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Abstract: Meta-learning, or “learning to learn”, refers to techniques that infer an inductive bias
from data corresponding to multiple related tasks with the goal of improving the sample efficiency
for new, previously unobserved, tasks. A key performance measure for meta-learning is the meta-
generalization gap, that is, the difference between the average loss measured on the meta-training
data and on a new, randomly selected task. This paper presents novel information-theoretic upper
bounds on the meta-generalization gap. Two broad classes of meta-learning algorithms are considered
that use either separate within-task training and test sets, like model agnostic meta-learning (MAML),
or joint within-task training and test sets, like reptile. Extending the existing work for conventional
learning, an upper bound on the meta-generalization gap is derived for the former class that depends
on the mutual information (MI) between the output of the meta-learning algorithm and its input
meta-training data. For the latter, the derived bound includes an additional MI between the output
of the per-task learning procedure and corresponding data set to capture within-task uncertainty.
Tighter bounds are then developed for the two classes via novel individual task MI (ITMI) bounds.
Applications of the derived bounds are finally discussed, including a broad class of noisy iterative
algorithms for meta-learning.

Keywords: meta-learning; generalization bounds; mutual information; noisy iterative algorithms

1. Introduction

As formalized by the “no free lunch theorem”, any effective learning procedure must
be based on prior assumptions on the task of interest [1]. These include the selection
of a model class and of the hyperparameters of a learning algorithm, such as weight
initialization and learning rate. In conventional single-task learning, these assumptions,
collectively known as inductive bias, are fixed a priori relying on domain knowledge or
validation [1–3]. Fixing a suitable inductive bias can significantly reduce the sample
complexity of the learning process, and is thus crucial to any learning procedure. The goal
of meta-learning is to automatically infer the inductive bias, thereby learning to learn from
past experiences via the observation of a number of related tasks, so as to speed up learning
a new and unseen task [4–8].

In this work, we consider the meta-learning problem of inferring the hyperparameters
of a learning algorithm. The learning algorithm (henceforth, called base-learning algorithm
or base-learner) is defined as a stochastic mapping PW|Zm ,u from the input training set
Zm = (Z1, . . . , Zm) of m samples to a model parameter W ∈ W for a fixed hyperparameter
vector u. The meta-learning algorithm (or meta-learner) infers the hyperparameter vector
u, which defines the inductive bias, by observing a finite number of related tasks.

For example, consider the well-studied algorithm of biased regularization for super-
vised learning [9,10]. Let us denote each data point Z = (X, Y) as a tuple of input features
X ∈ Rd and label Y ∈ R. The loss function l : W ×Z → R is given as the quadratic
measure l(w, z) = (〈w, x〉 − y)2 that quantifies the loss accrued by the inferred model
parameter w on a data sample z. Corresponding to each per-task data set Zm, the biased
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regularization algorithm PW|Zm ,u is a Kronecker delta function centered at the minimizer of
the following optimization problem

1
m

m

∑
j=1

l(w, Zj) +
λ

2
||w− u||2, (1)

which corresponds to an empirical risk minimization problem with a biased regularizer.
Here, λ > 0 is a regularization constant that weighs the deviation of the model parameter w
from a bias vector u. The bias vector u can be then thought of as a common “mean” among
related tasks. In the context of meta-learning, the objective then is to infer the bias vector
u by observing data sets from a number of similar related tasks. Different meta-learning
algorithms have been developed for this problem [11,12].

In the meta-learning problem under study, we follow the standard setting of Bax-
ter [13] and assume that the learning tasks belong to a task environment, which is defined
by a probability distribution PT on the space of learning tasks T , and per-task data dis-
tributions {PZ|T=τ}τ∈T . The data set Zm for a task τ is then generated i.i.d. according to
the distribution PZ|T=τ . The meta-learner observes the performance of the base-learner
on the meta-training data from a finite number of meta-training tasks, which are sampled
independently from the task environment, and infers the hyperparameter U such that it
can learn a new task, drawn from the same task environment, from fewer data samples.

The quality of the inferred hyperparameter U is measured by the meta-generalization
loss, Lg(U), which is the average loss incurred on the data set Zm ∼ PZm |T of a new, previ-
ously unseen task T sampled from the task distribution PT . The notation will be formally
introduced in Section 2.2. While the goal of meta-learning is to infer a hyperparameter
U that minimizes the meta-generalization loss Lg(U), this is not computable, since the
underlying task and data distributions are unknown. Instead, the meta-learner can eval-
uate an empirical estimate of the loss, Lt(U|Zm

1:N), using the meta-training set Zm
1:N of

data from N tasks, which is referred to as meta-training loss. The difference between the
meta-generalization loss and the meta-training loss is the meta-generalization gap,

∆L(U|Zm
1:N) = Lg(U)−Lt(U|Zm

1:N), (2)

and measures how well the inferred hyperparameter U generalizes to a new, previously
unseen task. In particular, if the meta-generalization gap is small, on average or with high
probability, then the performance of the meta-learner on the meta-training set can be taken
as a reliable estimate of the meta-generalization loss.

In this paper, we study information-theoretic upper bounds on the average meta-
generalization gap EPZm

1:N
PU|Zm

1:N
[∆L(U|Zm

1:N)], where the average is with respect to the meta-

training set Zm
1:N and the meta-learner defined by the stochastic kernel PU|Zm

1:N
. Specifically,

we extend the recent line of work initiated by Russo and Zhou [14], and Xu and Ragin-
sky [15], which obtain mutual information (MI)-based bounds on the average generalization
gap for conventional learning, to meta-learning. To the best of our knowledge, this is the
first work that studies information-theoretic bounds for meta-learning.

The bounds on average meta-generalization gap, studied in this work, are distinct
from the other well-known bounds on meta-generalization gap in literature. Broadly
speaking, existing bounds on the meta-generalization gap can be grouped into two—high
probability, probably approximately correct (PAC) bounds, and high probability PAC-
Bayesian bounds. These upper bounds take the general form, EPU|Zm

1:N
[∆L(U|Zm

1:N)] ≤ ε,

that hold with probability at least 1− δ, for δ ∈ (0, 1), over the meta-training set Zm
1:N .

In contrast, our work focuses on bounding EPZm
1:N

EPU|Zm
1:N

[∆L(U|Zm
1:N)] on average also

over the meta-training set. Notable PAC bounds on meta-generalization gap include
the bound of Baxter [13] obtained using the framework of Vapnik–Chervonenkis (VC)
dimensions; and of Maurer [16], which employs the algorithmic stability [17,18] properties.
In contrast, the PAC-Bayesian bounds also incorporate prior beliefs on the base-learner
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and the meta-learner posteriors via an auxiliary data-independent prior distribution QW|U
and a hyper-prior distribution QU , respectively. Most notably, PAC-Bayesian bounds
include that of Pentina and Lambert [19], the tighter bound of Amit and Meir [20], and
most recently, the bounds of Rothfuss et al. [21]. While the high-probability bounds are
agnostic to task and data distributions, our information-theoretic bounds depend explicitly
on the task and per-task data distributions, on the loss function, and on the meta-training
algorithm, in accordance to prior work on information-theoretic generalization bounds.

Another general property inherited from the information-theoretic approach adopted
in this paper is that the bounds on the average meta-generalization gap under study are
designed to hold for arbitrary base-learners and meta-learners. As such, they generally
do not result in tighter bounds as compared to non-information theoretic generalization
guarantees obtained for specific meta-learning problems, such as the ridge regression
problem with meta-learned bias vector mentioned above [22]. In contrast, the general
purpose of the bounds in this paper is to provide insights into the number of tasks, and the
number of samples per task required to ensure that the training-based metrics are a good
approximation to their population counterparts.

1.1. Main Contributions

The derivation of bounds on average meta-generalization gap differs from con-
ventional learning owing to two levels of uncertainties—environment-level uncertainty
and within-task uncertainty. While within-task uncertainty results from observing a fi-
nite number m of data samples per task as in conventional learning, environment-level
uncertainty results from observing a finite number N of tasks from the task-environment.
The relative importance of these two forms of uncertainty depend on the use made by the
meta-learner of the meta-training data. In fact, depending on how the meta-training data
are used by the meta-learner, we identify two main classes of meta-training algorithms—
with separate within-task training and test sets, and joint within-task training and test
sets. The former class includes the state-of-the-art meta-learning algorithms, such as model
agnostic meta-learning (MAML) [23], that splits the training data corresponding to each
task into training and test sets, with the latter reserved for within-task validation. In
contrast, the second class of algorithms, such as reptile [24], use the entire per-task data
both for training and testing. Our main contributions are as follows.

• In Theorem 1, we show that, for the case with separate within-task training and
test sets, the average meta-generalization gap contains only the contribution of
environment-level uncertainty. This is captured by a ratio of the mutual information
(MI) between the output of the meta-learner U and the meta-training set Zm

1:N , and the
number of tasks N, as∣∣∣∣EPZm

1:N
PU|Zm

1:N

[
∆Lsep(U|Zm

1:N)
]∣∣∣∣ ≤

√
2σ2

N
I(U; Zm

1:N), (3)

where σ2 is the sub-Gaussianity variance factor of the meta-loss function. This is a
direct parallel of the MI-based bounds for single-task learning [25].

• In Theorem 3, we then show that, for the case with joint within-task training and test
sets, the bound on the average meta-generalization gap also contains a contribution
due to the within-task uncertainty via the ratio of the MI between the output of
the base-learner and within-task training data and the per-task data sample size m.
Specifically, we have the following bound

∣∣∣∣EPZm
1:N

PU|Zm
1:N

[∆Ljoint(U|Zm
1:N)]

∣∣∣∣ ≤
√

2σ2

N
I(U; Zm

1:N) +EPT

[√
2δ2

T
m

I(W; Zm|T = τ)

]
, (4)

where δ2
T is the sub-Gaussianity variance factor of the loss function l(w, z) for task T.
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• In Theorems 2 and 4, we extend the individual sample MI (ISMI) bound of [26] to
obtain novel individual task MI (ITMI)-based bounds on the meta-generalization gap
for both separate and within-task training and test sets as∣∣∣∣EPZm

1:N
PU|Zm

1:N

[
∆Lsep(U|Zm

1:N)
]∣∣∣∣ ≤ 1

N

N

∑
i=1

√
2σ2 I(U; Zm

i ), (5)

and∣∣∣∣EPZm
1:N

PU|Zm
1:N

[∆Ljoint(U|Zm
1:N)]

∣∣∣∣ ≤ 1
N

N

∑
i=1

√
2σ2 I(U; Zm

i ) +EPT

[
1
m

m

∑
j=1

√
2δ2

T I(W; Zj|T = τ)

]
. (6)

These bounds can be seen to be tighter than the MI-based bounds in (3) and (4),
respectively.

• Finally, we study the applications of the derived bounds to two meta-learning problems.
The first is a parameter estimation setup that involves one-shot meta-learning and base-
learning procedures, for which a closed form expression for meta-generalization gap
can be derived. The second application covers a broad range of noisy iterative meta-
learning algorithms and is inspired by the work of Pensia et al. [27] for conventional
learning.

1.2. Related Work

For conventional learning, there exists a rich literature on diverse frameworks for
deriving upper bounds on the generalization gap, i.e., on the difference between general-
ization and training losses. Classical bounds from statistical learning theory quantify the
generalization gap in terms of measures of complexity of the model class, most notably VC
dimension [28] and Radmacher complexity [29]. This approach obtains high-probability,
probably approximate correct (PAC) bounds on the generalization gap with respect to the
training set. An alternate line of high-probability bounding techniques relies on the notion
of algorithmic stability, which measures the sensitivity of the output of a learning algo-
rithm to the replacement of individual samples from the training data set. The pioneering
work [30] has been extended to include various notions of algorithmic stability [31–33]. As
a notable example, a distributional notion of stability in terms of differential privacy, which
quantifies the sensitvity of the distribution of algorithm’s output to data set, has been
studied in [34,35]. The high-probability PAC–Bayesian bounds rely on change of measure
arguments and uses the Kullback–Leibler (KL) divergence between the algorithm and a
data-independent prior to quantifying the algorithmic sensitivity [36–38].

Following the initial work of Russo and Zou [14], information-theoretic bounds on
the average generalization gap for conventional learning have been widely investigated
in recent years. Xu and Raginsky [25] showed that the MI between the output of the
learning algorithm and its training data set yields an upper bound in expectation on
the generalization gap. The bound has been shown to offer computable generalization
gaurentees for noisy iterative algorithms, including stochastic gradient Langevin dynamics
(SGLD) in [27]. Various refinements of the MI-based bound have since been analyzed to
obtain tighter bounds. In particular, the bounds in [39] employ chaining mutual information
techniques to tighten the bounds in [25], while the bound in [26] depends on the MI between
the output of the algorithm and an individual data sample. The MI between the output
of the algorithm and a random subset of the data set appears in the bounds introduced
in [40]. The total variation information between the joint distribution of the training data
and algorithmic output and the product of marginals was shown in [41] to yield a bound
on the generalization gap for any bounded loss function. Subsequent works in [42–44]
consider other information-theoretic measures, such as maximum leakage and lautum
information. Most recently, a conditional mutual information (CMI)-based approach has
been proposed in [45] to develop generalization bounds.
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1.3. Notation

Throughout this paper, upper case letters, e.g., X, denote random variables and lower
case letters, e.g., x, their realizations. We use P(·) to denote the set of all probability
distributions on the argument set or vector space. For a discrete or continuous random
variable X taking values in a set or vector space X , PX ∈ P(X ) denotes its probability
distribution, with PX(x) being the probability mass or density value at x ∈ X . We denote
as PXn the n-fold product distribution induced by PX. The conditional distribution of a
random variable X given random variable Y is similarly defined as PX|Y, with PX|Y(x|y)
representing the probability mass or density at X = x conditioned on the event Y = y.
We use || · ||2 to denote the Euclidean norm of the argument vector, and Id to denote a
d-dimensional identity matrix. We define the Kronecker delta δ(x− x0) = 1 if x = x0 and
δ(x− x0) = 0 otherwise.

2. Problem Definition

In this section, we define the problem of interest by introducing the key definitions of
generalization gap for conventional, or single-task, learning and for meta-learning.

2.1. Generalization Gap for Single-Task Learning

Consider first the conventional problem of learning a task τ ∈ T .
As illustrated in Figure 1, each task τ ∈ T is associated with an underlying unknown

data distribution, PZ|T=τ ∈ P(Z), defined in a subset or vector space Z . Henceforth, we
use PZ|τ to denote PZ|T=τ for notational convenience.

Figure 1. Directed graph representing the variables involved in the definition of generalization
gap (11) for single-task learning.

The training procedure, which is referred to as the base-learner, has access to a training
data set Zm = (Z1, Z2, . . . , Zm) ∼ PZm |τ of m independent and identically distributed (i.i.d.)
samples drawn from distribution PZ|τ . The base-learner uses this data set to choose a
model, or hypothesis, W from the model classW by using a randomized training procedure
defined by a conditional distribution PW|Zm ,u as

W ∼ PW|Zm ,u. (7)

The conditional distribution PW|Zm ,u defines a stochastic mapping from the training
data set Zm to the model class W . The training procedure (7) is parameterized by a
vector u ∈ U of hyperparameters, which defines the inductive bias. As an example, the
base-learner PW|Zm ,u may follow stochastic gradient descent (SGD) updates with hyperpa-
rameters u, including the learning rate and the initialization point.
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The performance of a parameter vector w ∈ W on a data sample z ∈ Z is measured
by a loss function l :W ×Z → R+. The generalization loss for a model parameter vector
w ∈ W is the average

Lg(w|τ) = EPZ|τ [l(w, Z)], (8)

over a test example Z independently drawn from the data distribution PZ|τ . The subscript
g is used to distinguish the generalization loss from the training loss defined below. The
generalization loss cannot be computed by the learner, given that the data distribution PZ|τ
is unknown. Instead, the learner can evaluate the training loss on the data set Zm, which is
defined as the empirical average

Lt(w|Zm) =
1
m

m

∑
i=1

l(w, Zi). (9)

The subscript t specifies that the loss is the empirical training loss.
The difference between generalization loss (8) and training loss (9) is known as gener-

alization gap,

∆L(w|Zm, τ) = Lg(w|τ)− Lt(w|Zm), (10)

and is a key metric that quantifies the level of uncertainty (This type of uncertainty is
known as epistemic.) at the learner regarding the data distribution PZ|τ . The average
generalization gap for the data distribution PZ|τ and base-learner PW|Zm ,u is defined as

EPZm ,W|τ,u
[∆L(W|Zm, τ)], (11)

where the expectation is taken with respect to the joint distribution PZm ,W|τ,u = PZm |τ PW|Zm ,u.
A summary of the variables involved in the Definition of the generalization gap (11) can be
found in Figure 1.

Intuitively, if the generalization gap is small, on average or with high probability, then
the base-learner can take the performance (9) on the training set Zm as a reliable measure
of the generalization loss (8) of the trained model W. Furthermore, data-dependent bounds
on the generalization gap can be used as regularization terms to avoid overfitting, yielding
generalized Bayesian inference problems [46,47].

2.2. Generalization Gap for Meta-Learning

As discussed, in single-task learning, the inductive bias u, defining the hyperparam-
eters of the training procedure, must be selected a priori, i.e., without having access to
task-specific data. The inductive bias determines the training data set size m needed to
ensure a small generalization loss (8), since, generally speaking, richer models require
more data to be trained [1]. The sample complexity can be generally reduced if one selects
a suitable inductive bias based on prior information. Such prior information is typically
obtained from domain knowledge on the problem under study. In contrast, meta-learning
aims at automatically inferring an effective inductive bias based on data from related tasks.

To elaborate, we follow the setting of [13], in which a meta-learner observes data from
a number of tasks, known as meta-training tasks, from the same task environment. A
task environment is defined by a task distribution PT ∈ P(T ), supported on the space
T of tasks, and by a per-task data distribution PZ|τ for each task τ ∈ T . Using the meta-
training data drawn from a randomly selected subset of tasks, the meta-learner infers
a hyperparameter vector u ∈ U defining the inductive bias. This is done with the goal
of ensuring that, using hyperparameter u, the base-learner PW|Zm ,u can efficiently learn
on a new task, referred to as meta-test task, drawn independently from the same task
distribution PT .
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To elaborate, the meta-training data consist of N data sets Zm
1:N = (Zm

1 , . . . , Zm
N). Each

ith data set is generated independently by first drawing a task Ti ∼ PT from the task
environment and then a task-specific training data set Zm

i ∼ PZm |Ti
. The meta-learner uses

the meta-training data set Zm
1:N to infer a hyperparameter vector u ∈ U . To this end, we

consider a randomized meta-learner

U ∼ PU|Zm
1:N

, (12)

where PU|Zm
1:N

is a stochastic mapping from the meta-training set Zm
1:N to the space U of

hyperparameters. We distinguish two different formulations of meta-learning that are
often considered in the literature. In the first, the per-task data set Zm is split into training,
or support, and test, or query subsets [23,48]; while, in the second, the entire data set Zm is
used for both within-task training and testing [13,19,20].

2.2.1. Separate Within-Task Training and Test Sets

As seen in Figure 2, in this first approach to meta-learning, each meta-training sub data
set Zm

i is split into a training set and a test set as Zm
i = (Zmtr

i , Zmte
i ), where Zmtr

i contains
mtr i.i.d. training examples and Zmte

i contains mte i.i.d. test examples, with m = mtr + mte.
The within-task base-learner PW|Zmtr

i ,u ∈ P(W) maps the per-task training subset Zmtr
i to

random model parameter Wi ∼ PW|Zmtr
i ,u for a given hyperparameter U = u. The test

subset is used to evaluate the empirical training loss of a model w for task Ti as

Lt(w|Zmte
i ) =

1
mte

mte

∑
j=1

l(w, Zmte
i,j ), (13)

where Zmte
i,j denote the jth example of the test subset Zmte

i . Furthermore, the overall empiri-
cal meta-training loss for a hyperparameter u is computed by summing up all meta-training
tasks as

Lsep
t (u|Zm

1:N) =
1
N

N

∑
i=1

Lsep
t (u|Zm

i ), (14)

where

Lsep
t (u|Zm) = EPW|Zmtr ,u

[Lt(W|Zmte)] (15)

is the average per-task training loss over the base-learner.

Figure 2. Directed graph representing the variables involved in the definition of meta-generalization
gap (18) for separate within-task training and testing sets.
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We emphasize that the meta-training loss (14) can be computed by the meta-learner
and used as a criterion to select the meta-learning procedure (12), since it is obtained from
the meta-training data Zm

1:N . We also note that the rationale of splitting training and test sets
is that the average training loss Lsep

t (u|Zm
i ) is an unbiased estimate of the corresponding

average generalization loss EP
W|Zmtr

i ,u
[Lg(W|Ti)].

The true goal of the meta-learner is to minimize the meta-generalization loss,

Lsep
g (u) = EPT,Zmtr

EPW|Zmtr ,u

[
Lg(W|T)

]
, (16)

where PT,Zmtr = PT PZmtr |T and Lg(W|T) are as defined in (8). Unlike the meta-training
loss (14), the meta-generalization loss is evaluated on a new, meta-test task T and on the
corresponding training data Zmtr . We distinguish the meta-generalization loss and meta-
training loss by the subscripts g and t, respectively in (16) and (14). The difference between
the meta-generalization loss (16) and the meta-training loss (14), known as the meta-
generalization gap, is defined as

∆Lsep(u|Zm
1:N) = L

sep
g (u)−Lsep

t (u|Zm
1:N). (17)

The quantity of interest to us is the average meta-generalization gap, defined as

EPZm
1:N ,U

[
∆Lsep(U|Zm

1:N)
]
, (18)

where the expectation is with respect to the joint distribution PZm
1:N ,U = PZm

1:N
PU|Zm

1:N
, of the

meta-training set Zm
1:N and of the hyperparameter U. Note that PZm

1:N
is the marginal of the

joint distribution ∏N
i=1 PT=Ti PZM |T=Ti

.
Intuitively, if the meta-generalization gap is small, on average or with high probability,

the meta learner can take the performance (14) on the meta-training data as a reliable
measure of the accuracy of the inferred hyperparameter vector in terms of the meta-
generalization loss (16). Furthermore, data-dependant bounds on the meta-generalization
gap can be used as regularization terms to avoid meta-overfitting. Meta-overfitting occurs
when the meta-trained hyperparameter yields a small meta-training loss but a large meta-
test loss, due to an excessive dependence on the meta-training set [13].

2.2.2. Joint Within-Task Training and Test Sets

In the second formulation of meta-learning, as illustrated in Figure 3, the entire data
set Zm

i is used for within-task training and testing. Accordingly, the meta-learner computes
the meta-training loss

Ljoint
t (u|Zm

1:N) =
1
N

N

∑
i=1

Ljoint
t (u|Zm

i ), (19)

where

Ljoint
t (u|Zm) = EPW|Zm ,u

[Lt(W|Zm)] (20)

is the average per-task training loss. Note here that in evaluating the meta-training loss
in (19), the data set Zm

i is used to infer model parameters W and to evaluate the per-
task training loss. The expectation in (20) is taken over the output of the base-learner
W given the hyperparameter vector u. As discussed, the meta-generalization loss for
hyperparameter u ∈ U is computed by randomly selecting a novel task T ∼ PT as

Ljoint
g (u) = EPT,ZmEPW|Zm ,u

[
Lg(W|T)

]
, (21)
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where PT,Zm = PT PZm |T and Lg(W|T) is as defined in (8). In a manner similar to (17),
the meta-generalization gap for a task distribution PT , data distribution PZm |T , meta-learning
algorithm PU|Zm

1:N
, and base-learner PW|Zm ,U is defined as

∆Ljoint(u|Zm
1:N) = L

joint
g (u)−Ljoint

t (u|Zm
1:N). (22)

Figure 3. Directed graph representing the variables involved in the definition of meta-generalization
gap (22) for joint within-task training and testing sets.

The average meta-generalization gap is then given as EPZm
1:N ,U

[∆Ljoint(U|Zm
1:N)], where

the expectation is taken over all meta-training sets and over the output of the meta-learner.

3. Information-Theoretic Generalization Bounds for Single-Task Learning

In this section, we review two information-theoretic bounds on the generalization
gap (11) for conventional learning derived in [25,26]. The material covered in this section
provides the necessary background for the analysis of the meta-generalization gap to be
studied in the rest of the paper. Throughout this section, we fix a task τ ∈ T . Since the
generalization and meta-generalization gaps measure the deviation of empirical-mean
random variables representing training and meta-training losses from reference values,
we will make use of tools and definitions from large-deviation theory (see, e.g., [49]). We
discuss the key essential definitions below.

3.1. Preliminaries

To start, the cumulant generating function (CGF) of a random variable X ∼ PX ∈
P(X ) is defined as ΛX(λ) = logEPX [e

λ(X−EPX [X])]. If it is well-defined, the CGF ΛX(λ) is
convex and it satisfies the equalities ΛX(0) = Λ′X(0) = 0. A random variable X with finite
mean, i.e., with EPX [X] < ∞, is said to σ2-sub-Gaussian if its CGF is bounded as

ΛX(λ) ≤
λ2σ2

2
, for all λ ∈ R. (23)

As a special case, if X is bounded in the interval [a, b], i.e., if the inequality 0 < a ≤
X ≤ b < ∞ holds for some constants a and b, then X is (b− a)2/4-sub-Gaussian.

3.2. Mutual Information (MI) Bound

We first present the mutual information (MI)-based upper bound obtained in [25]. Key
to this result is the following Assumption.
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Assumption 1. The loss function l(w, Z) is δ2
τ-sub-Gaussian under Z ∼ PZ|τ for all model

parameters w ∈ W .

In particular, if the loss function is bounded, i.e., if the inequalities−∞ < a ≤ l(w, z) ≤
b < ∞ hold for all for w ∈ W and z ∈ Z , Assumption 1 is satisfied with δ2

τ = (b− a)2/4.
The main result is as follows.

Lemma 1 ([25]). Under Assumption 1, the following bound on the generalization gap holds for
any base-learner W ∼ PW|Zm ,u

|EPZm ,W|τ,u
[∆L(W|Zm, τ)]| ≤

√
2σ2

m
I(W; Zm). (24)

The proof of Lemma 1 is based on a decoupling estimate Lemma, which is reported
for completeness in Lemma A1. We also note that the result in Lemma 1 can be extended
to account for loss function l(w, Z) with bounded CGF [14].

The bound (24) on the generalization gap is in terms of the mutual information
I(W; Zm), which quantifies the overall dependence between the base-learner output W
and the input training data set Zm. The mutual information in (24) is hence a measure of
the sensitivity of the base-learner output to the data set. Using the terminology in [25], if
I(W; Zm) ≤ ε, the base-learner PW|Zm ,u is said to be (ε, PZ|τ)-MI stable, in which case the

bound in (24) evaluates to
√

2δ2
τε/m. The relationship between generalization and stability

of a training algorithm is well-established [1], and the result (24) amounts to a formulation
of this link in information-theoretic terms.

The traditional notion of algorithmic stability measures how much the base-learner
output changes with the replacement of an individual training sample [30,50]. In the next
section, we review the bound in [26] that translates this per-sample stability concept within
an information-theoretic framework.

3.3. Individual Sample MI (ISMI) Bound

The MI-based bound in Lemma 1 has the disadvantage of being vacuous, i.e., I(W; Zm) =
∞, for deterministic base-learning algorithms PW|Zm ,u defined on continuous parameter
spaceW . An individual sample MI (ISMI)-based bound that address this shortcoming
was introduced in [26]. The ISMI bound borrows the standard algorithmic stability notion
of sensitivity of the base-learner output to the replacement of any individual training
sample [17,18]. Accordingly, the resulting bound is in terms of the MI between the trained
parameter W and each data point Zi of the training data set Zm. The bound, summarized
in Lemma 2, applies under the following assumption.

Assumption 2. The loss function l(w, z) satisfies either of the following two conditions:

(a) Assumption 1, or
(b) l(W, Z) is a δ2

τ-sub-Gaussian random variable when (W, Z) ∼ PW|u,τ PZ|τ , where PW|u,τ ∈
P(W) is the marginal of the joint distribution PW|Zm ,uPZm |τ .

We note that, in general, Assumption 1 does not imply Assumption 2(b) (see ([40],
Appendix C)), and vice versa (see [26]). There are, however, loss functions l(w, z) and
relevant distributions for which both the assumptions hold, including the case of loss
functions l(·, ·) which takes values in a bounded interval [a, b].

Lemma 2 ([26]). Under Assumption 2, the following bound on the average generalization gap
holds for any base-learner PW|Zm ,u

|EPZm ,W|τ,u
[∆L(W|Zm, τ)]| ≤ 1

m

m

∑
i=1

√
2σ2 I(W; Zi). (25)
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For a loss function satisfying Assumption 1, the ISMI bound (25) is tighter than (24), i.e.,

1
m

m

∑
i=1

√
2δ2

τ I(W; Zi) ≤

√
2δ2

τ

m
I(W; Zm). (26)

The inequality in (26) follows from the chain rule of mutual information and Jensen’s
inequality [26].

4. Information-Theoretic Generalization Bounds for Meta-Learning

In this section, we first derive novel MI-based bounds on the meta-generalization gap
with separate within-task training and test sets, as introduced in Section 4.1, and then we
consider joint within-task training and test sets, as described in Section 4.2.

4.1. Bounds on Meta-Generalization Gap with Separate Within-Task Training and Test Sets

In this section, we present two novel MI-based bounds on the meta-generalization
gap (18) for the setup with separate within-task training and testing sets. The first is an
MI-based bound, which is akin to Lemma 1, and the second is an individual task MI (ITMI)
bound, which resembles Lemma 2 for conventional learning.

4.1.1. MI-Based Bound

In order to derive the MI-based bound, we make the following assumption on
Lsep

t (u|Zm) in (15). Throughout, we use PZm to denote the marginal of the joint distri-
bution PT,Zm = PT PZm |T .

Assumption 3. For all u ∈ U , the average per-task training loss Lsep
t (u|Zm) is σ2-sub-Gaussian

under Zm ∼ PZm .

Distinct from the assumptions in Section 3 on loss function l(w, z), we note that As-
sumption 3 is on the average per-task training loss Lsep

t (u|Zm). This is because the loss
function l(w, z) satisfying Assumption 1 do not in general guarantee the sub-Gaussianity
of Lsep

t (u|Zm) with respect to Zm ∼ PZm . However, if the loss function is bounded, As-
sumption 3 can be easily verified to hold, as given in the following lemma.

Lemma 3. If the loss function l(·, ·) is [a, b]−bounded, then Lsep
t (·|Zm) is also [a, b] bounded for

all Zm ∈ Zm. Consequently, Lsep
t (u|Zm) is (b− a)2/4-sub-Gaussian under Zm ∼ PZm for all

u ∈ U .

Under Assumption 3, the following theorem presents an upper bound on the meta-
generalization gap (18).

Theorem 1. Let Assumption 3 hold for the base-learner PW|Zmtr ,u. Then, for any meta learner
PU|Zm

1:N
such that the inequality I(U; Zm

1:N) < ∞ holds, we have the following bound on the average
meta-generalization gap∣∣∣∣EPZm

1:N ,U

[
∆Lsep(U|Zm

1:N)
]∣∣∣∣ ≤

√
2σ2

N
I(U; Zm

1:N). (27)

Proof. See Appendix B. �

The technical lemmas required for the proof of Theorem 1 and the theorems that
follow are included in Appendix A.

In order to prove Theorem 1, one needs to overcome an additional challenge as
compared to the derivation of bounds for learning reviewed in Section 3. In fact, the meta-
generalization gap is caused by two distinct sources of uncertainty: (a) environment-level
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uncertainty due to a finite number N of observed tasks, and (b) within-task uncertainty
resulting from the finite number m of per-task data samples. Our proof approach involves
applying the single-task MI-based bound in Lemma 1 to bound the effect of both sources
of uncertainties.

Towards this, we start by introducing the average training loss for the randomly
selected meta-test task as

Lsep
g,t (u) = EPT,Zm [L

sep
t (u|Zm)]. (28)

The subscript g, t denotes that the loss is generalization (g) with expectation over PT,Zm

at the environment level, and training (t) at the task level with Lsep
t (u|Zm). Note that this

differs from the meta-test loss Lsep
g (u) in (16) in that the per-task loss is evaluated in (28)

on the training set. With this definition, the meta-generalization gap can be decomposed as

EPZm
1:N ,U

[
∆Lsep(U|Zm

1:N)
]

= EPZm
1:N ,U

[
(Lsep

g (U)−Lsep
g,t (U)) + (Lsep

g,t (U)−Lsep
t (U|Zm

1:N))

]
.

(29)

In (29), the second differenceLsep
g,t (U)−Lsep

t (U|Zm
1:N) corresponds to the environment-

level uncertainty and arises from the observation of a finite number N of tasks. In fact, as
N increases, the meta-training loss Lsep

t (u|Zm
1:N) almost surely tends to Lsep

g,t (u) by the law

of large numbers. However, the average EPZm
1:N ,U

[
Lsep

g,t (U)− Lsep
t (U|Zm

1:N)
]

is not equal

to zero in general for finite values of N. The within-task generalization gap is instead
measured by the difference Lsep

g (u)− Lsep
g,t (u). In the setup under study with separate

within-task training and test sets, this term equals zero, since, as we discussed, the average
empirical loss Lsep

t (u|Zm
i ) is an unbiased estimate of the corresponding average test loss

EP
W|Zmtr

i ,u
[Lg(W|Ti)] (cf. (28)). This is no longer true for joint within-task training and test

sets, as we discuss in Section 4.2.
The decomposition approach adopted here follows the main steps of the bound-

ing techniques introduced in ([16], Equation (6)). In contrast, the PAC-Bayesian bounds
in [20,21] rely on a different decomposition of the meta-generalization gap. The environ-
ment and within-task generalization gaps are then separately bounded in high probability,
and are combined via union bound to obtain the required PAC-Bayesian bounds.

The bound (27) relates the meta-generalization gap to the information-theoretic stabil-
ity of the meta-training procedure. As first introduced here, this stability is measured by
the MI I(U; Zm

1:N) between the hyperparameter U and the meta-training data set Zm
1:N , in a

manner similar to the MI-based bounds in Lemma 1 for conventional learning. Importantly,
as we will discuss in Section 4.2, this direct parallel between learning and meta-learning no
longer applies with joint within-task training and test data sets.

4.1.2. ITMI Bound

We now present the ITMI bound, which holds under the following assumption.

Assumption 4. Either of the following assumptions on the average per-task training loss, Lsep
t

(u|Zm) holds:

(a) Lsep
t (u|Zm) satisfies Assumption 3, or

(b) Lsep
t (U|Zm) is σ2-sub-Gaussian under (U, Zm) ∼ PU PZm , where PU is the marginal of the

joint distribution PZm
1:N ,U and PZm is the marginal of the joint distribution PT,Zm .

Assumption 4 can be seen to be implied by the sufficient conditions in Lemma 3.
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Theorem 2. Let Assumption 4 hold for the base-learner PW|Zmtr ,U . Then, for any meta learner
PU|Zm

1:N
, the following bound on the meta-generalization gap (18) holds

∣∣∣∣EPZm
1:N ,U

[
∆Lsep(U|Zm

1:N)
]∣∣∣∣ ≤ 1

N

N

∑
i=1

√
2σ2 I(U; Zm

i ). (30)

where the MI I(U; Zm
i ) is computed with respect to the joint distribution PZm

i ,U obtained by
marginalizing the probability distribution PZm

1:N ,U .

Proof. See Appendix B. �

As can be seen from (30), the ITMI bound on the meta-generalization gap is in terms
of the MI I(U; Zm

i ) between the output U of the meta learner and each per-task data set
Zm

i . This, in turn, quantifies the sensitivity of the meta learner output to the replacement of
a single per-task data set. Moreover, under Assumption 3, the ITMI bound (30) yields a
tighter bound than the MI-based bound (27). This can be seen from the following sequence
of relations √

1
N

I(U; Zm
1:N) =

√√√√ 1
N

N

∑
i=1

I(U; Zm
i |Zm

(i−1)) (31a)

(a)
≥

√√√√ 1
N

N

∑
i=1

I(U; Zm
i ) (31b)

(b)
≥ 1

N

N

∑
i=1

√
I(U; Zm

i ), (31c)

where Zm
(i−1) = (Zm

1 , . . . , Zm
i−1); (a) follows, since Zm

i is independent of Zm
(i−1); and (b)

follows from Jensen’s inequality.

4.2. Bounds on Generalization Gap with Joint Within-Task Training and Test Sets

We now derive MI and ITMI-based bounds on the meta-generalization gap in (22) for
the case with joint within-task training and test sets. As we will see, the key difference with
respect to the case with separate within-task training and test sets is that the uncertainty
due to finite number of per-task samples, measured by the second term in the decomposi-
tion (29), contributes in a non-negligible way to the meta-generalization gap. Since there
is no split into separate within-task training and test sets, the average training loss with
respect to the learning algorithm is given by Ljoint

t (u|Zm) in (20).

4.2.1. MI-Based Bound

In order to derive the MI-based bound, we make the following assumptions.

Assumption 5. We consider the following assumptions.

(a) For each task τ ∈ T , the loss function l(w, Z) satisifies Assumption 1, and
(b) The average per-task training loss Ljoint

t (u|Zm) in (20) is σ2-sub-Gaussian for all u ∈ U
when Zm ∼ PZm .

An easily verifiable sufficient condition for the above assumption to hold is the
boundedness of loss function l(w, z), which follows in a manner similar to Lemma 3.
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Theorem 3. Let Assumption 5 hold for a base-learner W ∼ PW|Zm ,U . Then, for any meta learner
PU|Zm

1:N
, we have the following bound on the meta-generalization gap (22)

∣∣∣∣EPZm
1:N ,U

[∆Ljoint(U|Zm
1:N)]

∣∣∣∣ ≤
√

2σ2

N
I(U; Zm

1:N) +EPT

[√
2δ2

T
m

I(W; Zm|T = τ)

]
. (32)

where the MI I(W; Zm|T = τ) is evaluated with respect to the distribution PZm ,W|T=τ obtained by
marginalizing the joint distribution PW|Zm ,U PZm

1:N ,U PZm |T=τ .

Proof. See Appendix C. �

With joint within-task training and test sets, the bound (32) on the meta-generalization
gap contains the contributions of two mutual informations. The first, I(U; Zm

1:N), quantifies
the sensitivity of the meta learner output U to the meta-training data set Zm

1:N . This term also
appeared in the bound (27) with separate within-task training and test sets. Decomposing
the meta-generalization gap in a manner analogous to (29), it corresponds to a bound on
the average of the second difference. The second contribution, I(W; Zm|T = τ), quantifies
the sensitivity of the output of the base-learner PW|Zm ,U to the data set Zm of the meta-test
task T, when the hyperparameter is randomly selected by the meta-learner PU|Zm

1:N
using

the meta-training set Zm
1:N . This second term is in line with the single-task generalization

gap bounds (24), and it bounds the corresponding first difference in the decomposition (29).
We finally note that the dependence of the bound in (32) on the number of tasks N

and per-task samples m is of the order 1/
√

N + 1/
√

m. Meta-generalization bounds with
similar dependence have been derived in [20] using PAC-Bayesian arguments. The bounds
on excess risk for representation learning also follow a similar order of dependence on N
and m (c.f [51], [Thm. 2]).

4.2.2. ITMI Bound on (22)

For deriving the ITMI bound on the meta-generalization gap (22), we assume the fol-
lowing.

Assumption 6. Either of the following assumptions hold:

(a) Assumption 5 holds, or
(b) For each task τ ∈ T , the loss function l(W, Z) is δ2

τ-sub-Gaussian when (W, Z) ∼ PW|τ PZ|τ ,
where PW|τ is the marginal of the joint distribution PW|Zm ,U PZm

1:N ,U PZm |τ . The average

per-task training loss Ljoint
t (U|Zm) is σ2-sub-Gaussian when (U, Zm) ∼ PU PZm .

As in Section 4.1.2, Assumption 6 can be seen to be implied by the sufficient conditions
in Lemma 3.

Theorem 4. Under Assumption 6, for any meta learner PU|Zm
1:N

, the following bound holds on the
average meta-generalization gap∣∣∣∣EPZm

1:N ,U
[∆Ljoint(U|Zm

1:N)]

∣∣∣∣ ≤ 1
N

N

∑
i=1

√
2σ2 I(U; Zm

i ) +EPT

[
1
m

m

∑
j=1

√
2δ2

T I(W; Zj|T = τ)

]
, (33)

where the MI I(U; Zm
i ) is evaluated with respect to PZm

i ,U obtained by marginalizing PZm
1:N ,U , and

the MI I(W; Zj|T = τ) is with respect to PZj ,W|T=τ obtained by marginalizing PZm ,W|T=τ .

Proof. See Appendix C. �

Similar to the bound in (32), the bounds on meta-generalization gap in (33) are in
terms of two types of mutual information, the first describing the sensitivity of the meta-
learner and the second the sensitivity of the base-learner. Specifically, the MI I(U; Zm

i )
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quantifies the sensitivity of the output of the meta learner to per-task data set Zm
i , and the

MI I(W; Zj|T = τ) measures the sensitivity of the output of the base-learner, PW|Zm ,U to
each data sample Zi within the training set Zm of the meta-test task T. Moreover, it can be
shown, in a manner similar to (31c), that, under Assumption 5, the ITMI bound in (33) is
tighter than the MI bound in (32).

4.3. Discussion on Bounds

The bounds on the average meta-generalization gap obtained in this section generalize
the bounds for conventional single-task learning in Section 3. To see this, consider the task
distribution PT = δ(T − τ) to be centered at some task τ ∈ T . Recall that in conventional
learning, the hyperparameter u is fixed a priori. As such, the mutual information I(U; Zm

1:N)
(for MI-based bounds) and I(U; Zm

i ) (for ITMI-based bounds) vanishes. For the separate
within-task training and test sets, this implies that the average generalization gap is zero,
which follows since the per-task test loss Lt(W|Zmte

i ) is an unbiased estimate of per-task
generalization loss Lg(W|Ti). The MI- and ITMI-based bounds for the joint within-task
training and test sets then reduce to

∣∣∣∣EPZm ,W|τ,u
[∆L(W|Zm, τ)]

∣∣∣∣ ≤
√

2δ2
τ

m
I(W; Zm), (34)

and ∣∣∣∣EPZm ,W|τ,u
[∆L(W|Zm, τ)]

∣∣∣∣ ≤ 1
m

m

∑
j=1

√
2δ2

τ I(W; Zj) (35)

respectively, where I(W; Zm) is evaluated with respect to the joint distribution PW,Zm |τ,u
and I(W; Zj) with respect to PW,Zj |τ,u.

The MI- and ITMI-based bounds derived in this section point that a smaller correla-
tion between hyperparameters and meta-training set and thus small mutual information
I(U; Zm

1:N) improves the meta-generalization gap, although this seems deleterious to perfor-
mance. To clarify this contradiction, we would like to emphasize that these bounds quantify
the difference between meta-generalization loss and empirical training loss, which in turn
depends on the sensitivity of the meta-learner and base-learner to their input meta-training
set and per-task training set, respectively. The mutual information terms in our bounds
capture these sensitivities. Consequently, our bounds suggest that a meta-learner that is
highly correlated to the input meta-training set (i.e., when I(U; Zm

1:N) is large) does not
generalize well (i.e., yields large meta-generalization gap). This property aligns with a
previous information-theoretic analysis for generalization in conventional learning [25].

To the best of our knowledge, the MI- and ITMI-based bounds studied here are the
first bounds on the average meta-generalization gap. As discussed in the introduction,
these bounds are distinct from the high-probability PAC and PAC-Bayesian bounds on the
meta-generalization gap studied previously on meta-learning. Consequently, the bounds
studied in this work are not directly comparable with the existing high-probability bounds.

Finally, we note that similarity between tasks is crucial to meta-learning. If the per-task
data distributions PZ|T=τ in the task environment are ‘closer’ to each other, a meta-learner
can efficiently learn the shared characteristics of tasks, and can generalize well to new
tasks from the task environment. In our setting, the statistical properties of the task
environment (PT , {PZ|T=τ}τ∈T ) dictate this similarity. Although our MI- and ITMI-based
bounds do not explicitly capture this, we note that the properties of task environment
are implicitly accounted for by the mutual information terms I(U; Zm

1:N) and I(U; Zm
i ),

where the meta-training data set Zm
1:N is generated from the task environment, and also

by the sub-Gaussianity considerations in Assumptions 3–6. From preliminary studies,
we believe that information-theoretic bounds that explicitly capture the impact of task
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similarity require a different performance metric than the average meta-generalization gap
considered here, and is left to future work.

5. Applications

In this section, we consider two applications of the information-theoretic bounds
proposed in Section 4.1. The first, simpler, example concerns a parameter estimation
problem for which an optimized meta-learner can be obtained in closed form. In contrast,
the second application covers a broad class of iterative meta-training schemes.

5.1. Parameter Estimation

To illustrate the bounds on the meta-generalization gap derived in Section 4.1, we
first consider the problem of prediction for a Bernoulli process with a ‘soft’ predictor
that uses only a few samples from the process, as well as meta-training data. Towards
this, we consider an arbitrary discrete finite set of tasks T = {τ1, . . . , τM}. The data
distribution PZ|T=τk

for each task τk ∈ T , k ∈ {1, . . . , M}, is given as Bernoulli(µτk )
with mean parameter µτk . The task distribution PT is then defined over the finite set of
mean parameters {µτ1 , . . . , µτM}. The base-learner uses training data, distributed i.i.d.
from Bernoulli(µτk ) to determine the parameter Wk, which is used as a predictor of new
observation Z ∼ Bernoulli(µτk ) at test time. The loss function is defined as l(w, z) =
(w− z)2, measuring the quadratic error between prediction and realized test input z. Note
that the optimal (Bayes) predictor, computable in the ideal case of known distribution
PZ|T=τk

, is given as W = µτk . We now distinguish the two cases with separate and joint
within-task training and test sets.

5.1.1. Separate Within-Task Training and Test Sets

The base-learner PW|Zmtr
k ,u for task τk ∈ T , deterministically selects the prediction

Wk = αDmtr
k + (1− α)u, (36)

where Dmtr
k = 1

mtr
∑mtr

j=1 Zmtr
k,j is an empirical average over the training set Zmtr

k,j , u is a
hyperparameter defining a bias that can be meta-trained, and α ∈ [0, 1) is a fixed scalar.
Here, Zmtr

k,j denote the jth data sample in the training set Zmtr
k of task τk. The bias term

in (36) may help approximate the ideal Bayes predictor in the presence of limited data Zmtr
k .

The objective of the meta-learner is to infer the hyperparameter u. For a given meta-
training data set Zm

1:N , comprising of data sets from N tasks sampled according to PT , the
meta-learner can compute the empirical meta-training loss as

Lsep
t (u|Zm

1:N) =
1
N

N

∑
k=1

1
mte

mte

∑
j=1

(Wk − Zmte
k,j )2, (37)

where Zmte
k,j denote the jth example in the test set of Zm

k , the kth sub-data set of Zm
1:N . The

meta-learner PU|Zm
1:N

then deterministically selects the minimizing hyperparameter u of the
meta-training empirical loss function in (37). This optimization yields

U =
(1− α)−1

N

( N

∑
k=1

Dmte
k − αDmtr

k

)
, (38)

where Dmte
k = ∑mte

j=1 Zmte
k,j /mte. Note that Dmte

k and Dmtr
k are binomial random variables

and by (38), U takes finitely many discrete values and is bounded as −α(1− α)−1 ≤ U ≤
(1− α)−1. The meta-test loss can be explicitly computed as

Lsep
g (u) = (1− α)2(u2 − 2uEPT [µT ]

)
+EPT

[
α2(µ2

T +
µT µ̄T
mtr

)
+ µT − 2αµ2

T

]
, (39)
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where µ̄T = 1− µT , and the average meta-generalization gap evaluates to

EPZm
1:N ,U

[∆Lsep(U|Zm
1:N)] =

2(1 + α2)

N
VarT +

2EPT [µT µ̄T ]

N

(
1

mte
+

α2

mtr

)
, (40)

where VarT =
(
EPT [µ

2
T ]− (EPT [µT ])

2) is the variance of µT .
To compute the MI- and ITMI-based bounds on the meta-generalization gap (40), it is

easy to verify that the average training loss Lsep
t (·|Zm) is bounded, i.e., 0 ≤ Lsep

t (·|Zm) ≤
(1 + α)2 for all u ∈ U and Zm ∈ Zm. Thus, Assumption 3 for the MI bound and also
Assumption 4 for the ITMI bound hold with σ2 = (1 + α)4/4. For the MI bound, we note
that, since the meta-learner is deterministic, we have that I(U; Zm

1:N) = H(U). The ITMI
bound (30) is given as

|EPZm
1:N ,U

[∆Lsep(U|Zm
1:N)]| ≤

1
N

N

∑
i=1

√
(1 + α)4

2
I(U; Zm

i ). (41)

The information-theoretic measures in (41) can be evaluated numerically as discussed
in Appendix D.

For a numerical illustration, Figure 4 plots the average of the meta-generalization
loss (39) and average meta-training loss (A16) along with the ITMI bound in (41) and MI
bound in (27). It can be seen that the ITMI bound is tighter than MI bound and correctly
predicts the decrease in the meta-generalization gap as the number N of tasks increases.

Figure 4. Comparison of the MI bound in (27) and ITMI-based bound obtained in (41) with the
meta-generalization gap for meta-learning with separate within-task training and test sets. The task
environment is defined by M = 12 tasks . Other parameters are set as α = 0.15, mtr = 15, mte = 5.

5.1.2. Joint Within-Task Training and Testing sets

We now consider the case with joint within-task training and test sets. The base-
learner PW|Zm

k ,U for task τk ∈ T still uses the predictor (36), but now the empirical average
over the training set is given as Dk = ∑m

j=1 Zm
k,j/m. As before, the meta-learner PU|Zm

1:N
deterministically selects the minimizing hyperparameter u of the meta-training empirical
loss function, LZm

1:N
(u) = (1/N)∑N

k=1(1/m)∑m
j=1(Wi − Zm

k,j)
2, yielding U = 1

N ∑N
k=1 Dk. As

discussed in Appendix D, the meta-generalization loss for this example can also be explicitly
computed and the meta-generalization gap bounds in (32) and (33) can be evaluated
numerically. Figure 5 plots the average meta-generalization loss and average meta-training
loss along with the MI bound in (32) and ITMI bound in (A18), as a function of per-task
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data samples m. The ITMI bound is seen to better reflect the decrease of the meta-training
loss as a function of m.

Figure 5. Comparison of the MI- and ITMI-based bound obtained in (A18) with the meta-
generalization gap for meta-learning with joint within-task training and test sets, as a function
of the per-task data samples m for N = 5 and α = 0.55. The task environment is defined by
M = 9 tasks.

5.2. Noisy Iterative Meta-Learning Algorithms

Most meta-learning algorithms are built around a nested loop structure, with the
inner loop applying the base-learner on the meta-training set and the outer loop updating
the hyperparameters U. In this section, we focus on a vast class of such meta-learning
algorithms in which the inner loop applies training procedures dependent on the current
iterate of the hyperparameter, while the outer loop updates the hyperparameter using a
stochastic rule. This class includes stochastic variants of state-of-the-art algorithms such as
MAML [23] and reptile [24]. We apply the derived information-theoretic bounds to study
the meta-generalization performance of the mentioned class of meta-training iterative
stochastic rules by focusing on the case of separate within-task training and test sets here,
which is assumed e.g., by MAML. The analysis for the setup with joint within-task training
and test sets can also be carried out at the cost of a more cumbersome notation.

To start, let U j ∈ Rd denote the hyperparameter vector at outer iteration j, with
U0 ∈ Rd being an arbitrary initialization. For example, in MAML, the hyperparameter U
defines the initial iterate used by each base-learner in the inner loop to update the model
parameter Wτ corresponding to task τ. At each iteration j ≥ 1, we randomly select a
mini-batch of task indices Kj ⊆ [1, . . . , N] from the meta-training data Zm

1:N , obtaining
the corresponding data set Zm

Kj
= (Zmtr

Kj
, Zmte

Kj
) ⊆ Zm

1:N , where Zmtr
Kj

= {Zmtr
k }k∈Kj

and

Zmte
Kj

= {Zmte
k }k∈Kj

are the separate training and test sets for the selected tasks. For each

index k ∈ Kj, in the inner loop, the base-learner selects the model parameter W j
k as a

possibly stochastic function

W j
k = g(U j−1, Zmtr

k ). (42)

For instance, in MAML, the function g(U j−1, Zmtr
k ) ∈ Rd in (42) represents the output

of an SGD procedure that starts from initialization U j−1 and uses the task training data
Zmtr

k to iteratively update the model parameters, producing the final iterate W j
k. We denote
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as WKj = {W
j
k}k∈Kj

the collection of the base-learners’ outputs for all task indices k ∈ Kj at
outer iteration j.

In the outer loop, the meta-learner uses the task-specific adapted parameters WKj from
the inner loop and the meta-test set Zmte

Kj
to update the past iterate U j−1 according to the

general update rule

U j = F(U j−1) + β jG(U j−1, WKj , Zmte
Kj

) + ξ j, (43)

where F(·) and G(·, ·, ·) are arbitrary deterministic functions; β j is the step-size; and
ξ j ∼ N (0, γ2

j Id) is an isotropic Gaussian noise, independently drawn for j = 1, 2, . . . ,. As
an example, in MAML, the function F(·) is the identity function and function G(·, ·, ·)
equals the gradient of the empirical loss 1/|Kj|∑k∈Kj

Lsep
t (W j

k|Z
mte
k ) in (14) with respect to

U j−1. Note, however, that MAML does not add noise, i.e., γ2
j = 0 for all j.

The final output of the meta-learning algorithm is then defined as an arbitrary func-
tion U = f (U1, . . . , U J), of all iterates. Examples of function f include the last update
f (U1, . . . , U J) = f (U J) and average of the updates f (U1, . . . , U J) = 1/J ∑J

j=1 U j. A graph-
ical model representation of the variables involved is shown in Figure 6.

Figure 6. A graphical model representation of the variables involved in the Definition of noisy
iterative algorithms.

We now derive an upper bound on the meta-generalization gap for the general class of
iterative meta-learning algorithm satisfying (42) and (43) under the following assumptions.

Assumption 7.

(1) For the base-learner given in (42), the average training loss Lsep
t (u|Zm) in (15) is σ2-sub-

Gaussian for all u ∈ U when Zm ∼ PZm ;
(2) The meta-training data set Zm

Kj
sampled at each iteration j is conditionally independent of the

history of model-parameter vectors {WKi}
j−1
i=1 and hyperparameter U(j−1) = (U1, U2, . . . ,

U j−1), i.e.,

P
Zm

Kj
|{Zm

Ki
}j−1

i=1 ,Zm
1:N ,U(j−1),{WKi

}j−1
i=1

= P
Zm

Kj
|{Zm

Ki
}j−1

i=1 ,Zm
1:N

; (44)

(3) The meta-parameter update function G(·, ·, ·) is uniformly bounded, i.e., ||G(·, ·, ·)||2 ≤ L
for some L > 0.
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Lemma 4. Under Assumption 7, the following upper bound on the meta-generalization gap (18)
holds for the class of noisy iterative meta-training algorithms (42) and (43)

EPZm
1:N ,U

[∆Lsep(U|Zm
1:N)] ≤

√√√√2σ2

N

J

∑
j=1

d
2

log
(

1 +
β2

j L2

dγ2
j

)
. (45)

Proof. See Appendix E. �

The bound in (45) has the same form as the generalization gap derived in [27] for
conventional learning. From (45), the generalization gap can be reduced by increasing
the variance γ2

j of the injected Gaussian noise. In particular, the meta-generalization gap

depends on the ratios β2
j /γ2

j between squared step size β2
j and variance γ2

j . For example,

SGLD sets γj =
√

β j, and a step size β j decaying over time according to the standard
Robbins–Monro conditions, in order to ensure convergence of the output samples to the
generalized posterior distribution of the hyperparameters [52].

Example: To illustrate bound (45), we now consider a simple logistic regression prob-
lem that generalizes the example studied in Section 5.1. Accordingly, each data point
Z corresponds to labelled data Z = (X, Y), where X ∈ {0, 1}d represents the input vec-
tor and Y ∈ {0, 1} represents the corresponding binary label. The data distribution
PZ|τk

= PX|τk
PY|X,τk

for each task τk ∈ T = {τ1, . . . , τM} is such that X ∼ PX|τk
is a d-

dimensional Bernoulli vector obtained via d independent draws from Bernoulli(ν) and
Y is distributed as Y ∼ Bernoulli(φ(µT

τk
X)), where φ(a) = 1/(1 + exp(−a)) is the sig-

moid function and µτk ∈ Rd, with ||µτk ||2 ≤ 1. The task distribution PT then defines a
distribution over the parameter vectors {µτ1 , . . . , µτM}. The base-learner uses training data
generated i.i.d. from PZ|τk

to obtain a prediction w of the parameter vector µτk for task
τk ∈ T . The loss function is taken as the quadratic error l(w, z) = (φ(wTx)− y)2.

At each iteration j, starting from initialization point U j−1, the base-learner in (42) uses
a one-step projected gradient descent algorithm on the training data set Zmtr

k to obtain the

prediction W j
k as

W j
k = projW

(
U j−1 − α∇wLsep

t (w|Zmtr
k )

∣∣
w=U j−1

)
, (46)

where α > 0 is the step-sizeW = {w ∈ Rd
∣∣ ||w||2 ≤ 1} is the set of feasible model param-

eters and projA(b) =
1
2 mina∈A ||a− b||22 is the projection operator. The meta-learner (43)

updates the initialization vector according to the noisy gradient descent rule

U j = U j−1 − β j

(
1
|Kj|

|Kj |

∑
k=1
∇wLsep

t (w|Zmte
k )

∣∣
w=W j

k

)
+ ξ j, (47)

where β j is the step-size; and ξ j ∼ N (0, γ2
j Id) is isotropic Gaussian noise. This update rule

corresponds to performing a first order MAML (FOMAML) [23] with the addition of noise.
For this problem, it is easy to verify that Assumption 7 is satisfied, since the loss

function l(·, ·) is bounded in the interval [0, 1], whereby Lsep
t (u|Zm) is also [a, b]-bounded.

We also have the inequality∥∥∥∥∥ 1
|Kt|

|Kt |

∑
i=1
∇wLZmte (w)

∣∣
w=Wt

i

∥∥∥∥∥
2

≤ 2
√

de
√

d , L. (48)
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The MI bound in (45) then evaluates to

EPZm
1:N ,U

[∆L(U|Zm
1:N)] ≤

√√√√ 1
2N

J

∑
j=1

d
2

log
(

1 +
4β2

j e2
√

d

γ2
j

)
. (49)

We now evaluate the meta-training and meta-test loss, along with the bound (49)
as a function of the ratio γ2

j /β2
j in Figure 7. For the experiment, we considered a task

environment of M = 20 tasks with ν = 0.4, d = 3, N = 4 meta-training tasks with mtr = 10
training data samples and mte = 5 test data samples. For the inner-loop (46), we fixed
step-size α = 10−4 and for the outer-loop (47), we set |Kt| = N, β j = 0.25 and T = 200
iterations.

As suggested by Lemma 4, the meta-generalization gap decreases with addition of
noise. While the MI bound (45) is generally loose, it correctly quantifies the dependence
of the meta-generalization loss and the ratio γ2

j /β2
j , and it can hence serve as a useful

meta-training criterion [20,48].

Figure 7. Comparison of the meta-generalization gap with the MI-based bound in (49) as function of
the ratio γ2

t /β2
t .

6. Conclusions

This work has presented novel information-theoretic upper bounds on the aver-
age generalization gap of meta-learning algorithms, thereby extending the well-studied
information-theoretic approaches in conventional learning to meta-learning. The proposed
bounds capture two sources of uncertainty-environment-level uncertainty and within-
task uncertainty—and bound them via separate mutual information terms. Applications
were also discussed, with the aim of elucidating the use of the bounds to quantify meta-
overfitting and guide the choice of the meta-inductive bias, i.e., the class of inductive biases.
The derived bounds are amenable to further refinements, such as those along the lines
of [39,40,45]. It would also be interesting to study the meta-generalization bounds on noisy
iterative meta-learning algorithms using the tighter information-theoretic bounds such
as [26,40].
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Appendix A. Decoupling Estimate Lemmas

The proofs of the main results rely on the following decoupling estimate lemmas,
which bound the difference in expectations under a change of measure from the joint PX,Y
to the product of the marginals PXPY. In order to state the most general form of decoupling
estimate lemmas, we first define a generalized sub-Gaussian random variable.

Definition A1. A random variable X is said to be (Ψ+, Ψ−, b+, b−)-generalized sub-Gaussian
if there exist convex functions Ψ+ : R+ → R and Ψ− : R+ → R that satisfy the equalities
Ψ+(0) = Ψ−(0) = Ψ′+(0) = Ψ′−(0) = 0 and bound the CGF of X as

ΛX(λ) ≤ Ψ+(λ), for λ ∈ [0, b+) (A1a)

ΛX(λ) ≤ Ψ−(−λ), for λ ∈ (b−, 0], (A1b)

for some constants 0 < b+ ≤ ∞ and −∞ ≤ b− < 0.

For a (Ψ+, Ψ−, b+, b−)-generalized sub-Gaussian random variable, we also introduce
the following standard definitions. First, the Legendre dual of function Ψ+(λ) is defined as

Ψ∗+(x) = sup
λ∈[0,b+)

(λx−Ψ+(λ)). (A2)

It can be easily seen that Ψ∗+(·) is a non-negative, convex, and non-decreasing function
on [0, ∞) with Ψ∗+(0) = 0. Second, the inverse Legendre dual of function Ψ+(λ) is defined
as Ψ∗−1

+ (y) = inf{x ≥ 0 : Ψ∗+(x) ≥ y}. This function is concave, and it can be equivalently
written as [26]

Ψ∗−1
+ (y) = inf

λ∈[0,b+)

y + Ψ+(λ)

λ
. (A3)

Similar definitions and results apply for Ψ−(·).
A σ2-sub-Gaussian random variable X is a generalized sub-Gaussian variable with

Ψ+(λ) = Ψ−(λ) = λ2σ2/2, b+ = ∞ and b− = −∞. Furthermore, the Legendre dual func-
tions are given as Ψ∗+(x) = Ψ∗−(x) = x2/(2σ2), and the inverse Legendre dual functions
evaluate to

Ψ∗−1
+ (y) = Ψ∗−1

− (y) =
√

2σ2y. (A4)

We are now ready to state the decoupling estimate lemmas.

Lemma A1 (Decoupling Estimate [14]). Let X ∈ X and Y ∈ Y be two jointly distributed
random variables with joint distribution PX,Y, and let f (X, Y) be a real valued function such that
f (x, Y) is (Ψ+, Ψ−, ∞,−∞)-generalized sub-Gaussian for all x ∈ X when Y ∼ PY. Then we have
the following inequalities

±
(
EPX PY [ f (X̃, Ỹ)]−EPX,Y [ f (X, Y)]

)
≤ Ψ∗−1

∓ (I(X; Y)), (A5)

where (X̃, Ỹ) ∼ PXPY.
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Lemma A2 (General Decoupling Estimate [26]). Let X ∈ X and Y ∈ Y be two jointly
distributed random variables with joint distribution PX,Y, and let f (X, Y) be a real valued function
such that f (X, Y) is a (Ψ+, Ψ−, b+, b−)-generalized sub-Gaussian when (X, Y) ∼ PXPY. Then,
we have the inequality (A5).

Note that in Lemma A2, the random variables X, Y are jointly distributed according
to PX,Y. Assuming that the function f (X, Y) is generalized sub-Gaussian under X ∼ PX
and Y ∼ PY with PX and PY being the marginals of PX,Y, the lemma provides an upper
bound on the difference between average of f (X, Y) when (X, Y) is jointly distributed
according to PX,Y and the average of f (X, Y) when (X, Y) is independent with X ∼ PX and
Y ∼ PY. The resultant bound thus provides an estimate of the effect of decoupling of the
joint distribution to its marginals with respect to function f (X, Y).

Appendix B. Proofs of Theorems 1 and 2

For the proof of Theorem 1, we use the decomposition (29) of the meta-generalization
gap into average environment-level and within-task generalization gaps as

EPZm
1:N ,U

[∆Lsep(U|Zm
1:N)]

= EPZm
1:N ,U

[
(Lsep

g (U)−Lsep
g,t (U)) + (Lsep

g,t (U)−Lsep
t (U|Zm

1:N))

]
(A6)

= EPT

[
EPZm |T PW,U,Zm

1:N |Z
mtr

[∆L(W|Zmte , T)])
]
+EPZm

1:N ,U
[Lsep

g,t (U)−Lsep
t (U|Zm

1:N)]

where (A6) follows since the average within-task generalization gap for a random meta-test
task EPZm

1:N ,U
[Lsep

g (U) − Lsep
g,t (U)] can be equivalently written as

EPT

[
EPZm |T PW,U,Zm

1:N |Z
mtr

[∆L(W|T)])
]
, with ∆L(W|Zmte , T) = LPZ|T (W)− Lt(W|Zmte) denot-

ing the generalization gap of the meta-test task T, and the joint distribution PW,U,Zm
1:N |Zmtr

factorizes as PW|Zmtr ,U PZm
1:N ,U . To obtain an upper bound on the average meta-generalization

gap EPZm
1:N ,U

[∆Lsep(U|Zm
1:N)], we bound each of the two differences in (A6) separately.

We first bound the second difference in (A6) EPZm
1:N ,U

[Lsep
g,t (U)−Lsep

t (U|Zm
1:N)], which

represents the expected environment-level uncertainty measured using the average per-
task training loss Lsep

t (u|Zm) defined in (15). To this end, we extend the single-task
learning generalization bound of Lemma 1 by resorting to the decoupling estimate in
Lemma A1 with X = U, Y = Zm

1:N and f (X, Y) = Lsep
t (U|Zm

1:N), so that EPX,Y [ f (X, Y)] =
EPZm

1:N ,U
[Lsep

t (U|Zm
1:N)] and EPX PY [ f (X̃, Ỹ)] = EPZm

1:N ,U
[Lsep

g (U)].

Recall from Assumption 3 that for a given u ∈ U , Lsep
t (u|Zm

1:N) =
1
N ∑N

i=1 Lsep
t (u|Zm

i )

is the average of σ2-sub-Gaussian i.i.d. random variables Lsep
t (u|Zm

i ) under Zm
i ∼ PZm

for all i ∈ {1, . . . , N}. It then follows that Lsep
t (u|Zm

1:N) is σ2/N-sub-Gaussian under
Zm

1:N ∼ PZm
1:N

for all u ∈ U [53]. Applying Lemma A1 with Ψ∗−1
∓ specialized to the σ2/N-

sub-Gaussian loss in (A4) gives that

∣∣∣∣EPZm
1:N ,U

[
Lsep

g,t (U)−Lsep
t (U|Zm

1:N)

]∣∣∣∣ ≤
√

2σ2 I(U; Zm
1:N)

N
. (A7)

We now evaluate the first difference in (A6). It can be seen that for a fixed task τ ∈ T ,
the average within-task uncertainty evaluates to

EPZm |T=τ PW,U,Zm
1:N |Z

mtr
[∆L(W|Zmte , T = τ)] = EPZm |T=τ PW|Zmtr

[∆L(W|Zmte , T = τ)]

= EPZmtr |T=τ
EPW|Zmtr

[Lg(W|T = τ)−EPZmte |T=τ
Lt(W|Zmte)] (A8)

(a)
= 0,
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where (a) follows, since W and Zmte are conditionally independent given Zmtr ,
wherebyEPZmtr |T=τ

EPW|Zmtr
[EPZmte |T=τ

Lt(W|Zmte)] = EPZmtr |T=τ
EPW|Zmtr

[Lg(W|T = τ)]. Sub-
stituting (A7) and (A8) in (A6), then concludes the proof.

For Theorem 2, the proof follows along the same line, bounding the average environment-
level uncertaintyEPZm

1:N ,U
[Lsep

g,t (U)−Lsep
t (U|Zm

1:N)]. Towards this, we note that the environment-

level uncertainty can be equivalently written as

EPZm
1:N ,U

[Lsep
g,t (U)−Lsep

t (U|Zm
1:N)] =

1
N

N

∑
i=1

(
EPZm

i
PU [L

sep
t (U|Zm

i )]−EPZm
i ,U

[Lsep
t (U|Zm

i )]

)
, (A9)

where Zm and U in the first term are conditionally independent random variables
distributed as (Zm

i , U) ∼ PZm PU , while, in the second term, they are jointly distributed
according to PZm

i ,U , which is obtained by marginalizing the joint distribution PZm
1:N ,U . Under

Assumption 4(a), we can bound the difference EPZm
i

PU [L
sep
t (U|Zm

i )]−EPZm
i ,U

[Lsep
t (U|Zm

i )]

by resorting to the decoupling estimate in Lemma A1 with X = U, Y = Zm
i , f (X, Y) =

Lsep
t (U|Zm

i ) such that EPX,Y [ f (X, Y)] = EPU,Zm
i
[Lsep

t (U|Zm
i )] and EPX PY [ f (X̃, Ỹ)] =

EPU PZm
i
[Lsep

t (U|Zm
i )]. Since Lsep

t (U|Zm
i ) is σ2−sub-Gaussian under Assumption 4(a) for all

u ∈ U , Lemma A1 yields the following bound∣∣∣∣EPZm
i

PU [L
sep
t (U|Zm

i )]−EPZm
i ,U

[Lsep
t (U|Zm

i )]

∣∣∣∣ ≤ √2σ2 I(U; Zm
i ). (A10)

The bound in (A10) can also be obtained using Assumption 4(b) by resorting to the gen-
eral decoupling estimate in Lemma A2 by fixing X = U, Y = Zm

i , f (X, Y) = Lsep
t (U|Zm

i )

such that EPX,Y [ f (X, Y)] = EPU,Zm
i
[Lsep

t (U|Zm
i )] and EPX PY [ f (X̃, Ỹ)] = EPU PZm

i
[Lsep

t (U|Zm
i )].

Substituting the bound in (A10) in (A9) then yields the required bound in (27).

Appendix C. Proofs of Theorems 3 and 4

For Theorem 3, we start from the following decomposition of the average meta-
generalization gap analogous to (A6)

EPZm
1:N ,U

[∆Ljoint(U|Zm
1:N)] = EPT

[
EPZm |T PW|Zm [∆L(W|Zm, T)])

]
+EPZm

1:N ,U
[Ljoint

g,t (U)−Ljoint
t (U|Zm

1:N)] (A11)

where Ljoint
g,t (u) = EPT,Zm [L

joint
t (u|Zm)] is the average training loss for the randomly se-

lected meta-test task as a function of the hyperparameter u, and ∆L(W|Zm, T) = LPZ|T (W)−
Lt(W|Zm) is the generalization gap for the meta-test task T. The MI bound on the expected
environment-level uncertainty, EPZm

1:N ,U
[Ljoint

g,t (U) − Ljoint
t (U|Zm

1:N)], can be obtained by

using Lemma A1 and the Assumption 5(b) as in (A7).
The main difference between the separate and joint within-task training and test

sets scenarios is that while the average within-task uncertainty vanishes in the former
scenario, this is not the case for joint within-task training and training sets. Consequently,
we now bound the average within-task generalization gap denoted by the first differ-
ence in (A11). For given task τ ∈ T , to bound the within-task generalization gap
EPZm |T=τ PW|Zm [∆L(W|Zm, T = τ)], we resort to Lemma A1 with X = W, Y = Zm and
f (X, Y) = Lt(W|Zm), so that EPX,Y [ f (X, Y)] = EPW,Zm |T=τ

[Lt(W|Zm)]. It can be then

verified that EPX PY [ f (X̃, Ỹ)] = EPW|T=τ
EPZm |T=τ

[Lt(W|Zm)] = EPW|T=τ
[Lg(W|T = τ)] =

EPW,Zm |T=τ
[Lg(W|T = τ)], where PW,Zm |T=τ = PW|Zm PZm |T=τ . Since Lt(w|Zm) is the sum

of i.i.d δ2
τ-sub-Gaussian random variables l(w, Zi) (from Assumption 5(a)), we have that
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Lt(w|Zm) is δ2
τ/m-sub-Gaussian under Zm ∼ PZm |T=τ for all w ∈ W [53]. Consequently,

Lemma A1 yields the following bound

∣∣∣∣EPZm |T=τ PW|Zm [∆L(W|Zm, T = τ)]

∣∣∣∣ ≤
√

2δ2
τ

m
I(W; Zm|T = τ). (A12)

Averaging with respect to PT on both sides of (A12), and combining with the bound
on average environment-level uncertainty yields the required bound in (32) via Jensen’s
inequality.

For Theorem 4, the proof follows along the same line. The ITMI bound on the
expected environment-level uncertainty can be obtained along the lines of (A10), using
the assumption on Ljoint

t (u|Zm) in either Assumption 6(a) or Assumption 6(b). We now
show that we can similarly bound the within-task uncertainty using the assumption on
loss function l(w, z) in either Assumption 6(a) or Assumption 6(b). Towards this, for fixed
task τ ∈ T , we write the average within-task uncertainty equivalently as

EPZm |T=τ PW|Zm [∆L(W|Zm, T = τ)] =
1
m

m

∑
j=1

(
EPW|T=τ PZj |T=τ

[l(W, Zj)]−EPW,Zj |T=τ
[l(W, Zj)]

)
, (A13)

where W and Zj in the second term are jointly distributed according to PW,Zj |T=τ , which
is the marginal of the joint distribution PW,Zm |T=τ . In contrast, W and Zj in the first term
are conditionally independent random variables distributed as (W, Zj) ∼ PW|T=τ PZj |T=τ

where PW|T=τ is the marginal distribution of PW,Zj |T=τ . Now, fixing X = W, Y = Zj and

f (X, Y) = l(W, Zj) so that EPX PY [ f (X̃, Ỹ)] = EPW|T=τ PZj |T=τ
[l(W, Zj)] and EPX,Y [ f (X, Y)] =

EPW,Zj |T=τ
[l(W, Zj)] in Lemma A1 under the assumption on l(w, z) in Assumption 6(a), or in

Lemma A2 under the assumption on l(w, z) in Assumption 6(b) yields the following bound,∣∣∣∣EPZm |T=τ PW|Zm [∆L(W|Zm, T = τ)]

∣∣∣∣ ≤ 1
m

m

∑
j=1

√
2δ2

τ I(W; Zj|T = τ). (A14)

Averaging with respect to PT on both sides of (A14), and combining with the bound
on average environment-level uncertainty yields the required bound in (33).

Appendix D. Details of Example

We first give details of the derivation of meta-generalization gap for the case with
separate within-task training and test sets. The average meta-generalization loss can be
computed as EPZm

1:N ,U
[Lsep

g (U)] =

EPZm
1:N ,U

[
(1− α)2U2 +EPT,Zmtr

[
α2(Dmtr

T )2 +EPZ|T [Z
2]− 2αDmtr

T µT + 2(1− α)U(αDmtr
T − µT)

]]
(a)
= EPZm

1:N ,U

[
(1− α)2(U2 − 2UEPT [µT ]

)]
+EPT

[
α2
(

µ2
T +

µT µ̄T
mtr

)
+ µT − 2αµ2

T

]
,

(A15)

where the equality in (a) follows sinceEPZ|T [Z
2] = µT,EPZmtr |T

[Dmtr
T ] = µT andEPZmtr |T

[(Dmtr
T )2]

= µ2
T + µT µ̄T/mtr. In a similar manner, the average meta-training loss can be computed as

EPZm
1:N ,U

[Lsep
t (U|Zm

1:N)] = EPZm
1:N

[
−(1− α)2U2 +

1
N

N

∑
i=1

α2(Dmtr
i )2

+
1
N

N

∑
i=1

1
mte

mte

∑
j=1

(Zmte
i,j )2 − 2α

1
N

N

∑
i=1

Dmtr
i Dmte

i

]
,

(A16)



Entropy 2021, 23, 126 26 of 28

with U defined as in (38). The meta-generalization gap in (40) then results by taking the dif-
ference of (A15) and (A16), and using that EPZm

1:N

[
(1− α)2U2] = EPT [µT µ̄T ]

( 1
Nmte

+ α2

Nmtr

)
+

1
N (1 + α2)VarT + (1 − α)2(EPT [µT ])

2 and EPZm
1:N

[U] = EPT [µT ] with VarT = EPT [µ
2
T ] −

(EPT [µT ])
2.

We now evaluate the mutual pieces of information I(U; Zm
1:N) and I(U; Zm

i ). For the
first MI, note that, since the meta-learner is deterministic (see (38)), H(U|Zm

1:N) = 0 and thus
I(U; Zm

1:N) = H(U). For the second MI, we can write I(U; Zm
i ) = H(U)−EZm

i
[H(U|Zm

i =

zm)]. It can be seen that random variables U and U|Zm
i = zm are mixtures of probability

distributions, whose entropies can be evaluated following standard methods [54].
For the case with joint within-task training and test sets, the meta-generalization gap

can be obtained in a similar way as

EPZm
1:N ,U

[Ljoint
t (U|Zm

1:N)] =
2
N

[
EPT

[
µT µ̄T

m

]
+ VarT

]
+

2α

m
EPT [µT µ̄T ]. (A17)

For the MI- and ITMI-based bounds, note that withW = [0, 1], the loss function l(·, ·)
is [0, 1]-bounded, and for the deterministic base-learner in (36) with U = [0, 1], the average
training loss, Ljoint

t (u|Zm) is also [0, 1]-bounded for all Zm ∈ Zm. Thus, Assumptions 5
and 6 hold with σ2 = δ2

τ = 1/4.. For the MI bound in (32), we have I(U; Zm
1:N) = H(U)

and I(W; Zm|T = τ) = H(W|T = τ)− EZm [H(W|Zm, T = τ)]. For the ITMI bound (33),
we have

|EPZm
1:N ,U

[Ljoint
t (U|Zm

1:N)]| ≤
1
N

N

∑
i=1

√
1
2

I(U; Zm
i ) +EPT

[
1
m

m

∑
j=1

√
1
2

I(W; Zj|T = τ)

]
. (A18)

All information measures can be easily evaluated numerically [54].

Appendix E. Proof of Lemma 4

From the update rule of the meta-learner in (43), we get the Markov dependency

P
U j |U(j−1),{WKi

}j
i=1,{Zm

Ki
}j

i=1,Zm
1:N

= PU j |U j−1,WKj
,Zmte

Kj
, (A19)

where U(j−1) = {U1, . . . , U j−1} is the history vector of hyperparameters. The sampling
strategy in (44) together with (A19) then implies the following relation

P
U j |U(j−1),{WKi

}j
i=1,{Zm

Ki
}J

i=1,Zm
1:N

= PU j |U j−1,WKj
,Zmte

Kj
. (A20)

Using U(J) = {U1, . . . , U J} to denote the set of all updates, we have the following
relations

I(U; Zm
1:N)

(a)
≤ I(U(J); Zm

1:N)

(b)
≤ I(U(J); {Zm

Ki
}J

i=1) =
J

∑
j=1

I(U j; {Zm
Ki
}J

i=1|U
(j−1)) (A21)

≤
J

∑
j=1

I(U j; {Zm
Ki
}J

i=1, {WKi}
j
i=1|U

(j−1)) (A22)

=
J

∑
j=1

h(U j|U(j−1))− h
(

U j|U(j−1), {Zm
Ki
}J

i=1, {WKi}
j
i=1

)
(A23)

(c)
=

J

∑
j=1

[
h(U j|U j−1)− h(U j|U j−1, WKj , Zmte

Kj
)

]
, (A24)
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where, the inequality in (a) follows from data processing inequality on Markov chain
Zm

1:N → U(J) → U; (b) follows from the Markov chain Zm
1:N → {Zm

Ki
}J

i=1 → U(J); and the

equality in (c) follows from U(j−2) → U j−1 → U j and (A20). Finally, the computation of
bound in (A24) follows similar to Lemma 5 in [27].
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