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A B S T R A C T   

The Variogram Analysis of Response Surfaces (VARS) has been proposed by Razavi and Gupta as a new 
comprehensive framework in sensitivity analysis. According to these authors, VARS provides a more intuitive 
notion of sensitivity and is much more computationally efficient than Sobol’ indices. Here we review these ar-
guments and critically compare the performance of VARS-TO, for total-order index, against the total-order 
Jansen estimator. We argue that, unlike classic variance-based methods, VARS lacks a clear definition of what 
an “important” factor is, and we show that the alleged computational superiority of VARS does not withstand 
scrutiny. We conclude that while VARS enriches the spectrum of existing methods for sensitivity analysis, 
especially for a diagnostic use of mathematical models, it complements rather than replaces classic estimators 
used in variance-based sensitivity analysis.   

1. Introduction 

Sensitivity analysis (SA) explores how uncertainty in the output of a 
model (numerical or otherwise) can be apportioned to different sources 
of uncertainty in the model input space (Saltelli, 2002).1 SA is especially 
needed when complex models, which often formalize partially known 
processes and include non-linear relations, are used to guide policies in 
the real world. This is generally the case of models in the Environmental 
Sciences domain, e.g. on crop water requirements, water availability 
under climate change, weather forecasting, surface runoff or precipita-
tion and evaporation processes (Döll and Siebert, 2002; Pappenberger 
et al., 2011; Vieux and Vieux, 2016; Wang et al., 2020). The un-
certainties in these models might be either parametric (i.e. exact values 
for parameters might be unknown, there might be errors in the mea-
surement) or structural (i.e. lack of knowledge on the underlying pro-
cesses, multiple ways of modeling the same phenomenon), and their 
combined effect on the model output should be understood to guarantee 
a robust inference for policy-making. In this context, SA jointly with 
uncertainty analysis is regarded as an unavoidable step to ensure the 
quality of the modeling process (Borgonovo and Plischke, 2016; Eker 
et al., 2018; Jakeman et al., 2006; Saltelli, 2019; Saltelli et al., 2020; 
Tarantola et al., 2002). 

In SA, as in all fields of computational research, different strategies 
and methods compete to establish themselves as “good”, “recom-
mended” or “best” practices. While variance-based methods and Sobol’ 
indices are deemed to belong to the class of recommended methods 
(Saltelli et al., 2008), other approaches have been proposed to com-
plement or overcome their limitations, i.e. entropy-based methods (Liu 
et al., 2006), the δ measure (Borgonovo, 2007), the Kuiper’ metric 
(Baucells and Borgonovo, 2013), or the PAWN index (Pianosi and 
Wagener, 2015, 2018). One of the most recent competitors is the Var-
iogram Analysis of Response Surfaces (VARS), proposed by Razavi and 
Gupta (2016a, 2016b). According to Google Scholar and as of November 
2020, the two foundational VARS papers have been cited 86 times, and 
seem to have been especially embraced by Hydrologists and Water 
Scientists (Jayathilake and Smith, 2020a, 2020b; Lilhare et al., 2020; 
Krogh et al., 2017). 

Razavi and Gupta (2016a, 2016b) report that VARS outperforms 
Sobol’ indices in two main aspects:  

1. It provides a more intuitive assessment of sensitivities and the 
importance of model inputs in determining the model output.  

2. It computes the total-order effect with a much higher computational 
efficiency (up to two orders of magnitude more efficient). 
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In the present work we explore these results and benchmark VARS 
against one of the best Sobol’ indices estimator, that of Jansen (1999). 
Before engaging in the discussion, we briefly recall hereafter some useful 
formulae needed to understand the two approaches. 

1.1. Sobol’ indices 

The apparatus of variance-based sensitivity indices, described by 
Sobol’, 1993 and extended by Homma and Saltelli (1996) is currently 
considered as the recommended practice in SA (Saltelli et al., 2008). For 
a model of k factors f(x) = (x1,x2,…,xk) ∈ Rk, the first-order sensitivity 
index Si can be written as 

Si =
Vxi [Ex∼i (y|xi)]

V(y)
. (1) 

The inner mean in Equation (1) is taken over all-factors-but xi (x∼i), 
while the outer variance is taken over xi. V(y) is the unconditional 
variance of the output variable y. When the factors are independent, Si 

can be defined as a first order term in the variance decomposition of y: 

1=
∑k

i=1
Si +

∑

i

∑

i<j
Sij + … + S1,2,…,k , (2)  

Si lends itself to be expressed in plain English as the fractional reduction in 
the variance of y which would be obtained on average if xi could be fixed. 
This is because 

V(y)=Vxi [Ex∼i (y|xi)]+Exi [Vx∼i (y|xi)] . (3)  

Exi [Vx∼i (y|xi)] is the average variance that would be left after fixing xi to a 
given value in its uncertainty range. For this reason, Vxi [Ex∼i (y|xi)] must 
be the average reduction in variance as discussed above. While Vx∼i (y|xi)

can be greater than V(y), Exi [Vx∼i (y|xi)] is always smaller than V(y) as per 
Equation (3). 

Another useful variance-based measure is the total-order index Ti 
(Homma and Saltelli, 1996), which measures the first-order effect of a 
model input jointly with its interactions up to the k-th order: 

Ti =
Ex∼i [Vxi (y|x∼i)]

V(y)
. (4) 

The index is called “total” because it includes all factors in the 
variance decomposition [see Equation (2)] that include the index i. For 
instance, for a model with three factors, T1 = S1 + S1,2 + S1,3 + S1,2,3, 
and likewise for T2 or T3. The meaning of Ti is the fraction of variance that 
would remain on average if xi is left to vary over its uncertainty range while 
all other factors are fixed. Note that the theory of variance-based mea-
sures is as flexible as to accommodate “group” or “set” sensitivities. 
These are simply the first-order effect of a set of factors: if u is the set of 
factors (x1,x2), then Su = S1 + S2 + S1,2. 

1.2. VARS 

VARS is based on variogram analysis to characterise the spatial 
structure and variability of a given model output across the input space 
(Razavi and Gupta, 2016a, 2016b). Let us again consider a function of 
factors f(x) = (x1, x2, …, xk) ∈ Rk. If xA and xB are two generic points 
separated by a distance h, then the variogram γ(.) is calculated as 

γ(xA − xB)=
1
2

V [y(xA) − y(xB)] , (5)  

and the covariogram C(.) as 

C(xA − xB)=COV [y(xA), y(xB)] . (6) 

Note that 

V [y(xA) − y(xB)] =V [y(xA)] + V [y(xB)] − 2COV [y(xA), y(xB)] . (7) 

Given that V [y(xA)] = V [y(xB)], then 

γ(xA − xB)=V [y(x)] − C(xA, xB) . (8) 

As mentioned, the points xA, xB are spaced by a fixed distance, and V, 
COV are the variance and covariance, respectively. Note that γ(.) is 
defined by the interval separating xA, xB. To make this clearer one can 
write h = xA − xB, with h = h1,h2,…,hn, so that 

γ(h)=
1
2

E [y(x + h) − y(x)]2 , (9)  

where the term E2 in the expression of the variance as the expectation of 
the square minus the square of the expectation, V(.) = E(.)2 − E2(.), is 
assumed to be zero. The practical formula for computing a multidi-
mensional variogram is 

γ(h)=
1

2N(h)
∑

[y(xA) − y(xB)]
2
, (10)  

where the sum is extended to all N(h) couples of points xA, xB such that 
their modulo distance |xA − xB| is h. Razavi and Gupta (2016a, 2016b) 
suggest some integral measures based on variogram γ, i.e. the integrated 
variogram Γ(Hi): 

Γ(Hi)=

∫ Hi

0
γ(hi)dhi , (11)  

and recommend the use of IVARS10, IVARS30, and IVARS50 (computed 
for H equal to 10%, 30%, and 50% of the factor range respectively) to 
explore larger fractions of the variation space of the function, with 
IVARS50 corresponding to the entire interval [in variogram analysis, the 
maximum meaningful range is one half of the factor range (Cressie, 
2015)]. 

Of important practical use, as we shall see, is the directional vario-
gram along one of the axes of the factors space, 

γ(hi) =
1
2

E[y(x1,…, xi+1 + hi,…, xn) − y(x1,…, xi,…, xn) ]
2
, (12)  

which is evidently computed on all couples of points spaced hi along the 
xi axis, with all other factors being kept fixed. Note that the difference in 
brackets is what is called in Saltelli et al. (2010) a step along the xi di-
rection, which is fungible to compute the total sensitivity index Ti. 

The equivalent of Equation (8) for the case of the unidirectional 
variogram γ(hi) is 

γx∼ i* (hi) = V
(

y
⃒
⃒
⃒x∼i*

)
− Cx*∼ i

(hi), (13)  

where x∼ i* is a fixed point in the space of non-xi. 
In order for VARS to compute the total-order index Ti [labeled as 

VARS-TO by Razavi and Gupta (2016a)], the authors suggest taking the 
mean value across the factors’ space on both sides of Equation (13), thus 
obtaining 

Ex*∼ i

[
γx*∼ i

(hi)
]
= Ex*∼ i

[
V
(
y
⃒
⃒x∼i*

)]
− Ex*∼ i

[
Cx*∼ i(hi)

]
, (14)  

which can also be written as 

Ex*∼ i

[
γx*∼ i

(
hi
)]

= V
(
y
)
Ti − Ex*∼ i

[
Cx*∼ i

(
hi
)]
, (15)  

and therefore 

Ti = VARS-TO =
Ex*∼ i

[
γx*∼ i

(
hi
)]

+ Ex*∼ i

[
Cx*∼ i

(
hi
)]

V(y)
. (16) 
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2. The issue of intuitiveness and importance 

In a paper immediately preceding VARS, Razavi and Gupta (2015) 
already stressed two main drawbacks of global sensitivity analysis:  

1. The incapacity of variance-based Sobol’ indices to appraise the 
spatial distribution of the model response.  

2. The dependence of the Morris (1991) approach on the step size 
defined by the analyst, which can significantly condition the final 
sensitivity value. 

VARS was presented as a comprehensive approach which overcomes 
these drawbacks by encapsulating, in a single sensitivity framework, a 
“unified assessment of local and global sensitivity” (Razavi and Gupta 
2015, p. 3090). The fact that integrated variogram measures such as 
IVARS10, IVARS30 and IVARS50 are able to differentiate sensitivities as a 
function of scale H, whereas Sobol’ indices do not, is taken as proof of 
the limitations of the latter. According to Razavi and Gupta (2016a, 
pp.427-428, 433-434), this endows VARS with a more intuitive 
appraisal of sensitivities. 

Razavi and Gupta (2016a) construct their case using several func-
tions, which we reproduce hereafter. In Fig. 1a, Sobol’ indices do not 
differentiate f3 from f1, whereas VARS points towards f3 as the most 
sensitive function. In Fig. 1b, variance-based methods equate f1 with f2 
because they have identical variance. According to Razavi and Gupta 
(2016a, p. 428), this “runs counter to our intuitive notion of sensitivity” 
given the multimodality of f2. If VARS is used, f2 is identified as more 
sensitive than f1 for 0 ≤ h ≤ 0.2. 

In Fig. 1c, Sobol’ indices do not detect the periodicities of f2, which 

Razavi and Gupta suggest might be important in evaluating the impact 
of a factor from the perspective of model calibration. In Fig. 1d, 
variance-based methods regard f2 as more sensitive than f1. Razavi and 
Gupta (2016a, p. 433) argue that this is “contrary to intuition” because 
the effect of f1 is more complex (bi-modal). IVARS10 and IVARS30, in 
contrast, characterise f1 as more sensitive than f2. 

It is apparent that for Razavi and Gupta (2016a) a sensitivity mea-
sure should be able to appraise the function structure. Our impression is 
that this perception of sensitivity is relevant to specific contexts, e.g. a 
diagnostic setting in which one is interested in the topology of a given 
function. However, the key lies in the definition of “importance” pointed 
to by VARS. In which sense is f2 more important than f1 in Fig. 1b, or f3 
more important than f1 and f2 in Fig. 1a? If SA is used in an information 
quality setting (Kenett and Shmueli, 2013), when the aim is to determine 
which factor has the highest potential to reduce the uncertainty in the 
inference (i.e. how much is gained by discovering the true value of an 
uncertain factor), these functions might be regarded as equally sensitive. 
The same applies to Fig. 1d: given that f2 changes more decidedly over 
the interval range than f1, a larger reduction in uncertainty can be 
achieved by learning first about f2 than about f1. 

Given that SA quantifies the relative influence of each model input in 
the model output, the concept of sensitivity is ultimately linked to that of 
“importance”. This is why it should be clear what do we mean when we 
say that a model input is “important”, or that a model output is very 
sensitive to a given model input. Variance-based methods meet this 
requirement by linking SA to statistical theory via ANOVA (Archer et al., 
1997), thus defining SA as “the study of how the variance in the model 
output is apportioned to different sources of uncertainty in the model 
input” (Saltelli et al., 2002). The use of variance-based methods such as 

Fig. 1. Examples of functions in Razavi and Gupta (2016a). a) Unimodal functions with different structures. b) Multimodal versus unimodal function with identical 
variance. c) Functions covering different ranges in the response. d) A six-dimensional response surface. See the Supplementary Materials for a mathematical 
description of all functions in all sub-plots (see also Equation (17) for the model in d). 
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Sobol’ indices are well defined and associated with clear settings (Salt-
elli and Tarantola, 2002):  

1. Factors prioritization: the aim is to identify the single factor that, if 
determined (i.e., fixed to its true but unknown value), would lead to 
the greatest reduction in the variance of the output. This is met by the 
first-order sensitivity index (Si).  

2. Variance reduction: the aim is to identify the sets of factors (couples, 
triplets, and so on) leading to the reduction of the output variance 
below a given threshold, and doing this by fixing the smallest 
number of factors. This is achieved by using set (group) sensitivity 
indices.  

3. Factors fixing: the objective is to identify factors that can be fixed 
anywhere in their range of variation without affecting the variance of 
the output. This is met by the total-order sensitivity index (Ti). 

Variance-based methods clearly resolve what is meant by “impor-
tance” of a factor. However, this is not as apparent in the case of VARS: if 
a decision needs to be taken based on the inference provided by a model, 
which of the variogram-based measures (IVARS10, IVARS30, VARS50, 
VARS-TO) should be finally used to characterise the factors’ impor-
tance? and what does “importance” mean for VARS? Razavi and Gupta 
(2016a)’s statement of VARS being more “intuitive” than Sobol’ indices 
is open to debate: intuition is in the eyes of the beholder, while solid 
criteria underpin the methodological quality of Sobol’ indices. 

One way of gaining a factual insight into the alleged “intuitiveness” 
of VARS is through the analysis of its use by the 86 studies that have 
cited Razavi and Gupta (2016a, 2016b) up until November 2020. If 
adopted and used by practitioners other than the VARS authors them-
selves, and if the VARS framework is applied as recommended by their 
designers (i.e. by exploring different ranges of the spatial structure of the 
model response through integrated variograms IVARS and VARS-TO), 
then the claim by Razavi and Gupta (2016a, 2016b) of VARS being an 
instinctive, user-friendly framework will find empirical support. 

We observed that 53 studies (62%) cite Razavi and Gupta (2016a, 
2016b) but do not implement VARS in any specific sensitivity analysis. 
Of the 33 studies that do apply VARS, 13 (40%) include either Razavi 
and/or Gupta as lead author/s or co-authors. Hence the number of pa-
pers that use VARS and are not contributed by VARS authors amounts to 
20, 23% of all VARS citations (Fig. 2a and b). 

Out of the 33 studies that do use VARS, there were nine from which 
we could not retrieve precise information on the VARS metric/s used. As 
for the remaining 24, 15 studies used just one VARS metric (11 IVARS50 
and four VARS-TO), two used two (IVARS50 and VARS-TO), three used 
three ([IVARS10, IVARS30, IVARS50] x 2; IVARS10, IVARS50, VARS-TO) 
and four studies used all four metrics. The contributions by authors 
other than Razavi and Gupta have strongly leaned towards the use of a 
single summary measure: out of the 12 works for which we could 
retrieve information on the VARS metric used, nine relied merely on one 
metric (six on IVARS50 and three on VARS-TO), with one study using 
two, three and all four VARS measures. 

With regard to the sensitivity settings, VARS has largely been applied 
to models with up to 20 parameters, with MESH being the model with 
the highest dimensionality (111). The number of stars has been mostly 
set between 20 and 50, with a single study raising it to 1000. A large 
number of works have used h = 0.1, with the minimum and maximum h 
values being 0.01 and 0.3 (Fig. 2c–e). 

As yet, such results place the “intuitive nature” of VARS in a 
disputable position: although cited, its use as a sensitivity measure has 
been comparatively moderate, and most authors have preferred a single 
summary VARS metric (IVARS50 or VARS-TO, both very similar to the 
Sobol’ total-order index (Razavi and Gupta 2016a, p. 434)) rather than 
implementing –and interpreting– the whole integrated variogram 
approach. 

The discussion above leads to another aspect listed by Razavi and 
Gupta 2016a, p. 423) as a motivation for developing VARS: an 

“ambiguous characterization of sensitivity”: 

(…) different SA methods are based in different philosophies and theo-
retical definitions of sensitivity. The absence of a unique definition for 
sensitivity can result in different, even conflicting, assessments of the 
underlying sensitivities for a given problem.2 

We argue that the source of ambiguity in sensitivity analysis is not 
the lack of a unifying theory, or the fact that many sensitivity measures 
are available, but in the definition of “importance”. Unless the analyst 
stipulates what she means when she says that a variable is important, 
different methods can be thrown at the model resulting in different 
ordering of importance of the input variables, whereby the analyst could 
be tempted to cherry-pick the method most conforming to one’s own 
bias. By linking the definition of importance to clear settings, Sobol’ 
indices resolve this quandary clearly and transparently, and provide 
end-users with a plain English description of the results. This comes in 
handy when the receiver (customer) of the analysis is not another 
practitioner. 

The expedient to produce functions where the validity of Sobol’ 
indices is downplayed is quite common. This approach was also taken by 
Liu et al. (2006) and Pianosi and Wagener (2015) using Liu’s 
highly-skewed function y = x1

x2
, where x1 ∼ χ2(10) and x2 ∼ χ2(13.978)

(Fig. 3). The reader might wonder why one of the degrees of freedom is 
expressed with two-digit precision and the other with a five-digits one. 
The reason is that, with these crisp numbers, T1 and T2 are identical and 
equal to 0.5462, while inspection of Fig. 3b should convince us that x1 is 
more important than x2 by virtue of its longer tail. The Liu function is 
thus what Lakatos et al. (1976) would have called a monster example, 
designed on purpose to invalidate variance-based methods. However, 
based on the definition of “importance” of Sobol’ indices, the fact that 
they are equally influential appears totally reasonable. 

We conclude by stating that rather than hinting at what should or not 
should be intuitive, a sensitivity index should pin down its definition of 
importance in unambiguous terms. 

3. The issue of efficiency 

Razavi and Gupta (2016a, 2016b) claim that VARS-TO is much more 
computationally efficient than the total-order estimator of Saltelli et al. 
(2008, Eq. 4.23) (up to two orders of magnitude), which is taken as a 
state-of-the-art implementation of the Sobol’ approach. They make their 
case with three different models:  

1. The six-dimensional response surface displayed in Fig. 1d, which is a 
purely additive model. VARS-TO accurately ranks the model inputs 
with just 60 simulations, beating the Saltelli et al. (2008) estimator of 
total-order indices at > 6,000 simulations (Razavi and Gupta 2016a, 
pp. 435-436).  

2. The five-dimensional conceptual rainfall-runoff model HYMOD 
(Vrugt et al., 2003). VARS-TO detects the “true” ranking of the model 
inputs at 500 simulations, while the Saltelli et al. (2008) estimator 
requires 10,000 simulations (Razavi and Gupta 2016b, pp. 443-444).  

3. The 45-dimensional land surface scheme-hydrology model MESH 
(Pietroniro et al., 2007). The VARS-TO estimate of the total-order 
effect stabilizes at 5000 simulations, whereas the Saltelli et al. 

2 The extent to which this points to an ambiguity is unclear. In any discipline, 
including statistics, different methods may naturally exist which become useful 
in different applications. For instance, the linear relation between two variables 
x and y might be modelled with Ordinary Least Squares (OLS) if x causes y, or 
with Standard Major Axis (SMA) if it is unclear which variable is the predictor 
and which one is the response (Smith, 2009). Does this mean that the charac-
terisation of residuals in regression analysis is an ambiguous branch of 
statistics?. 

A. Puy et al.                                                                                                                                                                                                                                     



Environmental Modelling and Software 137 (2021) 104960

5

(2008) estimator requires more than 100,000 simulations (Razavi 
and Gupta, 2016b, pp. 453-454). 

Do these examples truly prove that VARS-TO is between 20 and 100 
times more efficient than the Sobol’-based approach to total-order 
indices? 

3.1. The case of the six-dimensional response surface model 

To properly answer this question in the case of the six-dimensional 
model (Fig. 1d), whose functional form reads as 

g1(x1) = − sin(πx1) − 0.3sin(3.33πx1)

g2(x2) = − 0.76 sin [π(x2 − 0.2)] − 0.315
g3(x3) = − 0.12 sin [1.05π(x3 − 0.2)] − 0.02sin(95.24πx3) − 0.96
g4(x4) = − 0.12 sin [1.05π(x4 − 0.2)] − 0.96
g5(x5) = − 0.05 sin [π(x5 − 0.2)] − 1.02
g6(x6) = − 1.08

y = f [g1(x1) + g2(x2) + … + g6(x6)] ,

(17) 

we should first focus on the sampling design of VARS and Sobol’ 
indices. 

The computation of VARS relies on stars and is referred to as STAR- 
VARS by Razavi and Gupta (2016b): the analyst first randomly selects 
Nstar points across the factor space, i.e. via random numbers, Latin Hy-
percube Sampling (LHS) or Sobol’ Quasi Random Numbers (QRN). 
These are the “star centres” and their location can be denoted as sv = sv1 ,

…, svi ,…, svk , where v = 1, 2,…,Nstar. Then, for each star centre, a cross 
section of equally spaced points Δh apart needs to be generated for each 
of the k factors, including and passing through the star centre (Fig. 4, left 
side plot). The cross section is produced by fixing sv∼i and varying si. 
Finally, for each factor all pairs of points with h values of Δh, 2Δh,3Δh 
and so on should be extracted. The total computational cost of this 
design is Nt = Nstar

[
k
( 1

Δh − 1
)
+ 1

]
. 

Sobol’ indices also rely on a star-based sampling strategy: they 
require a (N, 2k) base sample matrix, designed via LHS or QRN, in which 
the rightmost k columns are allocated to an A matrix and the leftmost k 

Fig. 2. Results of the survey conducted on all papers that cite Razavi and Gupta (2016a, 2016b) up to November 2020. a) Use of VARS. b) Number of studies that use 
VARS and include (Yes) or do not include (No) the VARS authors themselves. c) Distribution of the dimensionality of the models for which VARS has been applied. d) 
Distribution of the number of stars used. e) Distribution of the values set for h. 

Fig. 3. The highly skewed function of Liu et al. (2006). a) Distribution of x1 and x2. b) Comparison of impacts of inputs.  
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columns to a B matrix. Then, k extra (N, k)A(i)
B matrices are created, 

where all columns come from A except the i-th, which comes from B. 
This design creates stars with centres and points a step away in the xi 
direction (Fig. 4, right-side plot). The cost of this design for Ti is Nt =

N(k + 1), where N is the row dimension of the base sample matrix. 
When the function or the model under study is fully additive, as in 

the six-dimensional surface model mentioned above (Fig. 1d), the 
computation of VARS-TO can be done with a single cross-section in the 
space of x*

∼i for each model input. VARS-TO thus becomes a first-order 
index de facto, as one model input remains constant while all the 
others vary. The natural term of comparison is thus the Sobol’ first-order 
index, and not the total. In that sense, and for any function which be-
haves non-additively for at least one factor, i.e. F = f(xi)+ g(x∼i), the 
first-order effect Si can be computed very easily, since 

Si =
Exi [f (xi)]

2
− E2

xi
[f (xi)]

V(F)
, (18)  

i.e. Si is only a function of xi and hence it can be computed with a single 
trajectory along xi, irrespective of its position in x∼i. We provide the 
proof in Section 2.1 of the Supplementary Materials. 

We used Equation (18) to compute Si for the six-dimensional model, 
aiming at replicating the results by Razavi and Gupta (2016a, see their 
Fig. 6). For VARS-TO and Sobol’-based indices they tested their proba-
bility of failure, defined as the probability of obtaining erroneous ranks 
for the model inputs of the six-dimensional model (Fig. 1d and Equation 
(17)). We observed that, if Equation (18) is used to compute Sobol’--
based indices, all model inputs are accurately ranked at Nt = 896 
(Fig. 5a), contrasting with the Nt > 6,000 obtained by Razavi and Gupta 
(2016a). This example suggests that VARS-TO is indeed more efficient 
than a Sobol’-based approach when the model is fully additive and the 
aim is to rank the parameters, but significantly less than what the au-
thors claimed it to be. It is also worth noting that there are other 

approaches that might permit a more efficient computation of first-order 
indices (Plischke, 2010; Mara et al., 2017; Strong et al., 2012). 

However, why do Razavi and Gupta rely exclusively on the “proba-
bility of failure” in the ranking as a performance metric? Sorting the 
parameters by their influence in the model output is indeed a common 
setting in sensitivity analysis. However, other goals may exist: the an-
alyst might be more interested in getting exact values for the sensitivity 
indices in order to ascertain, for instance, how much the uncertainty 
would be reduced if the “true” value of an uncertain factor is discovered. 
In such context, a performance measure such as the mean absolute error 
(MAE) between the estimated (T̂) and the analytical (T) values might be 
more appropriate. The MAE has been a very widespread performance 
measure in sensitivity analysis (Saltelli et al., 2010; Lo Piano et al., 
2020), and is computed as 

MAE=
1
p

∑p

v=1

⎛

⎝

∑k
i=1

⃒
⃒
⃒Ti − T̂ i

⃒
⃒
⃒

k

⎞

⎠ , (19)  

where p is the number of replicas of the sample matrix, and Ti and T̂ i the 
analytical and the estimated total-order index of the i-th input. 

Had Razavi and Gupta relied on the MAE rather than on the “prob-
ability of failure” as a performance measure, their assessment of the 
efficiency of VARS-TO and Sobol’-based indices would have been very 
different: throughout the range of explored model runs, VARS-TO never 
approaches Equation (18) in terms of accuracy (Fig. 5b). These results 
exemplify how sensitive the outcome of a benchmarking exercise can be 
to the particular settings defined by the analyst: merely the use of a 
different performance measure can completely tip the balance from one 
estimator to another. In the section below, we show how to minimize 
this source of bias to get a more accurate picture of the true performance 
of VARS-TO compared to Sobol’-based estimators (Puy et al., 2020a). 

Fig. 4. Sampling design of VARS-TO (STAR-VARS, 
left) and Sobol’ indices (right). For VARS-TO the plot 
shows a star-based sampling in three dimensions, 
with Δh = 0.1 and number of stars Nstar = 2. Black 
dots are the star centres, and the coloured dots are the 
additional 1

Δh points along the three axes. Adapted 
from Razavi and Gupta (2016b, Fig. 1). For Sobol’ 
based-indices, the plot also displays a 
three-dimensional model, with the links being steps in 
the xi direction and N = 4. Adapted from Becker et al. 
(2015, Fig. 18.7).   

Fig. 5. Assessment of VARS-TO and the Sobol’-based 
estimator [Equation (18)] with the six-dimensional 
model as a test function. a) Probability of failure 
(PF) of Equation (18) in correctly ranking the model 
inputs. Each dot summarises the PF over 500 quasi- 
random number matrices with different starting 
points. The horizontal dashed line is at PF = 0.05. For 
more details about the computational methodology, 
see Razavi and Gupta (2016a). b) Mean Absolute 
Error (MAE) [see Equation (19)], with p = 50. See 
Section 2.1.1 of the Supplementary materials for the 
computation of the analytical values of the 
six-dimensional model.   
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3.2. The case of the HYMOD and MESH models 

Unlike the six-dimensional model, HYMOD and MESH are non- 
additive models. Hence a single trajectory is not enough and several 
cross-sections in the space of x*

∼i should be drawn to fully explore the 
hypercube. Under such settings, the comparison between VARS-TO and 
a Sobol’-based estimator of the total-order index is the appropriate 
methodological choice. 

But does the higher accuracy of VARS-TO reported by Razavi and 
Gupta (2016a, 2016b) for these two models truly evidence its superi-
ority over Sobol’-based total-order indices? We argue that the following 
issues make Razavi and Gupta (2016a, 2016b)’s claim controversial: 

• The use of the Saltelli et al. (2008) total-order estimator as “state--
of-the-art”. Amongst all estimators available for computing Ti, that of 
Saltelli et al. (2008) ranks close to last on accuracy and performance 
and is significantly outperformed by the Jansen or the Janon/Monod 
estimators (Jansen, 1999; Puy et al., 2020a; Monod et al., 2006; 
Janon et al., 2014). Furthermore, Saltelli et al. (2010) demonstrated 
that configurations based on B, B(i)

A matrices (as is the case of the 
Saltelli estimator) were surpassed in performance by those relying on 
A, A(i)

B matrices (i.e. the Jansen estimator) when Quasi-Random 
numbers were used to create the sample matrix.  

• The extrapolation of the results obtained with HYMOD and MESH to 
mean that VARS-TO is generally better than Sobol’-based indices. Puy 
et al. (2020a) recently showed that, once the benchmark settings are 
randomised (i.e. the model and its dimensionality, the sampling 
method, the total number of model runs, the fraction of active second 

and third-order effects, the distribution of the model inputs and the 
performance measure), VARS-TO loses much of its purported 
computational superiority: it only very slightly outperforms the 
Sobol’-based estimators Jansen (1999) and Janon/Monod (Monod 
et al., 2006; Janon et al., 2014) when there are serious constraints on 
the number of model runs that can be allocated to each model input 
(i.e. 2-10). At larger sample sizes, the performances of VARS and 
Jansen and Janon/Monod are exactly the same (Puy et al., 2020a). 
This randomisation is required to reduce the dependence of the re-
sults on the choices taken by the analyst: as we have seen in the case 
of the six-dimensional model (see Section 3.1), even the use of a 
given performance measure over another might completely swap the 
outcome of an analysis. 

In order to obtain a more comprehensive view of the performance of 
VARS-TO against Sobol’ indices, we have reproduced the work by Puy 
et al. (2020a) with the following changes and/or additions:  

1. We have tested VARS-TO against the Jansen (1999) formula, one of 
the most precise and accurate Sobol’ total-order estimators (Puy 
et al., 2020a).  

2. We have increased the range of the proportion of active second and 
third-order effects in the test functions (i.e. between 50-100% and 
30–100% respectively; in Puy et al. (2020a) they ranged between 
30-50% and 10–30% respectively). This aimed at checking how 
VARS-TO performs under serious non-additivities.  

3. We have taken into account the algorithmic uncertainties of VARS- 
TO, i.e. the number of stars Nstar and the distance between pairs h, 

Fig. 6. Uncertainty analysis conducted on 212 simulations. a) 
Histograms of r. The vertical red, dashed line shows the me-
dian value. The transparent, blue rectangle frames the 0.25, 
0.75 quantiles. b) Scatterplots showing the performance of 
Jansen and VARS-TO as a function of the total number of 
model runs Nt and the model dimensionality k. Each simula-
tion is a dot. The greener (darker) the colour, the better 
(worse) the performance. The white space between 103 and 
104 in the x axis is caused by the uneven distribution selected 
for h (see Table 1 and the Supplementary Materials). (For 
interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.)   
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which ultimately condition its computational cost. These design 
parameters need to be set by the analyst before executing the algo-
rithm, and the specific value that might work best is unclear. 
Different authors have used different values for h (Δh = 0.002,Δh =

0.1, Δh = 0.3; [19, 20, 23, 47]; see Fig. 2e). Razavi et al. (2019) 
recommend h = 0.1 and h < 0.1 if more accurate results are needed. 
As shown by Puy et al. (2020b) for PAWN, the uncertainty in the 
design parameters of a sensitivity index might contribute appre-
ciably to its volatility. 

We compared the performance of VARS-TO and the Jansen estimator 
by treating the main benchmark settings listed in Table 1 as uncertain 
parameters described by probability distributions. We created a (212, k)
sample matrix using Sobol’ (1967, 1976) quasi-random numbers, in 
which each row is a sample point and each column an uncertain 
parameter. For v = 1, 2,…,212 rows, we computed VARS-TO and the 
Jansen total-order index according to the specifications set by Nstarv ,hv,

…,δv. The final model output was rv, the correlation coefficient between 
the indices estimated by VARS-TO and Jansen (T̂v) and the “true” 
indices (Tv), computed with a large sample size (N = 212) and the 
Jansen (1999) estimator. The larger the rv, the better the estimation of 
the “true” sensitivity indices by VARS-TO or Jansen. We argue that this 
approach allows us to examine the accuracy of VARS-TO more 
comprehensively given the enormous range of sensitivity problems that 
it is able to explore (Puy et al., 2020a, Becker, 2020) (potentially more 
than 3 billion scenarios in this case). If VARS-TO outperforms Sobol’--
based indices unequivocally, as asserted by Razavi and Gupta (2016a, 
2016b), its computational advantage should emerge against Jansen as 
well. The Supplementary Materials thoroughly detail the rationale and 
the execution of the experiment. 

Fig. 6a shows that both Jansen and VARS-TO are very accurate as the 
empirical distribution of r is highly right-skewed. If anything, Jansen 
seems to outperform VARS-TO overall due to its slightly narrower dis-
tribution (95% CI 0.93–0.99, median of 0.99 for Jansen; 95% CI 
0.87–0.99, median of 0.97 for VARS). This is also apparent in Fig. 6b, 
with VARS-TO presenting more simulations with redder/orange colours 
(approx. r ≤ 0.85). A closer look at the performance of both approaches 
reveals that Jansen maintains a higher median accuracy at higher di-
mensions (Fig. 7a), whereas VARS-TO confirms its slightly higher effi-
ciency only when the number of runs that can be allocated per model 
input (Nt/k) is considerably constrained (< 50 in this case, Fig. 7b) (Puy 
et al., 2020a). VARS-TO also displays a larger volatility at 100 > (Nt /k)
(Fig. 7b), suggesting that Jansen might become more stable in a larger 
number of sensitivity problems if the number of model runs per input is 
increased. These results rest on solid grounds as the number of simula-
tions for which we have computed the median Nt/k is almost identical 
for Jansen and VARS-TO (Fig. 7c). Overall, this proves that both esti-
mators have a very similar efficiency and reliability. 

We also computed Sobol’ indices to assess which uncertain param-
eter most influences the performance of VARS-TO (Fig. 8). We observed 
that c. 30% the variance in its performance is driven by the underlying 
probability distribution of the model inputs φ, which appears as the most 
influential parameter. The other parameters are important through in-
teractions, especially the functional form of the model (ε), the sampling 
method (τ), the model dimensionality (k) and the performance measure 
selected (δ), in that order. The proportion of second and third-order 
effects (k2,k3) has no effect, which means that VARS-TO is very robust 
against non-additivities. 

Compared to Jansen, VARS-TO significantly underperformed when the 
model inputs were normally distributed (e.g. when φ = 2, Figs.S5, 9). We 
observed that this was caused by high-order interactions between the 
sampling design of VARS-TO (Fig. 4, left side) and at least five different 
uncertain parameters, Nstar,h,k,φ, τ. 

To understand these interactions, let us first assume that we use 
random numbers (τ = 1) to sample our star centres, which Razavi et al. 
(2019, Table 1) list as a possible sampling strategy to compute VARS-TO. 
These star centres are located at sv = sv1 ,…,svi ,…,svk , where v = 1, 2,…,

Nstar. The higher the Nstar and k, the higher the chances that a value at the 
boundary of (0,1) is included in sv. Given that VARS-TO requires fixing 
sv∼i while varying si at a step defined by h, this value at the periphery of 
(0, 1) will be repeated in the 

[( 1
h
)
− 1

]
(k − 1) coordinates, which can be 

manifold if k is high and h is low. Once the model inputs are transformed 
into a normal distribution, it will turn into an extreme value and will 
disrupt both the model output and the computation of VARS-TO for the 
x∼i parameters. 

Let us now assume that we do not use random numbers to sample the 
star centres, but Sobol’ Quasi-Random (QRN) number sequences 
(τ = 2). They are also contemplated by Razavi et al. (2019, Table 1) as a 
sampling strategy to compute VARS-TO. Although the design of QRN 
makes the sampling of star centres at the very periphery (0, 1) very 
unlikely, cross-sections can indeed sample the boundary of the domain: 
for instance, if h = 0.1 and svi = 0.5, the cross-section of the xi param-
eter will be the vector xi = 0.1,0.2,…svi ,…,1. This will cause VARS-TO 
to crash as 1 becomes infinity under a normal distribution. Even if the 
STAR-VARS algorithm is modified to prevent 1 from being sampled 
(e.g. by replacing 1 by 0.999, as we did in this study), some 
cross-sections will still sample values very close to 1 by design, espe-
cially if h is set at a small value. These values will be extreme values 
under a normal distribution, disrupting again the computation of the 
model output and the VARS-TO index –in this case, for the xi parameter. 

We believe that this explains the high-order interactions involving 
Nstar,h,k,φ,τ, which are non-negligible (Fig. 8). The effect of Nstar and h in 
VARS-TO was not explored by Puy et al. (2020a) nor by Becker (2020), 
who documented a slightly higher performance of VARS-TO against 
Jansen and Janon/Monod. Our results indicate that VARS-TO loses this 
marginal edge once these internal uncertainties jointly with the un-
certainties in the benchmark settings are considered in the computa-
tions. Even if the use of VARS-TO is restricted to non-normal 
distributions (φ ∕= 2), its performance would still be slightly outdone by 
Jansen (95% CI 0.96–0.99, median of 0.99 for Jansen; 95% CI 
0.94–0.99, median of 0.97 for VARS). 

4. Conclusions 

We have revised the Variogram Analysis of Response Surfaces 
(VARS), a new framework for sensitivity analysis developed by Razavi 
and Gupta (2016a, 2016b). We have specifically focused on two aspects 
that, according to Razavi and Gupta (2016a, 2016b), make VARS 
outperform Sobol’ indices: its more intuitive appraisal of sensitivities 
and of the importance of model inputs, and its 20–100 times higher 
computational efficiency. 

The claim that VARS is more intuitive than Sobol’ indices can hardly 
be reversed as it ultimately is a matter of personal taste, disciplinary 

Table 1 
Summary of the uncertain parameters and their distributions. D U is discrete 
univariate. See the Supplementary Materials for a description of the rationale 
behind the selection of the uncertain parameters and their distributions.  

Parameter Description Distribution 

Nstar  Number of star centres D U (3, 50)
h Distance between pairs D U (0.01,0.05,0.1,0.2)
k Number of model inputs D U (3, 50)
ε Randomness in the test function D U (1, 200)
τ Sampling method D U (1, 2)
φ Probability distribution of the model 

inputs 
D U (1, 8)

k2  Fraction of pairwise interactions D U (0.5,1)
k3  Fraction of three-wise interactions D U (0.3,1)
δ Selection of the performance measure D U (1, 3)
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orientation and objective of the modeling activity: a geographer work-
ing in a diagnostic model setting might indeed prefer VARS’s approach 
to the model structure due to its capacity to distinguish response sur-
faces. However, the professed higher intuitive nature of VARS ties in 
poorly with the available evidence: less than one half of the studies 
citing VARS actually implement it in a case study, and almost half of 
those that use it include the VARS authors themselves. Furthermore, 
most works do not explore the full range of the response surface but rely 
exclusively on summary metrics such as IVARS50 or VARS-TO, which are 
very similar to the Sobol’ total-order index. 

We argue that Sobol’ indices provide a clearer description of what an 
“important” model input is given its connection to statistical theory and 
ANOVA. The use of Sobol’ first or total order indices is associated with 
clear research settings and their meaning can be easily conveyed to 

stakeholders or non-specialists, which adds to their transparency. VARS, 
in contrast, allows the analyst to zoom into the structure of the model 
output and assess its dependency on the model inputs through the in-
tegrated variograms IVARS10, IVARS30 and IVARS50, as well as through 
the variance-based total-order effect VARS-TO. But what is their defi-
nition of importance? How useful is it for a stakeholder to know that a 
parameter is “important” under IVARS10 and not as much under 
IVARS30, for instance? Which IVARS measure should she finally rely 
onto before making a policy decision? If the answer is the summary 
measure VARS-TO, then it is unclear how VARS advances Sobol’ indices 
given the reliance of VARS-TO on variance and covariance matrices. 

The purported much higher efficiency of VARS-TO is very 

Fig. 7. Comparison between the accuracy and efficiency of VARS-TO and Jansen (1999). a) Evolution of the median r value across different dimensions k. b) 
Evolution of the median r value across the different number of runs allocated to each model input (Nt/k). c) Number of simulations with the same Nt/ k ratio. Both 
lines almost fully overlap. 

Fig. 8. Sobol’ indices for VARS-TO. The error bars show the 95% confidence 
intervals, computed with the percentile method after bootstrapping (R = 500). Fig. 9. Proportion of model runs with r < 0.8 as a function of φ. The normal 

distribution [N ∼ (0.5, 0.2)] is triggered by φ = 2. See Fig. S1 for a recoding of 
all levels of φ into their probability distributions. 
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contentious. The observation that it is more than 100 times more effi-
cient than Sobol’-based total-order indices rests on an exercise with a 
fully additive model, in which VARS-TO is compared against one of the 
less accurate total-order estimators [Saltelli et al. (2008), see Puy et al. 
(2020a)], and the performance measure chosen is the “probability of 
failure” of properly ranking the model inputs. If the comparison is 
instead conducted between VARS-TO and a lightweight Sobol’-based 
first-order estimator [Equation (18)], the advantage of the former 
shrinks to being “only” 15 times more efficient. VARS-TO completely 
loses all its edge if the Mean Absolute Error (MAE) replaces the “prob-
ability of failure” as a performance measure: in this setting, Equation 
(18) is the one showing an accuracy up to 100 times higher than 
VARS-TO. 

Nevertheless, the advantage of VARS-TO over Sobol’-based indices is 
still remarkable if the goal is to rank parameters, and suggests that 
VARS-TO should be the sensitivity measure of choice if computational 
efficiency is a priority and the model is additive. However, this condition 
is unlikely to apply to models of the Earth and Environmental domain, 
either because they encompass multiplicative terms and exponentials or 
because their mathematical complexity prevents the analyst from 
knowing their behavior before running the simulations. 

The assertion that VARS-TO is at least 20 times more efficient than 
Sobol’-based total-order indices is not confirmed by our results. VARS- 
TO only very slightly outperforms one of the most accurate Sobol’ 
total-order estimators, that of Jansen (1999), when the number of model 
runs per model input is very small. However, it comes second to Jansen 
at increasing dimensionalities and in overall performance. Such results 
have been obtained after randomising the benchmark settings, thus 
creating a set of sensitivity problems much wider than those represented 
by the HYMOD and MESH models, and by simultaneously examining the 
internal uncertainties of VARS-TO (Nstar,h). Its sampling design makes it 
especially vulnerable to the high-order interactions between the sam-
pling method (τ), the number of stars (Nstar), the function dimensionality 
(k), the distance between pairs (h) and the underlying distribution of the 
model inputs (φ), especially if they follow a normal distribution. 

VARS nonetheless represents a relevant addition to the family of 
sensitivity analysis methods, with the additional merit of having been 
developed to appraise the response surface of a model. Furthermore, the 
conceptual framework of VARS comes with a software described as 
“next-generation” by Razavi (2019). Time will tell whether VARS ends 
up unseating Sobol’-based indices as the recommended best practice in 
sensitivity analysis. 

Code availability 

Fully documented code is freely available in Puy (2020) and in 
GitHub (https://github.com/arnaldpuy/VARS_paper). 
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Lilhare, R., Pokorny, S., Déry, S.J., Stadnyk, T.A., Koenig, K.A., 2020. Sensitivity analysis 
and uncertainty assessment in water budgets simulated by the variable infiltration 
capacity model for Canadian subarctic watersheds. Hydrol. Process. 34, 2057–2075. 

Liu, H., Chen, W., Sudjianto, A., 2006. Relative entropy based method for probabilistic 
sensitivity analysis in engineering design. Journal of Mechanical Design, 
Transactions of the ASME 128, 326–336. 

Lo Piano, S., Ferretti, F., Puy, A., Albrecht, D., Saltelli, A., 2020. Variance-based 
sensitivity analysis: the quest for better estimators between explorativity and 
efficiency. Reliab. Eng. Syst. Saf. 107300. 

Mara, T.A., Belfort, B., Fontaine, V., Younes, A., 2017. Addressing factors fixing setting 
from given data: a comparison of different methods. Environ. Model. Software 87, 
29–38. 

Monod, H., Naud, C., Makowski, D., 2006. Uncertainty and sensitivity analysis for crop 
models. In: Wallach, D., Makowski, D., Jones, J. (Eds.), Working with Dynamic Crop 
Models. Elsevier, pp. 35–100. 

Morris, M.D., 1991. Factorial sampling plans for preliminary computational experiments. 
Technometrics 33, 161–174. 

Pappenberger, F., Thielen, J., Del Medico, M., 2011. The impact of weather forecast 
improvements on large scale hydrology: analysing a decade of forecasts of the 
European Flood Alert System. Hydrol. Process. 25, 1091–1113. 

Pianosi, F., Wagener, T., 2015. A simple and efficient method for global sensitivity 
analysis based on cumulative distribution functions. Environ. Model. Software 67, 
1–11. 

Pianosi, F., Wagener, T., 2018. Distribution-based sensitivity analysis from a generic 
input-output sample. Environ. Model. Software 108, 197–207. 

Pietroniro, A., Fortin, V., Kouwen, N., Neal, C., Turcotte, R., Davison, B., Verseghy, D., 
Soulis, E.D., Caldwell, R., Evora, N., Pellerin, P., 2007. Development of the MESH 
modelling system for hydrological ensemble forecasting of the Laurentian Great 
Lakes at the regional scale. Hydrol. Earth Syst. Sci. 11, 1279–1294. 

Plischke, E., 2010. An effective algorithm for computing global sensitivity indices (EASI). 
Reliab. Eng. Syst. Saf. 95, 354–360. 

Puy, A., 2020. R Code of the Paper "Is VARS More Intuitive and Efficient than Sobol’. 
Zenodo. 

Puy, A., Becker, W., Lo Piano, S., Saltelli, A., 2020a. The Battle of Total-Order Sensitivity 
Estimators arXiv: 2009.01147.  

Puy, A., Lo Piano, S., Saltelli, A., 2020b. A sensitivity analysis of the PAWN sensitivity 
index. Environ. Model. Software 127, 104679. 

Razavi, S., 2019. VARS-TOOL: A toolbox for comprehensive, efficient, and robust 
sensitivity and uncertainty analysis. Environ. Model. Software 112, 95–107. 

Razavi, S., Gupta, H.V., 2015. What do we mean by sensitivity analysis? The need for 
comprehensive characterization of “global” sensitivity in Earth and Environmental 
systems models. Water Resour. Res. 51, 3070–3092. 

Razavi, S., Gupta, H.V., 2016a. A new framework for comprehensive, robust, and 
efficient global sensitivity analysis: 1. Theory. Water Resour. Res. 52, 423–439. 

Razavi, S., Gupta, H.V., 2016b. A new framework for comprehensive, robust, and 
efficient global sensitivity analysis: 2. Application. Water Resour. Res. 52, 440–455. 

Saltelli, A., 2002. Sensitivity analysis for importance assessment. Risk Anal. 22, 579–590. 

A. Puy et al.                                                                                                                                                                                                                                     



Environmental Modelling and Software 137 (2021) 104960

11

Saltelli, A., 2019. A short comment on statistical versus mathematical modelling. Nat. 
Commun. 10, 8–10. 

Saltelli, A., Tarantola, S., 2002. On the relative importance of input factors in 
mathematical models: Safety a ssessment for nuclear waste disposal. J. Am. Stat. 
Assoc. 97, 702–709. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., 
Tarantola, S., 2008. Global Sensitivity Analysis. The Primer. John Wiley & Sons, Ltd, 
Chichester, UK.  

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., 2010. 
Variance based sensitivity analysis of model output. Design and estimator for the 
total sensitivity index. Comput. Phys. Commun. 181, 259–270. 

Saltelli, A., Benini, L., Funtowicz, S., Giampietro, M., Kaiser, M., Reinert, E., van der 
Sluijs, J.P., 2020. The technique is never neutral. How methodological choices 
condition the generation of narratives for sustainability. Environ. Sci. Pol. 106, 
87–98. 

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2002. Sensitivity Analysis in 
Practice 10-11. John Wiley & Sons, Ltd, Chichester, UK, pp. 1109–1125. 

Smith, R.J., 2009. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. 
Anthropol. 140, 476–486. 

Sobol’, I.M., 1967. On the distribution of points in a cube and the approximate 
evaluation of integrals. USSR Comput. Math. Math. Phys. 7 (4), 86–112. 

Sobol’, I.M., 1976. Uniformly distributed sequences with an additional uniform property. 
USSR Comput. Math. Math. Phys. 16 (5), 236–242. 

Sobol’, I.M., 1993. Sensitivity analysis for nonlinear mathematical models. Mathematical 
Modeling and Computational Experiment 1, 407–414. 

Strong, M., Oakley, J.E., Chilcott, J., 2012. Managing structural uncertainty in health 
economic decision models: a discrepancy approach. J. Roy. Stat. Soc. C Appl. Stat. 
61, 25–45. 

Tarantola, S., Giglioli, N., Jesinghaus, J., Saltelli, A., 2002. Can global sensitivity analysis 
steer the implementation of models for environmental assessments and 
decisionmaking? Stoch. Environ. Res. Risk Assess. 16, 63–76. 

Vieux, B.E., 2016. In: Vieux, B.E. (Ed.), Distributed Hydrologic Modeling Using GIS. 
Springer Netherlands, Dordrecht, pp. 165–187. 

Vrugt, J.A., Gupta, H.V., Bouten, W., Sorooshian, S., 2003. A shuffled complex evolution 
metropolis algorithm for optimization and uncertainty assessment of hydrologic 
model parameters. Water Resour. Res. 39. 

Wang, Z., Timlin, D., Kouznetsov, M., Fleisher, D., Li, S., Tully, K., Reddy, V., 2020. 
Coupled model of surface runoff and surface-subsurface water movement. Adv. 
Water Resour. 137, 103499. 

A. Puy et al.                                                                                                                                                                                                                                     


	Is VARS more intuitive and efficient than Sobol’ indices?
	1 Introduction
	1.1 Sobol’ indices
	1.2 VARS

	2 The issue of intuitiveness and importance
	3 The issue of efficiency
	3.1 The case of the six-dimensional response surface model
	3.2 The case of the HYMOD and MESH models

	4 Conclusions
	Code availability
	Data availability
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


