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Abstract  
 
Every decision we take is accompanied by a characteristic pattern of response delay, gaze 
position, pupil dilation, and neural activity. Nevertheless, many models of social decision 
making neglect the corresponding process tracing data and focus exclusively on the final 
choice outcome. Here we argue that this is a mistake, as the use of process data can help to 
build better models of human behavior, create better experiments, and improve policy 
interventions. Specifically, such data allow us to unlock the “black box” of the decision 
process and evaluate the mechanisms underlying our social choices. Using these data, we can 
directly validate latent model variables, arbitrate between competing personal motives, and 
capture information processing strategies. These benefits are especially valuable in social 
science, where models must predict multi-faceted decisions that are taken in varying contexts 
and are based on many different types of information. 
 
 
1. INTRODUCTION  

Social behavior is multi-faceted and understanding it is a truly daunting task. Why do we 
trust other people? Why do we share food and shelter with one another? How do we 
cooperate – and why are we competitive? How do we understand each other? For centuries, 
we have been building theories of social behavior, each based on a diverse set of assumptions 
and views about human nature (Abrams & Hogg, 2006; Homans, 1974; Katz & Kahn, 1978; 
Weick, 1977). These theories have led to proposals of many potential motives underlying 
social behavior – envy, aggression, power, altruism, affiliation, approval, and many others 
(MacCrimmon & Messick, 1976) – but we still do not know what drives these motives, how 
they operate, and how we can predict the exact motive depending on the type of social 
situation. 

While a verbal, more qualitative approach to social cognition does have its appeal, in 
recent years a model-based, quantitative framework is gaining traction in social science 
(Hackel & Amodio, 2018; Konovalov et al., 2018; Lockwood et al., 2020; Zhang et al., 
2020). Stemming from economics and mathematical psychology, this framework proposes 
that we can build consistent and predictive theories of behavior based on simple choice 
axioms and mathematical – or computational – foundations. One approach is to assume that 
individuals maximize the utility of their actions and this utility depends, in a numerically 
precise way, on the context, individual traits, and other parameters of the environment 
(Camerer & Fehr, 2006; Fehr & Camerer, 2007). Based on these assumptions, we can build 
mathematical/computational models that combine these parameters and thus allow us to make 
specific predictions about individuals’ choices in any decision situation for which the model 
inputs can be quantified. This approach therefore transcends the purely descriptive or 
explanatory goals of verbal choice theories, by enabling us to predict behaviour in novel 
situations and formally compare these predictions across different contexts.  



While predicting choices themselves is an important goal that is widely practiced in 
various social sciences, it is becoming clear that the models we need to develop for this 
purpose may be too complex to be fit exclusively based on choice outcomes (Schulte-
Mecklenbeck et al., 2017). Choice outcomes are usually binary or purely multinomial; they 
therefore often do not reflect the complexity of the underlying decision process. While this 
limitation may in principle be mitigated by careful experimental design, this strategy would 
often have to result in complicated task setups that are very different from typical daily-life 
decisions. Fortunately, each decision – including social ones – not only produces the final 
outcome but is also accompanied by behavioral expressions in many other channels that 
contain rich information on the processes leading up to the choice (Cooper et al., 2019). 
These channels include, but are not limited to response times, mouse-tracking trajectories, 
gaze position, pupil dilation, facial expressions, skin conductance, neural activity, and many 
other variables that can be recorded both in the real world and in the research laboratory 
(Schulte-Mecklenbeck et al., 2019).  

In this article, we argue that measures of these processes, often referred to as process data, 
are very useful for enhancing our understanding of human behaviour. Specifically, such 
measures are indispensable for attempts to pin down the neurocognitive mechanisms that 
contribute to our social decisions, such as preferences, learning, and choice processes. In the 
following sections, we will describe and discuss these attempts. We will first introduce the 
concept of process data (section 2), before reviewing their use in the literature (section 3) and 
identifying opportunities for future research in the field (section 4). 
 
2. WHAT ARE PROCESS DATA AND WHY SHOULD WE USE THEM? 

Any decision we take is characterized not just by what we choose, but also by how this 
choice unfolds over time. Think of a simple example of social choice: An individual uses an 
internet browser to donate an amount of money to the Red Cross. When presented with a 
menu of possible donations ($5, $10, $20, $50, $100, custom), the individual chooses $20. A 
researcher studying this decision can - provided the necessary consent and compliance with 
the legal framework - record not just the final chosen monetary amount but many other types 
of data. These provide considerable information about the choosing individual and the 
respective choice. We will refer to these measures as process data from now on. In the 
following, we will review the major types of process data used in computational social 
research, noting that other types of data could in principle also be collected (Schulte-
Mecklenbeck et al., 2019).  

 
2.1. Types of process data 

Response time. One readily available measure is response delay or decision time, usually 
defined as the time between the presentation of the decision problem (e.g., opening the 
charity website) and the moment of the decision itself (e.g., clicking on the payment button). 
In the literature, decision time can also be referred to as “response time” (RT), or “reaction 
time”. While there is no consensus on the correct usage, and many use these terms 
interchangeably, it is common to use “reaction time” when the individual is reacting with a 
stereotypical response (such as a key press) to the presence of a stimulus (for instance, a 
sound) and “response time” when the individual is making a choice between 2 or more 
alternatives (Kosinski, 2008). Response times can be recorded easily in many online 
interactions and can be quantified precisely (up to several milliseconds) in laboratory 
experiments, often revealing the strength of internal conflict between competing motives or 
preferences (Clithero, 2018; Konovalov & Krajbich, 2019; Spiliopoulos & Ortmann, 2017).  

Mouse tracking. Another relatively easily accessible process measure is mouse tracking 
(Costa‐Gomes et al., 2001; Johnson et al., 2002; Stillman et al., 2018). While the precise, 



continuous position of the mouse cursor might not be available outside of a research lab, 
websites can be designed in a way to record clicks on various elements, amount of scrolling, 
and time spend outside of the browser window. All these details can provide insight into 
information processing and choice strategy employed by the individual. In our charity 
example, this might include photos that the decision maker chose to zoom in, or details of the 
specific charity programs she accessed. In the laboratory, mouse movements can be recorded 
quite precisely, including specific trajectories of the cursor at any moment in time (with a 
typical time resolution of 60 Hz, usually restricted by the type of the mouse used). 

Eye tracking. While mouse tracking is easy, it is not always useful as a proxy measure of 
information processing. If we observe that an individual moved her mouse over a paragraph, 
it does not mean that she was actively reading the text. However, if we can record that the 
subject was actively looking at the paragraph, we can confirm that she did indeed process the 
information in the text. Using an eye-tracker, one can record two valuable types of data: gaze 
position (manifested in X and Y coordinates, which also could be converted to higher-order 
data such fixations and saccades (Hessels et al., 2018)) and size of the individual’s pupil at 
any moment in time (given a specified sampling rate, typically up to 2000 Hz) (Duchowski, 
2007). High-quality laboratory eye-trackers typically use infra-red light and sensitive cameras 
to compute the position of the corneal reflection relative to the pupil, thus estimating the gaze 
direction. While the subject clearly understands that her gaze is being recorded, typically this 
procedure is non-invasive and does not affect behavior in any meaningful way (assuming that 
the experiment is carefully designed in such a way that the subject must look at different parts 
of the screen to take in the corresponding information). 

Neural data. Finally, the researcher might choose to record brain activity of the subject. 
While there are many different types of possible neural recordings (Sejnowski et al., 2014), 
here we will focus on the two types most commonly used in social neuroscience: 
electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). EEG is a 
relatively inexpensive method of recording the brain’s electrical activity directly from the 
scalp, using a set of electrodes placed in a cap (Luck, 2014). EEG has an excellent temporal 
resolution, recording the voltage at the rate of up to 2000 Hz (each half a millisecond), but 
does not allow to identify the precise source of the electrical signal within the brain. fMRI, on 
the other hand, is much slower (typically allowing for one measurement per 2-3 seconds) and 
much more expensive (in terms of both the construction and maintenance cost). However, it 
builds a dynamic 3D image of neural activity in the brain (estimated using the blood oxygen 
level), showing which regions of the brain were more active at any given time during an 
experiment (Huettel et al., 2004). 

What does neural data allow us to investigate? First, typically we use it to understand 
whether choices that are theoretically distinct are indeed processed differentially by the brain. 
This can be evident in neural activity in a specific region (if using fMRI) or during a specific 
period (if using EEG), both in terms of average activity levels or patterns of activity across 
space or time. For instance, returning to the charity example, one could study whether 
choices involving positive (condition 1) or negative (condition 2) emotional photos evoke 
higher responses in the subject’s temporoparietal junction (or TPJ, the brain region usually 
implicated in empathy and theory of mind (Kanske et al., 2015; Saxe & Kanwisher, 2003)), 
and whether higher activity predicts the subject’s choice of the donation size. Second, we can 
also take a continuous variable (for instance, the size of the donation) and test whether neural 
activity correlates with this variable over the course of the experiment, and whether the 
strength of this response predicts the choice outcome (Tusche et al., 2016). This would 
indicate that the brain may use a representation of this variable for choice. There are 
numerous opportunities here. For instance, one could adjust the emotional content of the 
message above the donation button, map it onto a numerical scale, and test whether this index 



correlates with brain responses. Third, we can use brain data to test precisely formulated 
quantitative models of the processes underlying choices. This approach is especially powerful 
and will be described in the next section. That is, one can construct a latent variable as a part 
of a model of the subject’s decisions and try to seek whether this variable, which is assumed 
to be a (mechanistic) part of the choice process, is represented in the brain. We will now 
describe this approach in greater detail. 

 
2.2. Using multiple types of process data to test theories about social behavior 

Let us illustrate in a concrete case how process data can be useful to reveal decision 
mechanisms underlying social behavior. Suppose the researcher’s goal is to understand which 
factors increase charitable donations. It is known that affective images tend to impact the 
probability of donations and donations size (Small & Verrochi, 2009). These analyses are 
typically straightforward: the researcher manipulates the stimuli (such as pictures, facial 
expressions, or valence of the depicted emotions) and measures the response of the subject.  

While these results are certainly useful and can be immediately used to make policy 
recommendations, they do not answer why exactly these factors impact on the outcome and 
on how subjects make their decisions. Understanding this would be important for predicting 
subjects’ behavior across different situations and for designing future experiments. 

Let us now assume that the researcher has access to several types of process data 
described above such eye-tracking or fMRI data. It is still uncommon to see both types of 
data to be used in the same study, so we will illustrate the use of these two types separately. 
We know from behavioral experiments that affective images drive donation decisions, but 
how exactly do they impact on the decision, and how can we measure the emotional 
component of the choice process? 

One way to do this is via eye tracking. One paper (Bebko et al., 2014) demonstrated 
that emotional valence of a photo directly captures the attention of the decision maker, 
impacting on both gaze durations and saccade times. These measures, in turn, are shown to be 
correlated with (in this case, hypothetical) donation decisions. These findings suggest that 
there is a specific choice mechanism that links attention to emotional stimuli and donation 
decisions. When coupled with a computational model of attention, this putative mechanism 
could provide the researcher with specific predictions for donation sizes across different 
stimulus sets. 

Another way to measure emotional impact of a charity stimulus is by using neural data. 
One such study (Genevsky & Knutson, 2015) showed that photos that elicit positive arousal 
typically increase response in the nucleus accumbens. Using an out-of-sample prediction, the 
study showed that activity in this area (measured using fMRI when subjects passively 
observed a number of charity photos) predicted real-life donation amounts over and above 
other factors measured from behavior (such as self-reported willingness to donate). These 
results again confirm an important link between emotion and altruistic choice, and 
demonstrate that neural measures can help researchers predict choices better than with just 
verbal-willingness-reports alone. 

One important tool that may bring these interesting approaches together would be the 
development of a mechanistic model that describes the underlying decision mechanisms 
affected by attention and affect. Use of such a model, coupled with different types of process 
data, would allow the researcher to make more specific predictions; for instance, by 
simulating how different experimental conditions should impact on the process data – and 
testing these predictions in new experiments (for instance, with different control photos). In 
the next section, we will discuss in more detail how process data can be used to build and 
validate such models of social behavior. 

 



3. HOW CAN PROCESS DATA HELP US VALIDATE COMPUTATIONAL 
MODELS OF SOCIAL BEHAVIOR? 

 
One of the goals of social science is to explain and predict social behavior. While purely 

verbal theories have been dominating the field of psychology for a long time, it is becoming 
increasingly more common to use mathematical and computational models to explain social 
choices. There are many benefits in doing so (Hackel & Amodio, 2018; Konovalov et al., 
2018; Lockwood et al., 2020). First, computational models make precise quantitative 
predictions that can be tested out-of-sample; importantly, these predictions can be made for a 
set of decision problems or subjects that the model was not built on. Second, models can 
arbitrate between competing theories of underlying motives, cognitions, and decision 
mechanisms by explicitly stating (mathematically) the relationships between such 
mechanisms. Third, models can demonstrate commonalities between seemingly different 
types of behavior. Finally, they can link specific mechanisms to distinct brain regions and 
computations, shedding light on the neural underpinnings of social decisions. 

There are three general classes of decision models used in social science, which cover 
three important aspects of social behavior: preference, choice, and learning (see Figure 1). In 
this section, we will briefly outline the three classes and demonstrate how process data can 
help build and test these models.  

 
3.1. Models of social behavior: preference, choice, learning 

 
Social preference models typically quantify how individuals value social allocations or 

outcomes, e.g. by producing a numerical value of an outcome based on its characteristics 
(how much money or goods each person is receiving, how fair or moral the outcome is, etc.). 
These values can be then used to predict which option an individual would prefer given a 
choice between a set of alternatives. While many economic theories are agnostic as to how 
preferences are formed, process data might help us understand whether preferences are an 
innate biological trait, or whether they depend dynamically on processes related to value 
construction (for instance, via gaze direction) or other decision mechanisms. 

A rational decision maker is often assumed to have stable preferences (typically quantified 
by her preference model parameters) and given a choice between two options multiple times, 
must always choose the same option. However, real people do not always display consistent 
preference and often have a degree of randomness in their choices. This phenomenon led to 
the development of choice models, which explain how exactly the choice is made given the 
values of the options. The most common example is a simple logistic random utility model 
that assumes that values simply have an additive random component (McFadden, 2005). 
More complex models, which originated in cognitive psychology, such as the drift-diffusion 
model, do not just predict choice outcomes, but also explain how process data such as 
decision times or neural activity can be generated by the value comparison process 
(Fudenberg et al., 2018; Ratcliff & McKoon, 2008). Note that most of these models do not 
necessarily have a uniquely social component, but they have been increasingly used in studies 
of social behavior to explain motives underlying social decisions. 

Finally, preferences and values are not necessarily stable over time and might be affected 
by rewards or changes in beliefs (Behrens et al., 2008, 2009).  Learning models aim to 
capture this process, and value updating (e.g. through prediction errors) have been 
successfully used in behavioral psychology and computer science as a simple, but powerful 
mechanism underlying learning. 

One important concept in social learning is beliefs, or representations of the individual’s 
estimates of probabilities of certain events (such as another person actions). These include 



first order beliefs (“which side of my court the other tennis player will serve to next?”) and 
second-order beliefs (“which side of her court the other tennis player expects me to serve to 
next?”). By induction, higher order beliefs can also be constructed. The second- and higher-
order beliefs represent a quantitative representation of “theory of mind”, or mental 
representation of others’ thoughts and beliefs. Computational models can allow us to 
precisely estimate these variables, and process data can help to validate their representation in 
the brain. 

In Bayesian learning frameworks, the decision maker is assumed to perform optimal 
Bayesian updating of the variables in the world around them (Devaine et al., 2014). In the 
social domain, the most common example are actions of another person, social beliefs, or 
social norms (Xiang et al., 2013). These models can provide surprising insights. For example, 
they have been used to suggest that herding behavior, often cited as an example of suboptimal 
social influence, can in fact originate from perfectly rational decision making if the subjects 
simply use optimal Bayesian updating and learn from choices of others (Bikhchandani et al., 
1992). 

The reinforcement learning framework is based on the idea that the brain stores and 
updates values of actions (and states of the world) through so-called prediction errors, which 
are computed as a difference between the actual received reward (or the obtained state) and 
the expected reward (or probabilistic belief of reaching the state) (Sutton & Barto, 1998). If 
the prediction error is positive, the value is updated upwards, if it is negative, downwards. 
More sophisticated models also allow the decision maker to compute forward-looking policy 
using a Bellman value function (Doll et al., 2012).  

Originally applied in economics to strategic behavior (Erev & Roth, 1998; Roth & Erev, 
1995), learning models have been used in many domains to explain a wide variety of social 
choices, from conformity (Huber et al., 2015) to observational learning (Collette et al., 2017).  

For all three classes of models, process data can be used as an important validation tool. 
While latent variables and parameters do affect decision, they are only indirectly manifested 
in observed choices. Process data, on the other hand, might allow us to directly measure or 
estimate underlying processes, thus providing supporting evidence for the model in question. 

 
3.2. Differentiating fixed versus changing model mechanisms  
 

Process data in combination with computational models can allow us to differentiate 
aspects of the decision process that are fixed and specific to a given decision-maker or 
context, versus those that change over time within these individual and situational contexts. 
That is, all three classes of models described above share some characteristics: they include 
parameters, which are fixed (such as the inequity aversion in preferences, drift rate in the 
drift-diffusion model, or learning rate), and latent variables that change over the course of the 
experiment or even with the single decision (with values of actions being a common 
example) (Figure 1). 

For instance, we can estimate a weight that individuals assign to others’ outcomes, and 
this weight might depend on whether the decision is made in the advantageous (when the 
individual has more money that the other person) or disadvantageous context (when the 
individual has less money) (Fehr & Schmidt, 1999). Process data can help in many ways 
here: to identify the parameter when the choice outcomes alone are inconclusive, to provide 
an alternative estimate of the parameter (e.g. from brain activity (Morishima et al., 2012)), or 
to demonstrate that individual variability in the parameter might be related to some 
characteristics of the choice process (e.g. information processing in gaze data (Jiang et al., 
2016)). 



 
Figure 1. Process data in social decisions. An illustration of how process data can index different 

stages of a choice between two options: Giving another person either $50 or $10 in a trust game (left 
and right boxes at the top of the figure). Note that the hierarchical and sequential nature of the figure 
merely serves illustrative purposes; the decision process is not necessarily top-down and these stages 
might occur in parallel. (A) Representation stage: facing this decision, the individual must process the 
payoff information (producing gaze data). The payoff information is then mapped onto preferences 
(as formalized in a preference retrieval/formation mechanism) to form values of the options. (B) 
Evaluation and value comparison stage: the options are evaluated and compared using a choice 
mechanism, producing choice outcomes and response times (RT). (C) Learning stage: after another 
person’s choice is revealed (and processed visually, producing gaze data), the outcome is then 
compared to the expected reward, producing a prediction error if the obtained reward is different from 
the expected reward (via a reward learning mechanism) and/or an update of the individual’s beliefs if 
the other person reacts to the outcome (via a social learning model). Learning mechanisms, including 
errors and belief updates, can be instantiated in neural activity and might affect values of future 



choices through the preference formation mechanism (gray arrows). These model-assumed processing 
steps can be tested with at least three types of process data, as visualized by the yellow boxes. 
 

Latent variables represent intermediate or final quantities that the individual computes 
during the decision process. The most common example of a latent variable often employed 
in decision science is value (or utility) of actions (see Figure 1 for an example). Economic 
theory usually assigns utilities to actions in “as-if” fashion: an individual is assumed to make 
decisions in a consistent manner, as if he or she is assigning a numerical value to all possible 
alternatives (displaying complete and transitive preferences). While it is not necessary that 
the brain should compute, store, and update values, substantial evidence from 
neuroeconomics suggests that such cardinal values might be indeed computed in the brain 
(Bartra et al., 2013), even during social decisions (Ruff & Fehr, 2014). If this is indeed the 
case, neural data can allow us to validate models of social decision-making by searching for 
correlates of these latent variables in the neural signal.  

While some of these variables (such as value) can be directly related to choice, others are 
only auxiliary and represent certain steps in the decision or mechanisms underlying that 
decision. For instance, value might not be instantaneously computed; the value construction 
process might include evaluation of the attributes (such as monetary amounts divided 
between the individual and another person, weighted according to some preference 
mechanism). These latent quantities might be significantly different from explicitly presented 
numbers that the individual observes. Another example is learning: updating of values of 
actions might reflect incorporating an update of the individual’s beliefs, which can again be 
quantified according to some learning rule (for instance, in terms of prediction errors). 

Process data can be invaluable in validating the existence of these intermediate steps. For 
example, neural data can provide evidence for model-predicted representation of values and 
beliefs in the brain (in the form of prediction errors, as discussed above)(Behrens et al., 
2009), response times can validate the processes formalized in the evidence accumulation 
framework by demonstrating that individual preferences indeed affect the subject’s RT 
(Konovalov & Krajbich, 2019), and eye-tracking can demonstrate how formation of 
preferences depends on gaze patterns (Jiang et al., 2016). Thus, process data can validate the 
assumptions of theoretical models by demonstrating the existence of certain intermediate 
processing steps formulated by the model.  
 
3.3. Quantifying social preferences 

Process data have been used to investigate and validate theories of social preferences. 
Social preference is typically understood as individual preference over various social 
allocations (Fehr & Camerer, 2007; Ruff & Fehr, 2014). For instance, a person who has extra 
money might donate them to those in need, revealing that they prefer a more equal 
distribution of monetary outcomes in society. In the laboratory, social preferences are often 
tested using the so-called “dictator games”, where subjects allocate amounts of money 
between themselves and other people (Engel, 2011). From these experiments we know that 
people often exhibit preferences for more equal allocations (sharing, on average, about 30% 
of their endowment (Engel, 2011)). Why do individuals value others’ outcomes?  

Many possible explanations have been offered by economics and psychology over the 
years. One popular theory is “inequity aversion”: people dislike unequal outcomes, and the 
strength of this distaste varies across individuals. Mathematically, it can be captured with a 
utility function that reflects value that individuals might be assigning to different allocations 
or outcomes (Fehr & Schmidt, 1999;  Charness & Rabin, 2002). These models typically 
assume that individuals assign (stable) weights to their own payoffs or payoffs of others and 
make decisions according to these computations (or, more precisely speaking in economic 



theory terms, make consistent decisions as if their preferences were represented by a utility 
function that takes the characteristics of choice options as the input and produces a numerical 
value as the output (Mas-Colell et al., 1995)).  

Using individual choices, we can easily estimate these weights. At the same time, without 
process data we might not have enough evidence to understand how these weights are 
constructed in different contexts and what determines them on the individual level. One 
possible way to improve on this is to use gaze data, which can reveal the process of this 
weight construction via information acquisition. We directly evaluate which payoffs subjects 
attend to, how long they look at those payoffs, and whether visual attention might influence 
the weights subjects assign to own and others’ payoffs and how this then impacts on their 
choices (Barrafrem & Hausfeld, 2020; Fosgaard et al., 2020; Jiang et al., 2016; Smith & 
Krajbich, 2018).  

Note that the interpretation of the model weights would differ drastically depending on 
whether they are influenced by what participants attend to versus if they were fixed: In the 
first case, it would mean that social preferences are strongly malleable and can be influenced 
by what we look at and attend to, versus in the second, it would mean that they represent 
individual traits that are invariant across different contexts. However, in these studies 
causality remains an issue: while they show that certain gaze patterns correlate with behavior 
(for instance, selfish subjects tend not to look at the others’ payoffs), it does not imply that 
preferences are defined by gaze patterns (intuitively, selfish people willingly might not attend 
to certain payoffs). By designing experiments where gaze is exogenously manipulated by the 
researcher, one could potentially demonstrate that social preferences might be constructed at 
the moment of choice and thus can be manipulated by certain nudges, displays, or attention 
distractors. 
On the other hand, some evidence suggests more intrinsic, biological underpinnings. Social 
preferences can also be determined by brain structure and brain activity patterns (Emonds et 
al., 2012; Morishima et al., 2012; Tricomi et al., 2010). Combining several types of process 
data (such as eye-tracking and fMRI) could potentially help us to disentangle innate versus 
constructed aspects of social preference. Going back to the charity experiments discussed in 
Section 2.2, using the two measures simultaneously could provide more substantial evidence 
for the impact of emotional stimuli on charitable decisions. Specifically, linking gaze data 
and fMRI signals could enable the researcher to directly estimate the affective impact of 
various parts of the stimuli (such as faces or textual cues) on choices. 

 
3.4. Arbitrating between social choice mechanisms using response time 

Preferences are typically assumed to be stable (at least in the short term, within a single 
experiment), but choices are not. For many decades of research in individual choices we 
know that people often switch their choices even within the same block of trials (Mosteller & 
Nogee, 1951). In most cases, choices are more stable when the decision is easy (one 
alternative is clearly preferred over the other) and close to randomness if the individual is 
indifferent (the values of two alternatives are equal). This effect is often captured by a 
“psychometric curve”, which can be easily explained if one assumes that the choices (or 
preferences) have a stochastic component (for instance, an error term with a logistic 
distribution (McFadden, 2005)).  

However, in some cases choices per se might not be enough. Imagine a situation where a 
subject in a laboratory experiment, presented with a series of binary allocation between 
themselves and another anonymous subject, always chooses selfish allocations. If all choices 
are the same, we cannot reliably estimate what the weights the subject might be assigning to 
others’ payoffs (assuming that an allocation where they would choose an altruistic outcome 
exists, but was not presented during the experiment).  



Process data that can help the experimenter here are response times (RT). Experimental 
evidence clearly demonstrates that people are slower making difficult choices (with utilities 
of the options close to each other) and faster for easy choices (the difference in utilities is 
large). This phenomenon is predicted by a class of choice-process models called sequential 
sampling models, which include the drift-diffusion models (Ratcliff & McKoon, 2008), linear 
ballistic accumulators (Brown & Heathcote, 2008), and others. These models, originating in 
psychology, have been shown to explain choices and response times in many economic 
domains, including social allocations preferences (Hutcherson et al., 2015; Johnson et al., 
2017; Krajbich et al., 2015; Teoh et al., 2020). The simplest version of a sequential sampling 
model assumes that each choice is a continuous process, during which a decision variable 
(often referred to as “evidence”) accumulates over time until it hits one of two bounds (upper 
and lower), which represent the alternatives being presented (Ratcliff & McKoon, 2008). The 
decision variable changes over time with a drift rate, which is often assumed to be a function 
of choice difficulty, represented as a difference in utilities between the options. The drift rate 
also has a noise component, which leads to some degree randomness in decisions; however, 
in general the model predicts that both choices and RT depend on the drift rate (and thus on 
the difficulty of choice, or decision conflict). 

Many early studies in psychology and economics have observed that RTs reflect choice 
conflict (Dashiell, 1937; Diederich, 2003; Jamieson & Petrusic, 1977; Mosteller & Nogee, 
1951; Tversky & Shafir, 1992). Computational choice models such as the drift-diffusion 
model can offer an explanation: it is rational for the decision maker who values her time to 
delay the decision until a certain threshold of confidence is reached, and this delay is longer if 
the values of the options are closer to each other  (Alós-Ferrer et al., 2016; Busemeyer, 1985; 
Busemeyer & Rapoport, 1988; Busemeyer & Townsend, 1993; Echenique & Saito, 2017; 
Fudenberg et al., 2018; Harris et al., 2018; Hutcherson et al., 2015; Krajbich et al., 2010; 
Krajbich & Rangel, 2011; Moffatt, 2005; Rodriguez et al., 2014). This implies that if we 
present individuals with a series of decision problems, we could potentially identify their 
social preferences from their RTs.  

Returning to our example, if the experimenter also recorded RT data, she could also 
estimate the amount of decision conflict on any given trial.  Then a subject who always chose 
selfishly, but took longer time to decide between a $90/$10 and a $50/$50 allocations, could 
be shown to be more prosocial then another selfish subject who was very fast to pick the 
selfish option (Konovalov & Krajbich, 2019). This observation can thus allow us to 
differentiate between competing theories of social behavior.  

One such open question is whether cooperation is an innate, intuitive human trait, or 
whether we are inherently competitive. Over the last two decades, a few studies in economics 
and social science presented RT as a method to differentiate fast intuitive versus slow 
deliberative decisions. For instance, people who choose a better strategy (e.g. closer to the 
equilibrium play in the game-theoretical sense) in simple decision problems and strategic 
settings, tend to decide longer (Arad & Rubinstein, 2012; Rubinstein, 2007, 2016), and 
shorter RTs often reflect errors (Rubinstein, 2013). Agranov, Caplin, and Tergiman (2015) 
demonstrated that, within a single decision, over time, sophisticated players tend to display 
higher cognitive levels. These results led to a conjecture that we could classify decision as 
intuitive or deliberative be merely looking at RT, and conclude whether people used their 
fast, habitual decision system 1 or slow, contemplative decision system 2 when they were 
making their decision (Kahneman, 2013). Specifically, a number of studies demonstrated that 
people are typically fast to make prosocial decisions and slow to make selfish decisions in 
simple games such as the public goods game or the prisoner’s dilemma (Bear & Rand, 2016; 
Piovesan & Wengström, 2009; Rand, 2016; Rand et al., 2012, 2014), and that intuition 



promotes cooperation: having less time to decide, people tend to go with the prosocial option 
(Rand et al., 2012). 

This model-free approach, however, suffered from a problem of “reverse inference”. It is 
tempting to use process data such as RT, classify this data based on a simple verbal theory, 
and apply this classification to a broad spectrum of decisions. But while we know that 
contemplative decisions tend to be long, it does not imply that each long decision is 
contemplative.  

The drift-diffusion framework predicts that for a selfish individual picking a selfish option 
is an easy fast choice, and so is picking a more equal split for an altruistic individual. This 
implies that if we offer the same decision problem (say, a choice between a 90$/10$ and a 
$50/$50 split between the subject and a stranger) to a set of subjects and measure the average 
response time, we will observe that one type of decisions will take longer than the other 
simply because some subjects (for instance, very selfish ones) would find this choice very 
easy, while the others (somewhat altruistic ones) will take some time to consider. In the end, 
we might end up having faster selfish decisions, just due to the parameters of the decision 
problem and the set of subjects we sampled (Krajbich et al., 2015). 

This example illustrates a very important point: process data can be misleading and is only 
truly useful in combination with a (hopefully) correct model of the data-generating process. 
The drift-diffusion model is the key point of the debate here: It allows to predict whether 
choices should be faster or slower in new contexts, based on independent measures. 

Note that, like the verbal theory of the dual decision system, this theory is also based on a 
set of assumptions: We must assume, in a formally defined way, that people accumulate 
evidence on the available options when they are deciding on social allocations. However, 
unlike the verbal dual systems theory, the evidence accumulation framework allows us to 
build quantitative predictions about both choices and RTs in various decision problems, both 
within and across individuals, demonstrating how RTs can help us disentangle various 
motives underlying social decisions. Note that the two approaches are not mutually exclusive, 
as it may be possible to reconcile the DDM with the dual-process approach (Caplin & Martin, 
2016). One way to do this is to assume that fast, automatic decisions are qualitatively 
different from contemplative decisions, which employ the DDM-style comparison process; 
this idea is yet to receive its validation with other types of process data such as fMRI. 

 
3.5. Tracking social learning and choice processes 

Gaze data are typically used as a measure of attention, which is often divided into the 
bottom-up (observing and exploring the choice environment for the first time, guided by 
external stimuli) and top-down (goal-directed, internally initiated visual search) components 
(Katsuki & Constantinidis, 2014). Both are important for studies of decisions: Investigating 
bottom-up attention can help us understand how context and environmental factors (for 
instance, the size and order of choice options) can affect our choices, while top-down 
attention reflects the steps of internal information acquisition strategy (Coricelli et al., 2020). 

One cheap and easy way to study attention is mouse-tracking. Many studies of behavior in 
strategic games used the so-called “mouse-lab” technique, where certain options or payoffs in 
the game were hidden behind boxes that the subject had to click on to observe the number. 
While this approach has yielded many useful observations (such as that in complex games 
individuals do not explore all possible options (Bigoni, 2010; Bigoni & Fort, 2013; Brocas et 
al., 2014, 2018; Chen et al., 2018; Costa‐Gomes et al., 2001; Gordon‐Hecker et al., 2020; 
Johnson et al., 2002)), some argue that the process of clicking is too invasive and costly for 
the participants (Glöckner & Betsch, 2008). Eye-tracking is not strongly affected by these 
considerations, since it is minimally invasive and does not require any additional actions from 
the subject. 



In the social decision domain, eye-tracking has been used extensively to study the process 
of decisions in strategic games (Coricelli et al., 2020). In these studies, the subject typically 
observes the payoff matrix of a game, where each row (or column) represents their own 
choice, and the column (or the row) shows the choice of the opponent. Each cell then shows 
the outcome of each choice combination, namely the payoffs of both players. One famous 
example is the Prisoner’s Dilemma (PD): both players choose either to cooperate or defect, 
and while mutual cooperation is the best social outcome, for both players defection is the 
dominant strategy: independent of the opponent’s choice, it is more beneficial (individually) 
to defect.  

Classic game-theoretic models assume that individuals are rational and fully informed, so 
they use all available information (in our case, payoffs of themselves and the opponent) to 
make their choices. If all players are rational, the game results in the equilibrium behavior: 
upon the outcome, no player has an incentive to deviate from the chosen strategy (Camerer, 
2003). In the PD game, the rational thing to do is to always defect. However, real people (in 
the laboratory) often deviate from the equilibrium play (for instance, cooperate in the PD), 
even with experience, displaying bounded rationality. Process data such as eye-tracking can 
help us understand whether this may reflect their information acquisition strategy, which may 
be based on their individual preferences or beliefs. 

If the matrix presented on the screen is large enough, we can assume that the subject will 
look at each payoff to process that information (since their peripheral vision is not accurate 
enough) and that thus, if a payoff was not gazed at, the subject cannot possibly use it in her 
decision. For instance, if the subject did not look at the payoffs of other player in the PD, it 
might indicate several possibilities: Perhaps their choice model does not include social 
preferences, or they fail to understand that the other player’s payoff impact the outcome of 
the game. 

Using eye tracking, several studies showed that individuals indeed greatly vary in their 
information processing, and that impacts on their strategic choices (Costa-Gomes & 
Crawford, 2006; Devetag et al., 2016; Hausfeld, Fischbacher, et al., 2020; Hausfeld, von 
Hesler, et al., 2020; Knoepfle et al., 2009; Polonio et al., 2015; Polonio & Coricelli, 2019; 
Stewart et al., 2016; Wang et al., 2010; Zonca et al., 2019, 2020). Some individuals just 
compare their own payoffs to the opponent’s payoffs within each cell, others do not consider 
the opponent’s payoffs at all, and some participants carefully consider the whole payoff 
matrix. The studies revealed that these attentional strategies are stable within individual and 
predict deviations from the equilibrium play. 

It is important to recognize here that we still do not completely understand whether these 
information sampling strategies simply reflect subjects’ preferences (see section 3.1) or are a 
result of habits or heuristics that are completely independent from social behavior. Eye- and 
mouse-tracking data, combined with control non-social tasks, could give insight into the role 
of information acquisition strategies in social choice and determine under which conditions it 
might be influenced by bottom-up factors (such as display design) or top-down 
considerations (such as goals and preferences of individuals). Eventually, these insights can 
help us build new models of strategic interactions that explicitly include the attentional 
component. 

 
3.6. Neural data and model validation 

Many early fMRI studies used simple verbal behavioral models or identified correlates of 
explicit decision variables (such as rewards, monetary amounts, and types of decisions). 
These studies identified specific regions that represent social values (Bartra et al., 2013; 
Clithero & Rangel, 2014) or others’ intentions (Cooper et al., 2010), maintain trust (Chang et 
al., 2011a; Sanfey et al., 2003), make us win in auctions (Delgado et al., 2008), guide our 



strategic interactions (Coricelli & Nagel, 2009) and cooperation and competition decisions 
(Decety et al., 2004), provide us with theory of mind (Saxe, 2006; Saxe & Kanwisher, 2003), 
to name a few. These studies created a concept of the “social brain”, a network of regions that 
includes the dorsomedial prefrontal cortex (dmPFC), precuneus, left and right 
temporoparietal junctions (TPJ), and left and right temporal poles. All these regions are 
typically implicated in a wide variety of social tasks. 

Many studies have now suggested that we should use neural data to build a more 
mechanistic model of the decisions in the brain, where the same regions perform the same 
algorithmic computations in multiple domains including both social and non-social tasks 
(Lockwood et al., 2020). This approach can potentially allow us to understand whether the 
brain employs some kind of “common value currency” for social and non-social decisions 
(both social and non-social evaluations, for instance, evoke responses in the ventromedial 
prefrontal cortex and the ventral striatum (Lin et al., 2012)), or whether there is some “social-
specific cognition” implemented in the brain (Ruff & Fehr, 2014).   

Specifically, using neural data can help us to validate the specific components of 
computational models (i.e., latent variables that reflect various stages of the decision 
process). One prominent example of validation of behavioral models using neural data is the 
study of reward learning and belief updating. A seminal study in monkeys (Schultz, 1997) 
demonstrated that the dopamine neurons in the midbrain encode prediction errors: fire when 
the reward is not expected, but delivered (positive prediction error), and suppress activity 
when the reward is expected, but not delivered (negative prediction error).  

Later experiments using neural data found evidence for similar prediction error-based 
updating in social beliefs in humans. One example is strategic beliefs (Hampton et al., 2008): 
it has been shown that first-order beliefs correlate with activity in the dorsomedial prefrontal 
cortex (dmPFC) (Behrens et al., 2008; Bhatt & Camerer, 2005; Hampton et al., 2008; Zhu et 
al., 2012), while second-order beliefs correlate with activity in the right temporoparietal 
junction (rTPJ) (Bhatt et al., 2010; Hampton et al., 2008; Hill et al., 2017). These studies 
demonstrated how these two latent components (first- and second-order beliefs) can be 
independently identified using neural data, by detecting the regions potentially performing 
these computations. The goal of building better models of social interactions clearly overlaps 
here with the goal of better understanding the human brain.  

The same computational approach can be applied to many other domains, from learning of 
social value (FeldmanHall et al., 2017, 2018) and updating social impressions (Ma et al., 
2012; Mende-Siedlecki et al., 2013) to observational learning (Burke et al., 2010; Charpentier 
et al., 2020; Dunne et al., 2016; Lindström et al., 2018; Park et al., 2019; Suzuki et al., 2012), 
conformity (Huber et al., 2015; Klucharev et al., 2009) and morality (Crockett, 2013; 
Crockett et al., 2013; Hutcherson et al., 2015).  

Since fMRI has been applied to basically any aspect of social decisions (preferences, 
choice, and learning), we cannot potentially cover all studies that use neural data here (for 
extensive reviews, see Charpentier & O’Doherty, 2018; Chen & Hong, 2018; Fehr & 
Krajbich, 2014; Hackel & Amodio, 2018; Kliemann & Adolphs, 2018; Konovalov et al., 
2018; Ruff & Fehr, 2014; Stanley & Adolphs, 2013; Zhang et al., 2020). However, we can 
emphasize that we are still in the very early stages of our understanding of the human brain. 
We believe that we need to shift our focus from functional specializations of single areas to 
understanding of the causal relationships between larger brain networks, as well as from 
testing idiosyncratic social situations to more mechanistic understanding of social decisions 
and finding common model components across different social domains.  

One notable example is the role of the social brain network and specifically the 
temporoparietal junction (TPJ) in the social decision making. While these “social” regions 
have been implicated in many social choice domains, their exact functional roles, 



communication patterns, and involvement in non-social tasks remain a puzzle. It is now clear 
that the TPJ does not just process theory of mind or compute higher-order beliefs, but is also 
involved in attention re-orientation and other non-social cognitions (Carter & Huettel, 2013). 
It appears that activations in “social” brain regions might be just a part of more domain-
general cognitive mechanisms (such as updating the cognitive map of the world, forming 
beliefs, evaluation and updating of rewards, and so on) that are simply pertinent to complex 
decisions such as social behavior.  Using neural data thus can help us to identify the 
neurocomputational mechanisms that are shared by non-social and social decisions (for 
instance, belief updating or mapping states of the world to actions). Another important aspect 
that has been understudied is temporal dynamics of social decisions: While EEG has been 
extensively applied in the studies of perceptual decision making, it can be invaluable in 
pinning down the within-trial dynamics of social choice but has not been as widely used in 
social neuroscience as fMRI (Zhang, 2018). 

 
4. STUDYING CHOICE MODELS USING PROCESS DATA: GAPS AND NEW 
DIRECTIONS 

 
In this section, we will identify gaps in the existing literature and offer potential future 

directions for the use of process data in social science. Certain types of process data have 
been predominantly used to study quite specific aspects of decision models, but the same data 
could – and should – be used to study other domains as well. Table 1 presents an overview of 
studies discussed in Section 3, split by the type of model (preference, choice, and learning) 
and the type of process data (RT, eye-tracking, mouse-tracking, neural data, and brain 
stimulation); while some cells of this table contain many studies, other ones still have strong 
potential for new applications. 

While there has been a lot work investigating the relationship between social preferences, 
decision mechanisms, and RT (see Spiliopoulos & Ortmann (2017) for a deeper review), 
work on how learning mechanisms can be investigated with RTs, especially in social settings, 
is scarce. One promising approach is the combination of the DDM-type choice mechanism 
and learning models (Spiliopoulos, 2018; Tarantola et al., 2017), using computational models 
to make predictions about choices and RT at the same time. These models can pin down the 
role of priors in social decision making, as well as the dynamics of social belief updating, 
using not just binary choice data, but also continuous estimates of RT. One important 
question here is whether social cognition employs a similar value updating and comparison 
process as simple perceptual and economic decisions.  

Another promising line of work is the relationship between strategic sophistication and RT 
in various types of game settings (Alós-Ferrer & Buckenmaier, 2020; Alós-Ferrer & Ritschel, 
2018; Rubinstein, 2016). As we discussed above, individuals tend to make better decisions in 
social settings if they take longer time to decide. However, first, there are many factors that 
influence these decisions, such motor skills, demographic characteristics, preferences, 
decision strategies, cognitive abilities, and many others. One important future challenge is to 
categorize and classify these types of influences in social decisions. Second, if decision times 
can be observed, other individuals can make their own inferences about the others’ 
preferences and decisions and might adjust their behavior by simply perceiving others’ 
response times. This effect might have important implications for many economics 
interactions such as bargaining (a seller might infer a buyer’s strength of preference even if 
she declines the initial offer). 

 
 
 



Table 1. Studies using process data in model-based social decision-making 
 

Preferences Choice Learning 

Response times Hutcherson et al., 2015; Johnson 
et al., 2017; Chen & Krajbich, 
2018; Bottemanne & Dreher, 
2019; Konovalov & Krajbich, 
2019; Hausfeld et al., 2020 

Rubinstein, 2007, 2016; Piovesan & Wengström, 
2009; Arad & Rubinstein, 2012; Rand et al., 2012, 
2014; Krajbich, Bartling, et al., 2015; Hutcherson 
et al., 2015; Agranov et al., 2015; Rubinstein, 
2016; Bear & Rand, 2016; Rand, 2016; Alós-
Ferrer & Ritschel, 2018; Alós-Ferrer & 
Buckenmaier, 2020; Golman et al., 2020; Alós-
Ferrer & Ritschel, 2021 

Spiliopoulos, 2018; Tarantola 
et al., 2017 

Eye-tracking Fiedler et al., 2013; Gharib et 
al., 2015; Jiang et al., 2016; 
Hausfeld et al., 2020; Barrafrem 
& Hausfeld, 2020; Fosgaard et 
al., 2020; Teoh et al., 2020  

Costa-Gomes & Crawford, 2006; Knoepfle et al., 
2009; Wang et al., 2010; Devetag et al., 2016; 
Polonio et al., 2015; Stewart et al., 2016; Polonio 
& Coricelli, 2019; Zonca et al., 2019, 2020; 
Hausfeld, von Hesler, et al., 2020; Teoh et al., 
2020 

Knoepfle et al., 2009 

Mouse-tracking Brocas et al., 2014; Hausfeld et 
al., 2020; Gordon‐Hecker et al., 
2020 

Costa‐Gomes et al., 2001; Johnson et al., 2002; 
Bigoni, 2010; Bigoni & Fort, 2013; Brocas et al., 
2014; Brocas et al., 2018; Chen et al., 2018 

Bigoni, 2010; Bigoni & Fort, 
2013 

Neural data Tricomi et al., 2010; Chang et 
al., 2011; Morishima et al., 
2012; Emonds et al., 2012; 
Crockett, 2013; van den Bos et 
al., 2013; Crockett et al., 2013; 
Hutcherson et al., 2015; 
Lockwood et al., 2016; 
Soutschek et al., 2017; Holper et 
al., 2018; Harris et al., 2018 

Bhatt & Camerer, 2005; Crockett, 2013; Crockett 
et al., 2013; Hutcherson et al., 2015; Tusche & 
Hutcherson, 2018; Harris et al., 2018 

Bhatt & Camerer, 2005; 
Behrens et al., 2008; 
Hampton et al., 2008; 
Klucharev et al., 2009; Burke 
et al., 2010; Bhatt et al., 
2010; Cooper et al., 2010; 
Zhu et al., 2012; Ma et al., 
2012; Suzuki et al., 2012; van 
den Bos et al., 2013; Mende-
Siedlecki et al., 2013; Huber 
et al., 2015; Lockwood et al., 
2015; Dunne et al., 2016; 
Lockwood et al., 2016; Hill et 
al., 2017; FeldmanHall et al., 
2017, 2018; Lindström et al., 
2018; Lockwood et al., 2018; 
Park et al., 2019; Charpentier 
et al., 2020 

Brain 
stimulation 

Knoch et al., 2006; Silani et al., 
2013; Young et al., 2010  

Knoch et al., 2009; Wout et al., 2005; Ruff et al., 
2013  

Hill et al., 2017  

 
 
Finally, we also know from non-social tasks that RTs can reflect uncertainty, surprise, and 

prediction errors, also represented in neural data (Chumbley et al., 2014; Konovalov & 
Krajbich, 2018; O’Reilly et al., 2013; Schiffer et al., 2012). In a standard serial reaction time 
task (SRT), a subject is instructed to respond to a stimulus with a corresponding button press.  
Typically, if the stimulus is expected (surprise is low, and probabilistic belief of the 
individual that this specific stimulus will appear on the screen is high), then individuals tend 
to react faster than in the case when the uncertainty of beliefs about which stimulus to expect 
is high. This approach can be easily applied to the study of belief formation if the researcher 
separates the process of choice from the process of observing the outcome (by additionally 
requiring an outcome reaction). This way reaction times could provide a rich set of data 
directly measuring first-order beliefs in repeated social interactions such as competitive 
games, trust games, and cooperative decisions. 

A similar approach can be employed using mouse-tracking. For instance, the researcher 
can use mouse cursor position to infer decision conflict, subjective beliefs, and other latent 
variables that do not just reflect information acquisition strategies (as discussed in section 3). 
Studies in individual decision making demonstrated that mouse-tracking can be used in 
multiple ways: to track cursor trajectories and map them to drift-diffusion models (Sullivan et 



al., 2015), estimate subjective beliefs (Konovalov & Krajbich, 2020), and track categorization 
decisions (Stillman et al., 2018). 

While there has been significant progress in our understanding of strategic decisions, there 
are still gaps in the literature in terms of applying the eye-tracking technique to study 
preference formation, learning, and belief updating. Jiang et al. (2016) and Fiedler et al. 
(2013) show that the degree of attention to other’s payoffs can explain social value 
orientation, but there is still much work to be done to demonstrate the causal role of attention 
in social decisions. One potential line of work here is causal manipulation of attention in 
social decisions (for instance, nudging people to donate more for charity by adjusting the 
display, or achieving better outcomes in public goods problems). Another application of eye-
tracking that could be borrowed from individual decision making (Bakst & McGuire, 2020) is 
the use of predictive gaze paradigms (in which a stimulus appears on the screen and its 
location has to be predicted by shifting one’s gaze towards it) to quantify social beliefs. 

Another promising direction for eye-tracking is the use of pupillometry. It has been noted 
that pupil size might carry social information (Ebitz et al., 2014; Kret & De Dreu, 2019), 
signal dishonest behavior (van Breen et al., 2018), or condition and promote trust (Kret & De 
Dreu, 2017; Prochazkova et al., 2018). However, pupil data have been rarely used to validate 
computational models – particularly so in the social domain. Nevertheless, recent evidence 
from studies on perceptual and individual value-based decision making indicates that pupil 
dilation can be linked to specific decision-mechanisms such as the drift-diffusion process  
(Cavanagh et al., 2014; de Gee et al., 2014; Ebitz & Platt, 2015; Urai et al., 2017). An 
interesting avenue for future studies is thus to characterize potentially corresponding 
mechanisms at work during social decision making. 

Finally, we want to emphasize that in most studies of social behavior, process data are 
identified as a mere correlate of potential decision mechanisms (or latent variables). It is 
therefore important to use the insights from process data analyses to build mechanistical 
models of social decisions.  These models can provide predictions for (a) new experimental 
interventions that could vary conditions and contexts that influence specific decision 
mechanisms, or (b) brain stimulation protocols that affect behavior by disrupting or 
enhancing activity in the brain regions that are shown to perform the computations 
underlying these mechanisms. While the process data analysis could potentially allow us to 
identify information sampling strategies or specific brain regions responsible for specific 
computations, only interventional techniques (brain stimulation, pharmacological 
interventions, or new experimental designs) can provide a causal test of the role of these 
specific computations for social choice. 

On the most basic level, process data can motivate new experimental designs. If RT, gaze 
data, or neural data confirm that a specific stimulus or parameter of the experiment can 
change the underlying mechanism (measured by process data), which eventually affects 
behavior, the experimenter could change this stimulus or parameter and causally demonstrate, 
using process data, that this specific mechanism indeed determines choice (for instance, by 
manipulating the size of payoff in a strategic game, showing that attention to payoffs impacts 
strategic choices). 

A more advanced approach is non-invasive brain stimulation and pharmacological 
interventions that affect neural processes. Transcranial magnetic stimulation (TMS) is a 
popular non-invasive technique that uses brief, high-intensity magnetic field to excite or 
inhibit a small brain area close to the scalp. Many studies, inspired by model-based fMRI, 
showed that disrupting the brain activity in the dorsolateral prefrontal cortex (dlPFC) or TPJ 
can influence individual behavior. For instance, it can change fairness preferences (Knoch et 
al., 2006), change behavior in the ultimatum game (Knoch et al., 2009; Wout et al., 2005), 
decrease the use of second-order beliefs (Hill et al., 2017), change social norm compliance 



(Ruff et al., 2013), social judgement (Silani et al., 2013), and moral judgement (Young et al., 
2010). While the use of this method is restricted to the surface regions of the brain, it can 
provide invaluable causal validation of the functional role of specific neural processes in the 
decision mechanisms. As a more concrete example, we knew from fMRI studies that activity 
in the temporoparietal junction (TPJ) is correlated with second-order belief updates 
(Hampton et al., 2008). However, mere correlation does not imply that this region is involved 
in processing these beliefs and making strategic decisions; for instance, this activity might be 
just a co-manifestation of activity in another region that is functionally connected to the TPJ. 
Based on these considerations, a combined TMS-fMRI study demonstrated this causality, by 
showing that disruption of activity in the TPJ indeed affects both TPJ activity/connectivity as 
well as behavior - making individuals rely less on second-order belief updating – as predicted 
by a computational model of TPJ function in this context (Hill et al., 2017).  

Another potential way of influencing neural processes is pharmacological interventions. 
For instance, some studies demonstrate that the hormone oxytocin might affect social 
behavior (Aydogan et al., 2017; Baumgartner et al., 2008), however some of these effects 
tend to be weak when tested in larger subject samples (Declerck et al., 2020; Nave et al., 
2015). Nevertheless, these manipulations, combined with neural data, can potentially help us 
establish more direct links between process data about biological processes and motives and 
cognitive processes specified by computational models of social behavior.  
 
5. CONCLUSION  

Process data are increasingly used in the studies of social decisions. Here we described the 
main types of such data (response times, mouse- and eye-tracking, and neural data) and how 
they are used to validate and improve computational models of social behavior. We believe 
that this is a promising approach that will allow us to better understand human behavior and 
create better policy interventions, for at least four reasons. First, process data can allow us to 
validate mechanistic components of computational models such as parameters and latent 
variables. Second, we can use process data to differentiate between competing theories of 
social behavior, by building models that make predictions for new decision situations and 
new sets of subjects. Third, process data can track distinct components of the decision 
process such as information sampling and pin down the specific role of these components in 
preference formation and belief updating. Finally, process data can motivate new 
interventions such as new behavioral experiments and causal manipulations of neural activity 
or attention. 

While some methods (such as fMRI) have been extensively applied to the study of social 
decisions, some remain uncommon, but could be used creatively in future studies. As we 
pointed out, some of the process data methods are more popular within specific model 
frameworks, but remain underused in other settings. As an example, we would welcome new 
applications of EEG, eye-tracking, and mouse-tracking to study social preference formation, 
as well the use of RTs to investigate the process of belief updating in strategic settings. 
Process data can also stimulate development of models that do not just predict choice, but 
also the process data themselves. While prediction of RTs with evidence accumulation 
models is very common, it might be beneficial to use the same model to predict the gaze data 
(Krajbich et al., 2010) or the neural data (Turner et al., 2013) at the same time as the choices. 
Explaining and predicting choices is an important goal, but richer computational models that 
also predict corresponding processes (and the corresponding data) can help us arbitrate 
between competing theories of social motives.  While brain stimulation has been applied in 
certain paradigms, it is still not as common as fMRI, and simultaneous use of fMRI and TMS 
could provide valuable insights into functional roles of the cortical brain regions (Polanía et 
al., 2018). 
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