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INNOVATIVE METHODOLOGY

Within-cycle instantaneous frequency profiles report oscillatory waveform
dynamics
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6Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; and 7Department of Experimental
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Abstract

The nonsinusoidal waveform is emerging as an important feature of neuronal oscillations. However, the role of single-cycle
shape dynamics in rapidly unfolding brain activity remains unclear. Here, we develop an analytical framework that isolates oscil-
latory signals from time series using masked empirical mode decomposition to quantify dynamical changes in the shape of indi-
vidual cycles (along with amplitude, frequency, and phase) with instantaneous frequency. We show how phase-alignment, a
process of projecting cycles into a regularly sampled phase grid space, makes it possible to compare cycles of different dura-
tions and shapes. “Normalized shapes” can then be constructed with high temporal detail while accounting for differences in
both duration and amplitude. We find that the instantaneous frequency tracks nonsinusoidal shapes in both simulated and real
data. Notably, in local field potential recordings of mouse hippocampal CA1, we find that theta oscillations have a stereotyped
slow-descending slope in the cycle-wise average yet exhibit high variability on a cycle-by-cycle basis. We show how principal
component analysis allows identification of motifs of theta cycle waveform that have distinct associations to cycle amplitude,
cycle duration, and animal movement speed. By allowing investigation into oscillation shape at high temporal resolution, this an-
alytical framework will open new lines of inquiry into how neuronal oscillations support moment-by-moment information process-
ing and integration in brain networks.

NEW & NOTEWORTHY We propose a novel analysis approach quantifying nonsinusoidal waveform shape. The approach iso-
lates oscillations with empirical mode decomposition before waveform shape is quantified using phase-aligned instantaneous fre-
quency. This characterizes the full shape profile of individual cycles while accounting for between-cycle differences in duration,
amplitude, and timing. We validated in simulations before applying to identify a range of data-driven nonsinusoidal shape motifs
in hippocampal theta oscillations.

EMD; instantaneous frequency; nonsinusoidal; oscillations; waveform shape

INTRODUCTION

Frequency, phase, and amplitude have long been reported
as important features of neuronal oscillations with behavioral
and electrophysiological relevance. Furthermore, neuronal
oscillations show nonsinusoidal waveform shapes that span a
wide range of spatial and temporal scales (1). Although wave-
form shape is emerging as a fourth relevant feature of neuro-
nal oscillations, many theories of neuronal oscillations curr-

ently assume sinusoidal waveforms. This might be due to the
fact that characterizing and quantifying nonsinusoidal wave-
forms remains a substantial analytic challenge (1, 2). To
uncover the role of waveform dynamics in rapidly unfolding
brain activity, there is a growing need for novel analysismeth-
ods that are able to characterize a wide range of waveform
shape features at the single-cycle level.

Waveform shape-related parameters, such as skewness or
asymmetry, can be estimated from higher-order Fourier
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spectra such as the bispectrum or bicoherence (3–5). These
methods require relatively long data segments to have high-
frequency resolution and therefore do not provide single-
cycle estimates. Alternatively, a set of waveform features for
individual cycles can be described by the relative durations
of different quartiles of a cycle (6–8). Control point-based
analyses are clear, flexible, and tractable on single cycles but
have the drawback that each individual feature must be
defined a priori and be based on a limited number of cycle
control points such as the extrema and zero-crossings.

The temporal dynamics in oscillatory frequency can be
quantified for a given waveform by its instantaneous
frequency computed from the differential of the signal’s in-
stantaneous phase (9, 10). Such instantaneous frequency
estimates have been used previously in electrophysiology to
explore dynamics in oscillatory peak frequency at high tem-
poral resolution (11–14). Crucially, any nonsinusoidal wave-
form features in an oscillation will lead to within-cycle
instantaneous frequency modulations in which the fre-
quency of an oscillation changes from moment to moment
within a single cycle (15). The degree of nonlinearity of an os-
cillation is related to the total amount of within-cycle fre-
quencymodulation (16–19).

Accordingly, here we introduce a novel approach that cre-
ates waveform shape profiles to describe nonsinusoidal fea-
tures in single cycles with high temporal details. To this end,
we first operationalize waveform shape as the profile of in-
stantaneous frequency across the cycle’s instantaneous
phase. We then identify when and how an ongoing cycle
deviates from a sinusoidal waveform by identifying points in
the cycle where instantaneous frequency departs from a flat
profile. Notably, a cycle with a wide peak has a relatively low
instantaneous frequency around the peak, and a cycle with a
fast-ascending edge has a relatively high instantaneous fre-
quency between the trough and peak. Moreover, between-
cycle comparison requires us to account for how different
cycles of an oscillation play out at different speeds, leading
to differences in extrema timing and overall duration. To
overcome these problems, we thus also introduce the process
of “phase-alignment,” which reregisters the instantaneous
frequency profiles onto a regularly sampled set of points in
the phase space.

To obtain the instantaneous phase time course of each
cycle, we use empirical mode decomposition (EMD). EMD
decomposes the time series of interest into its oscillatory
modes [intrinsic mode functions (IMFs)] that retain the non-
stationary and nonlinear signal features. The EMD and in-
stantaneous frequency analysis are a promising tool for
neuroscience and electrophysiology (12). The EMD has suc-
cessfully been applied to electrophysiology data in a range of
contexts including (but not limited to) rodent hippocampal
theta oscillations (20), epileptic activity in human patients
(21), transcranial magnetic stimulation (TMS)-evoked EEG
responses (22), and assessment of instantaneous phase syn-
chrony in intracranial EEG (23). We build on this prior work
to introduce phase-aligned instantaneous frequency as a
general measure of oscillatory waveform shape.

We outline and validate our novel approach in simulated
data before applying it to theta-band oscillations recorded in
the local field potentials (LFPs) of the mouse hippocampal
CA1 during active exploratory behavior. The hippocampal

theta rhythm has a characteristic nonsinusoidal waveform
shape (6, 24, 25) that is modulated by movement (5) and
changes in sleep or drug states (24). Using EMD to identify
the theta rhythm, we show that phase-aligned instantaneous
frequency is able to robustly characterize a continuous wave-
form shape profile for hippocampal theta. The results con-
firm the stereotyped fast-ascending and slow-descending
shape in the cycle-wise average. Yet, the shape of single
cycles of theta appears to be highly variable. We describe
this variability with a set of data-driven shape “motifs.”
Finally, we find that cycle-level shape motifs have differen-
tial associations with theta amplitude, theta cycle duration,
and mouse movement speed. Overall, these findings show
that behaviorally relevant dynamics in single-cycle oscilla-
tory waveforms can be accurately and intuitively explored
with phase-aligned instantaneous frequency profiles.

MATERIALS AND METHODS

Data and Code Availability Statement

Code for the analyses in this paper is freely available online
(https://github.com/OHBA-analysis/Quinn2021_Waveform),
and data are available from the MRC BNDU Data Sharing
Platform (https://data.mrc.ox.ac.uk/data-set/instantaneous-
frequency-profiles-theta-cycles; requires free registration).
The analyses in this study were carried out in Python 3.7
with v0.4.0 of the EMD package (Ref. 26; https://emd.
readthedocs.io/) and glmtools v0.1.0 for general linearmodel
(GLM) design and fitting (https://pypi.org/project/glmtools/).
The wavelet transforms and principal component analysis
(PCA) were computed with SAILS v1.1.1 (27). The underlying
Python dependencies were NumPy (28) and SciPy (29) for
computation andMatplotlib (30) for visualization.

Masked Empirical Mode Decomposition Methods

The EMD is implemented as a sifting algorithm that incre-
mentally extracts the highest-frequency features of a time
series into its oscillatory components known as IMFs (15).
Once identified, the IMF is subtracted from the signal and
the sifting process repeated to find the next-fastest set of os-
cillatory dynamics. This process is iterated through until
only a residual trend remains in the data set, constituting
the very slowest dynamics of the signal.

Transient or intermittent oscillatory signals can lead to a
mix of different frequency components appearing in a single
IMF, an issue known as mode mixing (31, 32). Specifically,
the sift algorithm always looks to identify the highest-
frequency component in a signal; however, if the high-
frequency oscillation is transient, then lower-frequency
oscillations may jump into the IMF during time periods
when the high-frequency signal is not present. To reduce
this modemixing, we use an adapted version of the mask sift
(17, 31). The masked (m)EMD involves the same core process
as the original sift outlined above. However, at each itera-
tion, a masking signal is added to the data before all the
extrema (maxima and minima) in the masked signal are
identified. The mask is a simple sinusoid that acts to prevent
lower-frequency components from entering an IMF. During
time periods with high-frequency activity, the mask sift will
return the sum of the high-frequency signal and the mask.
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As the mask is known, it can be removed by simple subtrac-
tion. When there is no high-frequency activity, the mask sift
will return only the mask signal. As such, the mask signal is
able to prevent mixing between transient oscillatory compo-
nents (31, 37). The mask sift algorithm is described in pseu-
docode and a flowchart in Supplemental Material Section 8.1
(all Supplemental Material is available at https://doi.org/
10.6084/m9.figshare.15028986).

The performance of the sift is limited by a number of fac-
tors such as accuracy in peak detection and overshoot or
edge effects in the envelope interpolation. As such, when
applied to real data, the sift may not always perfectly isolate
individual oscillations. Specifically, the EMD algorithm
depends upon accurate estimation of the local mean of a sig-
nal, which is limited by a number of factors in real data anal-
ysis. The most critical step is ensuring accurate upper and
lower envelope estimation. The cubic spline is typically used
for this, although it does not preserve monotonicity between
the original and interpolated signal. For example, if three
points are strictly ascending in the original signal the cubic
spline cannot guarantee that the interpolated signal will also
be strictly ascending. This can lead to parts of the interpola-
tion exaggerating dynamics in the envelope by causing over-
shoot and potentially leading to the upper and lower
envelopes crossing over. The monotonic PCHIP (33) interpo-
lation does preserve monotonicity and provides a more sta-
ble envelope in noisy data (see Supplemental Fig. S2 for an
illustration).

Frequency transformation.
The analytic form of each IMF was constructed with the
Hilbert transform and the instantaneous phase set as the
angle of the analytic form on the complex plane (see Fig. 3C
for an example). To attenuate noise in the phase estimation,
the unwrapped phase time course was smoothed with a
Savitzky-Golay filter (scipy.signal.savgol_filter; order = 1, win-
dow size=3 samples). The instantaneous frequency (IF) (see
Fig. 3D for an example) in hertz is then computed from the
derivative of this unwrapped phase:

IF ¼ fs
2p

d; tð Þ
dt

where fs is the sampling frequency, t is time in samples, and
Ø(t) is the unwrapped instantaneous phase time course. The
instantaneous amplitude time course is computed as the
absolute value of the analytic form of each IMF.

The distribution of instantaneous amplitude values by fre-
quency or time and frequency can be computed from these
instantaneous frequency metrics. A sparse matrix H [
R^(T�F) is filled with the instantaneous amplitude values
from the IMFs at their respective time and frequency coordi-
nates. This matrix is the Hilbert-Huang transform (HHT; see
Fig. 3E for an example) and provides an alternative time-fre-
quency transform to traditional Fourier-based methods such
as the short-time Fourier transform and the wavelet trans-
form (15).

Cycle detection.
The next stage is to segment the IMFs into their constituent
cycles and identify which cycles will be included in further
analysis. The start and end of theta cycles are located by the

differentials greater> 6 in the phase. The start and end point
of cycles in this article is the ascending zero-crossing, as this
occurs at the point where the phase time course wraps. Once
identified, some cycles will be “bad” in the sense that the os-
cillation captured by the IMF is not well represented, e.g.,
because the rhythm is not present over that time period or it
is poorly estimated, and will be excluded from subsequent
analyses. This is important for instantaneous frequency
analyses, as the differentiation step (see Frequency transfor-
mation) can be very noise sensitive. Included cycles are iden-
tified from the wrapped instantaneous phase time course of
the IMF containing the oscillation to be analyzed. As the in-
stantaneous phase computation via the Hilbert transform
returns a value for every sample regardless of whether a
prominent rhythm is present, only “good” theta cycles are
retained for further analysis. A good cycle is defined as hav-
ing a phase with a strictly positive differential (i.e., no phase
reversals) that starts with a value 0 � x � p/24 and ends
within 2p � p/24 � x� 2p and four control points (peak,
trough, ascending edge, and descending edge).

Control point analysis.
One approach to quantifying oscillatory waveforms is to
compare the relative timings of the peak, trough, ascending
zero-crossing, and descending zero-crossing within each
cycle (6, 7). These four control points can be straightfor-
wardly identified in each cycle and used to summarize wave-
form shape by a range of different metrics. The ratio of
temporal durations between these control points can
describe large-scale shape features. In the present analyses,
the extrema (peaks and troughs) are detected by finding the
samples closest to a zero-crossing in the differential of an
IMF. It is unlikely that the peak or trough occurs exactly
coincident with timing of the sampling during data acquisi-
tion, so the extrema locations are refined to a point between
samples by parabolic interpolation (34). The zero-crossings
are initially identified from sign changes in the IMF time
course and refined by linear interpolation between the sam-
ples around the zero-crossing. Finally, we use these single-
cycle timings to compute the peak-to-trough ratio and the
ascent-to-descent ratio for each cycle (7).

Phase-alignment.
We present an alternative approach to control points that
ensures that entire waveform profiles can be combined and/
or compared across cycles despite cycle-by-cycle differences
in progression rate and overall duration. To compare wave-
forms across cycles that play out at different speeds, we use
phase-alignment to register cycles onto a common grid.
Phase-alignment is performed on the instantaneous phase of
a cycle and a measure of interest, such as the instantaneous
frequency, that is observed at the same time intervals. A lin-
ear one-dimensional interpolation function is fitted between
the instantaneous phase (as x values) and the instantaneous
frequency (as y values). The interpolation function is eval-
uated on a template set of instantaneous phase values with a
linear spacing between 0 and 2p; if any points in the tem-
plate fall outside the fitted range, the interpolator returns an
extrapolated value. This interpolated version of instantane-
ous frequency is then directly comparable across cycles, as
each point in the phase will occur at the same time. We
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compute phase-alignment using a linear interpolation across
48 fixed points across the 0 to 2p phase range.

Once an instantaneous frequency profile has been phase-
aligned, we can visualize a normalized waveform by projec-
ting the frequency content back to a phase time course. This
is achieved by renormalizing the instantaneous frequency
from hertz back to radians in order to create a profile of suc-
cessive phase differences. The phase time course is then
reconstructed from the cumulative summation of these
phase differences. An oscillatory waveform can then be com-
puted by taking the sine transform of this phase time course.
The resulting waveform has an amplitude of 1 and a consist-
ent time axis for all cycles. This “normalized waveform”

allows for visualization of shape between cycles with differ-
ent durations and amplitudes.

Describing shape with an instantaneous frequency
mean vector.
A simplified summary of a cycle’s shape can be computed
from a mean vector of the phase-aligned instantaneous fre-
quency according to the following equation:

mean vector ¼ IFei
�;

where �; is the uniform phase grid used in phase-alignment
and IF is the phase-aligned instantaneous frequency. This is
similar to the mean vector approach to computing phase-
amplitude-coupling (35). The mean vector of a sinusoidal
cycle will be 0, whereas a nonsinusoidal cycle will return a
complex value whose angle indicates which phase has the
highest instantaneous frequency and the magnitude indi-
cates the extent of the frequency modulation through the
cycle. This method provides a straightforward summary but
is only sensitive to unimodal deviations from a flat instanta-
neous frequency profile.

The mean vectors of many cycles can be visualized by a
scatterplot in a two-dimensional space. The real and imagi-
nary parts of the complex valued mean vector are plotted
on the x and y-axes, respectively. A sinusoidal cycle would
have a mean vector of 0 and appear at the origin on this
space. Nonzero real values on the x-axis indicate the
ascending-to-descending edge asymmetry in the cycle,
and nonzero imaginary values on the y-axis indicate peak-
to-trough asymmetry.

Principal component shape motifs.
The phase-aligned instantaneous frequency profiles provide
a detailed description of each cycle’s shape, but additional
analyses are required to identify any trends or consistencies
across cycles within a data set. Here, we look to take a data-
driven approach to describe themain characteristics of oscil-
latory waveform in our simulated and real data sets.

We used principal component analysis (PCA) to identify
the principal modes of variation in shape across the included
cycles. Phase-aligned cycles are concatenated into a single
matrix of size [n phases � n cycles]. The second dimension
of this matrix (across cycles) is reduced to PCA, resulting in a
[n phases � n components] matrix of shape “motifs.” Each
component motif is defined by the distribution of compo-
nent weights across phase and an [n components � n cycles]
matrix of principal component (PC) scores indicating the
presence of each component motif in each individual cycle.

The shape of each individual cycle can then be approxi-
mated by a linear combination of each shape motif weighted
by the cycle’s component scores.

The PCA allows us to straightforwardly visualize the range
of shapes within each data set using the components and
their dynamics over time using the scores. The shapes repre-
sented by each component motif can be visualized by defin-
ing a set of scores containing the maximum or minimum
observed score for the PC in question and zeros for all others.
These scores can be projected back into the original data
space to provide exemplar instantaneous frequency profiles
for both extremes of the PC axes. These exemplar instantane-
ous frequency profiles can be projected back into the time
domain to generate a normalized waveform that preserves
the shape depicted in the exemplar instantaneous frequency
profiles. The dynamics of each shape across cycles are repre-
sented by the PC scores. The relationship between these dy-
namics and other factors such as movement speed, theta
amplitude, and theta duration are quantified in the general
linear model analysis described in Hippocampal Theta
Analyses, Cycle detection.

Simulation Analyses

Schematic cycle generation.
To illustrate the relationship between waveform shape, in-
stantaneous phase, and frequency, a set of noise-free oscilla-
tions were generated. First, a linearly progressing phase time
course is generated, and a sinusoid is created by taking a
sine-transform of this wrapped phase. Different nonsinusoi-
dal cycles are generated by modulating the unwrapped
phase time course by sine and cosine waves at different
phases and frequencies. The cycles with extrema and edge
asymmetry are generated by modulating the phase with a 1-
Hz sine or cosine, respectively. The extrema curvature exam-
ples are generated by modulating the linear phase with a
2-Hz sinusoid. From the computed cycle time courses the in-
stantaneous phase and instantaneous frequency are reesti-
mated with the Hilbert transform. Finally, the waveform
shape is represented by phase-aligning the instantaneous
frequency time course of each cycle type with its instantane-
ous phase.

Noisy signal generation.
A more realistic noisy simulation was used for the results in
Figs. 3 and 4. A simulated oscillation at 12 Hz was generated
using an autoregressive oscillator with the following transfer
function:

H fð Þ ¼ 1
1� 2r cosh þ r2

where h is the angular frequency of the oscillator (in rad/s)
and r is the magnitude of the roots of the polynomial
(0< r< 1). For this simulation, we computed H for r=0.95
and h equivalent to 12 Hz and used its parameters to filter (a
forward and backward filter using scipy.signal.filtfilt) white
noise. This generates a noisy sinusoidal oscillation that con-
tains random dynamics in the frequency and amplitude of
each oscillatory cycle. Sixty seconds of data was generated at
512 Hz.

This simulated oscillation was then modulated by one of
two equations defined in equations 50.24 and 50.25 in
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section 50-6 in volume 1 of The Feynman Lectures on Physics
(36). The first equation defines a linear system that scales the
signal by a constant, leaving the waveform shape
unchanged:

xout ¼ Kxin þ eðtÞ
and the second equation defines a nonlinear system that
includes a term inducing a change in waveform shape as
well as scaling the signal:

xout ¼ K½xin þ ex2in� þ eðtÞ
The nonlinearity in the second equation makes the peak

of the oscillations shorter and widens the trough. Both sys-
tems include an additive white noise term.

Finally, a signal with dynamic waveform shape changes
was created for the results in Fig. 5. A dynamic oscillation
was generated at 12 Hz with the autoregressive oscillator
method before phase of this signal was estimated with the
Hilbert transform. Each cycle was then randomly assigned
to a “sinusoidal,” “fast ascending,” or “fast descending” cate-
gory. The phase of the nonsinusoidal cycles was modulated
by using an additive sinusoid in the same manner as the
schematic cycle generation in Schematic cycle generation.
Additional Gaussian noise was then added to this dynami-
cally nonsinusoidal signal.

Noisy signal analysis.
The simulations are separated into IMFs with the masked
sift. The relatively straightforward dynamics in this simula-
tion allow a simplified mask sift to be applied. To define the
mask frequencies, a first IMF is extracted with the standard
sift routine. The number of zero-crossings in this IMF defines
the frequency of the initial mask, with subsequent masks
being applied at half the frequency of the previous one. The
mask amplitudes are set equivalent to 1-standard deviation
of the previously extracted IMF.

The 12-Hz oscillation is isolated in the third IMF (IMF-3) of
this mask sift. The frequency transformation of this IMF is
computed with the Hilbert transform (see Frequency trans-
formation). The Hilbert-Huang transform (HHT) is com-
puted using 64 frequency bins between 2 and 35Hz. A
wavelet transform was computed with a 5-cycle Morlet basis
computed using the same 64 frequencies as the HHT.

The timing of individual oscillatory cycles is identified
using the phase jumps in the instantaneous phase time
course where the oscillatory amplitude was above a thresh-
old of 0.04 and instantaneous frequency below 18 Hz. We
compute control point ratios (see Control point analysis),
time-locked instantaneous frequency profile, and phase-
aligned instantaneous frequency profile (see Phase-align-
ment) across all included cycles (seeMasked Empirical Mode
DecompositionMethods, Cycle detection) of IMF-3.

The sift, frequency transform, cycle detection, and shape
metrics are computed for both the static and dynamic sys-
tems defined in Noisy signal generation. The control point
metrics and phase-aligned instantaneous frequency profiles
are computed from the static signal. Finally, the PCA shape
motif method is applied to the phase-aligned instantaneous
frequency profiles of the cycles in the dynamic signal.
Component scores and normalized waveforms are computed
from the first principal component. The component scores

are then compared to the known cycle shape categories and
with the ascending-to-descending asymmetry control point
ratio.

Hippocampal Theta Analyses

Animals.
The data used here were obtained from the previous study
by Lopes-dos-Santos et al. (20). Animals were male adult (4–
7 mo old) C57BL/6J mice (Charles River, UK) or transgenic
heterozygous Cre-driver mice [Jackson Laboratories; ob-
tained from C57BL/6J crossed with CamKIIa-Cre B6.Cg-Tg
(Camk2a-cre)T29-1Stl/J, stock number 005359, RRID: IMSR_
JAX:005359]. All animals had free access to water and food
in a dedicated housing facility with a 12:12-h light-dark cycle
(lights on at 7:00), 19–23�C ambient temperature, and 40–
70% humidity. All mice were held in individually venti-
lated cages with wooden chew sticks and nestlets. The ex-
perimental procedures performed on these mice were
conducted in accordance with the Animals (Scientific
Procedures) Act, 1986 (United Kingdom), with final ethi-
cal review by the Animals in Science Regulation Unit of
the UK Home Office.

Local field potentials.
Local field potentials (LFPs) were recorded from the pyrami-
dal layer of hippocampal CA1 with multichannel tetrodes
(20). Recordings were made during open-field exploration in
both familiar and novel environments across two recordings
taken from each of three mice to make a total of six analyzed
data sets. Further data acquisition details can be found in
Ref. 20 and the Supplemental Materials (Section 8).

Mask sift and frequency transform.
LFP recordings were each separated into oscillatory compo-
nents with the mask sift (Fig. 1, A and B), with masks placed
at f_m = [350, 200, 70, 40, 30, 7, 1 Hz]. These masks were
selected to capture components with frequencies above the
mask frequency down to �f_m � 0.7 (37, 38). Keeping the
masks constant across recordings ensures that the frequency
content of each IMF will be comparable across recordings.
For instance, we isolate the theta oscillation in IMF-6 with a
mask frequency of 7 Hz. These mask frequency parameters
were validated by rerunning the phase-aligned instantane-
ous frequency analyses with jittered mask frequencies
(Supplemental Material Section 8.3; Supplemental Fig. S3),
showing that the theta waveform description is robust to rea-
sonable changes to the mask frequency values. These mask
frequencies were effective in this set of CA1 LFP recordings,
but it is expected that a different set of mask frequencies
would be needed to analyze time series containing different
oscillatory dynamics. Next, a frequency transformation was
computed for each IMF with the Hilbert transform and the
methods from Frequency transformation (Fig. 1C).

Cycle detection.
To ensure that the detected theta cycles are physiologically
interpretable theta activity, we identified cycles in each re-
cording during times when the speed of movement of the
mouse was >1 cm/s. As faster movement is associated with
stronger theta oscillations, this restriction increases the
probability that our detected cycles represent physiologically
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interpretable theta events. We additionally restricted analy-
ses to cycles in IMF-6, where cycle duration corresponded to
the 4–11 Hz frequency range (i.e., 312 and 113 samples,
respectively) and cycle amplitude was above the bottom 10%
of the amplitude distribution. Finally, cycles that failed the
cycle inclusion checks outlined in Masked Empirical Mode
Decomposition Methods, Cycle detection were removed from
analysis at this point (Fig. 1D).

Cycle comparisons.
We computed the temporally aligned instantaneous fre-
quency profile, phase-aligned instantaneous frequency pro-
file, and normalized waveform for each included theta cycle.
The average waveform shape within each data set was esti-
mated from the averaged phase-aligned instantaneous fre-
quency (Fig. 1, F and G) and a group average constructed
from themean of the six individual runs. Variability in wave-
form shape across single cycles in the group data is summar-
ized with the instantaneous frequency mean vector (see
Describing shape with an instantaneous frequency mean vec-
tor) and visualized as a distribution in the complex plane in
which the x-axis represents asymmetry between ascending
and descending edge frequency and the y-axis represents

asymmetry between peak and tough frequency. For compari-
son, we also identified the control points from each cycle of
the theta IMF and constructed the peak-to-trough and
ascending-to-descending duration ratios (7).

Waveformmotifs and relation to behavior.
We next look to explore the waveform shapes that are pres-
ent in the phase-aligned instantaneous frequency values. We
use PCA (see Principal component shape motifs) to identify
the data-driven set of shape components that explain the
most variance in the shape of theta cycles in this data set
(Fig. 1H). The first four principal components explaining
95% of variance defined our four shape motifs and were
retained for further analysis. The reproducibility of the PCA
is validated across 500 split-half iterations assessing the pro-
portion of variance explained by each PC and the correspon-
dence between the component shape in the two halves
(Supplemental Material Section 8.3, Supplemental Fig. S3).

We next use a general linear model (GLM) to quantify how
between-cycle variability in the shape motifs relates to other
behavioral and electrophysiological covariates (i.e., cycle
amplitude, cycle duration, and mouse movement speed).
The GLM was created with a design matrix containing the

Figure 1.Overview of the analysis framework applied to local field potential (LFP) recordings of hippocampal theta. A: the raw input LFP recording. B: the
raw signal is split into intrinsic mode functions (IMFs) with a mask sift. C: an instantaneous phase and instantaneous frequency time course is estimated
from the theta IMF with the Hilbert transform. D: cycle start and stop times are identified from jumps in the wrapped phase time course, and “bad” cycles
with distortions of reversals in phase are identified and removed. E: control points (peaks, troughs, ascending zero-crossings, and descending zero-
crossings) are estimated from the good cycles within the theta IMF. Shape is then summarized with peak-to-trough and ascending-to-descending dura-
tion ratios. F: the instantaneous frequency of each good cycle is phase-aligned to correct for variability in cycle duration and internal cycle timings. G:
the phase-aligned cycles are stacked into a single array to allow for straightforward comparisons between cycles. H: the phase-aligned instantaneous
frequency of a group of cycles ready for comparison. I: a set of shape motifs are identified from the matrix inH with principal components analysis (PCA).
a.u., Arbitrary units; EMD, empirical mode decomposition.
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mean and the three z-transformed covariates. These predic-
tors were used to model the between-cycle variability in the
principal component (PC) scores for each shape component
in turn. This resulted in four GLMs each fitting four parame-
ter estimates, one mean term and three parametric effects.
The GLM parameters were fitted with a ordinary least
squares algorithm implemented in Python (https://pypi.org/
project/glmtools/). The t statistic of each parameter estimate
was computed and statistical significance established with a
row-shuffle nonparametric permutation scheme. Each of the
three parametric regressors was permuted separately, only
shuffling values within the regressor of interest for that per-
mutation while keeping the covariate structure constant.
Five thousand permutations were computed for each PC
motif and dependent variable before the threshold for statis-
tical significance was determined at P < 0.01. The observed t
statistics from the unshuffled data was then compared to
this critical value to identify which effects could be consid-
ered statistically significant.

RESULTS

Instantaneous Frequency Tracks Waveform Shape

Figure 2 illustrates how instantaneous frequency reflects
waveform shape in a set of noiseless simulated cycles (see
Schematic cycle generation). A sinusoidal cycle (Fig. 2A) has
a monotonically progressing phase time course that, in turn,
has a flat instantaneous frequency profile. Analysis of the
duration of different segments reveals that the peak, trough,
ascending edge, and descending edge all have the same du-
ration. Cycles with a narrow peak, trough, or descending
edge show corresponding changes in their instantaneous fre-
quency (Fig. 2, B and C). Specifically, the longer-duration,
slower features correspond to a lower instantaneous fre-
quency. These instantaneous frequency profiles can describe
a wide range of possible shapes. For example, cycles in which
both the peak and trough are widened or pinched lead to in-
stantaneous frequency profiles withmultiple extrema (Fig. 2,
far right). Although the simple control point metrics used

Figure 2. Instantaneous frequency changes with oscillatory waveform shape. The 4 columns illustrate examples of different simulated oscillatory cycles
with distinct waveform shapes. A: the time-domain waveforms for each cycle. The first column shows a sinusoid, and the remaining 3 columns show
pairs of cycles with opposite waveform distortions (for reference, a sinusoid is shown as a dotted black line). B: the instantaneous phase time course of
the signals in the corresponding column. C: the instantaneous frequency time course of the signals in the corresponding column. D: the durations
between different control points for each cycle; the dotted line indicates the expected duration for a sinusoid.
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here can track individual waveform features such as peak or
trough duration (Fig. 2, bottom), the quantification of more
complex shapes would require the definition of additional
control points and shapemetrics.

Quantifying and Comparing Waveform Shape in a
Simulated Signal

We next use simulations to illustrate how instantaneous
frequency analyses can be conducted on a noisy signal with

a dynamic 12-Hz oscillation modified by a nonlinearity that
widens the trough of each cycle (seeNoisy signal generation).
This oscillation was isolated from the noisy background by
mask sift (Fig. 3B) before the Hilbert transform was used to
compute the instantaneous phase time course (Fig. 3C). It is
evident that the phase time courses do not progress linearly
through all cycles; these deviations from monotonic phase
progression are quantified in the instantaneous frequency
time course (Fig. 3D). Instantaneous frequency sweeps

Figure 3. Instantaneous frequency analysis on a noisy nonsinusoidal oscillation. A simulated 12-Hz oscillation can be extracted from a noisy time series
and represented with empirical mode decomposition (EMD), instantaneous frequency, and the Hilbert-Huang transform (HHT). Vertical gray lines denote
the starting times of individual cycles across the different panels. A: the simulated noisy nonsinusoidal oscillation. B: intrinsic mode function (IMF)-3
extracted from A containing the simulated oscillation. C: instantaneous phase time course of IMF-3. Cycles excluded from further analysis are indicated
in red. In this case, these cycles were below the amplitude threshold. D: instantaneous frequency time course of IMF-3. E: HHT of the simulated data seg-
ment. F: continuous wavelet transform (CWT) of the simulated data segment.
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within a single cycle reflect the nonsinusoidal shapes of the
time-domain waveforms. For this simulation, the instanta-
neous frequency tends to be higher during the first half of
the cycle and lower in the second half, reflecting the nonli-
nearity that shortens the peak and widens the trough of
these oscillations.

The HHT of the simulated signal (Fig. 3E) retains the high
time-frequency resolution of the instantaneous frequency
time course, allowing within-cycle frequency dynamics to be
visible. In contrast, although a standard 5-cycle Morlet wave-
let transform identifies similar power dynamics, variability
in frequency within single cycles is not resolved (Fig. 3F). A
further disadvantage is that the nonsinusoidal waveform
shape of this simulation introduces a 24-Hz harmonic com-
ponent into the wavelet transform.

Individual cycles of an oscillation play out at different
rates leading to differences in the timing of extrema within
cycles and in overall cycle duration. These two sources of
variability hamper comparisons between individual oscilla-
tory cycles. As outlined above (Control point analysis), one
method to solve this issue is to discretize the cycle using a
set of control points before computing the proportion of
time spent in different segments of the cycle (6, 7). The cycle
phase quartiles (ascending zero-crossing, peak, descending
zero-crossing, and trough) of 500 cycles of the simulated sig-
nal are shown in Fig. 4A. The ratio between peak and trough
duration suggests that these cycles have relatively long
troughs, whereas the ratio between ascending and descend-
ing duration suggests that the rising and falling phases are
approximately equal in duration (Fig. 4B).

An alternative approach for comparing cycles is to align
the instantaneous frequency profiles to one of the control
points. For example, we aligned the 500 cycles to the ascend-
ing zero-crossing and computed their time-locked average
(Fig. 4C). The time-locked instantaneous frequency profile of
these cycles is not flat, reflecting the presence of nonsinusoi-
dal shape in this simulated signal. However, the precise type
of nonsinusoidal shape is ambiguous from this average,
because of variability in the location of different waveform
features within single cycles. In this case, the instantaneous
frequency is highest �10 samples after the ascending zero-
crossing; however, this time lag might correspond to differ-
ent points in the waveform in different cycles. In addition,
variability in the duration of cycles means that, after a cer-
tain point, different numbers of cycles contribute to the av-
erage, making the estimate unstable.

Here we present an approach that overcomes these short-
comings. In brief, phase-alignment removes this ambiguity
by visualizing the instantaneous frequency of a cycle across
a fixed grid of points along its phase (see Control point analy-
sis). For instance, an oscillatory peak is normalized to occur
at the same phase value irrespective of the cycle’s duration
or shape. This corresponds always to exactly one quarter of
the phase of each cycle but not necessarily to one quarter
of the duration of each cycle. By aligning the instantane-
ous frequency to the phase, we remove the temporal dis-
tortions caused by varying shapes and cycle durations and
express the shape with the phase-aligned instantaneous
frequency values. The phase-aligned instantaneous fre-
quency of the simulated cycles (Fig. 4D) now unambigu-
ously shows increased frequency around the peak of the

12-Hz oscillation and decreased frequency around the
trough. The average across the phase-aligned cycles is
then a smooth representation of the shape of the entire
cycle.

Comparisons between sets of cycles is straightforward
once waveform shape has been estimated from instantane-
ous frequency and normalized through phase-alignment.
This is illustrated in a simulation containing dynamic
changes in oscillatory waveform shape (see Noisy signal gen-
eration; Fig. 5A). Differences in the ascending and descend-
ing durations can be seen between cycles in both the raw
time course and the extracted IMF. Modulations in instanta-
neous frequency track these dynamics. A principal compo-
nent analysis of the phase-aligned instantaneous frequency
profiles of 60 s of simulated data is able to quantify these dy-
namics. The component score clearly tracks the differences
in waveform, with fast-ascending cycles having large nega-
tive scores, fast-descending cycles having large positive
scores, and sinusoids having scores close to 0. The normal-
ized waveform and component shape confirm that the first
component of this analysis represents a shape dimension
ranging between fast-ascending and fast-descending shapes
(Fig. 5, B and C). The PC score varies strongly among the
three shape categories (Fig. 5D) and shows a very close corre-
spondence to the more targeted ascending-to-descending
duration control point ratio (Pearson’s r = 0.945; Fig. 5E).
This demonstrates that the phase-aligned instantaneous fre-
quency profile can distinguish different waveform shapes in
cycles with rapidly changing shapes. Moreover, it is able to
do so in a data-driven way, without prespecification of the
potential shape of interest.

Characterizing Waveform Shape in Hippocampal Theta

LFP data recorded from the mouse hippocampus were an-
alyzed to explore the utility of phase-aligned instantaneous
frequency as a measure of waveform shape. Figure 6A shows
a 3-s LFP recording from the pyramidal layer of the mouse
dorsal CA1 (Fig. 6A, black) overlaid with the EMD-extracted
theta IMF (Fig. 6A, red; Fig. 6B shows all IMFs). In this case,
the theta oscillation was isolated into IMF-6 with minimal
disruption to its amplitude or waveform shape dynamics.
Many of the theta cycles within this window have prominent
nonsinusoidal waveform shapes, which are qualitatively visi-
ble in both the raw data trace (24, 39) and the EMD-extracted
theta IMF. Importantly, the oscillatory waveform shape
varies between successive cycles, although the amplitude
and duration of the theta cycles are relatively consistent.

The instantaneous phase (Fig. 6C) and instantaneous fre-
quency (Fig. 6D) were computed from the theta oscillation in
IMF-6. As with the simulation analysis, any within-cycle dy-
namics in the instantaneous frequency naturally represent
the waveform of each cycle. This was summarized with the
standard deviation of instantaneous frequency values within
each cycle (Fig. 6E). As an illustration, cycles 5, 9, and 11 have
relatively sinusoidal shapes with flat instantaneous fre-
quency profiles and low frequency variability. In contrast,
cycle 13 is relatively nonsinusoidal with a dynamic instanta-
neous frequency profile and high frequency variability. The
HHT provides a time-frequency description with suffici-
ent resolution to depict these within-cycle instantaneous
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frequency sweeps (Fig. 6F). In contrast, a 5-cycle Morlet
wavelet transform of the same data was not able to resolve
these dynamics (Fig. 6G). Note that, although some 20-Hz
power is present in the Hilbert-Huang transform, this
reflects oscillatory activity with extrema distinct from the
theta base signal (see Supplemental Material Section 8.4,
Supplemental Fig. S4).

Looking at individual cycles illustrates how instantane-
ous frequency can characterize waveform shape (Fig. 7).

Frequency increases and decreases correspond to slowing
down and speeding up of the cycle as its waveform shows
nonsinusoidal behavior. It is evident that there are many
observed shape profiles. For instance, the cycles labeled as i
and iii in Fig. 7 had frequencies that dip during the center of
the cycle, indicating an elongated, low-frequency descend-
ing edge. Cycle v had slowest frequency around �p/2, corre-
sponding to a wide peak. In contrast, cycle vi had relatively
high frequency around �p/2 and lower frequency at þ p/2,

C EA

D FB

Figure 4. Methods for comparing waveform across cycles: simulated data illustrating how waveform shape can be quantified with control point ratios, in-
stantaneous frequency, and phase-alignment. A: distribution of the peak-to-trough and ascent-to-descent ratios for the simulated data set. B: the timing of
the control points used to create the ratios in A for an illustrative subset of the cycles. C, top: average temporally aligned signal waveform. Bottom: average
temporally aligned instantaneous frequency (IF) profiles. D: illustration of single-cycle temporally aligned instantaneous frequency profiles for an illustrative
subset of the cycles. E, top: average phase-aligned signal waveform. Bottom: average phase-aligned instantaneous frequency profile. F: illustration of sin-
gle-cycle phase-aligned instantaneous frequency profiles for an illustrative subset of the cycles. a.u., Arbitrary units; Num Cycles, number of cycles.
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leading to a short, pinched peak and an elongated trough.
Overall, the phase-aligned instantaneous frequency profiles
and normalized waveforms provide a rich description of os-
cillatory waveform, despite wide variability in cycle ampli-
tude, duration, and shape.

Using Phase-Aligned Instantaneous Frequency to
Compare Cycles

We next computed waveform shape from �1,500 hippo-
campal theta cycles from a single recording using three differ-
ent methods: control point ratios (see Principal component
shape motifs), control point locking, and phase-alignment (see
Control point analysis). The peak-to-trough and ascent-to-
descent ratios (Fig. 8A) were computed from the durations
between specified control points for each cycle (Fig. 8B). A
pair of one-sample t tests against a mean value of 0.5 was
used to assess whether themean of these ratios is significantly
different from the value of a sinusoid. The peak-to-trough
ratios (mean=0.49, standard deviation= 0.08) showed a small
shift toward a wider peak value, t(2,513) = –2.66, P = 0.008.
The ascent-to-descent ratios (mean=0.45, standard deviation =
0.096) showed a substantial shift toward longer descending
cycles, t(2,513) = �24.12, P < 0.0001. The instantaneous fre-
quency profiles locked to the ascending zero-crossing show a
wide variety of shapes with a group average tendency for

frequency to start around 9Hz and to decrease through the du-
ration of the cycle (Fig. 8, C andD). As described above, this av-
erage effect is challenging to interpret because of within-cycle
variability in the timing of cycle features and between-cycle
variability in total cycle duration. Our proposed phase-aligned
instantaneous frequency profiles (Fig. 8, E and F) resolve these
ambiguities. This shows that theta cycle instantaneous fre-
quency in this single recording starts around 9 Hz at the
ascending zero-crossing, decreasing to �8.1 Hz at the descend-
ing zero-crossing, before increasing again to 9 Hz at the end of
the cycle. This is consistent with a fast-ascending and slow-de-
scending cycle shape revealed by the control point analysis and
in previous literature. The phase-aligned instantaneous fre-
quency approach is able to show this effect as a continuous
shape profile for single cycles, which can be straightforwardly
compared at the group level.

Theta Has a Stereotyped Asymmetric Shape with Wide
Variability across Cycles

We next summarized the average waveform across theta
cycles from six recordings taken from threemice. The average
phase-aligned instantaneous frequency profile is computed
for each recording and for the whole data set. The overall
group-level average waveform had a cosine-type profile cen-
tered around an average instantaneous frequency of �8.6 Hz

Figure 5. Quantifying dynamics in waveform shape. A: a simulated oscillation contains cycles that are sinusoidal or contain a ascending-to-descending
edge asymmetry. The raw signal is shown (black line) with the empirical mode decomposition (EMD)-extracted intrinsic mode function (IMF, red) and in-
stantaneous frequency (blue). The principal component analysis (PCA) component score for each cycle is shown in the bar plot. B: normalized wave-
forms for principal component (PC)-1 of the simulated data. This shows that the component captures a continuum between a fast-ascending and a fast-
descending shape. C: the component shape for component 1, showing that the component score leads to a difference in instantaneous frequency
between the ascending and descending phases of the cycle. D: the component score distribution for each of the known shape categories. E: the rela-
tionship between the data-driven PC score and the a priori-defined ascent-to-descent ratio. a.u., Arbitrary units.
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(Fig. 9A; average in black and individual recording sessions in
gray). On average, the instantaneous frequency peaked within
the cycle around 9 Hz at the ascending zero-crossing and
dropped to just below 8.4 Hz between the peak and descend-
ing zero-crossing. These results are consistent with previous
studies showing an asymmetry between the fast-rising and
slow-decaying halves of a theta cycle (6, 7, 39). All six record-
ings across three animals showed a shape with a maximum
frequency around the ascending zero-crossing and a mini-
mum on the descending edge, although there was some vari-
ability in whether the lowest frequency was closer to the peak
or the trough.

To visualize the variability in waveform shape across
cycles and recording sessions, we performed a complemen-
tary analysis using the instantaneous frequency mean vec-
tor. The instantaneous frequency profile of each cycle is
wrapped around the unit circle. The grand average profile
shows a clear shift toward positive values on the x-axis that
can be summarized by the mean value of the circular profile
(Fig. 9B). This can be repeated for every individual cycle to
describe the distribution of single-cycle waveforms across a
simplified two-dimensional shape-space (Fig. 9C; see
Describing shape with an instantaneous frequency mean vec-
tor). The x-axis of this space represents the amount of

Figure 6. Empirical mode decomposition (EMD) analysis of a local field potential (LFP) segment containing hippocampal theta oscillations. A: a segment
of a hippocampal LFP recording (black) overlaid with the extracted theta oscillation (red). B: intrinsic mode functions (IMFs) extracted from this data seg-
ment with the masked EMD. The theta oscillation is isolated into IMF-6. C: instantaneous phase time course of the theta IMF. D: instantaneous frequency
time course of the theta IMF. E: variability in instantaneous frequency for each theta cycle. F: Hilbert-Huang transform (HHT) of the LFP segment. G: con-
tinuous wavelet transform (CWT) of the LFP segment.
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ascending-to-descending edge asymmetry in each cycle, and
the y-axis represents the amount of peak-to-trough asymme-
try. One-sample t tests against zero were performed on the x-
axis and y-axis distributions to establish whether the overall
distribution has a nonzero mean. The y-axis distribution,
representing peak-to-trough asymmetry, was closely cen-
tered around the origin (mean=0.0025, standard deviation=
0.92) with a mean not significantly different from zero, t
(40,346) = 0.55, P = 0.58. In contrast, the x-axis distribution,
representing ascending-to-descending edge asymmetry,
has a larger, positive-valued center (mean=0.38, standard
deviation= 0.63) that was significantly different from zero, t
(40,346) = 122.75, P < 0.0001. Overall, this indicates that the

highest frequencies in a cycle are typically at the ascending
edge, consistent with the average in Fig. 9A and with previ-
ous literature on the theta cycle (6). Although the overall
mean shift in the distribution of cycles is robust across
recordings (Fig. 9D), there is substantial cycle-to-cycle vari-
ability indicated by the width of the distribution.

Distinct WaveformMotifs Are Differentially Related to
Behavioral and Electrophysiological States

To further describe the variability in waveform shape
across cycles and characterize its relation to movement
speed, theta amplitude, and theta cycle duration, we identify

Figure 7. Characterizing shape in 8 example cycles (cycles i–viii) of hippocampal theta: 8 representative theta cycles. For each example, the raw data
(gray) with the theta intrinsic mode function (IMF) superimposed (colored line) is shown on left; the phase-aligned instantaneous frequency (IF) is shown
at center; and the normalized waveform (colored line) with a sinusoid for reference (black dotted line) is shown on right.
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a set of waveform shape motifs with PCA. The parameters of
the PCA allow us to summarize the range of waveform
shapes seen in the data set from the components and the
between-cycle dynamics in shape from the component
scores (seeDescribing shape with an instantaneous frequency
mean vector and Waveform motifs and relation to behavior).
The robustness of the decomposition to random split-half
subsampling was empirically assessed (see Supplemental
Material Section 8.5, Supplemental Fig. S5) The first four
components describing 96% of variance are retained for

further analysis (Fig. 10). The shapes of individual waveform
motifs are visualized by their normalized waveforms (Fig.
10A). These normalized waveforms are computed from the
instantaneous frequency profiles of the PC component vec-
tors (Fig. 10B) projected onto the extreme ends of the PC
score distribution (Fig. 10C). Each normalized waveform
then describes one end of a distributions of shapes with all
variability in amplitude and total cycle duration removed.
The between-cycle dynamics in shape can then be described
by a set of four PC scores that describe the extent to which

C EA

D FB

Figure 8.Methods for quantifying waveform in hippocampal theta. A: distribution of the peak-to-trough and ascent-to-descent ratios for a single data record-
ing. B: the timing of the control points used to create the ratios in A for an illustrative subset of the cycles.C. top: average temporally aligned signal waveform.
Bottom: average temporally aligned instantaneous frequency (IF) profiles. D: illustration of single-cycle temporally aligned instantaneous frequency profiles
for an illustrative subset of the cycles. E, top: average phase-aligned signal waveform. Bottom: average phase-aligned instantaneous frequency profile. F:
illustration of single-cycle phase-aligned instantaneous frequency profiles for an illustrative subset of the cycles. Num Cycles, number of cycles.
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each shape component is expressed within each individual
cycle.

PC-1 (63.31% of variance) describes a continuum of shape
from a sharp peak and a wide trough through to a wide peak
and a sharp trough. This shape is similar to the y-axis in the
mean vector distribution in Fig. 9B. In contrast, PC-2 (22.56%
of variance) describes shapes ranging between an elongated
ascending edge and an elongated descending edge, similar
to the x-axis of Fig. 9B. The remaining components describe
more complex shapes with relatively small contributions to
the variance explained. PC-3 (6.86% of variance) captures
shapes with a left or right “tilt” around their extrema, and
PC-4 (3.33% of variance) describes shapes with a sharper or
flatter curvature around the extrema.

The control point-based ascending-to-descending ratio
and peak-to-trough ratio are computed for each cycle. For
each PC, these values are partitioned into cycles with

positive or negative PC scores (relating to distinct ends of
the shape continuum for that component), and their dis-
tributions are plotted in Fig. 10D. The peak-to-trough
ratios are clearly separated in the two ends of PC-1,
whereas the ascending-to-descending ratios are similar
for cycles with a positive or negative score in PC-1. This is
consistent with the normalized waveforms summarizing
PC-1 in Fig. 10A. PC-2 also shows the expected separation
of ascending-to-descending ratios by PC score, whereas
the peak-to-trough ratios are unchanged. Although PC-3
and PC-4 describe �10% of shape variability, they are not
characterized by the control point analyses. Neither
peak-to-trough ratios nor ascending-to-descending ratios
are changed by PC score for PC-3 or PC-4. These shape
profiles are robustly identified by the phase-aligned in-
stantaneous frequency method but are not distinguished
by these control point-based metrics, as the shape

Figure 9. Average waveform shape and variability in shape across cycles in hippocampal theta. A: average of phase-aligned instantaneous frequency
profiles for each of the 6 separate recording sessions across 3 mice. The different dashed line styles indicate the runs from the different mice, and the
solid black line represents the average across all 6 recordings. B: projection of the mean frequency profile from A around the unit circle (solid line) with
an equivalent projection of a sinusoid (dotted line). The mean frequency profile is clearly shifted to the right, indicating that the instantaneous frequency
profile is not uniform across phase. The center of this distribution is the mean vector whose magnitude represents the amount of frequency distortion
across a cycle and whose angle represents where in the cycle the frequency is highest. C: the distribution of mean vectors for all individual cycles pro-
jected into a simplified shape-space (see Describing shape with an instantaneous frequency mean vector) to visualize the overall variability in waveform
shape around the average. Individual recording averages are shown in red, with different symbols representing the 3 animals. D: zoomed-in section of C
showing the individual recording session means.
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distortions in PC-3 and PC-4 occur between the four
specified control points.

A general linear model was used to quantify the relation-
ship between the different shape motifs and theta ampli-
tude, theta duration, and mouse movement speed. This
regression is computed separately for each PC and the result-
ing parameter estimates converted into t statistics. PC-1

codes for changes in average instantaneous frequency across
the cycle with a small shape distortion around the descend-
ing edge. This PC has a strong relationship with cycle dura-
tion and amplitude but no significant covariation with
movement speed. Longer and higher-amplitude cycles tend
to have more positive scores in PC-1 relating to wide peak
shapes. PC-2 has a strong relationship with duration and

Figure 10. Shape motifs in hippocampal theta and their relation to movement speed. A: the normalized waveforms for the first 4 shape motifs identified
from a principal component analysis (PCA) across all phase-aligned instantaneous frequency profiles. Waveforms for positive principal component (PC)
scores are shown in purple and waveforms for negative scores shown in green with a sinusoid for reference (black dotted line). B: PC for each motif. C:
instantaneous frequency profiles of each shape motif created by multiplying the PC shape in B with the maximum or minimum observed PC score for
that PC and adding the mean. Purple profiles represent the positive end of the score distribution, and green profiles represent the negative end. D: con-
trol point ratios for cycles split by the sign of the PC score. Purple profiles represent the positive end of the score distribution, and green profiles repre-
sent the negative end. E: t value of a general linear model (GLM) modeling the PC score for each motif as a function of movement speed, theta cycle
duration, and theta cycle amplitude. 	Statistical significance at P > 0.01 as identified by nonparametric permutations. A2D ascending-to-descending ra-
tio; P2T, peak-to-trough ratio.
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movement speed. Specifically, cycles with elongated de-
scending edges have longer cycle durations and are more
likely to occur during fast animalmovement. PC-3 shows sig-
nificant covariance with cycle amplitude. High-amplitude
cycles tend to have shapes in which instantaneous frequency
is relatively high just before the peak or trough. Finally, PC-4
varies strongly with duration and weakly with movement
speed. Cycles with flatter curvatures around the extrema
have longer cycle durations and are less likely to occur dur-
ing faster animalmovement.

DISCUSSION
Nonsinusoidal waveforms are often visible by eye in raw

LFP traces of electrophysiological data sets, yet discovering
and quantifying these nonsinusoidal and nonlinear features
present substantial analytic challenges. We utilize within-
cycle variability in instantaneous frequency to describe dis-
tortions in waveform (10). Furthermore, we introduce phase-
alignment as a solution to comparing full-resolution wave-
forms between cycles of different durations. In summary, we
establish that the phase-aligned instantaneous frequency
profile of an oscillation provides a flexible framework for
complete characterization of oscillatory waveform shape.
We demonstrate the utility of this approach by applying it to
simulated data and LFP recordings of theta oscillations of
behavingmice.

In real data, we observed that theta oscillations have, on
average, a fast-ascending and slow-descending waveform, in
line with previous reports (6, 7, 24, 39). Although this average
shape is robust across many cycles, recording sessions, and
animals, the shape of individual cycles is highly variable. We
characterize this variability by using PCA to identify a range
of shape components, or shape motifs, that maximally
explain the variability in the data set. The first two PCs quan-
tify the relative durations of the peak and trough (PC-1) and
the ascending and descending edge (PC-2). These PCs
broadly map onto the features described by the peak-to-
trough and ascending-to-descending control point ratios. We
show that these theta shape PCs have distinct patterns of
covariation with movement speed, theta amplitude, and
theta cycle duration. Critically, we show that although PC-2
describes less variability overall, it most clearly covaries with
movement speed.

PC-3 and PC-4 capture more complex waveform shapes.
We show that the curvature around the extrema of the wave-
form shape (PC-4) is wider in theta cycles occurring during
faster animal movement. This shape is naturally described
by instantaneous frequency but not visible to the standard
ascending-to-descending and peak-to-trough control point
ratios that we have implemented here. If these shapes were
known to be of interest a priori, it would be possible to con-
struct specific control point-based measures to identify
them. For instance, waveform sharpness can be explored by
looking at the differential between the extrema and the sam-
ples 5 ms before and after (40). However, in real data, we
may not know the waveform shape of interest a priori,
implying that many separate metrics may need to be com-
puted for each cycle. In contrast, the phase-aligned instanta-
neous frequency can quantify any waveform shape as a

within-cycle instantaneous frequency sweep without prespe-
cifying the features that may be of interest.

The present results demonstrate that single-cycle dynam-
ics in oscillations can bemeaningfully estimated with phase-
aligned instantaneous frequency and that specific shape
motifs are differentially related to the wider electrophysio-
logical (theta amplitude and duration) and behavioral
(movement speed) context. Future models of theta function
may consider these dynamics in waveform shape that devi-
ate from a canonical sinusoidal theta template. Given that
many subprocesses occur preferentially at different parts of
the theta cycle (41), we hypothesize that shape distortion
may indicate or reflect a change in the underlying theta-
phase-nested subprocesses.

The outlined approach requires that each cycle is smooth
in both its waveform and phase profiles, as any jumps or dis-
continuities will lead to noisy or even negative instantane-
ous frequency estimates. If the cycle is smooth, we can
characterize very large distortions in waveform shape as
within-cycle dynamics in instantaneous frequency. Finally,
we assume that the features being analyzed are well
described as oscillations. If the features are nonsinusoidal
and nonoscillatory, such as spiking activity, then descrip-
tions using the language of frequency may not be appropri-
ate. With these improvements and caveats in hand, this
approach is readily generalizable to other data sets and pro-
vides a flexible framework for investigating waveform shape
oscillating systems.

In conclusion, the full-cycle waveform of single cycles
of hippocampal theta can be quantified and explored
with phase-aligned instantaneous frequency. We use this
approach to confirm the characteristic fast-ascending
waveform of theta oscillations and to additionally reveal
that this is highly variable on the single-cycle level.
Moreover, we are able to link this variability with behav-
ioral and electrophysiological states, suggesting that
waveform shape is a relevant feature of neuronal oscilla-
tions alongside frequency, phase, and amplitude. Finally,
although we have illustrated this approach with hippo-
campal theta oscillations, it is likely that this methodol-
ogy will readily generalize to neuronal oscillation in
other brain regions, frequency bands, and contexts.
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