiple dimensional representation. In
the Section “Multiple Patterns of Cross-Frequency Interaction”
we generated synthesized data with multiple modes of cross-
frequency interaction. The results clearly show that the
characteristics of these components can be presented at once in
the spectrum. This result demonstrates the capability of HHSA
in quantifying multiple modes of cross-frequency interaction.
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Therefore, it fits the needs of brain investigation to find the
signatures of cross-frequency interactions.

For illustrative purposes in the actual brain signal, we also
elaborated the detail steps for measuring PAC of the SSVEP
induced by 3 Hz sinusoidal flicker using EMD instead of
traditional filters (Supplementary Figure 13). We suggest that
these steps can be used to obtain the meaningful PAC after
detecting the pattern of cross-frequency interaction in HHS
results. To evaluate the efficacy of the proposed method, we
present clear results from a single participant with a SSVEP with
3 Hz sinusoidal flicker. The HHS results showed a power increase
in alpha and beta bands along with their amplitude modulation.
Interestingly, the frequency of these amplitude modulations was
found to oscillate at 3 Hz (i.e., the stimulus frequency).

In addition, the HHSA was further applied to the SSVEP
responses of all participants under four conditions separately:
no flicker; 3 Hz sinusoidal flicker; AM flicker; and PAC flicker.
The HHS results, averaged across participants, showed that while
the SSVEP response to the no-flicker condition had an absence
of cross-frequency interaction, the remaining three flickers show
patterns of PAC. However, the meaningfulness of these results
was different in directional coupling.

In 3 Hz sinusoidal flicker, the amplitude modulation of
alpha/beta bands were modulated by the stimulus frequency.
That is, this amplitude modulation increased in power and
oscillated at stimulus frequency, in this case at 3 Hz. Despite
many investigations, SSVEPs at low stimulus frequency (<5 Hz)
remain poorly understood. One reason is that the neural
activities at these stimulus frequencies have a low signal-to-
noise ratio and unexplainable/complicated harmonics (Vialatte
et al., 2009). Additionally, the waveform shapes of SSVEPs
at low frequencies seem more complex than those of high
frequencies which are nearly sinusoidal. In agreement with
previous reports, the waveform shape of SSVEPs induced by
3-Hz sinusoidal flicker in the current study was a PAC-like
waveform, which was technically observed by HHSA (Figure 7).
Since entrainment has been reported as a prominent property
of cortical sensory-evoked activity, this PAC-like waveform
might be explained by the sensory entrainment theory, in
which the slow oscillation drives the fast oscillation (Hyafil
et al., 2015). However, the entrainment related to PAC is
still under debate since previous studies also suggested that
this phenomenon may not reflect actual neural entrainment
but might instead be driven by a habituation event-related
potential (Mancini et al., 2018; Novembre and Iannetti, 2018).
In an attempt to resolve this issue, we analyzed the HHSA of
the first VEPs of the no flicker and 3 Hz sinusoidal flicker
conditions (from 0 to 300 ms related to the stimulus onset).
The results showed distinctive HHSA patterns between transient
VEPs and SSVEPs (Supplementary Figure 14), indicating the
entrainment related to PAC might not be a consequence of
VEPs in the 3 Hz sinusoidal flicker condition. That is, the
HHS of SSVEPs showed amplitude increases at the 3 Hz
amplitude modulation residing in alpha/beta frequencies and the
3 Hz fundamental frequency (i.e., carrier frequency) indicating
the coupling patterns. In contrast, the HHS of VEPs showed
an unclear amplitude modulation. In addition, the VEPs in

both conditions showed a similar amplitude increase in the
time domain and the time-frequency domain, indicating the
same pattern of neural oscillations at stimulus onset. While
the theoretical work focuses on the coupling of individual
neurons, the current results add one more valuable piece
of evidence indicating sensory entrainment related to PAC
reflected by EEG in the human visual cortex, in which the
fast oscillation was modulated by the slow “external sensory”
oscillation. From the current results we speculate that the sensory
entrainment approach may pave the way to pinpoint more
specific CFC patterns by manipulating the waveform shape of the
visual stimuli.

Besides the neural entrainment related to PAC of slow external
sensory oscillations, we found the opposite directional coupling
for the fast external sensory oscillation, which is AM flicker
characterized by a 16 Hz carrier and its amplitude modulated
at 3 Hz, drives the slow internal oscillation (3 Hz). A similar
direction, with the fast frequency driving the low frequency,
has been also reported Jiang et al. (2015). They claimed that
the envelope of gamma oscillations could drive the alpha
phase. Together, the current findings imply that directional
coupling can be considered as a potential index to understand
the mechanism of neural oscillations and the results obtained
demonstrate that the steady-state PAC can be revealed and
detected by HHSA.

The Importance of Time-Varying HHS
Analysis
The neural oscillations of the brain are complex and are
usually recorded with a high-temporal resolution, typically
in the millisecond range. As the pattern of phase-amplitude
coupling may vary frequently over time or only be present at
specific intervals, temporal resolution is an important factor
to characterize the dynamics of coupling. The current PAC
methods enable us to apply time-windowed analysis to show
temporal dynamics in the coupling. However, since both the
phase and amplitude measures are obtained by convolutional
integrals using a bandpass filter, the temporal resolution may
be low or require a reasonable time window to capture the
precise onset of task. In contrast, the results in the current
study suggest that HHS analysis can be used to successfully
track the time-varying coupling strength at each time point of
the signal. While traditional methods calculating cross-frequency
interactions have poor temporal resolutions, recent studies have
attempted to fill this gap by calculating the short-time PAC or
instantaneous PAC (Samiee and Baillet, 2017; Martinez-cancino
et al., 2018). Even though the performance of these methods
presents an advantage in quantifying the high-temporal PAC
value in sinusoidal simulations, whether this is the case for
non-sinusoidal simulations or waveform shapes remains to be
proven. Since the linear filter used in these methods may lead
to spurious or uncertain PAC, it is still necessary to carry out
further tests for such signals. As an alternative method to extract
the characteristics of instantaneous cross-frequency interaction,
HHS analysis is expected to allow tracking of dynamic cross-
frequency interactions over time.
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CONCLUSION

The present study demonstrates the capability of HHSA in
extracting possible cases of cross-frequency interaction with a
high-temporal resolution. Moreover, this novel method is also
suitable for exploration of the non-linear and non-sinusoidal
features of oscillations which have become prominent in
neuroscientific theory. Interestingly, in collected physiological
data, the bidirectional coupling between delta and alpha/beta
band can be seen using HHSA, confirming physiological
evidence of cross-frequency interactions in the human brain.
These findings not only validate the efficacy of the HHSA
in revealing the natural characteristics of signals, but also
shed more light on further applications in analysis of human
brain electrophysiological data with the aim of understanding
the functional role of neuronal oscillations in different
cognitive functions.
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