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INNOVATIVE METHODOLOGY

Automatic decomposition of electrophysiological data into distinct
nonsinusoidal oscillatory modes

Marco S. Fabus,1,2 Andrew J. Quinn,2,3 Catherine E. Warnaby,1,2* and Mark W. Woolrich2,3*
1Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford,
United Kingdom; 2Wellcome Centre for Integrative Neuroscience, University of Oxford, Oxford, United Kingdom; and 3Oxford
Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom

Abstract

Neurophysiological signals are often noisy, nonsinusoidal, and consist of transient bursts. Extraction and analysis of oscillatory
features (such as waveform shape and cross-frequency coupling) in such data sets remains difficult. This limits our understanding
of brain dynamics and its functional importance. Here, we develop iterated masking empirical mode decomposition (itEMD), a
method designed to decompose noisy and transient single-channel data into relevant oscillatory modes in a flexible, fully data-
driven way without the need for manual tuning. Based on empirical mode decomposition (EMD), this technique can extract sin-
gle-cycle waveform dynamics through phase-aligned instantaneous frequency. We test our method by extensive simulations
across different noise, sparsity, and nonsinusoidality conditions. We find itEMD significantly improves the separation of data into
distinct nonsinusoidal oscillatory components and robustly reproduces waveform shape across a wide range of relevant parame-
ters. We further validate the technique on multimodal, multispecies electrophysiological data. Our itEMD extracts known rat hip-
pocampal h waveform asymmetry and identifies subject-specific human occipital a without any prior assumptions about the
frequencies contained in the signal. Notably, it does so with significantly less mode mixing compared with existing EMD-based
methods. By reducing mode mixing and simplifying interpretation of EMD results, itEMD will enable new analyses into functional
roles of neural signals in behavior and disease.

NEW & NOTEWORTHY We introduce a novel, data-driven method to identify oscillations in neural recordings. This approach is
based on empirical mode decomposition and reduces mixing of components, one of its main problems. The technique is vali-
dated and compared with existing methods using simulations and real data. We show our method better extracts oscillations
and their properties in highly noisy and nonsinusoidal datasets.

EMD; neural oscillations; nonsinusoidal

INTRODUCTION

The synchronized activity of neuronal populations can be
observed in dynamic oscillations recorded in electrophysiol-
ogy (1, 2). These oscillations are often visible in raw data
traces but are challenging to isolate in an objective, data-
driven manner. Methods for signal isolation must contend
with signals being obscured by noise or by simultaneous
oscillations at different frequencies. Neuronal oscillations
are often nonsinusoidal and change over time, which leads
to ambiguities in standard analyses based on the Fourier
transform (3, 4). These dynamic and nonsinusoidal features
are of growing importance in electrophysiological research
but remain difficult to analyze using existing methods (1, 5–

9). As such, there is a pressing need for data-driven methods
that can isolate oscillations from noisy time-series while pre-
serving their nonsinusoidal features.

Empirical mode decomposition (EMD; 10) is able to pro-
vide a different perspective on analyzing transient oscilla-
tions. It offers a radically different approach to signal
separation based on a flexible, local, and data-driven decom-
position with weaker assumptions about stationarity and lin-
earity of the signal. Single-channel data is decomposed by a
sifting process into intrinsic mode functions (IMFs) based on
finding successively slower extrema. Unlike Fourier or wave-
let methods, EMD does not a priori assume the shape of its
functions. It is, therefore, believed that IMFs can capture
nonsinusoidal oscillations and may better reflect the under-
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lying processes in physical and physiological signals (3, 10,
11). This can especially aid analyses sensitive to waveform
shape, such as calculations of phase and cross-frequency
coupling (4, 12).

The original EMD algorithm can in theory produce arbi-
trarily shaped IMFs, but in noisy neural signals it struggles
with signal intermittency and high nonsinusoidality. In the
presence of transient oscillatory bursts, the sifting process
may detect extrema on different time scales at different
times. This is referred to as mode mixing. It presents a major
challenge in analysis and interpretation of IMFs (13, 14). This
is especially the case in analysis of brain signals, where tran-
sient states are common and have functional significance (5,
15–17). Furthermore, in the presence of pure Gaussian frac-
tional noise, EMD has been shown to act as a dyadic filter
bank (18, 19). This means that for highly noisy signals, EMD
tends to produce IMFs with fixed bandwidths rather than
adapting to capture signals present in the data, further com-
plicating the analysis.

Various improvements to the sifting process have been
proposed to make EMD more applicable to real-world data
(20–27). A unifying characteristic of the existing approaches
is to inject a secondary signal into the data to alter the
extrema distribution and overcome mode mixing. Noise-
assisted methods, as exemplified by ensemble EMD (EEMD)
(20, 22), use white noise as the injected signal. This reduces
mode mixing due to signal intermittency. However, the use
of noise can limit IMF bandwidth, possibly making mode
mixing worse. Masking methods inject sinusoids into the
data before sifting (21, 24). With a suitable mask, this tech-
nique can recover nonsinusoidal waveforms and/or inter-
mittent bursts in the presence of noise. However, the
frequency of masking signals that should be used is often
not known a priori. Mask optimization can become an ardu-
ous manual process, prohibiting generalizability and
introducing uncertainty on analysis outcomes. This is exa-
cerbated by the presence of high noise and nonsinusoidal
signals near dyadic boundaries, where a small change in the
masking signal frequency may dramatically alter the quality
of the resulting IMFs. Mask frequency selection can be done
semiautomatically by choosing an initial frequency based on
the number of zero-crossings in the first IMF and dividing
this successively by two for later IMFs (21). If the approxi-
mate frequency content of the signal is known, then mask
frequencies may be directly selected to isolate the specific
components of interest (11). Though effective, the semiauto-
matic method is relatively inflexible, and the direct specifi-
cation method can be manually intensive to validate.
Finally, multivariate EMD is also a subject of active research
(28, 29). The extension of EMD to multichannel data is not
trivial as interpolating extremal envelopes becomes compu-
tationally expensive in higher dimensions and additional
methods are needed, such as only sifting along most impor-
tant directions. Alternatively, pseudo-multivariate EMD can
be computed by simply performing EMD on each channel
separately and checking cross-channel mode correspon-
dence afterward, for example, by comparing their frequency
content.

In this paper, we introduce iterated masking EMD
(itEMD), a novel sifting technique that builds on themasking
method. This method retains all the advantages of using a

masking signal while being more generalizable and auto-
mated. We compare itEMD with existing methods using sim-
ulations and multispecies, multimodal experimental data,
and discuss its range of applicability and limitations.

In simulations, we have focused on the three areas impor-
tant to the analysis of neural signals, as aforementioned:
noise, sparsity, and waveform shape distortion. All three of
these cause major issues for EMD and limit its applicability
to neurophysiology. Here, we show that itEMD performs sig-
nificantly better than existing methods in cases with highly
noisy and strongly nonsinusoidal signals, where our tech-
nique significantly reduces mode mixing and accurately
extracts oscillations and their shape. We further validate the
technique by analyzing oscillations in rat local field potential
(LFP) data and human magnetoencephalography (MEG)
recordings. We show that itEMD reproduces the well-known
hippocampal h waveform shape better than existing techni-
ques and successfully reconstructs occipital a peak fre-
quency with no a priori information about mask frequencies.
Furthermore, itEMD significantly reduced mode mixing in
both datasets studied.

MATERIALS AND METHODS

Data and Code Availability Statement

All figures and analysis in this paper can be freely repli-
cated with Python code available at https://gitlab.com/
marcoFabus/fabus2021_itemd. Hippocampal LFP data are
available from the CRCNS platform (https://crcns.org/data-
sets/hc/hc-3) and human MEG data are available from the
Cam-CAN archive (https://camcan-archive.mrc-cbu.cam.ac.
uk/dataaccess/) (30, 31). Analyses were carried out in Python
3.9.4, building on the open-source EMD package (v0.4.0),
available with tutorials at https://emd.readthedocs.io (32).
Underlying dependency packages were numpy (33), scipy
(34), and statsmodels (35) for computation and matplotlib
(36) for visualization.

EMD Algorithms

Empirical mode decomposition decomposes a signal x(t)
into a finite number of intrinsic mode functions (IMFs) ci
with a sifting algorithm (10). The IMFs are constructed to
have locally symmetric upper and lower envelopes with no
peaks below zero or troughs above zero. A smooth signal
with these features is well-behaved during instantaneous fre-
quency analysis, allowing for a full description of nonsinu-
soidal waveform shape (11).

Ensemble EMD (20) is typical of a class of noise-assisted
sifting methods. An ensemble of n sift processes is created,
each with different white noise injected. The final IMFs are
computed as the average across this ensemble. The goal is to
exhaust all possible sifting solutions, leaving only persistent
real signals. However, due to a finite size of the ensemble,
IMFs may contain unwanted residual noise unless further
improvements are introduced (25, 26). Furthermore, due to
the stochastic nature of white noise, signals of interest might
shift between modes across the ensemble, leading to some
modemixing in the final result. Finally, the use of noise rein-
forces the dyadic filtering behavior of EMD. This means any
signal near dyadic boundaries is likely to be split between
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modes. This effect is especially pronounced for nonsinusoi-
dal signals which change in instantaneous frequency, mak-
ing waveform shape analysis difficult as they become
smeared overmultiple IMFs.

Masked EMD (21) works by injecting a masking signal si(t)
into signal x(t) before sifting. This reduces mode mixing by
making the sift ignore signal content slower than the fre-
quency of the masking signal. The masking signal is intro-
duced uniformly across np phases at each step to further
minimize mode mixing (22). The IMFs ci are thus calculated
with the following algorithm:

1) Construct amasking signal si(t).
2) Perform EMD on xk = x(t) þ si,k(t þ jk), where jk = 2p(k

� 1)/np, obtaining IMFs ci,k(t).
3) Compute the final IMF as ci(t) = 1/np

P
ci,k.

4) Compute the residue ri(t) = x(t) – ci(t).
5) Set x(t) = ri(t) and repeat 1–4 with the next masking sig-

nal to extract the next IMF.

This technique permits analysis with intermittent bursts
and nonsinusoidal oscillations (Fig. 1). EMD is locally adapt-
ive, and as such fast bursts get mixed with slower activity
when bursts are not present. With amask, any signal content
with frequencies much lower than the masking frequency
will be ignored by the sift in that iteration and is replaced by
themask. The mask is finally removed allowing us to recover
intermittent activity correctly. In the presence of noise, EMD
also acts as a dyadic filter (18, 19). This means nonsinusoidal
oscillations are often split across multiple IMFs. With a suita-
ble mask, the bandwidth of modes can be adapted and more
of the waveform shape recovered.

The choice of masking signals remains an area of active
research. The original paper by Deering and Kaiser (21) sug-
gested the first mask frequency to be the energy-weighted
mean of instantaneous frequency obtained from the first
IMF found by ordinary EMD, with subsequentmask frequen-
cies chosen as f0 divided by powers of 2 to account for the
dyadic nature of EMD. Other approaches have included
computing the mask from zero crossings of the first IMF of a
standard sift and purely dyadic masks (24). However, the
choice of optimal masks remains a manual process in many
cases. This requires experience andmay introduce subjective
bias (11, 21, 27, 37).

Iterated Masking EMD

As seen earlier, noise-assisted and masking approaches to
EMD sifting improve mode mixing in some cases, but mode
mixing may still be present to complicate further analysis.
Mask choice in noisy datasets is complicated, especially with
signal frequencies near dyadic boundaries. Iterated masking
solves this problem by finding and using an adaptive, data-
drivenmask.

In science, it is common to rely on intuition to guide study
of complex dynamical systems (38). Consider then a simple
example where there is a signal burst x(t) with some base fre-
quency fsig and possible deviation around it due to nonsinu-
soidality. Take as a start the masked EMD process with a
single mask of frequency f ð0Þmask. A good choice of frequency
would be near fmask = fsig, as this would extract most of x(t)
into one IMF, resulting in noise reduction and allowing for a
simple IMF interpretation. This is because adding a mask at

Figure 1. Limitations of empirical mode
decomposition (EMD). A: standard EMD sift-
ing applied on a pure 4 Hz iterated sine
function. With no noise, EMD can accurately
identify an intrinsic mode function (IMF) that
represents the nonsinusoidal signal. B: in
the presence of white noise and a 30-Hz
burst (arrow), standard EMD shows heavy
mode mixing. C: EMD with an appropriate
dyadic mask sift will recover most of the
iterated sine (IMF-3) and the intermittent
burst (IMF-2) signals. D: masked EMD and
ensemble EMD can better reconstruct non-
sinusoidal wave shape in signal with low
noise unlike standard EMD. The figure
shows the phase-aligned instantaneous fre-
quency calculated from 100 runs of B and
C. Means ± standard error (shaded) shown.
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fmask = fsig forces the IMF to ignore any spectral content
below�0.67� fmask (27).

In real data however, fsig is often unknown. Assume then
f ð0Þmask is chosen with little to no knowledge of the system fre-
quency fsig. After applying masked EMD, the resulting IMF
will contain a part of the burst with some noise or other sig-
nal mixed in. However, its instantaneous frequency will be
fsig for sections of the IMF attributable to the signal.
Assuming signal amplitude is distinguishable from noise in
this IMF, the amplitude-weighted instantaneous frequency
mean (AW-IFM) will be closer to the desired fsig than f ð0Þmask.
Thus, if we use this AW-IFM as the masking frequency for
the next iteration f ð1Þmask, the resulting mask sift IMF will be
even closer to the optimal IMF. This is the case if both f ð0Þmask is
greater and smaller than fsig, as both lead to mode mixing.
Following this reasoning, the natural equilibrium of this iter-
ation process is when fmask = fsig, and we can apply this
approach to a signal consisting ofmultiple signal frequencies
and noise. This leads us to the following algorithm:

1) Choose an initial set of mask frequenciesm = {f0}.
2) Performmasked EMD to obtain IMFs.
3) Find the instantaneous frequency (IF) for each IMF

using theHilbert transform.
4) Compute the amplitude-weighted average of each IMF’s

IF and setmi = AW-IFM.
5) Repeat 2–4 until a stopping criterion

P
is reached.

Here, the stopping criterion was chosen such that the rela-
tive difference between current and previous mask frequen-
cies is small, i.e., (mi – mi�1)/�mi�1 <

P
. Instantaneous

frequency averaging was weighted by the square of instanta-
neous amplitude for a given IMF, i.e., by instantaneous
power. Mask frequencies were initialized by the dyadic
masking technique, though it was found that itEMD is not
sensitive to mask changes and can rapidly identify correct
IMFs even with a random initial mask (Fig. 2). Due to rapid
convergence (<10 iterations in most cases), itEMD is compu-
tationally comparable with existing techniques including en-
semble EMD and uniform phase EMD, each of which
requires repeated sifting (22). More formally, the computa-
tional complexity of itEMD is T = 41niter � ns � np � n log2(n)

for niter iterations, ns sifting steps, np mask phases, and data
length n.

Simulations

We ran simulations to compare the performance of itEMD
to existing sifting methods, namely ensemble EMD (EEMD)
(20) and masked EMD (21). Simulations were performed
along three dimensions that are important to analysis of
neural signals: noise, sparsity, and waveform shape distor-
tion (nonsinusoidality). These were chosen as they are all
common features of neurophysiological data which cause
issues for extracting neural oscillations. In standard EMD,
they result inmodemixing and prohibit accurate representa-
tion of waveform shape and robust interpretation of identi-
fiedmodes.

All noise and frequency distortion simulations were 10-s
long and sampled at 512 Hz with signal amplitude normal-
ized to 1. In each simulation, IMFs were computed using
three different methods that are used to address mode mix-
ing: dyadic mask sift, ensemble sift, and our novel iterated
masking EMD (itEMD). Dyadic mask sift utilized a single set
of masking frequencies. The first was computed from zero-
crossings of first IMF obtained by a standard sift and subse-
quent masking frequencies were divided by powers of 2.
Masks were applied with four phases uniformly spread
across 0 to 2p following Wang et al. (22). Ensemble sift was
run with four noise realizations and ensemble noise stand-
ard deviation of 0.2. The novel itEMD was run on top of the
masked EMD implementation with a stopping criterion

P
=

0.1 andmaximumnumber of iterations nmax = 15. In all simu-
lations, number of IMFs was limited to 6 and the sifting
threshold was 10�8. After finding IMFs, individual cycles
were found from jumps in the instantaneous phase found by
the amplitude-normalized Hilbert transform. Each set of
simulations (noise, distortion, sparsity) was repeated n = 100
times with themeans ± standard error results presented.

Waveform shape was quantified by computing the average
phase-aligned instantaneous frequency (IF) across cycles
(11). IF measures how an oscillation speeds up or slows down
within a cycle. It is computed as the time derivative of the

Figure 2. Iterated masking empirical mode
decomposition (EMD) (itEMD) on simulated
data. A: example endpoint of itEMD, i.e.
intrinsic mode functions (IMFs) from last of
15 iterations on the same signal as in Fig.
1B. B: itEMD convergence to equilibrium
starting with a mask drawn randomly from
a uniform distribution of 1–128 Hz. Thin
gray lines are all 100 individual runs, col-
ored lines are median trajectories with line
thickness scaled to maximum value of that
IMF. itEMD converges rapidly, adapts mask
frequencies to the signal content, and cor-
rectly finds both the nonsinusoidal 4 Hz os-
cillation and intermittent 30 Hz burst with
no prior knowledge about the frequencies
contained in the signal.
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instantaneous phase. IF was phase-aligned to correct for dif-
ferences in timing and duration between cycles and allow
for comparisons at each phase point. It can intuitively be
understood as fitting a sinusoid with frequency that of the
instantaneous frequency at each time point, capturing shape
deviations away from a sinusoid with a constant frequency
(39, 40). Within-cycle IF variability is thus a measure of how
nonsinusoidal each cycle is.

Performance of each method was assessed by two meth-
ods. The first was finding Pearson correlation between recon-
structed phase-aligned instantaneous frequency (proxy for
waveform shape) and its ground truth. The second was com-
puting the pseudo-mode splitting index (PMSI) introduced
by Wang et al. (22). PMSI estimates the degree of mode mix-
ing between two adjacent IMFs by computing the normal-
ized dot product between them:

PMSIi;iþ 1 ¼ max
~ci � ciþ1

!
jcij2 þ jciþ 1j2;0

 !
: ð1Þ

Orthogonal, well-separated modes with no mode mixing
thus have PMSI = 0. Fully split modes have PMSI = 0.5. This
index was chosen as it can be applied to both simulated and
real data and is easy to interpret. For simulations with a
known ground truth, we took the IMF of interest as the one
with mean instantaneous frequency closest to that of the
ground truth and calculated PMSI as the sum of PMSIs with
the above and below IMF.

Noise simulations.
For analyzing noise-dependent properties, white noise was cre-
ated using the numpy.random.normal Python module with
zero mean and standard deviation r (also equal to its root-
mean-square, RMS). White noise was chosen because perform-
ance results tested on it are independent of signal frequency.
This is because white noise has equal power throughout the
frequency spectrum. For simulations of neurophysiological
data, signals with brown noise were also considered (see
Supplemental material; all Supplemental material is available
at https://doi.org/10.6084/m9.figshare.16680901.v1). For this
set of simulations, white noise RMS r was varied between r =
0.05 and r = 3 in 100 uniformly spaced steps. Waveform shape
distortion was held constant at frequency distortion (FD) =
68% (seeWaveform shape distortion simulations).

Waveform shape distortion simulations.
For analyzing waveform shape, signal was simulated as an
iterated sine function, i.e., sin{sin[. . .sin(2 � p � f0 � x)]} iter-
ated nsin times with f0 = 4 Hz. This function was chosen
because 1) it is easy to manipulate its nonsinusoidal distortion
by increasing nsin, 2) it is well-understood analytically (41), 3)
it has been used before in context of EEG time-frequency anal-
ysis (42), and 4) it has a well-behaved instantaneous frequency
by satisfying conditions outlined by Huang et al. (10). It also
qualitatively captures parts of waveform shape of the sensori-
motor μ oscillation and slow oscillations in depth EEG record-
ings by its “flat top” structure (7, 43). The base frequency of 4
Hz was chosen as it is physiologically plausible in the d range
and was near a Nyquist boundary, where current EMD sifting
methods may have issues. Its nonsinusoidality was captured
by a frequency distortionmetric FD defined by

FD ¼ max IFð Þ �min IFð Þ
f0

� 100%: ð2Þ

A signal with FD = 0% is a pure sinusoid and FD = 100%
indicates a waveform with IF range equal to that of the origi-
nal frequency, i.e., 4 ±2 Hz. An example waveform can be
seen in Fig. 1 (FD = 68%). In this set of simulations, frequency
distortion was varied between FD= 18% and 101% by repeat-
ing simulations with iterated sine order varying from nsin = 1
to nsin = 18. White noise RMS was held constant at r = 1.

Signal intermittency simulations.
For analyzing effects of signal intermittency on itEMD per-
formance, we simulated bursts of different length in a 25-s
segment of data. Sparsity was measured as the number of
individual oscillations in the burst. The number of cycles in
the burst was varied from 5 to 95 in 100 steps. Noise RMS
was kept constant at rnoise = 1 and distortion at FD = 68%
(8th-order iterated sine).

Statistical testing was done using one-sided Welch’s t test
corrected for multiple comparisons using Bonferroni’s
method unless otherwise specified (44).

Experimental Data

Rat local field potential data.
To validate our method with well-described hippocampal h
oscillations, we used a publicly available dataset of Long–
Evans rats (45, 46). The full 1,000 s local field potentials
(LFP) recording from rat EC-013 sampled at 1,250 Hz was
used for analysis. The electrode analyzed was implanted in
the hippocampal region CA1. EMD cycle analysis was the
same as during simulations. In short, three types of sifting
methods were compared: dyadic masking sift with zero-
crossing initialization, ensemble sift, and the novel itEMD.
The recording was split into 20 segments of 50 s duration
before sifting. For itEMD (as in simulations), the stopping cri-
terion was set at

P
= 0.1, the maximum number of iterations

was nmax = 15, the mask was weighted by squared instantane-
ous amplitude, and the iteration process was initialized by the
zero-crossing dyadic mask result. Instantaneous phase, fre-
quency, and amplitude were computed from the IMFs using
the amplitude-normalizedHilbert transformwith an instanta-
neous phase smoothing window of n = 5 timepoints. The h
IMF was chosen as that whose average instantaneous fre-
quency was closest to the Fourier spectral h peak estimated
using Welch’s method (peak in 4–8 Hz, function scipy.signal.
welch, 8 s segment length/0.125 Hz resolution). Cycles were
computed from jumps in the wrapped instantaneous phase.
To discard noisy cycles, only cycles with monotonic instanta-
neous phase, instantaneous amplitude above the 50th percen-
tile, and instantaneous frequency below 16 Hz were used for
further analysis. Cycles were phase-aligned with n = 48 phase
points and the shape was represented by the mean of the
phase-aligned instantaneous frequency. To compare mode
mixing, the PMSI (Eq. 1) was also computed as the sum of
PMSIs of the h IMF with the IMF above and below it in
frequency.

Finally, we also computed the Wavelet transform of the
LFP data for comparison with the Hilbert–Huang transform
(HHT). This was done using the scipy.signal.cwt function
with the Complex Morlet wavelet with x0=4 and n = 100
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frequency points between 1 Hz and 64 Hz as the widths.
HHT was computed using the emd.spectra.hilberthuang
function in the same frequency range with a Gaussian image
filter from scipy.ndimage with r = 0.5 applied for visualiza-
tion purposes.

Humanmagnetoencephalography data.
Ten resting-state MEG recordings were randomly chosen
from the CamCAN project (https://www.cam-can.org/) (30,
31). The participants were randomly chosen from the project
(mean age 43.5 yr, range 18–79, 6 females). The maxfilter
processed data were downloaded from the server and con-
verted into SPM12 format for further analysis using the
OHBA Software Library (OSL; https://ohba-analysis.github.
io/osl-docs/). Each dataset was down-sampled to 400 Hz and
bandpass filtered between 0.1 and 125 Hz. Two notch filters
were applied at 48–52 Hz and 98–102 Hz to attenuate line
noise. Physiological artifacts were removed from the data
using independent components analysis. Sixty-two compo-
nents were computed from the sensor space data and artifac-
tual components identified by correlation with EOG and
ECG recordings. Any independent component with a corre-
lation greater 0.35 with either the EOG or ECG was consid-
ered artifactual and removed from the analysis. This
resulted in two to four components removed from each data-
set. EMD analyses proceeded with the cleaned MEG data
from a single gradiometer MEG2112 over midline occipital
cortex. Each recording was �10 min (median 565 s, range
562–656 s). The power spectrum of the whole recording was
estimated using Welch’s method (function scipy.signal.
welch, 8 s segment length/0.125 Hz resolution). The fre-
quency of the spectral a peak was then extracted in the 8–12
Hz range as a local maximum (function scipy.signal.find_-
peaks). For itEMD analysis, each recording was segmented
into 10 parts of the same length (median segment length 56.2
s). EMD was performed with the mask sift, ensemble sift,
and itEMD. Sift parameters were identical to those used for
the rat LFP analysis (see Rat local field potential data). The
IMF representing a oscillations was chosen as the one whose
mean instantaneous frequency was closest to the a peak fre-
quency. Subjects were excluded if no a peak was present
(one subject). After extraction of cycles from the Hilbert-
computed instantaneous phase jumps, only those with in-
stantaneous frequency between 7 and 14 Hz and instantane-
ous amplitude above the 50th percentile were kept. For
further analysis, cycles were phase-aligned to n = 48 uni-
formly spaced phase points between 0 and 2p and the mean
across cycles was computed for each subject. To evaluate
mode mixing, the PMSI for each sifting method was also
calculated.

RESULTS

Simulations

Iterated masking sift (itEMD) rapidly converged on signal
in the presence of noise and intermittency. An initial 10-s
data segment with a 30-Hz transient burst, a 4 Hz nonsinu-
soidal oscillation, and low white noise was first simulated
(Fig. 2). The iteration process was started with a set of six
random masks drawn uniformly from 1 to 128 Hz. Despite
this initial complete lack of knowledge about the signal,

itEMD correctly recovered the nonsinusoidal waveform and
the b-frequency burst. The iteration process converged with
noise in IMF-1, the 30-Hz b burst in IMF-2, and nonsinusoi-
dal 4 Hz signal in IMF-3. Subsequently, convergence
was determined automatically. The convergence criterion
was set to the mask stabilizing within 10% between itera-
tions with a maximum number of iterations of 15 (see
MATERIALS AND METHODS). Further simulations were initial-
ized with the zero-crossing masked sift results for faster
convergence. All simulations were repeated with n = 100
different noise realizations.

Influence of noise.
We wanted to establish how different sifting methods
reconstruct waveform shape in the presence of noise (Fig.
3). Ten seconds of a 4 Hz nonsinusoidal iterated sine signal
with white noise was simulated. The standard deviation of
zero-mean white noise (root-mean-square of noise, RMS
noise) was varied as the shape of the wave remained con-
stant with 8th-order iterated sine (frequency distortion
FD = 68%, see MATERIALS AND METHODS). Iterated masking
was compared with existing dyadic masking and ensemble
sifting techniques.

First, we measured performance by computing Pearson
correlation of reconstructed and ground truth waveform
shapemeasured by the instantaneous frequency (Fig. 3A).

For low-to-medium noise amplitudes (rnoise � 1 with
normalized signal amplitude of one), existing techniques
were sufficient to represent the waveform shape well.
Ensemble-sift reconstructed waveform shape had a high
correlation with the ground truth shape with r > 0.75, but
its performance quickly deteriorated past rnoise = 0.1.
Dyadic mask sift had poor shape reconstruction for no
noise but performed well from rnoise = 0.1 onward. The
novel iterated masking performed well except for a dip in
performance around ultra-low noise below rnoise = 0.1.
This was found to be the level where noise RMS is equal to
the amplitude of one of the higher signal harmonics. As
such, this harmonic was sometimes included in the IMF of
interest and sometimes not, depending on exact noise
details. This introduced stochastic mode mixing (see also
Supplemental material and Supplemental Fig. S1). Noise
levels in neurophysiological data are seldom this low.
However, we were able to automatically identify these
pathological cases because the mask did not reach a stable
equilibrium and the maximum number of iterations was
reached (red shading).

For high noise amplitudes (1 � rnoise � 2), the new
itEMD significantly outperformed the existing techni-
ques. Ensemble sift produced sine waves and failed to
capture nonsinusoidal waveform behavior (correlation
near zero). Dyadic mask sift suffered from mode mixing,
with the waveform split across IMF-4 and IMF-5 (Fig. 1D).
Because of this, dyadic masking failed to accurately
reconstruct waveform shape, especially above rnoise = 1.
In contrast, itEMD accurately isolated the signal even at
high noise levels (Fig. 3B). Its reconstructed shape corre-
lated with the ground truth significantly better than the
existing techniques with P < 0.01 (Bonferroni corrected
across 100 noise levels) across the high noise range 1 �
rnoise � 2.

DECOMPOSITION OF DATA INTO NONSINUSOIDAL OSCILLATORY MODES

J Neurophysiol � doi:10.1152/jn.00315.2021 � www.jn.org 1675
Downloaded from journals.physiology.org/journal/jn at Univ of Birmingham (147.188.251.011) on September 21, 2022.

https://www.cam-can.org/
https://ohba-analysis.github.io/osl-docs/
https://ohba-analysis.github.io/osl-docs/
http://www.jn.org


In the region of very high noise with rnoise> 2, all methods
behaved as dyadic filters and failed to capture waveform
shape. This is because higher Fourier harmonics encoding
shape details became submerged in noise, making it impos-
sible to recover the nonsinusoidal shape.

We also evaluated mode mixing performance by com-
puting the PMSI (pseudo-mode splitting index, Fig. 3C), a
mode mixing metric previously used in the literature (22).
A high PMSI value indicates severe mode mixing and poor
sift.

For low noise amplitudes (rnoise � 0.3), the dyadic mask
sift produced the least amount of mode mixing (lowest
PMSI). In this region, itEMD was again susceptible to sto-
chastic mode mixing due to noise levels matching higher
harmonics, increasing the PMSI. Ensemble sift had the most
modemixing in this region.

For medium-to-high noise (0.3 � rnoise � 2), itEMD had
significantly less mode mixing than existing techniques
(lowest PMSI P < 0.01, Bonferroni-corrected). Ensemble sift
had a largely unchanging amount of mode mixing, suggest-
ing it was driven by the added noise. Dyadic masking had
themostmodemixing in this region.

All three methods had similar PMSI in the very high noise
region with rnoise > 2 due to inherent dyadic filtering behav-
ior of EMD.

Neurophysiological signals typically show auto-correlated
1/f noise (also termed aperiodic activity or fractal noise) (47).
To verify our technique works with 1/f noise simulations, we
re-ran all the main analyses with brown noise (Supplemental

material S3). As with white noise, itEMD outperformed exist-
ing techniques over a wide range of parameters.

Finally, we compared mask frequency stability across
itEMD iterations for amode known to have signal (IMF-4) and
a pure noise mode (IMF-5). The mask frequency was signifi-
cantly less variable when signal was present (Supplemental
material S5 and Supplemental Fig. S5).

Influence of frequency distortion (nonsinusoidality).
Highly nonsinusoidal waveforms have been observed across
a variety of neural data (see INTRODUCTION). As such, we com-
pared existing techniques and itEMD performance in data
with progressively more waveform distortion. Ten seconds
of a 4 Hz nonsinusoidal iterated sine signal with white noise
of standard deviation rnoise = 1 was simulated. Frequency
distortion was varied by iterating the sine function between
1 and 18 times. Each frequency distortion level was simu-
lated with n = 100 different noise realizations. Performance
was again compared using Pearson correlation to ground
truth shape and the PMSI.

Iterated masking performed significantly better than the
existing methods for highly nonsinusoidal signals (Fig. 4,
Bonferroni-corrected P < 0.01 for lowest PMSI and higher
Pearson r). Dyadic mask shape correlation with ground truth
was not significantly different from itEMD for FD < 50%, but
severe modemixing was present. This meant the average fre-
quency and amplitude were poorly reconstructed. At this
noise level, ensemble sift behaved as a dyadic filter and

Figure 3. Influence of noise on empirical mode decomposition (EMD) performance on simulated data. A: Pearson correlation coefficient between recon-
structed and ground truth instantaneous frequency against increasing white noise amplitude. B: example 5 s of iterated masking EMD (itEMD) sift results
for rnoise = 0.5, frequency distortion (FD) = 68%. Iterated sine function is captured by IMF-4. C: pseudo-mode splitting index (PMSI) against white noise
amplitude, with higher PMSI values indicating higher mode mixing. Means ± standard error across n = 100 noise realizations shown. Black line indicates
regions where itEMD performs significantly better than the best of the other techniques with P < 0.01 (multiple comparisons Bonferroni corrected). Red
shaded region shows noise levels where itEMD reached maximum number of iterations in>20% of noise realizations. The novel itEMD performs signifi-
cantly better for highly noisy data in the region between rnoise � 1 and rnoise � 2 with reduced mode mixing and accurate waveshape reconstruction. D:
example dyadic mask sift results for rnoise = 0.5, FD = 68%. Intrinsic mode function (IMF)-4 shows significantly more mode splitting than itEMD results.
RMS, root-mean-square.
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completely failed to capture waveform shape. It produced a
sinusoid at the dyadic boundary of f = 4 Hz with no nonsinu-
soidality. itEMD performance also improved with increasing
frequency distortion. This is due to higher frequency har-
monics increasing in magnitude with more shape distortion,
allowing better convergence of itEMD.

Reconstructed waveform.
Next, we looked at individual IMFs and reconstructed wave-
forms and their instantaneous frequency (Fig. 5). As
expected from the Pearson r and PMSI results in Fig. 4,
itEMD best reconstructed a highly nonsinusoidal waveform
in the presence of noise. A noise level of rnoise = 0.1 and 4th-
order iterated sine were chosen as they are qualitatively sim-
ilar to experimental LFP and MEG recordings analyzed
(cross-reference Fig. 7). The ensemble sift was able to capture
most of the nonsinusoidality but suffered from heavy mode
mixing (PMSI = 0.0943). The dyadic mask sift had slightly
less mode mixing (PMSI = 0.0923) but failed to capture any
nonsinusoidal waveform shape details. The novel iterated
masking captured the waveform shape best with the least
mode mixing (PMSI = 0.0003). However, the waveform was
still not perfectly reconstructed. This was due to 1) some of
the harmonics encoding the finer details being lower in spec-
tral density than the noise and 2) due to intrinsic finite band-
width of EMD modes (see Supplemental material and
Supplemental Fig. S2). However, itEMD performed signifi-
cantly better than the other techniques with the root-mean-
square error to the ground truth instantaneous frequency
being significantly lower (P = 1.75� 10�9 vs. dyadicmask, P =
0.045 vs. ensemble sift, Bonferroni-corrected).

Influence of signal sparsity.
Neural activity often consists of intermittent bursts (17). To
test itEMD performance when signal is sparse, we simulated
25 s of zero-mean white noise with rnoise = 1, to which we

added a 4 Hz nonsinusoidal 8th-order iterated sine signal
with frequency distortion FD = 68% and variable length of 5–
100 cycles. When reconstructing waveform shape of this
burst, itEMD performed significantly better than either the
dyadic mask sift, or the ensemble sift (Fig. 6). Even in the
presence of high noise and nonsinusoidality, itEMDwas able
to extract the burst and identify its waveform shape. Its cor-
relation with ground truth waveform shape was significantly
higher than the other methods for all burst lengths consid-
ered (Fig. 6A, P < 0.01, Bonferroni corrected across number
of cycles in the burst). Mode mixing measured by the PMSI
was also significantly lower than with the existing methods
(Fig. 6C, P < 0.01, Bonferroni corrected). Performance of
itEMD improved as burst length increased. Overall, this
demonstrates the potential benefits of itEMD when charac-
terizing transient bursts, which is increasingly used to
describe oscillations in electrophysiological data (5).

Application to Experimental Data

Rat local field potential.
We first validated our technique by applying it to the well-
understood hippocampal h signal in a 1,000 s recording of
publicly available rat hippocampal LFP data. The recording
was split into n = 20 segments of 50 s each. This h oscillation
has been previously observed to be nonsinusoidal with, on
average, a faster ascending than descending edge (8, 48, 49).
Our novel iterated masking EMD (itEMD) converged after
niter = 6± 1 iterations and extracted cycles with a wide instan-
taneous frequency sweep (Fig. 7). It reproduced the known
shape with a faster leading edge (leading edge frequency
7.87±0.02 Hz, falling edge frequency 7.62±0.02 Hz, means ±
SE, P = 5.9� 10�21 on a paired t test across all cycles). In com-
parison to itEMD, existing ensemble and dyadic mask sifting
failed to capture the high nonsinusoidality of this oscillation.
Existing methods also suffered from higher mode mixing as
measured by the PMSI (lowest PMSI for itEMD with

Figure 4. Influence of frequency distortion
on empirical mode decomposition (EMD)
performance in simulated data. A:
Pearson correlation coefficient between
reconstructed and ground truth instanta-
neous frequency against increasing fre-
quency distortion. B: example 5 s of itEMD
sift results for rnoise = 1, frequency distor-
tion (FD) = 80%. C: pseudo-mode splitting
index (PMSI) against frequency distortion,
with higher PMSI values indicating higher
mode mixing. Means ± standard error
across n = 100 noise realizations (shaded)
shown. Black line indicates regions where
itEMD performs significantly better than
the best of the other techniques with P <
0.01 (multiple comparisons Bonferroni cor-
rected). The novel iterated masking EMD
(itEMD) performs significantly better for
highly nonsinusoidal data in the region
FD > 50% with reduced mode mixing and
accurate waveshape reconstruction. D:
example 5 s of dyadic mask sift results for
rnoise = 1, FD = 80%. Intrinsic mode func-
tion (IMF)-4 shows significantly more
mode mixing with existing methods than
with our novel itEMD.
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Bonferroni-corrected P < 10�6). This was confirmed by visu-
alizing the Hilbert–Huang transforms, where h IMF has the
cleanest sweep for itEMD. This could allow for improved
cross-frequency coupling analysis.

To compare this analysis with more traditional methods,
we also computed the wavelet transform (Fig. 7G). The spec-
trumwas qualitatively very similar to the itEMDHHT except
with a smoothed lower time-frequency resolution. The wave-
let transform also confirmed the artifactual components
present in HHTs from existing methods. This was as there
was neither continuous low-frequency component nor high/
low frequency switching seen in dyadic masking and EEMD,
respectively, due tomodemixing.

Humanmagnetoencephalography.
For further validation, we analyzed 10 min of occipital rest-
ing-state data from each of 10 subjects (Fig. 8). One subject
was excluded as their spectrum did not show an a peak. We
found itEMD successfully and rapidly converged on the
intermittent a oscillation around 10 Hz (niter = 5 ± 1 iterations
across all subjects, means ± standard deviation). Compared
with dyadic mask sift and ensemble sift, mode mixing meas-
ured by the PMSI was significantly lower (P = 6.0 � 10�5 vs.
dyadic mask, P = 0.0033 vs. ensemble sift, Bonferroni-cor-
rected paired t test across subjects).

a Peak frequency is known to vary between people, condi-
tions, and changes with age (50, 51). EMD has the advantage
of representing spectral components with fewer assumptions
about frequency bands, unlike traditional Fourier analyses
focusing on the 8–12 Hz power for example. As such, it may
be well-suited to represent these inter- and intraindividual
spectral differences. Variability in a peak frequency was also
seen in data analyzed here. Moreover, itEMDwas able to rep-
licate this result, with the mean subject phase-aligned

instantaneous frequency found to be linearly related to spec-
tral peak frequency (Fig. 8D, F = 13.89, P = 0.00739).
Recordings also showed the presence of b-band elements
around 20 Hz in IMF-2, which were also present in the
Fourier spectrograms (Fig. 8E and Supplemental Fig. S5C).

DISCUSSION
In this paper, we introduced a novel way of performing

empirical mode decomposition (EMD) called iterated mask-
ing EMD (itEMD). This technique is capable of robustly
decomposing signals into spectral components in the pres-
ence of noisy, sparse, and highly nonsinusoidal oscillations.
In itEMD, masking signals are introduced at frequencies
identified by an iterative, data-driven process to solve the
mode mixing observed with other EMD methods. We dem-
onstrated the utility of this sifting technique in comparison
with existing solutions to the mode mixing problem, espe-
cially in highly noisy and nonsinusoidal signals.

We validated the method using rat LFP and human MEG
recordings. We found rat hippocampal h to be highly nonsi-
nusoidal with a faster ascending edge as previously reported
(8, 48, 49). Intermittent human occipital a was found to be
nearly sinusoidal with a between-subject variable peak fre-
quency around 10 Hz. Mode mixing was found to be signifi-
cantly lower when using itEMD compared with ensemble
and dyadic mask sifting in these neurophysiological record-
ings. Iterated masking EMD has the potential to enable more
widespread use of EMD in neurophysiology and shed light
on single-cycle dynamics across a wide range of modalities
and conditions. It automates the selection of mask frequen-
cies and can thus enable a wide range of analyses about
bursts of neural activity, genuine cross-frequency coupling,
and analysis of neural phase.

Figure 5. Example 2 s of sifting results for
4th-order iterated sine with white noise
rnoise = 0.1 in simulated data. A: intrinsic
mode functions (IMFs) for the novel iter-
ated masking empirical mode decomposi-
tion (itEMD). Iterated sine is in IMF-3 with
very little mode mixing. B: IMFs for dyadic
mask sifting. Signal is split between IMF-3
and IMF-5. C: IMFs for ensemble sifting.
Iterated sine is mostly in IMF-4, but mode
mixing is present. D, top: average recon-
structed waveform, bottom: reconstructed
phase-aligned instantaneous frequency
(IF); means (line) ± standard error across
cycles (shaded) shown. Dyadic mask sift
waveform (orange) fails to reconstruct
nonsinusoidality. Ensemble sift recovers
more shape detail but suffers from high
mode mixing. itEMD is able to reconstruct
more of the waveform shape than either
existing method while lowering mode mix-
ing. EEMD, ensemble empirical mode
decomposition.
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We performed extensive simulations across a wide range
of noise, sparsity, and nonsinusoidality (frequency distor-
tion) parameters. In our validation of itEMD using simulated
data, we used white noise. We focused on white noise
because in this case results become independent of simu-
lated signal frequency and hence ought to be applicable to
any common noise structure. However, our technique is just
as applicable to different noise structures (e.g., brown noise;
Supplemental material S3).

The stability of the mask equilibrium found by itEMD was
found to be higher for modes containing genuine signal
(Supplemental Fig. S5). It was observed that the equilibrium
was well-defined for IMFs displaying consistent oscillations
with between-iteration mask frequency changes of less than
3% and rapid convergence (<10 iterations). This makes sense
as itEMD found the equilibrium where IMF frequency
matched mask frequency, as described in MATERIALS AND

METHODS. Conversely, IMFs containing mostly noise had
highly variable mask frequencies changing by more than 5%
between iterations with no well-defined equilibrium. This
could be used to assess whether an oscillation is present in
any given segment of data in addition to existing ways of
doing this such as amplitude and period consistency (37).

Comparison with Existing Analysis Methods

As itEMD is an EMD-based technique, this paper
focused on direct comparisons with other EMD sifting
techniques. As mentioned, a key reason why EMD has
scarcely been applied to neurophysiological data is mode
mixing (13, 14). When oscillations of interest are present
across multiple IMFs, their interpretation and further
analysis is made much more difficult. Iterated masking
EMD significantly reduced mode mixing [measured by the
PMSI as per previous literature before (22)] whilst still
being able to reconstruct nonsinusoidal oscillations in the
signal. Compared with the existing masked sift, itEMD has

the advantage of being fully data-driven and avoiding
manual mask optimization.

Non-EMD based analysis methods may complement
itEMD. Traditionally, analysis has been done by calculating
the Hilbert transform on narrowband filtered data (8). This
works well if frequencies of interest are defined a priori.
However, it poses limitations on how nonsinusoidal oscilla-
tions can be and does not allow for large between-subject
variabilities. Furthermore, the use of Fourier filters may
introduce bias into the analysis (10, 52). More recently, meth-
ods based on detecting phase control points (peaks, troughs,
etc.) have been developed (37). These provide important
summary statistics for cycles, such as peak-trough asymme-
try and rise-decay asymmetry. EMD-based analysis describes
the shape with phase-aligned instantaneous frequency with-
out restricting analysis to certain phase points. The cycle-by-
cycle approach could thus be cross-validated by itEMD
detecting asymmetry around the phase points used for its
statistics. Finally, additional novel algorithms for extracting
summary waveforms for a whole recording have been devel-
oped (53, 54). Unlike itEMD and the techniques described
earlier, these are however not sensitive to changes in wave-
formwithin a recording.

ItEMD also has the potential to complement the analysis
of common task-related data. However, different analysis
methods are needed. Traditionally, activity (or the Fourier/
wavelet spectrum) is averaged across trials. Using the
Hilbert–Huang transform (HHT) without smoothing, this
may average to zero. There is however increasing recogni-
tion that individual bursts and cycles may give us additional
information about the brain’s functions (16, 17). As such, we
recommend making use of trial-specific information EMD
produces, such as building a general linear model with the
instantaneous frequency and amplitude associated with
each cycle (see Ref. 11 for an example of such an analysis and
Fig. 7,D–G to compare HHTwith a wavelet transform).

Figure 6. Influence of signal sparsity on
empirical mode decomposition (EMD) per-
formance on simulated data. A: Pearson
correlation coefficient between recon-
structed and ground truth instantaneous
frequency against increasing burst length.
B: example iterated masking EMD (itEMD)
sift results for rnoise = 1, FD = 68%, 10
cycles. C: pseudo-mode splitting index
(PMSI) against burst length. Means ±
standard error across n = 100 noise real-
izations (shaded) shown. Black line indi-
cates regions where itEMD performs
significantly better than the best existing
technique with P < 0.01 (multiple compari-
sons Bonferroni corrected). The novel
itEMD performs significantly better for a
wide range of burst durations. D: example
dyadic mask sift results for rnoise = 1, FD =
60%, 10 cycles in burst. Iterated sine func-
tion is captured by intrinsic mode function
(IMF)-4 and IMF-5 due to mode mixing.
FD, frequency distortion.
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Limitations When using itEMD

Although itEMD represents a significant step toward
extracting nonsinusoidal neural oscillations in a data-driven
way, there may be situations where other techniques are
more appropriate. Here we draw attention to a few cases
where this may be the case.

Iterated masking EMD works to capture more waveform
shape details by adapting the bandwidth of an IMF to
include more signal from higher frequency harmonics
(Supplemental material S2). However, together with captur-
ing more shape details, this also increases the amount of

noise in the IMF. If oscillations being studied are not
expected to be nonsinusoidal, or such features are not of in-
terest, other methods (such as a carefully designed manual
mask for masked sift, or Fourier techniques) may be better at
boosting signal-to-noise ratio. Indeed, it was found that at
high noise levels, the SNR boost from itEMD is lower than
other sifting methods (Supplemental Fig. S2).

As with most EMD-based algorithms, itEMD also has a
fundamental limitation in how large a single IMF bandwidth
can be. It has been previously shown that the original EMD
algorithm differentiates between a single-amplitude-modu-
lated tone and two separate tones based on their rates of

Figure 7. Rat hippocampal local field potential (LFP) results. A: power spectrum of the full recording showing a h peak harmonic. B: phase-aligned instan-
taneous frequency of h cycles (means ± standard error across all cycles shown). Existing methods including dyadic mask sift and ensemble sift fail to cap-
ture high nonsinusoidality of h oscillations unlike iterated masking empirical mode decomposition (itEMD). C: violin plots of the pseudo-mode splitting
index (PMSI, a measure of modemixing) across n = 20 segments of the 1,000 s recording. Iterated masking had significantly lower PMSI than both dyadic
mask sift and ensemble sift (P < 10�6, Bonferroni-corrected across methods). D, top: example itEMD sift results from 2 s of the LFP recording, bottom:
Hilbert–Huang Transform (HHT) for the same data. h Oscillations are well-captured by intrinsic mode function (IMF)-4 with minimal mode mixing. E and F:
same as D but for the dyadic mask sift and ensemble EMD (EEMD). Significant mode mixing is present. G: wavelet transform of the same data as in D–F.
Similar dynamics to the HHT in D are present but with lower resolution. Compared with E and F, we see the artifacts in poor sifts (red arrows). H and I:
expanded sections showing mode mixing. ���P< 0.001 (Bonferroni-corrected).
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extrema and amplitude ratios (55). This means that when
shape-encoding harmonics are much higher in frequency
than the base frequency (approximately af 2 > 1 for ampli-
tude ratio a and frequency ratio f of base to harmonic as
explained in Ref. 55), itEMD will tend to treat these as two
separate oscillations. If they need to be treated as a single os-
cillation, researchers should use masks specifically designed
for overcoming this limit (27) or non-EMD based waveform
analysis techniques [e.g., cycle-by-cycle analysis (37)]. It is still
a matter of debate as to when higher-frequency signals consti-
tute harmonics as opposed to genuine separate oscillations (56,
57). This issue is important, as harmonics can cause spurious
cross-frequency coupling if not accounted for properly, and
ongoing research in our group is attempting to clarify this
issue. Finally, in high levels of noise, high-frequency harmon-
ics may be below the noise level (Supplemental material S1).
When this happens, itEMD will only partially reconstruct the
waveform shape. This is because EMDworks locally by finding
extrema, and if they are dominated by noise on a given scale,
EMD will not be able to identify signal. Our technique shares
this limitation with all existing EMD-based analysis methods.
However, even at high noise levels when this happens, our
technique still had significantly lower mode mixing and pre-
served the correlation between ground truth and reconstructed
instantaneous frequency.

In this paper, we measured mode mixing with the previ-
ously used pseudo-mode splitting index (PMSI) (22). This
metric assumes the sift works optimally when IMFs are or-
thogonal. As we are attempting to find a basis of components
for the data, orthogonality is desirable (see e.g., section 6 in

Ref. 10). However, this is not always guaranteed if strong har-
monic or coupled components are present in the data.
Correlation betweenmodes should be assessed for each appli-
cation and sift parameters adjusted if excessive correlation is
found.itEMD was designed to handle sparse oscillations, but
itmay be necessary to adjust the amplitudeweightingmethod
if signals of interest are very sparse (<10% of a data segment
being processed). This can be done by changing the weighting
of instantaneous frequency when iterating. Here, we used
weighting by the square of instantaneous amplitude (IA2, in-
stantaneous power) at each iteration. Higher powers of instan-
taneous amplitude may help if sparsity is preventing itEMD
from converging on oscillations of interest. Conversely,
weighting by lower powers may be appropriate if minute IA
fluctuations are driving spurious results.

In this work, we defined iteration convergence when the
relative mask change between iterations was under 10%. We
also tried continuing for ten iterations after this point and
averaging the resulting IMFs to verify the robustness of our
threshold. It was qualitatively observed that only minimal
changes occurred after the 10% convergence point. However,
in datasets not studied here, it may be necessary to tune the
convergence criterion or take the average of a few iterations
after soft convergence around 10% depending on exact noise
structure present. Our analyses were all also relatively insensi-
tive to the choice of the maximum number of iterations nmax

as itEMD converged rapidly in most cases. However, we can-
not guarantee this in all possible applications. nmax should be
high enough so the stopping criterion is reached in most
cases. The current implementation raises a warning if the

Figure 8. Human magnetoencephalogra-
phy (MEG) occipital a results. A: group-
level violin plots of the pseudo-mode split-
ting index (PMSI, a measure of mode mix-
ing). Iterated masking had significantly
lower PMSI than both dyadic mask sift (P =
6e�5), and ensemble sift (P = 0.0062,
both Bonferroni-corrected). B: group-level
phase-aligned instantaneous frequency
(means ± standard error shaded). Both
iterated masking empirical mode decom-
position (itEMD) and ensemble empirical
mode decomposition (EEMD) detect the
10 Hz occipital a oscillation with no signifi-
cant nonsinusoidality. Masked sift fails to
capture the oscillation well due to mode
mixing. C: one-dimensional (1-D) Hilbert–
Huang Transform (HHT) for intrinsic mode
functions (IMFs) from an example subject. D:
mean subject phase-aligned instantaneous
frequency against peak a frequency from
the Fourier power spectral density. Iterated
masking linearly reproduces between-sub-
ject variability in a frequency (P = 0.00739, F
test against constant null hypothesis). E:
example 5 s of raw itEMD sift results. a
Oscillations are in IMF-3 with sharp features
in IMF-2 and minimal mode mixing. ��P <
0.01, ���P< 0.001 (Bonferroni-corrected).

DECOMPOSITION OF DATA INTO NONSINUSOIDAL OSCILLATORY MODES

J Neurophysiol � doi:10.1152/jn.00315.2021 � www.jn.org 1681
Downloaded from journals.physiology.org/journal/jn at Univ of Birmingham (147.188.251.011) on September 21, 2022.

http://www.jn.org


maximum number of iterations has been reached and the
plausibility of the decomposition should be checked, for
instance by way of comparison with existing EMDmethods.

When analyzing our MEG data, we segmented the record-
ings into 10 parts of about a minute each. itEMD implicitly
assumes that the mean frequency of oscillations of interest is
not changing greatly and an equilibrium can be found.
Hence, to allow for drifting in the spectral peak frequency
segmented data were used. However, it was found a fre-
quency did not vary significantly during this resting-state
experiment and applying itEMD on full recordings yielded
very similar results (see Supplemental material S5). In gen-
eral, we recommend segmenting the data if peak frequencies
may shift over time (e.g., in drug induction or task data).
Furthermore, here we analyzed a single MEG sensor. This
means that the recorded signal may be a superposition of
multiple underlying sources. To separate sources both spec-
trally and spatially, other methods should be used in con-
junction with itEMD, for instance independent component
analysis (ICA) or source reconstruction.

In summary, we have introduced a novel way to robustly
extract oscillatory modes from neural recordings using iter-
ated masking EMD. Our method has all the advantages of
using EMD while resolving limitations of existing sifting
techniques by significantly reducing the mode mixing and
robustly capturing oscillations even in the presence of noise,
sparsity, and high nonsinusoidality. By validating it on
extensive simulations and real multimodal, multispecies
data, we have demonstrated its potential to bring the full
power of EMD into neurophysiology and help elucidate the
role of dynamic neural oscillations in behavior and disease.
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