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Abstract

The R package sensobol provides several functions to conduct variance-based uncer-
tainty and sensitivity analysis, from the estimation of sensitivity indices to the visual
representation of the results. It implements several state-of-the-art first and total-order
estimators and allows the computation of up to fourth-order effects, as well as of the ap-
proximation error, in a swift and user-friendly way. Its flexibility makes it also appropriate
for models with either a scalar or a multivariate output. We illustrate its functionality by
conducting a variance-based sensitivity analysis of three classic models: the Sobol’ (1998)
G function, the logistic population growth model of Verhulst (1845), and the spruce bud-
worm and forest model of Ludwig, Jones, and Holling (1976).

Keywords: R, uncertainty, sensitivity analysis, modeling.

1. Introduction

It has been argued that any form of knowledge based on mathematical modeling is conditional
on a set, perhaps a hierarchy, of either stated or unspoken assumptions (Kay 2012; Saltelli
et al. 2020). Such assumptions range from the choice of the data and of the methods to
the framing of the problem, including normative elements that identify the nature and the
relevance of the problem itself. This conditional uncertainty is a property of the model
and not of the reality that the model has the ambition to depict. Yet it affects the model
output and hence any model-based inference aiming at guiding policies in the “real world”.
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Identifying and understanding this conditional uncertainty is especially paramount when the
model output serves to inform a political decision, and boils down to answering two classes
of questions:

• How uncertain is the inference? Is this uncertainty compatible with the taking of a
decision based on the model outcomes? Given the uncertainty, are the policy options
distinguishable in their outcome?

• Which factor is dominating this uncertainty? Is this uncertainty reducible, e.g., with
more data or deeper research? Are there a few dominating factors or is the uncertainty
originating from several factors? Do the factors act singularly or in combination with
one another?

The second class of questions is in the realm of global sensitivity analysis, which aims to offer
a diagnosis as to the composition of the uncertainty affecting the model output, and hence
the model-based inference (Saltelli and Homma 1993; Homma and Saltelli 1996; Saltelli et al.
2008). In helping to appreciate the extent and the nature of the problems linked to the use
of a given model in a practical setting, global sensitivity analysis can be considered as a tool
for the hermeneutics of mathematical modeling.
Global sensitivity analysis is well represented in international guidelines for impact assessment
(Azzini, Listorti, Mara, and Rosati 2020a; Gilbertson 2018), as well as in many disciplinary
journals (Jakeman, Letcher, and Norton 2006; Puy, Lo Piano, and Saltelli 2020b). However,
the uptake of state-of-the-art global sensitivity analysis tools is still in its infancy. Most stud-
ies continue to prioritize local sensitivity or one-at-a-time analyses, which explore how the
model output changes when one factor is varied and the rest is kept fixed at their nominal
values (Saltelli et al. 2019). This approach underexplores the input space and can not appraise
interactions between factors, which are ubiquitous in many models. Some reasons behind the
scarce use of global sensitivity analysis methods are lack of technical skills or resources avail-
able, unawareness of global sensitivity methods or simply reluctance due to their “destructive
honesty”: if applied properly, the uncertainty uncovered by a global sensitivity analysis might
be so wide as to render the model largely impractical for policy-making (Leamer 2010; Saltelli
et al. 2019).
This notwithstanding, there seems to be a progressive increase in the use of global sensitivity
methods from 2005 onwards (Ferretti, Saltelli, and Tarantola 2016), as well as a higher ac-
knowledgment of them being the ultimate acid test for the quality of any mathematical model.
Recently, global sensitivity analysis has been identified as one of the most well-equipped scien-
tific toolkits to tackle “deep uncertainty” (Steinmann, Wang, Van Voorn, and Kwakkel 2020),
and a multidisciplinary team of scholars lists it as one of the five cornerstones of responsible
mathematical modeling (Saltelli et al. 2020).

1.1. Sensitivity analysis packages in R and beyond

The sparse uptake of global sensitivity methods contrasts with the many packages available
in different languages. In Python there is the SALib package (Herman and Usher 2017),
which includes the Sobol’, Morris and the Fourier amplitude sensitivity test (FAST) methods.
In MATLAB, the UQLab package (Marelli and Sudret 2014) offers the Morris method, the
Borgonovo (2007) indices, Sobol’ indices (with the Sobol’ and Janon estimators) and the
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Kucherenko indices. The SAFE package (Pianosi, Sarrazin, and Wagener 2015), developed
originally for MATLAB/Octave but with scripts available for R and Python, includes variance-
based analysis, elementary effects and the Pianosi-Wagener method (PAWN, Pianosi and
Wagener 2015).
To our knowledge, there are three packages on the Comprehensive R Archive Network (CRAN)
that implement global sensitivity analysis in R (R Core Team 2021): the multisensi package
(Bidot, Lamboni, and Monod 2018), specifically designed for models with a multivariate
output; the fast package (Reusser 2015), which implements FAST; and the sensitivity package
(Iooss et al. 2021), the most comprehensive collection of functions in R for screening, global
sensitivity analysis and robustness analysis.
sensobol (Puy 2022) differs from these R packages by the following characteristics:

1. It offers a state-of-the-art compilation of variance-based sensitivity estimators. In its
current version, sensobol comprises four first-order and eight total-order variance-based
estimators, from the classic formulae of Sobol’ (1993) or Jansen (1999) to the more recent
contributions by Glen and Isaacs (2012), Razavi and Gupta (2016a,b) (the variogram
analysis of response surface total-order index, VARS-TO) or Azzini, Mara, and Rosati
(2020b).

2. It aims at being flexible and user-friendly. There is only one function to compute
Sobol’-based sensitivity indices, sobol_indices(). Any first and total-order estimator
can be simultaneously fed into the function provided that the user correctly specifies
the sampling design (see Section 2.1). This contrasts with the sensitivity package (Iooss
et al. 2021), which keeps estimators compartmentalized in different functions and hence
prevents the user from combining them the way it better suits their needs. Further-
more, the compatibility of sobol_indices() with the data.table syntax (Dowle and
Srinivasan 2021) makes the calculation of sensitivity indices for scalar outputs as easy
as for multivariate outputs (see Section 3.3).

3. It permits the computation of up to fourth-order effects. Appraising high-order effects
is paramount when models are non-additive (see Section 2). Although the total-order
index already informs on whether a parameter is involved in interactions, sometimes
a more precise account of the nature of this interaction is needed. sensobol opens the
possibility to probe into these interactions through the computation of second, third
and fourth-order effects regardless of the selected estimator.

4. It offers publication-ready figures of the model output and sensitivity-related analysis.
sensobol relies on ggplot2 (Wickham 2016) and the grammar of graphics to yield high-
quality plots which can be easily modified by the user.

5. It is more efficient than current implementations of variance-based estimators in R.
Our benchmark of sensobol and sensitivity functions suggest that the former may be
approximately two times faster than the latter (See Annex, Section A.1).

The paper is organized as follows: in Section 2 we briefly describe variance-based sensitivity
analysis. In Section 3 we walk through three examples of models with different characteristics
and increasing complexity to show the main functionalities of sensobol. Finally, we summarize
the main contributions of the package in Section 4.
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2. Variance-based sensitivity analysis

Variance-based sensitivity indices use the variance to describe the model output uncertainty.
Given a model of the form y = f(x), x = (x1, x2, . . . , xi, . . . , xk) ∈ Rk, where y is a scalar
output and x1, . . . , xk are k independent uncertain parameters described by probability distri-
butions, the analyst might be interested in assessing how sensitive y is to changes in xi. One
way of tackling this question is to check how much the variance in y decreases after fixing xi

to its “true” value x∗
i , i.e., VAR(y | xi = x∗

i ). But the true value of xi is unknown, so instead of
fixing it to an arbitrary number, we can take the mean of the variance of y after fixing xi to all
its possible values over its uncertainty range, while all other parameters are left to vary. This
is expressed as Exi [VARx∼i(y | xi)], where x∼i denotes all parameters-but-xi and E(.) and
VAR(.) are the mean and the variance operator respectively. Exi [VARx∼i(y | xi)] ≤ VAR(y),
and in fact,

VAR(y) = VARxi [Ex∼i(y | xi)] + Exi [VARx∼i(y | xi)] ,

where VARxi [Ex∼i(y | xi)] is known as the first-order effect of xi and Exi [VARx∼i(y | xi)] is
the residual. When a parameter is important in conditioning VAR(y), VARxi [Ex∼i(y | xi)] is
high.
To illustrate this property, let’s imagine we run a three-dimensional model, plot the model
output y against the range of values in xi, divide the latter in n bins and compute the mean
y in each bin. This is represented in Figure 1, with the red dots showing the mean in each
bin. The parameter whose mean y values vary the most has the highest direct influence in
the model output; in this case, it is clearly x1. This procedure applied over very small bins
is actually VARxi [Ex∼i(y | xi)] and is the conditional variance of xi on VAR(y), VARi (Saltelli
et al. 2008).
When x1, x2, . . . , xk are independent parameters, VAR(y) can be decomposed as the sum of
all partial variances up to the k-th order, as

VAR(y) =
∑
i=1

VARi +
∑

i

∑
i<j

VARij + · · · + VAR1,2,...,k , (1)

x1 x2 x3

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

-2

0

2

4

x

y

Figure 1: Scatterplot of y against xi, i = 1, 2, 3. The red dots show the mean y value in
each bin (we have set the number of bins arbitrarily at 30), and N = 210. The model is the
polynomial function in Becker and Saltelli (2015), where y = 3x2

1 + 2x1x2 − 2x3, xi ∼ U(0, 1).
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where

VARi = VARxi

[
Ex∼i(y | xi)

]
VARij =VARxi,xj

[
Ex∼i,j (y | xi, xj)

]
. . . .

− VARxi

[
Ex∼i(y | xi)

]
− VARxj

[
Ex∼j (y | xj)

] (2)

Note that Equation 1 is akin to Sobol’ (1993)’s functional decomposition scheme:

f(x) = f0 +
∑

i

fi(xi) +
∑

i

∑
i<j

fij(xi, xj) + · · · + f1,2,...,k(x1, x2, . . . , xk) , (3)

where

f0 = E(y) fi = Ex∼i
(y | xi) − f0 fij = Ex∼ij

(y | xi, xj) − fi − fj − f0 . . . , (4)

and therefore
VARi = V [fi(xi)] VARij = V [fij(xi, xj)] . . . . (5)

Function f(x) needs to be square-integrable over the dominion of existence for the variance
decomposition in Equation 1 to be applicable. Sobol’ (1993) indices are then calculated as

Si = VARi

VAR(y) Sij = VARij

VAR(y) . . . , (6)

where Si is the first-order effect of xi, Sij is the second-order effect of (xi, xj) (formed by the
first order effect of xi, xj and their interaction), etc. Si (Sij) can thus be expressed as the
fractional reduction in the variance of y which will be obtained if xi (xi, xj) could be fixed. In
variance-based sensitivity analysis, Si is used to rank parameters given their contribution to
the model output uncertainty, a setting known as “factor prioritization” (Saltelli et al. 2008).
If we divide all terms in Equation 1 by VAR(y), we get

k∑
i=1

Si +
∑

i

∑
i<j

Sij + · · · + S1,2,...,k = 1. (7)

When
∑k

i=1 Si = 1, the model is additive, i.e., the variance of y can be fully decomposed
as the sum of first-order effects, meaning that there are no interaction between parameters.
However, this is rarely the case in real-life models, and first-order indices are usually not
enough to account for all the model output variance.
This is demonstrated with the example in Figure 2: x2 and x3 do not have a first-order effect
on y as VARxi [Ex∼i(y | xi)] ≈ 0. However, and unlike x2, x3 does influence y given the shape
of the scatterplot, so it can not be an inconsequential parameter. Indeed, x3 influences y
through high-order effects, i.e., by interacting with some other parameter(s). In this specific
case, it is clear that x3 must interact with x1 given that x2 is non-influential. Such appraisal
of interactions can rarely be made through the visual inspection of scatterplots alone, and
often requires computing higher-order terms in Equation 7.
Since there are 2k − 1 terms in Equation 7, a model with 10 parameters will have 1023 terms,
making a full variance decomposition very arduous: just the computation of second-order
terms for this model would require estimating 45 indices.
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x1 x2 x3
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Figure 2: Scatterplot of y against xi, i = 1, 2, 3. The red dots show the mean y value in
each bin (we have set the number of bins arbitrarily at 30), and N = 210. The model is the
Ishigami and Homma (1990) function.

To circumvent this issue, Homma and Saltelli (1996) proposed to compute the total-order
index Ti, which measures the first-order effect of xi jointly with its interactions with all the
other parameters. In other words, Ti includes all terms in Equation 1 with the index i, and
is computed as follows:

Ti = 1 −
VARx∼i

[
Exi(y | x∼i)

]
VAR(y) =

Ex∼i

[
VARxi(y | x∼i)

]
VAR(y) , (8)

For a three-dimensional model, the total-order index of x1 will thus be computed as T1 =
S1 + S1,2 + S1,3 + S1,2,3. Since Ti = 0 indicates that xi does not convey any uncertainty to the
model output, the total-order index has been used to screen influential from non-influential
parameters, a setting known as “factor fixing” (Saltelli et al. 2008).
The popularity of variance-based methods derives from their capacity to provide sensitivity
measures that are model-independent and easily understandable. They also capture the
influence of the full range of variation in each parameter, including its interactions with the
rest (Saltelli et al. 2008). Some known limitations are their high computational demands and
that they may not be the most appropriate proxy of uncertainty when the output distribution
is highly skewed or multi-modal (Pianosi and Wagener 2015).

2.1. Sampling design and sensitivity estimators

The computation of variance-based sensitivity indices requires two elements: 1) a sampling
design, i.e., a strategy to arrange the sample points into the multidimensional space of the
input factors, and 2) an estimator, i.e., a formula to compute the sensitivity measures (Lo
Piano, Ferretti, Puy, Albrecht, and Saltelli 2021). Both elements are intertwined: the reliance
on a given sampling design determines which estimators can be used and the other way around.
sensobol (Puy 2022) currently offers support for four first-order and eight total-order sensitiv-
ity estimators, which rely on specific combinations of A, B, A

(i)
B or B

(i)
A matrices (Tables 1–2).

Estimator 9 in Table 2 is known as VARS-TO and requires a different sampling design based
on star-centers and cross-sections (Razavi and Gupta 2016a,b). We provide further informa-
tion about VARS-TO in the Annex, Section A.2. All these estimators are sample-based and
hence sensobol does not include emulators or surrogate models.
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N◦ Estimator first Author

1
1
N

∑N

v=1 f(A)vf(B(i)
A )v−f2

0
VAR(y) "sobol" Sobol’ (1993)

2
1
N

∑N

v=1 f(B)v

[
f(A(i)

B )v−f(A)v

]
VAR(y) "saltelli" Saltelli, Annoni, Azzini, Cam-

polongo, Ratto, and Taran-
tola (2010)

3
VAR(y)− 1

2N

∑N

v=1

[
f(B)v−f(A(i)

B )v

]2

VAR(y) "jansen" Jansen (1999)

4 2
∑N

v=1(f(B(i)
A )v−f(B)v)(f(A)v−f(A(i)

B )v)∑N

v=1

[
(f(A)v−f(B)v)2+(f(B(i)

A )v−f(A(i)
B )v)2

] "azzini" Azzini et al. (2020b)

Table 1: First-order estimators included in sensobol (v1.1.1). f0 = 1
2N

∑N
v=1 [f(A)v + f(B)v]

and VAR(y) = 1
2N−1

∑N
v=1

[
(f(A)v − f0)2 + (f(B)v − f0)2].

N◦ Estimator total Author

1
1

2N

∑N

v=1

[
f(A)v−f(A(i)

B )v

]2

VAR(y) "jansen" Jansen (1999)

2
1
N

∑N

v=1 f(A)v

[
f(A)v−f(A(i)

B )v

]
VAR(y) "sobol" Sobol’ (2001)

3 VAR(y)− 1
N

∑N

v=1 f(Av)f(A(i)
B )v+f2

0
VAR(y) "homma" Homma and

Saltelli (1996)

4 1 −
1
N

∑N

v=1 f(B)vf(B(i)
A )v−f2

0
1
N

∑N

v=1 f(A)2
v−f2

0
saltelli Saltelli et al.

(2008)

5 1 −
1
N

∑N

v=1 f(A)vf(A(i)
B )v−f2

0

1
N

∑N

v=1
f(Av)2+f(A

(i)
B

)2
v

2 −f2
0

"janon" Janon, Klein,
Lagnoux, Nodet,
and Prieur (2014)
Monod, Naud, and
Makowski (2006)

6 1 −

 1
N−1

∑N
v=1

[f(A)v−⟨f(A)v⟩]
[

f(A(i)
B )v−

〈
f(A(i)

B )v

〉]
√

V [f(A)v ]V
[

f(A(i)
B )v

]
 "glen" Glen and Isaacs

(2012)

7
∑N

v=1[f(B)v−f(B(i)
A )v ]2+[f(A)v−f(A(i)

B )v ]2∑N

v=1[f(A)v−f(B)v ]2+[f(B(i)
A )v−f(A(i)

B )v ]2
"azzini" Azzini et al.

(2020b)

8
Ex∗∼i

[γx∗∼i(hi)]+Ex∗∼i[Cx∗∼i(hi)]
VAR(y)

See Annex,
Section A.2 Razavi and Gupta

(2016b,a).

Table 2: Total-order estimators included in sensobol (v1.1.1). f0 and VAR(y) are estimated
according to the original papers. See Table 1 in Puy et al. (2022) for a description of their
calculation.
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Q =

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

0.75 0.25 0.75 0.25 0.75 0.25 0.75 0.25

0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75

0.38 0.38 0.62 0.12 0.88 0.88 0.12 0.62

0.88 0.88 0.12 0.62 0.38 0.38 0.62 0.12





 A  B

A
(1)
B =

0.50 0.50 0.50 0.50

0.75 0.25 0.75 0.25

0.25 0.75 0.25 0.75

0.88 0.38 0.62 0.12

0.38 0.88 0.12 0.62





A
(2)
B =

0.50 0.50 0.50 0.50

0.75 0.25 0.75 0.25

0.25 0.75 0.25 0.75

0.38 0.88 0.62 0.12

0.88 0.38 0.12 0.62




...

(9)

Figure 3: Example of the creation of an A, B and A
(i)
B matrices. The Q matrix has been

created with Sobol’ (1967, 1976) quasi-random numbers, k = 4 and N = 5. The figure is
based on Puy et al. (2022).

How are these matrices formed, and why are they required? Let Q be a (N, 2k) matrix
constructed using either random or quasi-random number generators, such as the Sobol’
(1967, 1976) sequence or a Latin hypercube sampling design (McKay, Beckman, and Conover
1979). The A and the B matrices include respectively the leftmost and rightmost k columns
of the Q matrix. The A

(i)
B (B(i)

A ) matrices are formed by all columns from the A (B) matrix
except the i-th, which comes from B (A) (Equation 9, Figure 3).
In these matrices each column is a model input and each row a sampling point. Any sampling
point in either A or B can be indicated as xvi, where v and i respectively index the row (from
1 to N) and the column (from 1 to k).
First and total-order effects are then calculated by averaging several elementary effects com-
puted row wise: for Si we need pairs of points where all factors but xi have different values
(i.e., Av, (B(i)

A )v; or Bv, (A(i)
B )v), and for Ti pairs of points where all factors except xi have

the same values (i.e., Av, (A(i)
B )v; or Bv, (B(i)

A )v). The elementary effect for Si thus requires
moving from Av to (B(i)

A )v (or from Bv to (A(i)
B )v), therefore taking a step along x∼i, whereby

the elementary effect for Ti involves moving from Av to (A(i)
B )v (or from Bv to (B(i)

A )v), hence
moving along xi (Saltelli et al. 2010). These pairs of points are the output y obtained after
running the model f in the v-th row of the A, B . . . matrices, denoted as f(A)v, f(B)v, . . ..
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Figure 4: Sampling methods. Each dot is a sampling point. N = 210.

first total matrices N◦ model runs

"saltelli"
"jansen"

"jansen"
"sobol"
"homma"
"janon"
"glen"

c("A", "B", "AB") N(k + 2)

"sobol" "saltelli" c("A", "B", "BA") N(k + 2)

"azzini"

"jansen"
"sobol"
"homma"
"janon"
"glen"

"azzini"
"saltelli"

c("A", "B", "AB", "BA") 2N(k + 1)

"saltelli"
"jansen"
"sobol"
"azzini"

"azzini" c("A", "B", "AB", "BA") 2N(k + 1)

Table 3: Available combinations of first and total-order estimators in sensobol (v1.1.1).

The function sobol_matrices() allows to create these sampling designs using either Sobol’
(1967, 1976) quasi-random numbers (type = "QRN"), Latin hypercube sampling (type =
"LHS") or random numbers (type = "R"). In Figure 4 we show how these sampling methods
differ in two dimensions. Comparatively, quasi-random numbers fill the input space quicker
and more evenly, leaving smaller unexplored volumes. However, random numbers may provide
more accurate sensitivity indices when the model under examination has important high-order
terms (Kucherenko, Feil, Shah, and Mauntz 2011). Latin hypercube sampling may outper-
form quasi-random numbers for some specific function typologies. In general, quasi-random
numbers are the safest bet when selecting a sampling algorithm for a function of unknown
behavior (Kucherenko, Albrecht, and Saltelli 2015), and are the default setting in sensobol.
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Once the sampling design is set, the computation of Sobol’ indices is done with the function
sobol_indices(). The arguments first, total and matrices are set by default at first =
"saltelli", total = "jansen" and matrices = c("A", "B", "AB") following best prac-
tices in sensitivity analysis (Saltelli et al. 2010; Puy et al. 2022). However, any combination
between any of the first and total-order estimators listed in Tables 1–2 is possible with the
appropriate sampling design (Table 3). If the analyst selects estimators whose combination
do not match the specific designs listed in Table 3, sobol_indices() will generate an error
and urge to revise the specifications. This would be the case, for instance, if the analyst sets
first = "sobol", total = "glen" and matrices = "c("A", "AB", "BA").

3. Usage
In this section we illustrate the functionality of sensobol through three different examples of
increasing complexity. Let us first load the required packages:

R> library("sensobol")
R> library("data.table")
R> library("ggplot2")

3.1. Example 1: The Sobol’ G function

In sensitivity analysis, the accuracy of sensitivity estimators is usually checked against test
functions for which the variance and the sensitivity indices can be expressed analytically.
sensobol includes six of these test functions: Ishigami and Homma (1990)’s, Sobol’ (1998)’s
(known as G function), Bratley, Fox, and Niederreiter (1992)’s, Bratley and Fox (1988)’s,
Oakley and O’Hagan (2004)’s and Becker (2020)’s metafunction (Table 4).
In this first example we illustrate the functionality of sensobol with the Sobol’ G function,
one of the most used benchmark functions in sensitivity analysis (Lo Piano et al. 2021; Puy,
Lo Piano, and Saltelli 2020a; Saltelli et al. 2010). In its current implementation, the Sobol’ G
is an eight-dimension function with S1 > S2 > S3 > S4 and (S5, . . . , S8) ≈ 0 (Table 4, N◦ 2).
With this parametrization the Sobol’ G function is a type A function according to Kucherenko
et al. (2011)’s taxonomy (a function with few important factors and minor interactions), with
type B and type C functions designing those with equally important parameters but with few
and large interactions respectively.
We first define the settings of the uncertainty and sensitivity analysis: we set the sample size
N of the base sample matrix and the number of uncertain parameters k, and create a vector
with the parameters’ name. Since we will bootstrap the indices to get confidence intervals,
we set the number of bootstrap replicas to 103, the bootstrap confidence interval method to
the normal method and the confidence intervals to 0.95:

R> N <- 2^10
R> k <- 8
R> params <- paste("$x_", 1:k, "$", sep = "")
R> R <- 10^3
R> type <- "norm"
R> conf <- 0.95
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N◦ Test function Author

1 y = sin(x1) + a sin(x2)2 + bx4
3 sin(x1),

where a = 2, b = 1 and (x1, x2, x3) ∼ U(−π, +π) Ishigami and
Homma (1990)

2 y =
∏k

i=1
|4xi−2|+ai

1+ai
,

where k = 8, xi ∼ U(0, 1) and a = (0, 1, 4.5, 9, 99, 99, 99, 99)
Sobol’ (1998)

3 y =
∑k

i=1(−1)i∏i
j=1 xj ,

where xi ∼ U(0, 1) Bratley et al.
(1992)

4 y =
∏k

i=1|4xi − 2|,
where xi ∼ U(0, 1) Bratley and Fox

(1988)

5
y = a⊤

1 x + a⊤
2 sin(x) + a⊤

3 cos(x) + x⊤Mx,
where x = x1, x2, . . . , xk, k = 15, and values

for a⊤
i , i = 1, 2, 3 and M are defined by the authors

Oakley and
O’Hagan (2004)

6
y =

k∑
i=1

αif
ui(xi) +

k2∑
i=1

βif
uVARi,1 (xVARi,1)fuVARi,2 (xVARi,2)

+
k3∑

i=1
γif

uWi,1 (xWi,1)fuWi,2 (xWi,2)fuWi,3 (xWi,3)
See Becker (2020)
and Puy et al.
(2022) for details.

Table 4: Test functions included in sensobol (v1.1.1).

The next step is to create the sample matrix. In this specific case we will use an A, B, A
(i)
B

design and Sobol’ quasi-random numbers to compute first and total-order indices. These are
default settings in sobol_matrices(). In our call to the function we only need to define the
sample size and the parameters:

R> mat <- sobol_matrices(N = N, params = params)

Once the sample matrix is defined we can run our model. Note that in mat each column is
a model input and each row a sample point, hence the model has to be coded as to run row
wise. This is already the case of the Sobol’ G function included in sensobol:

R> y <- sobol_Fun(mat)

The package also allows the user to swiftly visualize the model output uncertainty by plotting
an histogram of the model output obtained from the A matrix (Figure 5):

R> plot_uncertainty(Y = y, N = N) + labs(y = "Counts", x = "$y$")

Before computing Sobol’ indices we recommend to explore how the model output maps onto
the model input space. sensobol includes two functions to that aim, plot_scatter() and
plot_multiscatter(). The first displays the model output y against xi while showing the
mean y value (i.e., as in Figures 1–2), and allows the user to identify patterns denoting
sensitivity (Pianosi et al. 2016) (Figure 6):
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Figure 5: Empirical distribution of the Sobol’ G model output.
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Figure 6: Scatter plots of model inputs against the model output for the Sobol’ G function.

R> plot_scatter(data = mat, N = N, Y = y, params = params)

The scatter plots in Figure 6 evidence that x1, x2 and x3 have more “shape” than the rest
and thus have a higher influence on y than (x4, . . . , x8). However, scatter plots do not always
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Figure 7: Scatter plot matrix of pairs of model inputs for the Sobol’ G function. The topmost
and bottommost label facets refer to the x and the y axis respectively.

permit to detect which parameters have a joint effect on the model output. To gain a first
insight on these interactions, the function plot_multiscatter() plots xi against xj and maps
the resulting coordinate to its respective model output value. Interactions are then visible by
the emergence of colored patterns.
By default, plot_multiscatter() plots all possible combinations of xi and xj , which equal

k!
2!(k−2)! = 6 possible combinations in this specific case. In high-dimensional models with
several inputs this might lead to overplotting. To avoid this drawback, the user can subset
the parameters they wish to focus on following the results obtained with plot_scatter(): if
xi does not show “shape” in the scatterplots of xi against y, then it may be excluded from
plot_multiscatter().
Below we plot all possible combinations of pairs of inputs between x1−x4, which are influential
according to Figure 6:

R> plot_multiscatter(data = mat, N = N, Y = y, params = paste("$x_", 1:4,
+ "$", sep = ""))

The results in Figure 7 suggest that x1 might interact with x2 given the colored pattern of the
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(x1, x2) facet: the highest values of the model output are concentrated in the corners of the
(x1, x2) input space and thus result from combinations of high/low x1 values with high/low
x2 values. In case the analyst is interested in assessing the exact weight of this high-order
interaction, the computation of second-order indices would be required.
The last step is the computation of Sobol’ indices. We set boot = TRUE to bootstrap the
Sobol’ indices and get confidence intervals:

R> ind <- sobol_indices(Y = y, N = N, params = params, boot = TRUE, R = R,
+ type = type, conf = conf)

The output of sobol_indices() is an S3 object of class ‘sensobol’ with the results stored
in the component results. To improve the visualization of the object, we set the number of
digits in each numerical column to 3:

R> cols <- colnames(ind$results)[1:5]
R> ind$results[, (cols):= round(.SD, 3), .SDcols = (cols)]
R> ind

First-order estimator: saltelli | Total-order estimator: jansen

Total number of model runs: 10240

Sum of first order indices: 0.9419303
original bias std.error low.ci high.ci sensitivity parameters

1: 0.724 -0.001 0.069 0.589 0.860 Si $x_1$
2: 0.184 0.001 0.039 0.108 0.259 Si $x_2$
3: 0.025 0.000 0.015 -0.005 0.053 Si $x_3$
4: 0.010 0.000 0.008 -0.006 0.026 Si $x_4$
5: 0.000 0.000 0.001 -0.001 0.002 Si $x_5$
6: 0.000 0.000 0.001 -0.001 0.002 Si $x_6$
7: 0.000 0.000 0.001 -0.002 0.002 Si $x_7$
8: 0.000 0.000 0.001 -0.002 0.002 Si $x_8$
9: 0.799 -0.001 0.034 0.733 0.867 Ti $x_1$

10: 0.243 0.000 0.014 0.216 0.269 Ti $x_2$
11: 0.035 0.000 0.002 0.030 0.039 Ti $x_3$
12: 0.011 0.000 0.001 0.009 0.012 Ti $x_4$
13: 0.000 0.000 0.000 0.000 0.000 Ti $x_5$
14: 0.000 0.000 0.000 0.000 0.000 Ti $x_6$
15: 0.000 0.000 0.000 0.000 0.000 Ti $x_7$
16: 0.000 0.000 0.000 0.000 0.000 Ti $x_8$

The output informs of the first and total-order estimators used in the calculation, the total
number of model runs and the sum of the first-order indices. If (

∑k
i=1 Si) < 1, the model is

non-additive.
When boot = TRUE, the output of sobol_indices() displays the bootstrap statistics in the
five leftmost columns (the observed statistic, the bias, the standard error and the low and
high confidence intervals), and two extra columns linking each statistic to a sensitivity index
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Figure 8: Sobol’ indices of the Sobol’ G function.

(sensitivity) and a parameter (parameters). If boot = FALSE, sobol_indices() com-
putes a point estimate of the indices and the output includes only the columns original,
sensitivity and parameters.
The results indicate that x1 conveys 72% of the uncertainty in y, followed by x2 (18%). x3 and
x4 have a very minor first-order effect, while the rest are non-influential. Note the presence
of non-additivities: T1 and T2 (0.79 and 0.24) are respectively higher than S1 and S2 (0.72
and 0.18). As we have seen in Figure 7, x1 and x2 have a non-additive effect on y.
We can also compute the Sobol’ indices of a dummy parameter, i.e., a parameter that has no
influence on the model output, to estimate the numerical approximation error. This will be
used later on to identify parameters whose contribution to the output variance is less than the
approximation error and hence can not be considered influential. Like sobol_indices(), the
function sobol_dummy() allows to obtain point estimates (the default) or bootstrap estimates.
In this example we use the latter option:

R> ind.dummy <- sobol_dummy(Y = y, N = N, params = params, boot = TRUE,
+ R = R)

The last stage is to plot the Sobol’ indices and their confidence intervals, as well as the Sobol’
indices of a dummy parameter, with a simple call to plot (Figure 8):

R> plot(ind, dummy = ind.dummy)

The error bars of S1 and S2 overlap with those of T1 and T2 respectively. In the case of the
Sobol’ G function we know that T1 > S1 and T2 > S2 because the analytic variance is known,
but for models where this is not the case such overlap might hamper the identification of
non-additivities. Narrower confidence intervals can be obtained by increasing the sample size
N and re-running the analysis from the creation of the sample matrix onwards.
The horizontal, blue/red dashed lines respectively mark the upper limit of the Ti and Si

indices of the dummy parameter. This helps in identifying which parameters condition the
model output given the sample size constraints of the analysis. Only parameters whose lower
confidence intervals are not below the Si and Ti indices of the dummy parameter can be
considered truly influential, in this case x1 and x2. Note that although T3 ̸= 0, the Ti index
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Figure 9: Dynamics of the logistic population growth model for N0 = 3, r = 0.6 and K = 100.

of the dummy parameter is higher than T3 and therefore T3 can not be distinguished from
the approximation error.

3.2. Example 2: A logistic population growth model

In this section we show how sensobol can be implemented to conduct a global uncertainty
and sensitivity analysis of a dynamic model. To illustrate the effect of high-order interactions
and show sensobol’s capacity to appraise second-order effects, we use the discrete form of the
classic logistic population growth model:

Nt+1 = rNt

(
1 − Nt

K

)
(10)

Malthusian models of population growth (i.e., exponential growth) can not forever describe the
growth of a population because resources are limited and competitive pressures ultimately
impose limits on growth. Most ways to incorporate that limit to growth in models share
similar dynamics, and the most intuitive and widely used is the form proposed by Verhulst
in Equation 10, which was popularized in ecology by Pearl and Reed (1920). In this model,
the population N at time t is dependent on the growth rate r, the number of individuals N
and the carrying capacity K, defined as the maximum number of individuals that a given
environment can sustain. When N approaches K, the population growth slows down until
the number of individuals converges to a constant (Figure 9).
We first set the sample size N of the base sample matrix at 213 and create a vector with
the name of the parameters. For this specific example we will use the Azzini et al. (2020b)
estimators, which require a sampling design based on A, B, A

(i)
B , B

(i)
A matrices. We will

compute up to second-order effects, bootstrap the indices 103 times and compute the 95%
confidence intervals using the percentile method.

R> N <- 2^13
R> params <- c("$r$", "$K$", "$N_0$")
R> matrices <- c("A", "B", "AB", "BA")
R> first <- total <- "azzini"
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Parameter Description Distribution

r Population growth rate N (1.7, 0.3)
K Maximum carrying capacity N (40, 1)
N0 Initial population size U(10, 50)

Table 5: Summary of the parameters and their distributions (Chalom and de Prado 2017).

R> order <- "second"
R> R <- 10^3
R> type <- "percent"
R> conf <- 0.95

In the next two code snippets we code Equation 10 and wrap it up in a mapply() call to
make it run row wise:

R> population_growth <- function(r, K, X0) {
+ X <- X0
+ for (i in 0:20) {
+ X <- X + r * X * (1 - X / K)
+ }
+ return (X)
+ }

R> population_growth_run <- function(dt) {
+ return(mapply(population_growth, dt[, 1], dt[, 2], dt[, 3]))
+ }

We now construct the sample matrix. In this example we set type = "LHS" to use a Latin
hypercube sampling design:

R> mat <- sobol_matrices(matrices = matrices, N = N, params = params,
+ order = order, type = "LHS")

Let’s assume that, after surveying the literature and conducting fieldwork, we have agreed
that the uncertainty in the model inputs can be fairly approximated with the distributions
presented in Table 5. Note that the use of a uniform distribution assumes the existence of
physical bounds for N0. Distributions such as the log-normal may be more appropriate if the
interval is assumed to be less strict and the probability of occurrence of some values is higher
than others, yet they can produce outliers prone to seriously bias the sensitivity analysis
under small sample sizes. Modelers often resort to uniform distributions when the quality
of knowledge available does not allow to make any judgement of that sort. Ultimately, the
selection of the distributions relies on the authors’ expertise and should be fully justified.
We transform each model input in mat to its specific probability distribution:

R> mat[, "$r$"] <- qnorm(mat[, "$r$"], 1.7, 0.3)
R> mat[, "$K$"] <- qnorm(mat[, "$K$"], 40, 1)
R> mat[, "$N_0$"] <- qunif(mat[, "$N_0$"], 10, 50)
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Figure 10: Empirical distribution of the logistic population growth model output.

The sample matrix in mat is now ready and we can run the model:

R> y <- population_growth_run(mat)

And display the model output uncertainty (Figure 10):

R> plot_uncertainty(Y = y, N = N) + labs(y = "Counts", x = "$y$")

After 20 time steps the number of individuals will most likely concentrate around 40. Note
however the right and left tails of the distribution, indicating that a few simulations also
yielded significantly lower and higher population values. These tails result from some specific
combinations of parameter values and are indicative of interaction effects, which will be
explored later on.
We can also compute some statistics to get a better grasp of the output distribution, such as
quantiles:

R> quantile(y, probs = c(0.01, 0.025, 0.5, 0.975, 0.99, 1))

1% 2.5% 50% 97.5% 99% 100%
27.72812 30.58819 40.00674 46.56055 47.81454 51.90044

With plot_scatter() we can map the model inputs onto the model output. Instead of
plotting one dot per simulation, in this example we use hexagon bins by setting method
= "bin" and internally calling ggplot2::geom_hex(). With this specification we divide
the plane into regular hexagons, count the number of hexagons and map the number of
simulations to the hexagon bin. method = "bin" is a useful resource to avoid overplotting
with plot_scatter() when the sample size of the base sample matrix (N) is high, as in this
case (N = 213):

R> plot_scatter(data = mat, N = N, Y = y, params = params, method = "bin")

Zones with a higher density of dots are highlighted by lighter blue colors (Figure 11). Note also
the bifurcation of the model output at r ≈ 2. This behavior is the result of the discretization
of the logistic (May and Oster 1976). At r > 2, a cycle of length 2 emerges, followed as
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Figure 12: Scatterplot matrix of pairs of model inputs for the population growth model.

r is increased further by an infinite sequence of period-doubling bifurcations approaching a
critical value after which chaotic behavior and strange attractors result.
We can also avoid overplotting in plot_multiscatter() by randomly sampling and display-
ing only n simulations. This is controlled by the argument smpl, which is NULL by default.
Here we set smpl at 211 and plot only 1/4th of the simulations (Figure 12):

R> plot_multiscatter(data = mat, N = N, Y = y, params = params, smpl = 2^11)

The results suggest that there may be interactions between (r, K) and (r, N0): note the
yellow-green colors concentrated on the right side of the (r, K) plot as well as on the top right
and bottom right sides of the (r, N0) plot.
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These interactions, as well as the first-order effects of N0, r, K, can be quantified with a call
to sobol_indices():

R> ind <- sobol_indices(matrices = matrices, Y = y, N = N, params = params,
+ first = first, total = total, order = order, boot = TRUE, R = R,
+ parallel = "no", type = type, conf = conf)

We round the number of digits of the numeric columns to 3 to better inspect the results:

R> cols <- colnames(ind$results)[1:5]
R> ind$results[, (cols) := round(.SD, 3), .SDcols = (cols)]
R> ind

First-order estimator: azzini | Total-order estimator: azzini

Total number of model runs: 114688

Sum of first order indices: 0.2807628
original bias std.error low.ci high.ci sensitivity parameters

1: 0.028 -0.001 0.020 -0.011 0.065 Si $r$
2: 0.112 0.000 0.004 0.105 0.119 Si $K$
3: 0.141 0.001 0.012 0.118 0.166 Si $N_0$
4: 0.746 0.000 0.012 0.721 0.771 Ti $r$
5: 0.199 0.000 0.011 0.178 0.221 Ti $K$
6: 0.872 0.001 0.020 0.835 0.911 Ti $N_0$
7: -0.014 0.000 0.009 -0.032 0.004 Sij $r$.$K$
8: 0.634 0.000 0.023 0.590 0.681 Sij $r$.$N_0$
9: 0.001 0.000 0.006 -0.010 0.012 Sij $K$.$N_0$

The output also displays the second-order effects (Sij) of the pairs (r, K), (r, N0) and (K, N0).
Note that Sr,N0 conveys ∼ 63% of the uncertainty in y, and that Sr +SK +SN0 = 2.8+11.2+
14.1 ≈ 28%, meaning that first-order effects are responsible for only circa 1/4th of the model
output variance. The model behavior is largely driven by a coupled effect which would have
passed unnoticed should we had relied on a local sensitivity analysis approach, i.e., if we had
moved one parameter at-a-time.
In any case, K and N0 have the higher first-order effect in the model output. If the aim
is to reduce the uncertainty in the prediction (i.e., to better assess the potential impact
of a species on a territory), these results suggest to focus the efforts on better quantifying
the initial population N0, and/or on conducting further research on what is the maximum
carrying capacity K of the environment for this particular species. Priority should be given
to N0 given its strong interaction with r.
In order to get an estimation of the approximation error we compute the Sobol’ indices also
for the dummy parameter:

R> ind.dummy <- sobol_dummy(Y = y, N = N, params = params, boot = TRUE,
+ R = R)
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Figure 13: First and total-order Sobol’ indices of the population growth model.

0.0

0.2

0.4

0.6

r.N0

S
ob

ol
’
in
d
ex

Figure 14: Second-order Sobol’ indices.

And plot the output (Figure 13):

R> plot(ind, dummy = ind.dummy)

Note the importance of interactions, reflected in TN0 ≫ SN0 and Tr ≫ Sr. It is also important
to highlight that Sr is below the Si index of the dummy parameter (the dashed, horizontal
red line at c. 0.05), which makes Sr indistinguishable from the approximation error.
Finally, we can also plot second-order indices by setting order = "second" in a plot() call:

R> plot(ind, order = "second")

Only Sr,N0 is displayed because plot() only returns second-order indices for which the lower
confidence interval does not overlap with zero (Figure 14).

3.3. Example 3: The spruce budworm and forest model

This last example illustrates the flexibility of sensobol against systems of differential equations.
Under these circumstances, the analyst might be interested in exploring the sensitivity of
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Parameter Description Distribution

rB Intrinsic budworm growth rate U(1.52, 1.6)
K Maximum budworm density U(100, 355)
β Maximum budworm predated U(20000, 43200)
α 1

2 maximum density for predation U(1, 2)
rS Intrinsic branch growth rate U(0.095, 0.15)
KS Maximum branch density U(24000, 25440)
KE Maximum E level U(1, 1.2)
rE Intrinsic E growth rate U(0.92, 1)
P Consumption rate of E U(0.0015, 0.00195)
TE E proportion U(0.7, 0.9)

Table 6: Summary of the parameters and their distribution in Ludwig et al. (1976).

each model output or state variable to the uncertain inputs at different points in time, i.e., at
the transient phase and/or at equilibrium. sensobol integrates with the deSolve (Soetaert,
Petzoldt, and Setzer 2010) and the data.table (Dowle and Srinivasan 2021) packages to achieve
this goal in an easy manner.
We use the spruce budworm and forest model of Ludwig et al. (1976). Spruce budworm
is a devastating pest of Canadian and high-latitude US balsam fir and spruce forests. A
half-century ago, research teams led by Crawford Holling developed detailed models of the
interaction between the budworm and their target species, models capable of reproducing
the boom-and-bust dynamics and spatial patterns exhibited in real forests. Donald Ludwig
pointed out that these models were overparameterized and that much simpler models could
capture the essential dynamics in a more robust manner.
The basic idea of the model is that the dynamics of the system play out on multiple time
scales. Budworm population dynamics respond to forest quality on a fast time scale, leading
to changes in forest quality on a slower time scale. In turn, the slow dynamics change the
topological profile of the fast-time scale dynamics, introducing hysteretic oscillations reminis-
cent of relaxation oscillations. The simplest version of the budworm model in Ludwig et al.
(1976) can be non-dimensionalized easily, making transparent the reduction in dimension on
the fast-time scale. In place of those, however, we consider the more complicated version
given by Equations 20–22 in that paper, yielding the explicit form

dB

dt
= rBB

(
1 − B

KS

T 2
E + E2

E2

)
− β

B2

(αS)2 + B2

dS

dt
= rSS

(
1 − SKE

EKS

)
dE

dt
= rEE

(
1 − E

KE

)
− P

B

S

E2

T 2
E + E2

, (11)

where B, S and E are the budworm density, the average size of the trees and the energy
reserve of the trees respectively (Figure 15). Equation 11 allows a full characterization of the
parameter space with empirical data (Table 6).
Like in the previous examples, we first define the sample size of the base sample matrix, a
vector with the name of the parameters, the order of the sensitivity indices investigated, the
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Figure 15: Dynamics of the spruce budworm and forest model. The vertical, dashed lines
mark the times at which we will conduct the sensitivity analysis. Initial state values: B =
1, S = 0.07, E = 1. The parameter values are the mean values of the distributions shown in
Table 6.

number of bootstrap replicas and the type of confidence intervals. We plan to run the model
for 150 months at a 1 month interval (times) and extract the model output every 25 months
(timeOutput). Such settings have been selected to get an insight into all the stages of the
model (i.e., growth, equilibrium) (Figure 15).

R> N <- 2^9
R> params <- c("r_b", "K", "beta", "alpha", "r_s", "K_s", "K_e", "r_e",
+ "P", "T_e")
R> order <- "first"
R> R <- 10^3
R> type <- "norm"
R> conf <- 0.95
R> times <- seq(0, 150, 1)
R> timeOutput <- seq(25, 150, 25)

Since the model in Equation 11 is a system of differential equations, we can code it following
the guidelines set by the deSolve package (Soetaert et al. 2010):

R> budworm_fun <- function(t, state, parameters) {
+ with(as.list(c(state, parameters)), {
+ dB <- r_b * B * (1 - B / (K * S) * (T_e^2 + E^2) / E^2) -
+ beta * B^2 / ((alpha^S)^2 + B^2)
+ dS <- r_s * S * (1 - (S * K_e) / (E * K_s))
+ dE <- r_e * E * (1 - E / K_e) - P * (B / S) * E^2 / (T_e^2 + E^2)
+ list(c(dB, dS, dE))
+ })
+ }

We can then create the sample matrix as in the previous examples:

R> mat <- sobol_matrices(N = N, params = params, order = order)
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And transform each column to the probability distributions specified in Table 6:

R> mat[, "r_b"] <- qunif(mat[, "r_b"], 1.52, 1.6)
R> mat[, "K"] <- qunif(mat[, "K"], 100, 355)
R> mat[, "beta"] <- qunif(mat[, "beta"], 20000, 43200)
R> mat[, "alpha"] <- qunif(mat[, "alpha"], 1, 2)
R> mat[, "r_s"] <- qunif(mat[, "r_s"], 0.095, 0.15)
R> mat[, "K_s"] <- qunif(mat[, "K_s"], 24000, 25440)
R> mat[, "K_e"] <- qunif(mat[, "K_e"], 1, 1.2)
R> mat[, "r_e"] <- qunif(mat[, "r_e"], 0.92, 1)
R> mat[, "P"] <- qunif(mat[, "P"], 0.0015, 0.00195)
R> mat[, "T_e"] <- qunif(mat[, "T_e"], 0.7, 0.9)

We arrange a parallel setting to speed up the computations. To that aim, we load the packages
foreach (Microsoft and Weston 2020b; Kane, Emerson, and Weston 2013), parallel (R Core
Team 2021), and doParallel (Microsoft and Weston 2020a).

R> library("foreach")
R> library("parallel")
R> library("doParallel")

In the next code snippet we design a loop to conduct the computations row wise. Note that
the function budworm_fun() is called through sensobol’s sobol_ode(), a wrapper around
deSolve’s ode function which allows to retrieve the model output at the times specified in
timeOutput. Before executing the nested loop we order the computer to use 75% of the cores
available in order to take advantage of parallel computing.

R> n.cores <- makeCluster(floor(detectCores() * 0.75))
R> registerDoParallel(n.cores)
R> y <- foreach(i = 1:nrow(mat), .combine = "rbind",
+ .packages = "sensobol") %dopar% {
+ sobol_ode(d = mat[i, ], times = times, timeOutput = timeOutput,
+ state = c(B = 0.1, S = 007, E = 1), func = budworm_fun)
+ }
R> stopCluster(n.cores)

Now we can rearrange the data for the sensitivity analysis. We first convert the output to a
data.table format:

R> full.dt <- data.table(y)
R> print(full.dt)

time B S E
1: 25 18257.52 148.6977 0.9505572
2: 50 344848.35 2784.0488 0.9493628
3: 75 2100795.05 16205.2496 0.9423155
4: 100 2742807.83 20823.9167 0.9393914
5: 125 2780918.41 21093.6378 0.9392101

---
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36860: 50 657250.10 6612.1482 1.0072944
36861: 75 2138101.78 20294.7121 0.9984543
36862: 100 2271563.34 21453.5366 0.9975345
36863: 125 2275187.60 21484.8468 0.9975091
36864: 150 2275280.24 21485.6470 0.9975085

And transform the resulting data.table from wide to long format:

R> indices.dt <- melt(full.dt, measure.vars = c("B", "S", "E"))
R> print(indices.dt)

time variable value
1: 25 B 1.825752e+04
2: 50 B 3.448484e+05
3: 75 B 2.100795e+06
4: 100 B 2.742808e+06
5: 125 B 2.780918e+06

---
110588: 50 E 1.007294e+00
110589: 75 E 9.984543e-01
110590: 100 E 9.975345e-01
110591: 125 E 9.975091e-01
110592: 150 E 9.975085e-01

With this transformation and the compatibility of sensobol with the data.table package
(Dowle and Srinivasan 2021), we can easily compute variance-based sensitivity indices at
each selected time step for each state variable. We first activate 75% of the CPUs to boot-
strap the Sobol’ indices in parallel and then compute the Sobol’ indices grouping by time and
variable:

R> ncpus <- floor(detectCores() * 0.75)
R> indices <- indices.dt[, sobol_indices(Y = value, N = N, params = params,
+ order = order, boot = TRUE, first = "jansen", R = R,
+ parallel = "multicore", ncpus = ncpus)$results, .(variable, time)]

We also compute the Sobol’ indices of the dummy parameter:

R> indices.dummy <- indices.dt[, sobol_dummy(Y = value, N = N,
+ params = params), .(variable, time)]

Finally, with some lines of code we can visualize the evolution of Si and Ti indices through
time for each state variable and uncertain model input:

R> ggplot(indices, aes(time, original, fill = sensitivity,
+ color = sensitivity, group = sensitivity)) + geom_line() +
+ geom_ribbon(aes(ymin = indices[sensitivity %in% c("Si", "Ti")]$low.ci,
+ ymax = indices[sensitivity %in% c("Si", "Ti")]$high.ci,
+ color = sensitivity), alpha = 0.1, linetype = 0) +
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+ geom_hline(data = indices.dummy[, parameters:= NULL][sensitivity == "Ti"],
+ aes(yintercept = original, color = sensitivity, group = time),
+ lty = 2, size = 0.1) +
+ guides(linetype = FALSE, color = FALSE) +
+ facet_grid(parameters ~ variable) +
+ scale_y_continuous(breaks = scales::pretty_breaks(n = 3)) +
+ labs(x = expression(italic(t)), y = "Sobol' indices") +
+ theme_AP() + theme(legend.position = "top")

The main results in Figure 16 can be summarized as follows:

1. The spruce budworm and forest model is largely additive up to t ≈ 80 as interactions
are very small and only affect the behavior of B (Sα < Tα, SK < TK , Srs < Trs). From
t > 80, the model seems to be fully additive on all three state variables (Si ≈ Ti).

2. Given the uncertainty ranges defined in Table 6, only four parameters out of 10 are
influential in conveying uncertainty to B, S and E: α, K, KE and rS :

(a) The uncertainty in B is determined by α, K and rS at 0 < t < 100 and by K at
t > 100.

(b) The uncertainty in S is fully driven by rS up to t ≈ 80 and by K at t > 120.
(c) The uncertainty in E is influenced by α, KE and K at 0 < t < 40 and by KE and

K at t > 40.

The rest are non-influential and can be fixed at any value without modifying the model
output. We should stress here that what is considered “influential” in a variance decom-
position framework does not necessarily need to concur with the definition of “influen-
tial” from a systems dynamics perspective. The influence of a parameter in a variance
decomposition framework is determined both by the functional form of the model and
the probability distribution selected to describe the uncertainty of the parameters in
the model input space.

4. Conclusions
Mathematical models are used to gain insights into complex processes, to predict the outcome
of a variable of interest or the explore “what if” scenarios. In order to increase their trans-
parency and ensure the quality of model-based inferences, it is paramount to scrutinize these
models with a global sensitivity analysis. sensobol aims at furthering the uptake of global
sensitivity analysis methods by the modeling community with a set of functions to compute
variance-based analysis. sensobol allows the user to combine several first and total-order esti-
mators, to estimate up to fourth-order effects and to visualize the results in publication-ready
plots. Due to its integration with data.table and deSolve, sensobol can compute variance-
based indices for models with a scalar or multivariate model output, as well as for systems of
differential equations.
Package sensobol (Puy 2022) is available from CRAN at https://CRAN.R-project.org/
package=sensobol. sensobol will keep on developing as the search for more efficient variance-
based estimators is an active field of research. We encourage the users to provide feedback and

https://CRAN.R-project.org/package=sensobol
https://CRAN.R-project.org/package=sensobol
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Figure 16: Evolution of Sobol’ indices through time in the spruce budworm and forest model.
The dashed, horizontal blue line shows the Ti of the dummy parameter.
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suggestions on how can the package be improved. The most recent updates can be followed
on https://github.com/arnaldpuy/sensobol.
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A. Annex

A.1. Benchmark of sensobol and sensitivity functions

We compare the execution time of sensobol and sensitivity, from the design of the sample
matrix to the computation of the model output and the Sobol’ indices. To ensure that the
results are not critically conditioned by a particular benchmark design, we draw on Becker
(2020) and Puy et al. (2022) and compare the efficiency of sensobol and sensitivity on sev-
eral randomly defined sensitivity settings. These settings are created by treating the base
sample size N , the model dimensionality k and the functional test of the model as random
parameters: N and k are described with the probability distributions shown in Table 7 and
the test function is Becker (2020)’s metafunction (Table 4, N◦ 6), which randomly combines
p univariate functions in a multivariate function of dimension k. Becker’s metafunction can
be called in sensobol with metafunction() and its current implementation includes cubic,
discontinuous, exponential, inverse, linear, no-effect, non-monotonic, periodic, quadratic and
trigonometric functions. We direct the reader to Becker (2020) and Puy et al. (2022) for
further information. We benchmark sensobol and sensitivity as follows:

• We create a (211, 2) sample matrix using random numbers, where the first column is
labeled N and the second column k.

• We describe N and k with the probability distributions in Table 7.

• For v = 1, 2, . . . , 211 rows, we conduct two parallel sensitivity analysis using the functions
and guidelines of sensitivity and sensobol respectively, with the base sample matrix as
defined by Nv and kv. The metafunction runs separately in both sensitivity analyses
and we bootstrap the sensitivity indices 100 times.

• We time the computation for both sensobol and sensitivity in each row.

The results suggest that sensobol may be a median of two times faster than sensitivity.
We provide the code below:
Load required packages:

R> library("microbenchmark")

Define the settings of the analysis:

R> N <- 2^11
R> parameters <- c("N", "k")
R> R <- 10^2

Parameter Description Distribution

N Base sample size of the sample matrix DU(10, 100)
k Model dimensionality DU(3, 100)

Table 7: Summary of the benchmark parameters N and k. DU stands for discrete uniform.
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Create the sample matrix:

R> dt <- sobol_matrices(matrices = "A", N = N, params = parameters)
R> dt[, 1] <- floor(qunif(dt[, 1], 10, 10^2 + 1))
R> dt[, 2] <- floor(qunif(dt[, 2], 3, 100))

Run benchmark in parallel:

R> n.cores <- makeCluster(floor(detectCores() * 0.75))
R> registerDoParallel(n.cores)
R> y <- foreach(i = 1:nrow(dt), .packages = c("sensobol", "sensitivity")
+ ) %dopar% {
+ params <- paste("x", 1:dt[i, "k"], sep = "")
+ N <- dt[i, "N"]
+ out <- microbenchmark::microbenchmark(
+ "sensobol" = {
+ params <- paste("X", 1:length(params), sep = "")
+ mat <- sensobol::sobol_matrices(N = N, params = params, type = "R")
+ y <- sensobol::metafunction(mat)
+ ind <- sensobol::sobol_indices(Y = y, N = N, params = params,
+ first = "jansen", total = "jansen", boot = TRUE, R = R)$results},
+ "sensitivity" = {
+ X1 <- data.frame(matrix(runif(length(params) * N), nrow = N))
+ X2 <- data.frame(matrix(runif(length(params) * N), nrow = N))
+ x <- sensitivity::soboljansen(model = sensobol::metafunction,
+ X1, X2, nboot = R)},
+ times = 1)
+ }
R> stopCluster(n.cores)

Arrange the data and transform from nanoseconds to milliseconds:

R> out <- rbindlist(y)[, time := time / 1e+06]

Plot the results (Figure 17):

R> ggplot(out, aes(time, expr)) +
+ geom_violin() +
+ labs(x = "Time (Milliseconds)", y = "") +
+ theme_AP()

And compute the median:

R> out[, median(time), expr]

expr V1
1: sensobol 125.6975
2: sensitivity 266.3836
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Figure 17: Benchmark of the sensitivity and sensobol packages. The comparison has been
done with the Jansen estimators.

A.2. Variogram Analysis of Response Surfaces (VARS-TO)
Given its reliance on variance and co-variance matrices, sensobol also offers support to com-
pute the variogram analysis of response surfaces total-order index (VARS-TO, Razavi and
Gupta 2016a,b). VARS uses variograms and co-variograms to characterize the spatial struc-
ture and variability of a given model output across the input space, and allows to differentiate
sensitivities as a function of scale h: if xA and xB are two points separated by a distance h,
and y(xA) and y(xB) is the corresponding model output y, the variogram γ(.) is calculated
as

γ(xA − xB) = 1
2VAR [y(xA) − y(xB)] ,

and the covariogram C(.) as

C(xA − xB) = COV [y(xA), y(xB)] .

Since

VAR [y(xA) − y(xB)] = VAR [y(xA)] + VAR [y(xB)] − 2COV [y(xA), y(xB)] ,

and VAR [y(xA)] = VAR [y(xB)], then

γ(xA − xB) = VAR [y(x)] − C(xA, xB) . (12)

If we want to compute the variogram for factor xi, then

γ(hi) = 1
2E(y(x1, . . . , xi+1 + hi, . . . , xn) − y(x1, . . . , xi, . . . , xn))2 . (13)

Note that the difference in parentheses in Equation 13 involves taking a step along the xi

direction and is analogous to computing the total-order index Ti (see Section 2.1). The
equivalent of Equation 12 for the model input xi would be

γx∗
∼i

(hi) = VAR(y | x∗
∼i) − Cx∗

∼i
(hi) , (14)

where x∗
∼i is a fixed point in the space of non-xi. To compute Ti in the framework of VARS

(labelled as VARS-TO by Razavi and Gupta (2016b)), the mean value across the factors’
space should be taken on both sides of Equation 14, e.g.,

Ex∗
∼i

[
γ∗

x∼i
(hi)

]
= Ex∗

∼i
[VAR(y | x∗

∼i)] − Ex∗
∼i

[
C∗

x∼i
(hi)

]
,
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which can also be written as

Ex∗
∼i

[
γ∗

x∼i
(hi)

]
= VAR(y)Ti − Ex∗

∼i

[
C∗

x∼i
(hi)

]
, (15)

and therefore

Ti = VARS-TO =
E∗

x∼i

[
γ∗

x∼i
(hi)

]
+ E∗

x∼i

[
C∗

x∼i
(hi)

]
VAR(y) . (16)

The computation of VARS does not require A, B, A
(i)
B . . . matrices, but a sampling design

based on stars. Such stars are created as follows: firstly, Nstar points across the factor
space need to be selected by the analyst using random or quasi-random numbers. These
are the star centres and their location can be denoted as sv = sv1 , . . . , svi , . . . , svk

, where
v = 1, 2, . . . , Nstar. Then, for each star center, a cross section of equally spaced points ∆h
apart needs to be generated for each of the k factors, including and passing through the star
center. The cross section is produced by fixing sv∼i and varying si. Finally, for each factor
all pairs of points with h values of ∆h, 2∆h, 3∆h and so on should be extracted. The total
computational cost of this design is Nt = Nstar

[
k( 1

∆h − 1) + 1
]
.

In order to use VARS in sensobol, the analyst should follow the same steps as in the previous
examples. Firstly, she should define the setting of the analysis, i.e., the number of star centers
and distance h, and create a vector with the name of the parameters:

R> star.centers <- 100
R> h <- 0.1
R> params <- paste("X", 1:8, sep = "")

The function vars_matrices() creates the sample matrix needed to compute VARS-TO:

R> mat <- vars_matrices(star.centers = star.centers, h = h, params = params)

We can then run the model row wise, in this case the Sobol’ (1998) G function (Table 4):

R> y <- sobol_Fun(mat)

And compute VARS-TO with the vars_to() function:

R> ind <- vars_to(Y = y, star.centers = star.centers, params = params, h = h)
R> ind

Number of star centers: 100 | h: 0.1

Total number of model runs: 7300
Ti parameters

1: 0.8213028904 X1
2: 0.2526291054 X2
3: 0.0346579957 X3
4: 0.0104013502 X4
5: 0.0001079858 X5
6: 0.0001034112 X6
7: 0.0001076416 X7
8: 0.0001055614 X8
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The current implementation of vars_to() does not allow to bootstrap the indices. This is
planned for future sensobol releases.
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