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RAMSEY NUMBERS WITH PRESCRIBED RATE OF GROWTH

MATÍAS PAVEZ-SIGNÉ, SIMÓN PIGA, AND NICOLÁS SANHUEZA-MATAMALA

Abstract. Let R(G) be the two-colour Ramsey number of a graph G. In this note,

we prove that for any non-decreasing function n 6 f(n) 6 R(Kn), there exists a

sequence of connected graphs (Gn)n∈N, with |V (Gn)| = n for all n > 1, such that

R(Gn) = Θ(f(n)). In contrast, we also show that an analogous statement does not

hold for hypergraphs of uniformity at least 5.

We also use our techniques to answer a question posed by DeBiasio about the

existence of sequences of graphs whose 2-colour Ramsey number is linear whereas

their 3-colour Ramsey number has superlinear growth.

1. Introduction

For a graph G and r > 2, the r-colour Ramsey number Rr(G) of G is the smallest

number n such that every r-edge-colouring of the edges of the complete graph Kn

contains a monochromatic copy of G, that is, a copy of G with all its edges in the same

colour. For r = 2 we will simply write R2(G) = R(G) and refer to this as the Ramsey

number of G. The most notorious open problem here is to determine the Ramsey

number of cliques. The classical bounds on R(Kn) by Erdős [Erd47] and Erdős and

Szekeres [ES35] imply that
√
2
n
6 R(Kn) 6 4n, so R(Kn) is exponential in n, but

despite tremendous efforts its exact behaviour remains unknown.

In general, if a graph G on n vertices has m edges, then 2Ω(m/n) 6 R(G) 6 2O(
√
m),

where the lower bound follows from a probabilistic construction and the upper bound

was shown by Sudakov [Sud11]. Given additional structure on G, there are many cases

where we can even obtain R(H) = O(n). This holds, for instance, for graphs with

bounded maximum degree [Chv+83], bounded arrangeability [CS93], and bounded

degeneracy [Lee17]. We recommend [CFS15] for a survey in the area.

As we have seen, the Ramsey number of an n-vertex graph can vary between linear

and exponential in n. A natural question is thus to ask which values (between n

and R(Kn)) can be attained as the Ramsey number of some n-vertex graph. The

aim of this note is to study this question, and, in particular, to determine which

functions f : N → N, with n 6 f(n) 6 R(Kn) for all n ∈ N, are the rate of growth of

the Ramsey numbers of some sequence of n-vertex graphs.

It is natural here to restrict our analysis to connected graphs. Note that after

adding n−r isolated vertices to an r-vertex graph H, we end with an n-vertex graph H

satisfying R(H ′) = max{n,R(H)}. This means that we can obtain values for the

Ramsey number of n-vertex graphs which in essence correspond to the Ramsey number

of r-vertex graphs; restricting to connected graphs rules out such constructions. Our

first result is that every function can be attained as the rate of growth of some sequence

of graphs, up to a multiplicative factor.

Theorem 1. There exist positive constants C and n0 such that for every non-decreasing

function f : N → N, with n 6 f(n) 6 R(Kn), there exists a sequence of connected

graphs (Gn)n∈N such that for all n > n0, |V (Gn)| = n and f(n) 6 R(Gn) 6 Cf(n).
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In other words, we have R(Gn) = Θ(f(n)), where the implicit constants do not

depend on the function f . We remark that by a result of Burr and Erdős [BE76]

on the Ramsey number of trees, it is known that every n-vertex connected graph G

satisfies R(G) > ⌈43n⌉ − 1; thus taking the function f(n) = αn for any 1 6 α < 4/3

shows that the conclusion of Theorem 1 cannot hold with R(Gn) = (1 + o(1))f(n)

instead. We discuss the structure of these ‘gaps’ further in Section 5.

Our second result concerns k-uniform hypergraphs. A k-graph H is a pairH=(V,E)

where V is the set of vertices of H and every edge e ∈ E is a k-element subset of V .

For n ∈ N, the k-uniform clique on n vertices K
(k)
n is the hypergraph consisting of n

vertices such that every k-element subset of vertices is an edge. Given a k-graph H,

the Ramsey number R(H) of H is the smallest number n such that every red-blue

colouring of the edges of K
(k)
n yields a monochromatic copy of H.

We prove that an analogous of Theorem 1 fails for k-graphs if k > 5 (even without

any kind of connectivity restrictions).

Theorem 2. Let k > 5. There exists a non-decreasing function f : N → N with

n 6 f(n) 6 R(K
(k)
n ), such that for all c, C >0 and any n0, there is an n>n0 such that

R(H) 6 cf(n) or R(H) > Cf(n)

for every n-vertex k-graph H.

Using our techniques we can also answer a question posed by DeBiasio [DeB],

who asked about the existence of a sequence Gn of graphs where R2(Gn) is linear

whilst R3(Gn) is superlinear. Similar differences in behaviour depending on the num-

ber of colours have been observed before in infinite graphs (see [CDM20, Section 10.1])

and in k-graphs with k > 3 (see [CFR17]). We answer DeBiasio’s question in the

affirmative.

Theorem 3. There exists a sequence (Gn)n∈N of graphs such that |V (Gn)| = n,

R2(Gn) = O(n) and R3(Gn) = Ω(n log n).

The graphs we construct for Theorem 3 have isolated vertices. If we insist on

sequences of connected graphs, we can get the following.

Theorem 4. There is a sequence (Gn)n∈N of connected graphs such that |V (Gn)| = n,

R2(Gn) = O(n log n) and R3(Gn) = Ω(n log2 n).

2. Proof of Theorem 1

Conlon, Fox and Sudakov [CFS20] proved that the Ramsey number of a dense graph

cannot decrease by much under the deletion of one vertex. A graph on n vertices has

density d if it has d
(n
2

)

edges.

Lemma 5 ([CFS20]). There exists a constant c > 0 such that for every graph H of

density at least d and any graph H ′ obtained by deleting a single vertex from H, we

have R(H) 6 (c log(1/d)/d)R(H ′).

The following is an immediate corollary.

Lemma 6. There exist c1, c2 > 0 so that for any n > 1,

(i) R(Kn+1) 6 c1R(Kn),

(ii) R(Kn+1,n+1) 6 c2R(Kn,n).

We also need bounds on the Ramsey number of a path Pn with n edges, which is

due to Gerencsér and Gyarfás [GG67].
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Lemma 7. For every n > 1, R(Pn) = ⌈(3n + 1)/2⌉.
We shall also use a lower bound on the Ramsey number of complete bipartite graphs,

which follows from a standard probabilistic construction.

Lemma 8. For t > 1, R(Kt,t) > 2t/2.

We are now ready for the proof of our first result.

Proof of Theorem 1. Let f : N → N be a non-decreasing function such that n 6

f(n) 6 R(Kn) for all n ∈ N. Fixing a large n ∈ N, we will construct an appropriate

n-vertex graph Gn. We will split the proof into two cases, depending on how large

f(n) is. In fact, the two ranges we consider are not disjoint, but they are enough to

cover all possibilities between n and R(Kn).

Case 1: n 6 f(n) 6 2n/8. We construct the graph Gn as follows. Let t be the

minimal number such that R(Kt,t) > f(n). We note that by the choice of t, we have

R(Kt−1,t−1) 6 f(n) < R(Kt,t). By Lemma 8, we have 2(t−1)/2 6 f(n) and thus

t 6 2 log2(f(n)) + 1. Since f(n) 6 2n/8, we certainly have 2t 6 n. Construct Gn by

taking Kt,t and joining it to a path on n− 2t new vertices, so |V (Gn)| = n.

The lower bound on R(Gn) follows from the fact that Kt,t ⊆ Gn and the definition

of t, as

R(Gn) > R(Kt,t) > f(n).

Now we show that R(Gn) 6 6c2f(n), where c2 is the constant appearing in Lemma 6.

Let N = 6c2f(n) and consider any red-blue colouring of the edges ofKN . By Lemma 7,

KN must contain a monochromatic path P on at least 2N/3 > 4c2f(n) vertices, which

we may assume is red. Let P ′ ⊆ P be obtained by removing n vertices in one of its

extremes, so that P ′ is a red path on at least 4c2f(n)− n > 3c2f(n) vertices.

Let S = V (P ′). Note that if S contains a red monochromatic copy of Kt,t, then we

surely obtain a red copy of Gn. Hence, we may assume that S contains no red copy

of Kt,t. Note that by Lemma 6, we have

R(Kt,t) 6 c2R(Kt−1,t−1) 6 c2f(n) .

Thus we can greedily find vertex-disjoint blue monochromatic copies K1, . . . ,Ks of Kt,t

in S until less than c2f(n) vertices remain uncovered. Note that these copies cover

together at least |S| − c2f(n) > 3c2f(n)− c2f(n) > f(n) > n vertices.

For all 1 6 i 6 s, let Ai, Bi be the two classes of Ki. Given 1 6 i < s, note that not

all edges between Bi and Ai+1 can be red, as that would yield a red monochromatic

copy of Kt,t in S. Therefore, there are blue edges e1, . . . , es−1 where each ei has one

endpoint bi ∈ Bi and other endpoint ai+1 ∈ Ai+1. Let a1 ∈ A1 be arbitrary. For

all 1 6 i < s, take a blue path Pi ⊆ Ki which spans V (Ki) and has endpoints ai and

bi. Thus, the concatenation P1 + e1 + · · · + Ps−1 + es−1, together with Ks, forms a

blue copy of Gn, as required.

Case 2: 2n log2 n 6 f(n) 6 R(Kn). Take t minimal subject to R(Kt) > f(n). Clearly,

such t always exists and is at most n. Thus, we have R(Kt−1) < f(n) 6 R(Kt).

Moreover, since R(Kr) > 2r/2 holds for all r, we know that t 6 min{n, 2 log2 f(n)}.
By Lemma 6, we also know that R(Kt) 6 c1R(Kt−1) 6 c1f(n).

Let Gn be the graph consisting of Kt joined to a path on n − t new vertices, so

that Gn is a connected graph on n vertices. We know that R(Gn) > R(Kt) > f(n).

Let N = 6c1f(n) where c1 comes from Lemma 6. We want to show that R(Gn) 6 N .

Suppose there is no monochromatic copy of Gn in KN . As before, we may find a

monochromatic path on at least 2N/3 = 4c1f(n) vertices, and suppose it is red. We

remove n vertices from the beginning of the path to obtain a set S on at least 3c1f(n)
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vertices. Since there is no red copy of Kt in S, all monochromatic copies of Kt in S

are blue. As R(Kt) 6 c1f(n), we can find vertex-disjoint blue copies of Kt in S until

at most c1f(n) vertices remain. These copies together cover at least 2c1f(n) vertices

of S. Let Q1, . . . , Qr be the r copies of Kt found in this way.

Define a clique-path P to be a sequence of vertex-disjoint blue cliques Q1, . . . , Ql

such that for each 1 6 i < l there is a blue edge ei between Qi and Qi+1, and the

edges ei are vertex-disjoint for all 1 6 i < l.

Claim 9. There is a set of at most t − 1 clique-paths that together cover all cliques

Q1, . . . , Qr exactly once.

Proof. Suppose otherwise and let P1, . . . , Pt−1 be t−1 clique-paths which use pairwise-

disjoint sets of cliques and together use the maximum possible number of cliques. Let

P0 = Q0 be a clique-path consisting of any clique not used by any Pi, and for each

1 6 i 6 t − 1, let Qi be an “end-clique” of each Pi. In each Q0, . . . , Qt−1, we select

a vertex qi which is not in any of the edges of the clique-paths. Since S contains no

red Kt, there must be a blue edge between some pair qiqj. But then we can merge Pi

and Pj into a longer clique-path using the blue edge qiqj, and thus we have found a

set of t− 1 clique-paths covering one more clique, a contradiction. �

Therefore, there is a clique-path which uses at least r/(t − 1) > r/t cliques. In

such a clique-path we can easily find a blue clique Kt together with a blue path which

together use at least t · (r/t) = r vertices. Thus we are done if r > n. Indeed,

since the cliques use 2c1f(n) vertices in total and each clique has t vertices, we have

at least r > 2c1f(n)/t > f(n)/min{n, log2 f(n)}, where in the last inequality we

used c1 > 1 and t 6 min{n, log2 f(n)}.
If f(n) 6 2n then min{n, log2 f(n)} = log2 f(n), and therefore the bound in the

previous paragraph becomes r > f(n)/ log2 f(n) > 2n log2 n/ log2(2n log2 n) > n, as

required. Otherwise, if f(n) > 2n, then min{n, log2 f(n)} = n, in which case we

obtain r > f(n)/n > n. �

3. Proof of Theorem 2

For k-graphs, the so-called ‘stepping-up lemma’ by Erdős, Hajnal, and Rado [EHR65]

allows us to deduce a tower-type lower bound for the Ramsey number R(K
(k)
n ) for ev-

ery k > 3, namely

2an
2

6 log(k−2)(R(K(k)
n )), (1)

where a > 0 is a constant depending only on k and log(i)(·) denotes the ith iterated

logarithm.

Proof of Theorem 2. Let k>5. We find a function g : N → N, with n6g(n)6R(K
(k)
n )

as follows. For every n ∈ N, let In = [log n, logR(K
(k)
n )] be an interval in R. Note

that, since k > 5, inequality (1) implies that

logR(K(k)
n )− log n > 22

an − log n.

Since the number of k-graphs on n vertices is at most 2n
k

, by averaging we find a

sub-interval I ′n ⊆ In which does not contain logR(H) for any n-vertex k-graph H, and

such that I ′n has length at least

22
an − log n

2nk
> 2n,
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where we used that n is sufficiently large. Let mn ∈ I ′n be the middle point of I ′n.

Then, for large n and every n-vertex k-graph H, we have

logR(H) 6 mn − n or logR(H) > mn + n. (2)

Let g : N → N be defined by g(n) = 2mn . Since mn ∈ In for large n, we have

n 6 g(n) 6 R(K
(k)
n ). Then, due to (2) we deduce that for every n and every n-vertex

k-graph H,

R(H) 6 2−ng(n) or R(H) > 2ng(n) .

In particular, for every two positive constants c, C > 0 and for every a sufficiently

large n, we have R(H) < cg(n) or R(H) > Cg(n), as required.

Note that g might decrease. To overcome this, we define f : N → N by setting

f(1) = g(1) and, for n > 2,

f(n) =

{

g(n) if g(n) > f(n− 1),

f(n− 1) if g(n) < f(n− 1) .

Thus, it is straightforward to check that f is non-decreasing and satisfies the desired

conditions. �

Notice that the proof of Theorem 2 relies on the fact that logR(Kk
n) = ω(2n

k

) for

every k > 5. Erdős, Hajnal, and Rado [EHR65] conjectured that the lower bound in

inequality (1) can be improved to log(k−1)(R(K
(k)
n )) for every k > 3, in which case

our proof of Theorem 2 works for 4-uniform hypergraphs as well. The situation for

3-uniform hypergraphs is not clear, even if this conjecture were true.

4. Proof of Theorems 3 and 4

We shall use the following simple lemma.

Lemma 10. For every graph G and connected H ⊆ G, we have

R3(G) > (χ(H)− 1)(R2(H)− 1) + 1 .

Proof. Let N = (χ(H) − 1)(R2(H) − 1). We construct a red-blue-green colouring of

KN as follows: partition V (KN ) into χ(H)− 1 sets V1, . . . , Vχ(H)−1 of size R2(H)− 1

each. Inside each Vi use colours red and blue in such a way that the colouring does

not contain a red-blue copy of H; and colour every other edge green.

This colouring does not contain a monochromatic copy of G. Indeed, an hypothetical

such copy cannot be red or blue, as otherwise there must exist a red or blue copy of

H. Since H is connected, such a copy of H must lie inside one of the sets Vi, but

we have chosen the red-blue edges so that this does not happen. Also, there are no

green copies of Gn, since the graph formed by the green edges is (t − 1)-partite but

χ(G) > χ(H) > t. We conclude that R3(G) > N . �

Proof of Theorem 3. Given n, let t be the least integer such that n 6 R2(Kt). By

choice, we have R2(Kt−1) < n and, by Lemma 6, we have R2(Kt) 6 c1R2(Kt−1) < c1n.

Let Gn be the graph obtained from Kt by adding n − t isolated vertices. Therefore,

|V (Gn)| = n and R2(Gn) = max{n,R2(Kt)} = R2(Kt) < c1n = O(n). On the other

hand, since n 6 R2(Kt) 6 4t; by the choice of t we know that t > 1
2 log2 n and therefore

by Lemma 10 we have R3(Gn) = Ω(n log n). �

Proof of Theorem 4. As in Case 2 of the proof of Theorem 1, by taking f(n) = 2n log2 n

we construct a sequence of connected graphs Gn with |V (Gn)| = n and R2(Gn) =

O(f(n)) = O(n log n).
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Note that in Case 2 the graphs Gn are formed by attaching a path to a clique.

More precisely, they contain a clique on t vertices with t > 1
2 log2 n and a path of

length n − t. Thus, we have χ(Gn) = Ω(log n) and therefore, by Lemma 10, we have

R3(Gn) > (χ(Gn)− 1)(R2(Gn)− 1) = Ω(n log2 n), as required. �

5. Concluding remarks

For n ∈ N, let us consider the sets

Rn = {R(G) : |V (G)| = n},
R◦

n = {R(G) : G does not contain isolated vertices and |V (G)| = n}, and

Rc

n = {R(G) : G is connected and |V (G)| = n}.

It is clear that Rc

n ⊆ R◦
n ⊆ Rn ⊆ [n,R(Kn)]. Observe that n ∈ Rn since R(Kn) = n,

where Kn corresponds to an independent set on n vertices. Furthermore, consider

a disjoint union of two stars Σa,b = K1,a ∪ K1,b. A result due to Grossman [Gro79]

implies that R(Σa,a−i) = 3a−2i for i ∈ {0, 1, 2}. Thus, by adding n−(2a− i+2) extra

isolated vertices to Σa,a−i and letting the value of a vary from ⌊n/3⌋ to ⌊(n − 2)/2⌋,
we can deduce that [n, ⌊3(n−2)

2 ⌋− 3] ⊆ Rn. Other families of sparse graphs can also be

used to show other inclusions of this kind.

As mentioned in the introduction, R(G) > ⌈43n⌉ − 1 holds for every connected

graph G on n vertices, and this bound is tight. In particular, it implies that

Rc

n ⊆
[

⌈

4
3n

⌉

− 1, R(Kn)
]

.

In a similar fashion, Burr and Erdős [BE76] showed that R(G) > n+log n−O(log log n)

holds for everyG ∈ R◦
n, which is almost tight as shown by Csákány and Komlós [CK99].

It would be interesting to get a better understanding of the structures of Rn, R◦
n,

and Rc

n.

Given a constant c>1, we say that a∈ [n,R(Kn)] is a c-gap for Rc

n if [a, ca]∩Rc

n = ∅.
It is not difficult to see that Theorem 1 is equivalent to the existence of a constant c > 1

for which Rc

n has no c-gaps for every sufficiently large n. In this direction a proper

(but non-empty) subset of the authors of this paper believe that the answer to the

following question should be affirmative.

Question 11. Does there exist an n0 ∈ N such that for every n > n0

Rn = [n,R(Kn)] and Rc

n =
[

⌈43n
⌉

− 1, R(Kn)
]

?

Observe that the first equality would imply that for every function f : N −→ N

with n 6 f(n) 6 R(Kn) there is a sequence of graphs (Gn)n∈N such that f(n) = R(Gn).

An analogous statement would hold for connected graphs if the second identity was

true.

Finally, observe that the proof of the first case of Theorem 1 can be modified by

replacing the rôle of Kt,t with a complete k-partite graph Kt,...,t. In this way, we may

ensure that every graph in the sequence (Gn)n∈N has an arbitrarily large chromatic

number.

Theorem 12. For every k>2, there are positive constants c, C, and n0 ∈ N such that

for every non-decreasing function f: :N → N, with n 6 f(n) 6 R(Kn), there is a

sequence of connected graphs (Gn)n∈N with |Gn| =n such that cf(n) 6 R(Gn) 6 Cf(n)

for all n ∈ N. Moreover, χ(Gn) > k for every n > n0.

It would be interesting to ensure other properties for the graphs in this sequence.

In particular, we believe the graphs can also be taken to have large connectivity.
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Conjecture 13. For every k > 2 and for every non-decreasing function f : N → N

with n 6f(n)6 R(Kn) there is a sequence of graphs (Gn)n∈N with |Gn|=n such that

R(Gn) = Θ(f(n)) , and Gn is k-connected for all n sufficiently large.

Acknowledgements. The authors thank Let́ıcia Mattos and Louis DeBiasio for use-
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