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Divergence of separated nets with
respect to displacement equivalence

Michael Dymond, Vojtěch Kaluža

We introduce a hierarchy of equivalence relations on the set of separated
nets of a given Euclidean space, indexed by concave increasing functions
φ : (0,∞) → (0,∞). Two separated nets are called φ-displacement equi-
valent if, roughly speaking, there is a bijection between them which, for
large radii R, displaces points of norm at most R by something of order at
most φ(R). We show that the spectrum of φ-displacement equivalence spans
from the established notion of bounded displacement equivalence, which corres-
ponds to bounded φ, to the indiscrete equivalence relation, corresponding to
φ(R) ∈ Ω(R), in which all separated nets are equivalent. In between the two
ends of this spectrum, the notions of φ-displacement equivalence are shown
to be pairwise distinct with respect to the asymptotic classes of φ(R) for
R→∞. We further undertake a comparison of our notion of φ-displacement
equivalence with previously studied relations on separated nets. Particular
attention is given to the interaction of the notions of φ-displacement equival-
ence with that of bilipschitz equivalence.

1 Introduction

In the present work, we compare the metric structures of separated nets by
examining how much mappings between them displace points. The notion of
displacement of a mapping is defined as follows:

Definition 1.1. Let f : A ⊆ Rd → Rd. We define the displacement constant
of f as

disp(f) := ‖f − id‖∞ .

If disp(f) <∞, then we say that f is a mapping of bounded displacement.

Research into separated nets in Euclidean spaces has broadly centred around
the question of to what extent any two separated nets in a Euclidean space

This work was started while both authors were employed at the University of Innsbruck and enjoyed
the full support of Austrian Science Fund (FWF): P 30902-N35.

1

ar
X

iv
:2

10
2.

13
04

6v
2 

 [
m

at
h.

M
G

] 
 2

4 
Ja

n 
20

22



are similar, as metric spaces. To formulate this question more precisely, it
is necessary to prescribe what it means for two separated nets to be con-
sidered similar, or put differently, to define a symmetric relation on the class
of separated nets in a Euclidean space. Two such notions, which are in fact
equivalence relations, have been studied most prominently.
The most narrow of these notions is that of bounded displacement equi-

valence. Two separated nets X,Y ⊆ Rd are said to be bounded displacement
equivalent, or BD equivalent, if there exists a bijection f : X → Y for which
disp(f) < ∞. To demonstrate how constrictive BD equivalence is, we point
out that for any separated net X ⊆ Rd, X is not BD equivalent to 2X.1

Hence, even linear bijections Rd → Rd may transform a separated net to a
BD non-equivalent separated net.
For the second notion, two separated nets X,Y ⊆ Rd are called bilipschitz

equivalent, or BL equivalent, if there is a bilipschitz bijection f : X → Y .
This defines a much looser form of equivalence in comparison to BD equi-
valence. In fact, it is a highly non-trivial question, posed by Gromov [5]
in 1993, whether BL equivalence distinguishes at all between the separated
nets of a multidimensional Euclidean space. Moreover, we point out that BD
equivalence is easily seen to be stronger than BL equivalence.
For all Euclidean spaces of dimension at least two, Gromov’s question was

answered negatively in 1998 by Burago and Kleiner [1] and (independently)
McMullen [8]; the papers [1] and [8] verify the existence of a separated nets
in Rd, d ≥ 2, which are not BL equivalent to the integer lattice.
In the recent work [2], the authors introduce the notion of ω-regularity of

a separated net.

Definition 1.2. Given separated nets X,Y ⊆ Rd and a strictly increasing,
concave function ω defined on a positive open interval starting at 0 and sat-
isfying limt→0 ω(t) = 0, a mapping f : X → Y is called a homogeneous
ω-mapping if there are constants K > 1 and a > 0 such that

‖f(y)− f(x)‖2 ≤ KRω
(
‖y − x‖2

R

)
for all R > 0 and x, y ∈ X ∩ B(0, R) with ‖y − x‖2 < aR. The separated
net X ⊆ Rd is called ω-regular with respect to the separated net Y ⊆ Rd if
there exists a bijection f : X → Y such that both f and f−1 are homogeneous
ω-mappings. Otherwise X is called ω-irregular with respect to Y . In the
case that Y = Zd, these terms are shortened to ω-regular and ω-irregular
respectively.

From now on, we will refer to functions ω with the properties given in
Definition 1.2 as moduli of continuity. The function ω(t) = t will be called the

1The reader may wish to verify this as an exercise; alternatively we note that this fact is a special case
of Proposition 3.3 of the present work.
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Lipschitz modulus of continuity and functions ω(t) = tβ with β ∈ (0, 1) will
be referred to as Hölder moduli of continuity. When we prescribe a modulus
of continuity ω by a formula such as ω(t) = tβ , it should be understood that
this formula defines ω on some interval (0, a) with a > 0. The precise value
of a and indeed the behaviour of ω(t) for t ≥ a is irrelevant to the notions of
Definition 1.2.
It is clear that for two moduli of continuity ω1, ω2 satisfying ω2(t) ∈

o(ω1(t)) for t → 0,2 the notion of ω1-regularity is formally weaker than that
of ω2-regularity. Further for the Lipschitz modulus of continuity ω(t) = t,
ω-regularity of X with respect to Y is nothing other than the BL equivalence
of X and Y . Thus, the result of Burago and Kleiner and (independently)
McMullen discussed above can be formulated as follows: In every Euclidean
space Rd with d ≥ 2 there exists an ω-irregular separated net for the function
ω(t) = t.
The notion of ω-regularity of separated nets is motivated by a result of

McMullen [8, Thm. 5.1], which stands in contrast to the existence of BL
non-equivalent nets. McMullen [8] proves that for any two separated nets
X and Y in Euclidean space, X is ω-regular with respect to Y for some
Hölder modulus of continuity ω(t) = tβ for some β ∈ (0, 1). In the work
[2], the present authors investigate ω-regularity for ω lying asymptotically in
between the Lipschitz modulus of continuity and Hölder moduli of continuity.
The paper [2] proves that there are separated nets in every Rd, d ≥ 2, which
are ω-irregular for the modulus of continuity

ω(t) = t

(
log

1

t

)α0

, (1)

where α0 = α0(d) is a positive constant determined by the dimension d of
the space. This is formally a stronger result than the existence of BL non-
equivalent separated nets.

Growth of restricted displacement constants.

Looking at the value of disp(f) for bijections f between two separated nets X
and Y gives only a very crude comparison of their metric structures. Roughly
speaking ‘most’ pairs of separated nets X and Y are BD non-equivalent, so
that disp(f) =∞ for every such bijection. This motivates a more subtle form
of metric comparison of separated nets in Euclidean space via displacement:

Definition 1.3. Let f : A ⊆ Rd → Rd. We define a function (0,∞)→ [0,∞)
by

R 7→ dispR(f) :=

{
disp(f |A∩B(0,R)) if A ∩B(0, R) 6= ∅,
0 otherwise.

2We use the standard asymptotic notation O, o,Ω and Θ; for the definitions, see Section 2.
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Although we expect generally that disp(f) =∞ for any bijection between
two separated nets, so that limR→∞ dispR(f) = ∞, it remains of interest
in such cases to determine the optimal asymptotic growth of dispR(f) as
R→∞ among such bijections. Indeed, this allows for a more flexible notion
of displacement equivalence.

Definition 1.4. Let φ : (0,∞) → (0,∞) be an increasing, concave func-
tion and X and Y be separated nets of Rd. We say that X and Y are
φ-displacement equivalent if there exists a bijection f : X → Y for which
dispR(f) ∈ O(φ(R)).

Remark 1.5. In Definition 1.3 and Definition 1.4 it may appear that the
origin 0 ∈ Rd has a special role: it is the reference point with respect to
which the quantity dispR(f) is defined. It is therefore natural to ask, whether
a different choice of reference point in Definition 1.3 would give rise to a
different notion of φ-displacement equivalence in Definition 1.4. However,
this is not the case, due to the conditions on the functions φ admitted in
Definition 1.4 and the inequality

dispyR(f) ≤ dispzR+‖z−y‖2
(f),

where dispwR(f) denotes the quantity of Definition 1.3 obtained when w ∈ Rd
is used as the reference point instead of 0 ∈ Rd.

Remark 1.6. We require the concavity of φ in Definition 1.4 in order to
verify that φ-displacement equivalence is a true equivalence relation. How-
ever, the reader may ask whether it is possible to admit a larger class of
functions φ. It is the authors’ view that admitting only concave functions φ
in Definition 1.4 is not a major restriction. Recall that for every increasing
function ψ : (0,∞) → (0,∞) with ψ ∈ O(R) there is a concave majorant,
that is, a concave increasing function φ : (0,∞) → (0,∞) such that ψ ≤ φ
pointwise and ψ(R) /∈ o(φ(R)); see Lemma 2.1.
Observe that the concave condition in Definition 1.4 implies that φ(R) ∈

O(R) and thus superlinear functions such as φ(R) = R2 are excluded. How-
ever, excluding superlinear functions φ is not any restriction because, were
they to be admitted, then the resulting notions of φ(R)-displacement equi-
valence for all functions φ(R) ∈ Ω(R) would coincide and equal the trivial
equivalence relation in which all separated nets of Rd are equivalent. This
last assertion is a consequence of Proposition 2.6 of the present work.

Structure of the Paper and Main Results

To finish this introduction, we outline the structure of the paper and sum-
marise the main contributions of the present work.
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Section 2 and 3 present preliminary results and observations which can
mostly be thought of as easy consequences of the new definition of φ-displace-
ment equivalence, but are nevertheless worth highlighting in view of the au-
thors. In Section 2 we verify that the notions of φ-displacement equivalence
given by Definition 1.4 are equivalence relations:

Proposition 2.7. Let φ : (0,∞)→ (0,∞) be an increasing, concave function.
Then the notion of φ-displacement equivalence of separated nets in Rd given
by Definition 1.4 is an equivalence relation on the set of separated nets of Rd.

We further show that the notion of φ-displacement equivalence for φ(R) ∈
Ω(R) does not distinguish between separated nets:

Proposition 2.6. Let X,Y be two separated nets in Rd. Then there is a
bijection f : X → Y such that dispR(f), dispR(f−1) ∈ O(R).

In contrast, Section 3 deals with negative results and identifies certain
barriers to φ-displacement equivalence for φ ∈ o(R).
Our first main result demonstrates that the notions of φ-displacement

equivalence for increasing, concave functions φ : (0,∞) → (0,∞) form a
fine spectrum starting from the strictest form of φ-displacement equivalence,
namely BD equivalence, which corresponds to φ-equivalence for bounded
φ(R) ∈ O(1), to the weakest form of φ-displacement equivalence, namely
that corresponding to φ(R) ∈ Ω(R). In the spectrum between O(1) and
Ω(R) we show that the notions of φ-displacement equivalence are pairwise
distinct with respect to the asymptotic classes of functions φ(R) for R→∞.
We prove namely the following statement:

Theorem 4.1. Let φ : (0,∞) → (0,∞) be an increasing, concave function
with φ(R) ∈ o(R) and X ⊆ Rd be a separated net. Then there exists a
separated net Y ⊆ Rd such that every bijection f : X → Y satisfies dispR(f) /∈
o(φ(R)) and there exists a bijection g : X → Y with dispR(g), dispR(g−1) ∈
O(φ(R)). Moreover, such Y can be found so that X and Y are bilipschitz
equivalent.

Corollary 1.7. Let φ1, φ2 : (0,∞)→ (0,∞) be increasing, concave functions
with φ1(R) ∈ o(φ2(R)). Then φ2-displacement equivalence of separated nets
in Rd is a strictly weaker notion than that of φ1-displacement equivalence.

Theorem 4.1 will be proved in Section 4; Corollary 1.7 is an immediate con-
sequence of Theorem 4.1. Note that Theorem 4.1 also verifies the optimality
of Proposition 2.6.
The theme of Sections 5 and 6 is the comparison of the established notion

of BL equivalence with the spectrum of φ-displacement equivalence for in-
creasing, concave functions φ : (0,∞)→ (0,∞). We begin, in Section 5, with
the strictest form of φ-displacement equivalence, namely BD equivalence. In
Section 6 we then move onto φ-displacement equivalence for unbounded φ.
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We compare the notions of BL equivalence and φ-displacement equival-
ence by looking at the intersection of the BL equivalence classes with the
classes of φ-displacement equivalence. The cardinality of the set of equival-
ence classes of separated nets has already attracted some research attention.
Magazinov [7] shows that in every Euclidean space of dimension at least
two, the set of BL equivalence classes of separated nets has the cardinality
of the continuum. Since BD equivalence is stronger than BL equivalence,
this also implies that there are uncountably many distinct BD classes. In
[4, Theorem 1.3], Frettlöh, Smilansky and Solomon also verify the existence
of uncountably many, pairwise distinct BD equivalence classes of separated
nets in R2. Interestingly, the class representatives of the uncountably many,
pairwise distinct BD equivalence classes given in [4] all come from the same
BL equivalence class.
Independently of the aforementioned works [7] and [4], we are able to

verify that every Euclidean space has uncountably many, pairwise distinct BD
equivalence classes of separated nets. Further, we provide new information,
namely that there are uncountably many pairwise distinct BD equivalence
classes inside each BL equivalence class. Hence, we are able to present a new
result, which we prove in Section 5:

Theorem 5.1. For every d ∈ N, every bilipschitz equivalence class of separ-
ated nets in Rd decomposes as a union of uncountably many pairwise distinct
bounded displacement equivalence classes.

For unbounded functions φ(R), the analysis of the interaction of the BL
classes and the φ-displacement equivalence classes of separated nets in Rd is
more challenging. In light of Theorem 5.1, the natural problem is to charac-
terise the increasing, concave functions φ(R) ∈ o(R) for which φ-displacement
equivalence is stronger than BL equivalence; note that Theorem 5.1 takes care
of the functions φ(R) ∈ O(1). In Section 6 we resolve this matter. We verify,
namely, that φ-displacement is stronger than BL equivalence if and only if
φ(R) ∈ O(1). In particular, this means that BD equivalence is the only form
of φ-displacement equivalence for which Theorem 5.1 holds.
Section 6 should also be placed in the context of ω-regularity of separated

nets. Recall that BL equivalence corresponds to the notion of ω-regularity
for the modulus of continuity ω(t) = t. For the weaker modulus of continuity
ω of (1) and any function φ(R) ∈ O

(
Rω

(
1
R

))
, the authors prove in [2] that

the φ-displacement equivalence class of the integer lattice does not contain
any ω-irregular separated nets. This may support the following conjecture:

Conjecture 1.8. Let d ≥ 2, ω be a modulus of continuity in the sense of
Definition 1.2 and φ : (0,∞) → (0,∞) be an increasing concave function.
Then the class of ω-irregular separated nets in Rd has non-empty intersection
with the φ-displacement equivalence class of the integer lattice Zd if and only
if Rω

(
1
R

)
∈ o(φ(R)).
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Indeed the ‘only if’ implication of Conjecture 1.8 for the modulus of con-
tinuity ω of (1) is precisely the result [2, Proposition 1.3] referred to above.
In Section 6 of the present work, we show that for every increasing, un-
bounded, concave function φ : (0,∞) → (0,∞), the φ-displacement class of
the integer lattice intersects distinct BL classes; in particular it contains ω-
irregular separated nets for ω(t) = t. A matter of interest is whether every
such φ-displacement equivalence class intersects every BL equivalence class.
This question remains open, but we are able to show that every such φ-
displacement equivalence class intersects uncountably many BL equivalence
classes:

Theorem 6.1. Let d ≥ 2 and φ : (0,∞) → (0,∞) be an unbounded, in-
creasing, concave function. Then there is an uncountable family (Xψ)ψ∈Λ of
pairwise bilipschitz non-equivalent separated nets in Rd for which each Xψ is
φ-displacement equivalent to Zd.

We point out that Theorem 6.1 is a refinement of the lower bound from [7]
and is obtained entirely independently. Moreover, put together with the fact
that BD equivalence is stronger than BL equivalence, Theorem 6.1 verifies
Conjecture 1.8 for the special case of the Lipschitz modulus of continuity
ω(t) = t. At this point, we also wish to state formally the characterisation
announced in the above discussion of Section 6. This result is an immediate
consequence of Theorem 5.1 and Theorem 6.1:

Theorem 1.9. Let d ≥ 2 and φ : (0,∞)→ (0,∞) be an increasing, concave
function. Then, φ-displacement equivalence of separated nets in Rd is stronger
than bilipschitz equivalence if and only if φ is bounded.

Finally, we finish this article in Section 7 with a useful application of the
φ-displacement equivalence spectrum. Whilst [2] verifies the existence of sep-
arated nets which are ω-irregular for ω of the form (1), it leaves one import-
ant issue unresolved: namely, whether ω-regularity for ω of the form (1) is
distinct from the notion of bilipschitz equivalence (that is, ω-regularity for
ω(t) = t). In view of the results [8, Theorem 5.1] and [1, Theorem 1.1], it is
clear that there are Hölder moduli of continuity of the form ω1(t) = tβ for
some β ∈ (0, 1) so that for ω2(t) = t, the notions of ω1- and ω2-regularity
are distinct; ω1-regularity is strictly weaker than ω2-regularity. However, the
most that can be established on the basis of the existing literature is that
there are at least two distinct notions of ω-regularity. In particular, [2] does
not address the issue of whether there are any moduli of continuity ω strictly
in between the Hölder moduli of continuity and the Lipschitz modulus of
continuity, such as ω of the form (1), which define further distinct notions of
ω-regularity. This is quite unsatisfactory because it leaves open the possib-
ility that the result [2, Theorem 1.2] is in fact identical to [1, Theorem 1.1]
and the corresponding result in [8], although it is formally stronger.
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In the present article we verify that for the modulus of continuity ω of
the form (1), the notion of ω-regularity is strictly weaker than BL equival-
ence. This confirms that the ‘highly irregular’3 separated nets given in [2,
Theorem 1.2] are indeed more irregular in a meaningful way than the BL
non-equivalent separated nets of McMullen [8] and Burago and Kleiner [1,
Theorem 1.1].

Theorem 7.1. Let d ≥ 2, α0 = α0(d) be the quantity of [2, Theorem 1.2]
and ω be a modulus of continuity in the sense of Definition 1.2 such that
ω(t) = t

(
log 1

t

)α0 for t ∈ (0, a) and some a > 0. Then the notion of ω-
regularity of separated nets in Rd is strictly weaker than that of bilipschitz
equivalence.

Despite this progress, we are only able to increase the number of known
pairwise distinct forms of ω-regularity by one:

Corollary 7.2. For any dimension d ≥ 2 the notions of ω-regularity of sep-
arated nets in Rd, according to Definition 1.2, admit at least three distinct
notions.

It therefore remains an interesting research objective to expose the hier-
archy of notions of ω-regularity. The authors would conjecture that, at least
for moduli of continuity ω lying asymptotically in between the Lipschitz mod-
ulus of continuity and the modulus of continuity of (1), we get a fine hier-
archy of notions of ω-regularity. More precisely, we conjecture that whenever
two moduli of continuity ω1 and ω2 satisfy ω2 ∈ o(ω1(t)), ω2(t) ∈ Ω(t) and
ω1(t) ∈ O

(
t log

(
1
t

)α0
)
for t→ 0, then the notion of ω1-regularity of separated

nets in Rd is strictly weaker than that of ω2-regularity.

2 Preliminaries and Notation.

Functions and Asymptotics. Throughout the work we use the standard
asymptotic notation O, o,Ω,Θ, with the following meaning. Let f, g be two
positive real-valued functions defined on an unbounded domain in (0,∞). For
example, this allows for f and g to be real sequences. Then we write

f(x) ∈ O(g(x))⇐⇒ lim sup
x→∞

f(x)

g(x)
<∞,

f(x) ∈ o(g(x))⇐⇒ lim sup
x→∞

f(x)

g(x)
= 0,

f(x) ∈ Ω(g(x))⇐⇒ g(x) ∈ O(f(x)),

f(x) ∈ Θ(g(x))⇐⇒ f(x) ∈ O(g(x)) and f(x) ∈ Ω(g(x)).

3As asserted by the title of the work [2].
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We sometimes write equations or inequalities using the above asymptotic
notation. For example, the inequalities cn ≤ n2 + O(n) ≤ O(n2) should be
interpreted as follows: there exist sequences an ∈ O(n) and bn ∈ O(n2) such
that cn ≤ n2 + an ≤ bn. Although the symbol ω also belongs to the standard
asymptotic notation, we will avoid using it in this context. The reason for this
is that we use the letter ω to denote moduli of continuity and for the notions
of ω-regularity of Definition 1.2. Since any asymptotic statement using the
asymptotic ω notation can be rephrased using the little o notation, this is
not a problem.
A function f : A ⊆ R→ R will be called increasing if f(t) ≥ f(s) whenever

s, t ∈ A and t ≥ s. If both inequalities ≥ in this condition may be replaced
by the strict inequality >, then we call f strictly increasing. The notions of
decreasing and strictly decreasing are defined analogously.
We will require the following basic fact relating to concave majorants:

Lemma 2.1. Let ψ : (0,∞)→ (0,∞) be an increasing function, φ : (0,∞)→
(0,∞) be a concave increasing function and suppose that ψ(R) ∈ o(φ(R)).
Then there exists a concave increasing function Ψ: (0,∞)→ (0,∞) with the
following properties:

(a) ψ(t) ≤ Ψ(t) for all t ∈ (0,∞).

(b) ψ(R) /∈ o(Ψ(R)).

(c) Ψ(R) ∈ o(φ(R)).

Proof. Consider the family M of all concave functions ζ : (0,∞) → (0,∞)
such that ψ(t) ≤ ζ(t) for all t ∈ (0,∞). We define Ψ: (0,∞)→ (0,∞) by

Ψ(t) = inf {ζ(t) : ζ ∈M} .

As the pointwise infimum of a family of concave functions, Ψ is itself con-
cave. Moreover, the definitions of M and Ψ ensure that (a) is satisfied.
The concavity of Ψ, (a) and the fact that ψ is increasing then imply that
Ψ is also increasing. To verify (b), note first that boundedness of ψ implies
boundedness of Ψ. We may therefore assume that ψ is unbounded. Let
θ ∈ (0, 1), n ∈ N and observe that the concave function t 7→ θΨ(t) + ψ(n)
does not belong toM. We deduce from this the existence of Rn ≥ n such that
θΨ(Rn) ≤ ψ(Rn) − ψ(n) ≤ ψ(Rn). The sequence (Rn)n∈N obtained in this
manner witnesses (b). Finally, we prove (c). Given ε > 0, choose T > 0 large
enough so that ψ(t)

φ(t) ≤ ε for all t ≥ T . Then the function t 7→ ψ(T ) + εφ(t)
belongs toM and so

Ψ(t)

φ(t)
≤ ψ(T ) + εφ(t)

φ(t)
≤ 2ε

for all t ≥ T .
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Metric notions. In a metric space (M,distM ), a set Z ⊆ M will be called
separated if

inf
{

distM (z, z′) : z, z′ ∈ Z, z 6= z′
}
> 0,

and this infimum will be referred to as the separation constant (or just the
separation) of Z (in M). Moreover, Z will be called δ-separated if its sep-
aration constant is at least δ. We will refer to the set Z as a net of M
if

sup

{
inf
z∈Z

distM (z, x) : x ∈M
}
<∞,

and this supremum will be called the net constant of Z in M . We will call Z
a θ-net of M if its net constant is at most θ.
Thus, Z will be called a separated net of (or in)M if Z is both separated and

a net of M . Throughout the work, we will only be concerned with separated
nets of subsets of a Euclidean space Rd. For a set F ⊆ Rd the separated nets
of F are defined according to the above discussion, where the relevant metric
space M is given by the set F together with the metric on F induced by the
Euclidean distance in Rd.
Given two sets S, T ⊆ Rd we let

dist(S, T ) := inf {‖t− s‖2 : s ∈ S, t ∈ T} .

In the case that S = {s} is a singleton we just write dist(s, T ) instead of
dist({s} , T ). We write B(x, r) and B(x, r) respectively for the open and
closed balls with centre x ∈ Rd and radius r ≥ 0. Moreover, we use the
same notation for neighbourhoods of sets, i.e, B(A, r) :=

⋃
x∈AB(x, r), where

A ⊆ Rd, and similarly for B(A, r).

Set related notions. The cardinality of a set A will be denoted by |A|. For
m ∈ N we let [m] := {1, 2, . . . ,m}. We also write R+ for the set of positive
real numbers.

Measures. The symbol L will be used to denote the Lebesgue measure on
the given Euclidean space Rd. Given a measurable function ρ : Q ⊆ Rd →
(0,∞) we let ρL denote the measure on Q defined by

ρL(E) =

∫
E
ρ dL, E ⊆ Q.

Moreover, if f : Q→ Rd is a mapping and µ is a measure on Q, we write f]µ
for the pushforward measure on f(Q)

f]µ(G) := µ(f−1(G)), G ⊆ f(Q).

10



The displacement class of two separated nets. We also introduce some
notation to conveniently capture the φ-displacement equivalences of two sep-
arated nets.

Definition 2.2. Let X,Y ⊆ Rd be separated nets. By dispR(X,Y ), we denote
the class of increasing, concave functions φ : (0,∞)→ (0,∞) for which X and
Y are φ-displacement equivalent, according to Definition 1.4.

Key properties of φ-displacement equivalence.

The next proposition records some sufficient conditions for deriving informa-
tion on the growth of dispR(f−1) from that of dispR(f).

Proposition 2.3. Let X,Y be two separated nets in Rd, φ : (0,∞)→ (0,∞)
be an increasing concave function satisfying φ(R) ∈ o(R) and let f : X → Y
be an injection with dispR(f) ≤ φ(R) for every R > 0. Then dispR(f−1) ∈
O(φ(R)).

Proof. The assumption dispR(f) ≤ φ(R) implies that ‖f(x)‖2 ≥ ‖x‖2 −
φ(‖x‖2) for every x ∈ X and by φ(R) ∈ o(R) there is R0 > 0 such that for
every x ∈ X with ‖x‖2 ≥ R0 it holds that ‖x‖2 − φ(‖x‖2) ≥ ‖x‖2 /2. Hence,
using the assumptions on φ, we can deduce that

‖x− f(x)‖2 ≤ φ(‖x‖2) ≤ 2 · φ
(
‖x‖2

2

)
≤ 2 · φ(‖f(x)‖2),

for every x ∈ X with ‖x‖2 ≥ R0, which proves that dispR(f−1) ∈ O(φ(R)).

Corollary 2.4. Let X,Y be two separated nets in Rd and f : X → Y be an
injection with dispR(f) ∈ o(R). Then dispR(f−1) ∈ o(R).

Proof. Let Ψ: (0,∞) → (0,∞) be a concave majorant of the function R 7→
dispR(f) with Ψ(R) ∈ o(R) provided by Lemma 2.1. We may now apply
Proposition 2.3 to φ = Ψ and f to verify the corollary.

The next example shows that if the assumption φ(R) ∈ o(R) in Proposi-
tion 2.3 is weakened to φ(R) ∈ O(R), then the proposition fails. It also shows,
in contrast to Corollary 2.4, that no conclusion on the asymptotic class of
dispR(f−1) may be derived from the condition dispR(f) ∈ O(R).

Example 2.5. Let ζ : (0,∞) → (0,∞) be an increasing function. Then
there exist separated nets X,Y ⊆ R and a bijection f : X → Y such that
dispR(f) ∈ O(R) and dispR(f−1) /∈ O(ζ(R)).

Proof. LetX ′ := 2Z and Y ′ := Z. Let ψ : N→ 1
2 +N be any strictly increasing

function and define Sk := {ψ(n) : n ∈ N, n ≥ k} for k ∈ N. Finally, we set
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X := X ′ ∪ S2 and Y := Y ′ ∪ S1. Obviously, X,Y are separated nets in R.
Now we can define a bijection f : X → Y as follows:

f(x) :=

{
1
2x if x ∈ X ′,
ψ(n− 1) if x = ψ(n).

Clearly, dispR(f) ∈ O(R), but dispψ(n−1)

(
f−1

)
≥ ψ(n)−ψ(n−1). It remains

to restrict the choice of ψ so that ψ(n) − ψ(n − 1) ≥ nζ(ψ(n − 1)) for all
n ≥ 2.

To finish Section 2, we prove two results announced in the introduction;
their statements are repeated here for the reader’s convenience.

Proposition 2.6. Let X,Y be two separated nets in Rd. Then there is a
bijection f : X → Y such that dispR(f), dispR(f−1) ∈ O(R).

Proof. We will assume that 0 /∈ X,Y ; this can be ensured by an arbitrarily
small shift. Then we observe that the condition dispR(h) ∈ O(R) for a
mapping h : Z → Rd defined on a separated set Z ⊆ Rd \ {0} is equivalent to
the condition that there is C > 0 such that

‖x− h(x)‖2 ≤ C ‖x‖2 ∀x ∈ Z. (2)

Next we observe that the claim holds for X and Y if and only if there are
r1, r2 > 0 such that it holds for r1X and r2Y ; assume that g : r1X → r2Y
is a bijection and C > 0 satisfies (2) for g. Then f : X → Y defined as
f(x) := 1

r2
g(r1x) is also a bijection and satisfies

‖f(x)− x‖2 =
1

r2
‖g(r1x)− r2x‖2 ≤

‖g(r1x)− r1x‖2 + ‖r1x− r2x‖2
r2

≤
Cr1 ‖x‖2 + |r1 − r2| ‖x‖2

r2
=

(
Cr1 + |r1 − r2|

r2

)
‖x‖2

for every x ∈ X.
Moreover, note that it is enough to prove that for every X,Y there is al-

ways an injection f : X → Y satisfying dispR(f),dispR(f−1) ∈ O(R) instead
of a bijection—the result then follows by Rado’s version of Hall’s marriage
theorem [9] from infinite graph theory. Given two injections fX : X → Y and
fY : Y → X we can define a binary relation E ⊆ X × Y so that {x, y} ∈ E
if and only if fX(x) = y or fY (y) = x. Thus, E is the union of the graphs
of fX and f−1

Y . By Rado’s theorem there is a bijection f : X → Y such
that ({x, f(x)})x∈X ⊆ E and then the condition dispR(h) ∈ O(R) for every
h ∈

{
fX , f

−1
X , fY , f

−1
Y

}
ensures that dispR(f),dispR(f−1) ∈ O(R).

Now let s > 0 stand for the separation of X and b > 0 for the net constant
of Y . We choose r > 0 such that 2rb < s. For every x ∈ X we find g(x) ∈ rY
such that ‖x− g(x)‖2 ≤ rb. As 2rb < s, if g(x) = g(x′), then x = x′ for any
x, x′ ∈ X. Thus, g is injective and the three observations above finish the
proof.
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Proposition 2.7. Let φ : (0,∞)→ (0,∞) be an increasing, concave function.
Then the notion of φ-displacement equivalence of separated nets in Rd given
by Definition 1.4 is an equivalence relation on the set of separated nets of Rd.

Proof. Reflexivity is obvious. The symmetry of φ-displacement equivalence
follows from Proposition 2.3 if φ(R) ∈ o(R) and from Proposition 2.6 oth-
erwise. To verify the transitivity, consider separated nets X,Y, Z of Rd
for which X and Y are φ-displacement equivalent and Y and Z are φ-
displacement equivalent. Let the bijections f : X → Y and g : Y → Z witness
this. Then g◦f is a bijection X → Z and there is a constant K > 0 such that
dispR(f), dispR(g) ≤ Kφ(R) for all R > 1. Let R > 1 and x ∈ X ∩ B(0, R).
Then,

‖g ◦ f(x)− x‖2 ≤ ‖g(f(x))− f(x)‖2 + ‖f(x)− x‖2
≤ dispR+Kφ(R)(g) + dispR(f) ≤ 2Kφ(R+Kφ(R)) ≤ K ′φ(R),

for some constant K ′ > 0 independent of R and x. The existence of K ′

satisfying the last inequality is due to the conditions on φ.

3 Negative Results

The present section deals with obstructions to the existence of a bijection
f : X → Y between two separated nets X,Y in Rd with dispR(f) ∈ o(R).
The first lemma establishes that, in the case that Y = Zd and such a bijection
f : X → Zd exists, the separated net X is forced to have quite a special prop-
erty. In particular it is easy to come up with examples of X not having the
property described in the next lemma and thus not admitting any bijection
f : X → Zd with dispR(f) ∈ o(R).

Lemma 3.1. Let X be a separated net in Rd and let f : X → Zd be a bijection
such that dispR(f) ∈ o(R). For any r > 0 let

µr(S) :=
1

rd
|rS ∩X| , S ⊆ B(0, 1),

stand for a normalised counting measure supported on the set 1
rX ∩ B(0, 1)

and let (Rn)n∈N ⊂ R+ be a sequence converging to infinity. Then the sequence
(µRn)n∈N converges weakly to L|B(0,1).

Proof. We write B := B(0, 1). Let s, b > 0 be the separation and the net
constants of X, respectively. We set Xn := 1

Rn
X ∩ B and observe that each

Xn is an s
Rn

-separated 2b
Rn

-net of B.
Next we define fn : Xn → Rd as fn(x) := 1

Rn
f(Rnx). Then the assumption

dispR(f) ∈ o(R) implies that

‖fn − id‖∞ =
1

Rn
‖f ◦Rn id−Rn id‖∞

n→∞−→ 0. (3)
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In other words, ‖fn − id‖∞ ∈ o(1). We also observe that fn is o(Rn)-
Lipschitz: for any x, y ∈ Xn it holds that

‖fn(x)− fn(y)‖2 ≤ ‖fn(x)− x‖2 + ‖fn(y)− y‖2 + ‖x− y‖2
≤ 2 ‖fn − id‖∞ + ‖x− y‖2 .

Applying (3), we get that

‖fn(x)− fn(y)‖2
‖x− y‖2

≤ 1 +
o(1)

‖x− y‖2
.

As Xn is s
Rn

-separated, the right-hand side above belongs to o(Rn).
Therefore, using Kirszbraun’s Theorem [6], each fn can be extended to

an o(Rn)-Lipschitz mapping fn : B → Rd. Now for any x ∈ B we choose
xn ∈ Xn such that ‖x− xn‖2 ≤

2b
Rn

. Considering that fn(xn) = fn(xn) and
(3) we get that∥∥fn(x)− x

∥∥
2
≤
∥∥fn(x)− fn(xn)

∥∥
2

+ ‖fn(xn)− xn‖2 + ‖xn − x‖2

≤ o(1) +
2b

Rn

n→∞−→ 0,

where the o(1) expression above is independent of x. This shows that fn
converges uniformly to id |B.
As a shortcut, we write µn := µRn . By an application of Prokhorov’s the-

orem, we observe that the sequence (µn) converges weakly to the Lebesuge
measure on B if and only if all of its weakly convergent subsequences do.
Therefore, it is enough to verify the assertion of the lemma for an arbitrary
weakly convergent subsequence of (µn). We may assume, without loss of gen-
erality, that this given weakly convergent subsequence is the original sequence
(µn) and write µ for its weak limit. Using [3, Lem. 5.6] we get that

(
fn
)
]
(µn)

converges weakly to
(
id |B

)
]
(µ) = µ. Consequently, it suffices to prove that(

fn
)
]
(µn) converges weakly to L|B.

We define
ε(R) := sup

R′≥R

dispR′(f)

R′
.

The definition implies that ε is decreasing and from the assumption dispR(f) ∈
o(R) it follows that ε(Rn) goes to zero as n goes to infinity. For every x ∈ X
it holds that ‖f(x)‖2 ≥ ‖x‖2 − ε(‖x‖2) ‖x‖2. This inequality in combination
with the bijectivity of f : X → Zd and the fact that ε is decreasing implies

f
(
X ∩B(0, R)

)
⊇ Zd ∩B(0, (1− ε(R))R). (4)

for every R > 0, where the ball on the right hand side should be interpreted
as the empty set if its radius is negative. Indeed, observe that any point
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in the set on the right hand side has the form f(x) for some x ∈ X which
satisfies (1−ε(R))R > ‖f(x)‖2 ≥ ‖x‖2 (1−ε(‖x‖2)) and therefore ‖x‖2 < R.
Now we compare

(
fn
)
]
(µn) to the standard normalised counting measure

νn supported on 1
Rn

Zd, i.e.,

νn(S) :=
1

Rdn

∣∣∣∣S ∩ 1

Rn
Zd
∣∣∣∣ for S ⊆ Rd.

It is clear that νn ⇀ L. Thus, it suffices to verify that for any continuous
function ϕ : Rd → R with compact support it holds that∣∣∣∣∣

∫
fn(B)

ϕd
(
fn
)
]
(µn)−

∫
B
ϕdνn

∣∣∣∣∣ n→∞−→ 0.

Since
(
fn
)
]
(µn) is supported on fn(Xn) ⊂ 1

Rn
Zd, we can rewrite the absolute

value above as

1

Rdn

∣∣∣∣∣∣∣
∑

x∈fn(Xn)⊂ 1
Rn

Zd
ϕ(x)−

∑
x∈B∩ 1

Rn
Zd
ϕ(x)

∣∣∣∣∣∣∣ .
This expression can be bounded above by

1

Rdn
‖ϕ‖∞

∣∣∣∣fn(Xn)∆

(
B ∩ 1

Rn
Zd
)∣∣∣∣ . (5)

Further, we argue that (5) can be bounded above by

‖ϕ‖∞

∣∣∣ 1
Rn

Zd ∩B(0, 1 + ε(Rn)) \B(0, 1− ε(Rn))
∣∣∣

Rdn
. (6)

For every n ∈ N (4) implies that fn(Xn) ⊇ 1
Rn

Zd ∩ B(0, 1− ε(Rn)). There-
fore, (

B ∩ 1

Rn
Zd
)
\ fn(Xn) ⊆ 1

Rn
Zd ∩B \B(0, 1− ε(Rn)). (7)

Using the definition of ε(Rn) we immediately get that for any x ∈ X ∩
B(0, Rn) it holds that ‖f(x)‖2 ≤ ‖x‖2+ε(Rn)Rn ≤ (1+ε(Rn))Rn. Therefore,
f(X ∩B(0, Rn)) ⊆ Zd ∩B(0, (1 + ε(Rn))Rn). Consequently, we deduce that

fn(Xn) ⊆ 1

Rn
Zd ∩B(0, 1 + ε(Rn)),

which together with (7) proves (6).
By centering an axes-aligned cube of side length 1

Rn
at each point of the

set 1
Rn

Zd ∩B(0, 1 + ε(Rn)) \B(0, 1− ε(Rn)), we see that∣∣∣∣ 1

Rn
Zd ∩B(0, 1 + ε(Rn)) \B(0, 1− ε(Rn))

∣∣∣∣ ≤ RdnL
(
B

(
∂B, ε(Rn) +

√
d

2Rn

))
.
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The last quantity is easily seen to be of order Rdn · O
(
ε(Rn) + 1

Rn

)
. This

implies that the upper bound of (6), and thus, also (5) go to zero as n goes
to infinity.

We now recall the notion of natural density of a separated net. We will
see that the natural density of separated nets is invariant under bijections f
with dispR(f) ∈ o(R).

Definition 3.2. Let X be a separated net in Rd. Then its natural density4,
denoted by α(X), is defined as

α(X) := lim
R→∞

∣∣X ∩B(0, R)
∣∣

L
(
B(0, R)

) ,

provided the limit exists; otherwise it is undefined.

Proposition 3.3. Let X,Y be two separated nets in Rd such that either
α(X) 6= α(Y ), or exactly one of α(X), α(Y ) is not defined. Then there is no
bijection f : X → Y with dispR(f) ∈ o(R).

Proof. The assumption on α(X) and α(Y ) implies that there is an unboun-
ded, increasing sequence (Rn)n∈N such that

L := lim
n→∞

∣∣X ∩B(0, Rn)
∣∣∣∣Y ∩B(0, Rn)
∣∣

is defined, but L 6= 1. We may assume without loss of generality that
L > 1. Otherwise just interchange X and Y and use Corollary 2.4. We
choose C ∈ (1, L) and find n0 ∈ N such that for every n ≥ n0 it holds that∣∣X ∩B(0, Rn)

∣∣ ≥ C
∣∣Y ∩B(0, Rn)

∣∣. Because Y is a separated net, there is
K > 1 and n1 ∈ N such that

∣∣Y ∩B(0,KRn)
∣∣ < C

∣∣Y ∩B(0, Rn)
∣∣ for every

n ≥ n1. Therefore, for every n ≥ max {n0, n1} we see that
∣∣X ∩B(0, Rn)

∣∣ >∣∣Y ∩B(0,KRn)
∣∣, and thus, there must be xn ∈ X ∩ B(0, Rn) such that

‖f(xn)‖2 > KRn. Consequently, ‖xn − f(xn)‖2 ≥ ‖f(xn)‖2 − ‖xn‖2 ≥
(K − 1)Rn.

In view of Proposition 3.3 it is natural to ask whether for two separated
nets X,Y ⊆ Rd the condition that both natural densities α(X) and α(Y ) are
well defined and coincide is sufficient for the existence of a bijection f : X →
Y with dispR(f) ∈ o(R). We finish this section with an example which
demonstrates that this is not the case:

Example 3.4. There is a separated net X in Rd such that α(X) = α(Zd),
but there is no bijection f : X → Zd with dispR(f) ∈ o(R).

4Sometimes the term asymptotic density is used instead in the literature.

16



Proof. Fix a hyperplane H going through 0. We will denote the closed pos-
itive and the open negative half-spaces that it determines by H+ and H−,
respectively. Moreover, fix c ∈ (1, 2) and define

X := (c−
1
dZd ∩H+) ∪ ((2− c)−

1
dZd ∩H−).

Then, clearly, µRn defined as in the statement of Lemma 3.1 converges weakly
to the measure cL|B∩H+ +(2−c)L|B∩H− 6= L|B. On the other hand, α(X) =
α(Zd) by construction. Thus, Lemma 3.1 finishes the proof.

4 The spectrum of φ-displacement equivalence.

In the present section we prove Theorem 4.1:

Theorem 4.1. Let φ : (0,∞) → (0,∞) be an increasing, concave function
with φ(R) ∈ o(R) and X ⊆ Rd be a separated net. Then there exists a
separated net Y ⊆ Rd such that every bijection f : X → Y satisfies dispR(f) /∈
o(φ(R)) and there exists a bijection g : X → Y with dispR(g), dispR(g−1) ∈
O(φ(R)). Moreover, such Y can be found so that X and Y are bilipschitz
equivalent.

Let us begin working towards a proof of Theorem 4.1. The proof is based
on the following construction, which we present in a bit more general form
than what is strictly needed for the proof of Theorem 4.1:

Construction 4.2. Let X be a separated net in Rd and let (Ri)i∈N ⊂ R+ be a
strictly increasing sequence converging to infinity. Moreover, let φ : (0,∞)→
(0,∞) be an unbounded increasing function. The aim is to construct a set Y
in Rd which will, roughly speaking, be a piecewise rescaled version of X and
such that dispR(Y,X) ⊆ Ω(φ(R)). In the applications, we will choose φ and
(Ri)i∈N in a way that will ensure that Y is a separated net. However, the
construction described here is more general.
Formally, we will construct Y as an image of X. For any R > 0 we

set R := R + φ(R). We also define R0 := R0 := 0. The desired mapping
g : X → Rd will be radial, so we first define its radial part γ : [0,∞)→ [0,∞).
We set γ(Ri) := Ri and prescribe that in between these specified values the
function γ interpolates linearly. Thus, γ is a piecewise linear function with
breaks precisely at the points Ri. Finally, we define g(x) :=

γ(‖x‖2)
‖x‖2

x and
Y := g(X).
For later use we introduce a sequence (ci)i∈N representing the slopes of γ.

That is, for every i ∈ N we require that γ(Ri) = γ(Ri−1) + ci(Ri − Ri−1).
This is equivalent to setting ci := γ(Ri)−γ(Ri−1)

Ri−Ri−1
= Ri−Ri−1

Ri−Ri−1
.

We also record the maximum distance between consecutive ‘spherical layers’
in X. Let {`1 < `2 < . . . < `k < . . .} := {‖x‖2 : x ∈ X}. Additionally, we put
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`0 := `′0 := 0. Then we define s := sup {`k − `k−1 : k ∈ N}. Since X is a net,
s is finite.

Proposition 4.3. Assume, additionally to the assumptions of Construc-
tion 4.2, that φ(R) ∈ O(R) and that there is K > 1 such that Ri ≥ KRi−1

for every i ∈ N. Then γ and g are bilipschitz and Y is a separated net.

Proof. Assuming that γ is bilipschitz, it is easy to see that g is bilipschitz
as well, as g is a radial map with radial part γ; just consider the points in
spherical coordinates. Moreover, a bilipschitz image in Rd of a separated net
in Rd is a separated net in Rd.
The function γ is bilipschitz if and only if the sequence (ci)i∈N is bounded

and bounded away from zero. As φ is increasing and (Ri)i∈N is strictly
increasing, we immediately obtain

ci =
Ri −Ri−1

Ri −Ri−1

=
Ri −Ri−1

Ri −Ri−1 + φ(Ri)− φ(Ri−1)
≤ 1.

By the assumption on φ and the definition R = R + φ(R) there is C > 1
such that R ≤ R ≤ CR for every R ≥ R1. We note that (Ri)i∈N is increasing.
Using the assumption on the growth of (Rj)j∈N, we obtain

ci =
Ri −Ri−1

Ri −Ri−1

≥ Ri −Ri/K
Ri

≥ K − 1

CK
> 0.

Lemma 4.4. Let φ, (Ri)i∈N, X, Y and s be as in Construction 4.2 and let
f : Y → X be an injective mapping. If, in addition, there is K > 0 such that
φ(Ri+1) ≤ Kφ(Ri) for every i ∈ N, then dispR(f) ∈ Ω(φ(R)).

Proof. By Construction 4.2, for every i ∈ N it holds that∣∣X ∩B(0, Ri + φ(Ri))
∣∣ =

∣∣Y ∩B(0, Ri)
∣∣ .

This implies that dispRi(f) ≥ Ri + φ(Ri)− s−Ri = φ(Ri)− s.
Let R > R1 be given and let i ∈ N be the unique index such that Ri−1 <

R ≤ Ri. Then using the assumption on the growth of φ(Ri+1), we can write

dispR(f) ≥ dispRi−1
(f) ≥ φ(Ri−1)− s ≥ φ(Ri)

K
− s ≥ φ(R)

K
− s.

The last quantity is greater than, say, φ(R)/2K for every R large enough.

Lemma 4.5. Let φ, (Ri)i∈N, X, Y and g be as in Construction 4.2. If, in
addition, there is K > 0 such that φ(Ri+1) ≤ Kφ(Ri) for every i ∈ N, then
dispR(g) ∈ O(φ(R)).
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Proof. Since Ri is strictly increasing and φ is increasing, we have ci ≤ 1 for
every i ∈ N. Because γ is a piecewise affine function with slopes ci ≤ 1 and
γ(0) = 0 the distance from γ to the identity is an increasing function (with
respect to [0, R] with R variable). This, in turn, means that the displacement
of g on the ball B(0, R) is realised on the points of X closest to the boundary
of the ball. Now, we immediately get the bound

dispRi(g) ≤ Ri − γ(Ri) = Ri + φ(Ri)−Ri = φ(Ri).

Fix R > R1+φ(R1) and choose the smallest i ∈ N such that R ≤ Ri+φ(Ri).
Then the growth condition on φ(Ri) allows us to derive the bound

dispR(g) ≤ dispRi+φ(Ri)(g) ≤ φ(Ri) ≤ Kφ(Ri−1)

≤ Kφ(Ri−1 + φ(Ri−1)) ≤ Kφ(R),

where the last inequality is true thanks to the choice of i.

Finally, we are ready to finish off the proof of Theorem 4.1:

Proof of Theorem 4.1. We may assume that φ is unbounded, otherwise we
may simply choose Y as a non-zero but small perturbation of X. Such Y is
BD, and thus, also BL equivalent to X, while every bijection X → Y needs
to displace the perturbed points by a non-zero distance.
We choose any K > 1 and set Ri := Ki for ever i ∈ N. This choice

satisfies all the assumptions on (Ri) in Proposition 4.3 and Lemmas 4.4 and
4.5, where the φ(Ri+1) ≤ Kφ(Ri) assumption of the latter two statements is
satisfied due to the concavity of φ. We apply Construction 4.2 using these
objects and obtain a set Y and a bijection g : X → Y . Proposition 4.3
says that Y is a separated net and g : X → Y witnesses the BL equivalence
of X and Y . Applying Lemma 4.5 we get that dispR(g) ∈ O(φ(R)), from
which dispR(g−1) ∈ O(φ(R)) follows via Proposition 2.3. Now let f : X → Y
be a bijection. By Lemma 4.4, it holds that dispR(f−1) ∈ Ω(φ(R)). Let
Ψ: (0,∞) → (0,∞) be a concave majorant of t 7→ dispt(f) with dispR(f) /∈
o(Ψ(R)), given by Lemma 2.1. Then, applying Proposition 2.3, we infer that
dispR(f−1) ∈ O(Ψ(R)) ∩ Ω(φ(R)), which implies φ(R) ∈ O(Ψ(R)). This,
together with dispR(f) /∈ o(Ψ(R)), implies dispR(f) /∈ o(φ(R)).

5 Continuously many, pairwise distinct BD
equivalence classes.

The objective of the present section is to prove Theorem 5.1, whose statement
we repeat for the reader’s convenience:

Theorem 5.1. For every d ∈ N, every bilipschitz equivalence class of separ-
ated nets in Rd decomposes as a union of uncountably many pairwise distinct
bounded displacement equivalence classes.
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The proof of Theorem 5.1 is based on the following proposition:

Proposition 5.2. Let d ∈ N, X be a separated net in Rd and φ1, φ2 : (0,∞)→
(0,∞) be increasing, unbounded and concave functions such that φi(R) ∈ o(R)
for i ∈ [2] and φ1(R) ∈ o(φ2(R)). Let Y1, Y2 ⊆ Rd be separated nets such that
φ1 ∈ dispR(X,Y1) and dispR(X,Y2)∩ o(φ2(R)) = ∅. Then Y1 and Y2 are BD
non-equivalent.

Proof. Assume for a contradiction that Y1 and Y2 are BD equivalent and
consider a bijection f : Y2 → Y1 for which

disp(f) = sup
x∈Y2
‖f(x)− x‖2 <∞.

Let g : Y1 → X be a bijection for which dispR(g) ∈ O(φ1) and let K > 0 be
sufficiently large so that dispR(g) ≤ Kφ1(R) for all R > 1. Then, we may
define a bijection h : Y2 → X by h := g ◦ f . Let us estimate the asymptotic
growth of dispR(h): fixR > 1 and x ∈ Y2∩B(0, R). Then f(x) ∈ Y1∩B(0, R+
disp(f)), from which it follows that ‖g(f(x))− f(x)‖2 ≤ Kφ1(R + disp(f)).
Now we may write

‖h(x)− x‖2 ≤ ‖g(f(x))− f(x)‖2 + ‖f(x)− x‖2
≤ Kφ1(R+ disp(f)) + disp(f)

≤ K ′φ1(R),

which is true for some K ′ > K independent of R. We deduce that h : Y2 →
X is a bijection satisfying dispR(h) ∈ O(φ1(R)) ⊆ o(φ2(R)), contrary to
dispR(X,Y2) ∩ o(φ2(R)) = ∅.

Proof of Theorem 5.1. Fix d ∈ N and a representative X of a given BL equi-
valence class of separated nets in Rd. Let Λ denote the set of all increasing,
unbounded and concave functions (0,∞) → (0,∞). For each φ ∈ Λ, we ap-
ply Theorem 4.1 to obtain a separated net Yφ in Rd belonging to the same
BL equivalence class as X and satisfying dispR(X,Y ) ∩ o(φ(R)) = ∅. Now,
Proposition 5.2 verifies that the family of separated nets (Yφ)φ∈Λ contains
uncountably many pairwise BD non-equivalent separated nets.

6 The intersection between the BL classes and the
classes of bounded growth of displacement

In this section we prove Theorem 6.1:

Theorem 6.1. Let d ≥ 2 and φ : (0,∞) → (0,∞) be an unbounded, in-
creasing, concave function. Then there is an uncountable family (Xψ)ψ∈Λ of
pairwise bilipschitz non-equivalent separated nets in Rd for which each Xψ is
φ-displacement equivalent to Zd.
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Figure 1: Examples of ‘very different’ separated nets X1 (left) and X2 (right). The cubes
in (S1

k) are the same as in (S2
k), but the distance of S1

k to the origin grows with
k much slower than that of S2

k .

The proof of Theorem 6.1 will require several lemmas, some of which are
quite technical. Therefore, we first describe the main ideas of the proof
informally.
The proof consists of three main ingredients. The first one is an observation

that in order to construct a separated net X in Rd that is not bilipschitz
equivalent to Zd it is possible to start with Zd and modify it only inside a
collection of pairwise disjoint cubes (Sk)k∈N of increasing size; see Figure 1.
The actual position of these cubes, as long as they remain disjoint, is irrelevant
with respect to bilipschitz non-equivalence with Zd.
Moreover, we can actually get that there is even no bilipschitz injection

X → Zd which would also be a bijection between a neighbourhood of Sk and
a certain neighbourhood of the image of Sk, for each k separately; this is
based on the work of Burago and Kleiner [1, Lemma 2.1] and formalised in
Lemma 6.3 below.
The second ingredient is exploiting the last property of the construction of

X mentioned above. It sometimes allows us to rule out bilipschitz bijections
between two different nets X1 and X2 arising in the way described above,
instead of just bilipschitz bijections between X and Zd. We will see that
if f : X1 → X2 is a bijection such that infinitely many of the cubes (S1

k)
used to construct X1 are mapped by f to parts of X2 equal to Zd, then f
is not bilipschitz; see Lemma 6.6. Thus, if we place the cubes (S1

k) ‘very
differently’ inside Rd in comparison to the cubes (S2

k) used to define X2 (see
Figure 1), we may hope that for every bilipschitz mapping f : X1 → Rd there
will be infinitely many i ∈ N such that the image f(S1

i ) will miss all cubes
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in (S2
k); this is substantiated in Lemma 6.2. Since it is possible to come up

with uncountably many ‘very different’ ways how to place the cubes (Sk)
in Rd, we will obtain an uncountable family (Xψ)ψ∈Λ of pairwise bilipschitz
non-equivalent separated nets.
The last ingredient is responsible for showing that each of the nets Xψ in

the family described above is φ-displacement equivalent to Zd. We observe
that the construction of eachX := Xψ inside its corresponding collection (Sk)
can ensure that |X ∩ Sk| =

∣∣Zd ∩ Sk∣∣ for every k ∈ N—this is the purpose
of Lemma 6.4. Since outside

⋃
Sk each X is equal to Zd, this allows us to

define a bijection X → Zd with controlled growth of displacement: Outside
(Sk) we use the identity function and inside Sk we can use any bijection
X ∩ Sk → Zd ∩ Sk. The displacement of the resulting bijection on B(0, R) is
then no larger than the diameter of the largest Sk intersecting B(0, R); this
is formalized in Lemma 6.7.
We continue providing formal arguments for the claims outlined above.

Lemma 6.2. Let F : D ⊆ Rd → Rd be a bilipschitz mapping, ψ1, ψ2 : (0,∞)→
(0,∞) be two increasing functions such that ψ2(R + K) ∈ o(ψ1(R)) for any
fixed K ∈ N and (Uk)k∈N be a sequence of cubes in Rd with diamUk increasing
and diamUk ∈ o(ψ2(k)). Moreover, we assume that g1, g2 :

⊔
k∈N Uk → Rd

are mappings such that

1. dist
(
g1(Uk), g1

(⋃
j 6=k Uj

))
≥ ψ1(k) for every k ∈ N,

2. dist
(
g2(Uk), g2

(⋃
j 6=k Uj

))
= dist(g2(Uk), g2(Uk−1)) = ψ2(k) for every

k ≥ 2,

3. gi|Uk is a translation for every i = 1, 2 and k ∈ N.
Then there are infinitely many i ∈ N such that

F

(
D ∩

⋃
k∈N

g1(Uk)

)
∩ g2(Ui) = ∅.

Proof. Since F is defined only on the set D, in every application of F in this
proof the argument of F should always be intersected with D to ensure that
the whole expression is well-defined; however, to improve the readability of
formulas, we omit it.
We define i(k) := max {i ∈ N : F (g1(Uk)) ∩ g2(Ui) 6= ∅}; if the set over

which the maximum is taken is empty, we set i(k) to ∞. Let

C := max
{

Lip(F ),Lip(F−1)
}
.

We split the proof into two cases. First, we assume that there is A ∈
N such that for every k ∈ N there is n := n(k) ∈ N, n ≥ k such that
i(n) ≤ n + A. Fix k ∈ N and n = n(k). Condition 2 on g2 implies that
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dist(g2(Ui(n)), g2(Ui(n)+1)) ≤ ψ2(n + A + 1). From Condition 1 we get that

dist
(
F ◦ g1(Un), F ◦ g1

(⋃
j 6=n Uj

))
≥ ψ1(n)/C. Next, we write

dist

F
⋃
j 6=n

g1(Uj)

, g2(Ui(n)+1)


≥ ψ1(n)

C
− diam g2(Ui(n))− ψ2(n+A+ 1)− diam g2(Ui(n)+1).

Note that diam g2(Ui(n)),diam g2(Ui(n)+1) ∈ o(ψ2(n + A + 1)) according to
the assumptions. Thanks to the assumption ψ2(R + A + 1) ∈ o(ψ1(R)), we
get that F

(⋃
j∈N g1(Uj)

)
∩ g2(Ui(n)+1) = ∅ provided k (and thus n) is large

enough. This establishes the assertion in the present case.
Next we assume that for every A ∈ N it holds that i(k) > k + A for

every k large enough. In particular, there exists k0 ∈ N such that i(k) > k
for every k ≥ k0. Moreover, we assume that k0 is large enough so that
whenever k ≥ k0 and F ◦ g1(Uk) ∩ g2(Ui′) 6= ∅, we have i′ = i(k). This is
possible, as either no such indices i′ exist, or F ◦ g1(Uk) ∩ g2(Ui(k)) 6= ∅ and
dist

(
g2(Ui(k)), g2

(⋃
j 6=i(k) Uj

))
= ψ2(i(k)) ≥ ψ2(k) according to Condition 2

in the present case. Now it suffices to use the fact that diamF ◦ g1(Uk) ∈
o(ψ2(k)), which follows from the assumptions.
We continue by contradiction: assume that there is i0 ∈ N such that for

every i ≥ i0 it holds that F
(⋃

k∈N g1(Uk)
)
∩ g2(Ui) 6= ∅. We will also assume

that i0 > max {i(j) : j ∈ N, j ≤ k0, i(j) <∞}. Given the property of i(·)
proven above this means that for every i ≥ i0 there is k ≥ k0 such that
i = i(k). Let k1 ∈ N, k1 ≥ k0 be a number satisfying i(k) ≥ i0 for every
k ≥ k1. Next we choose K ∈ N such that either i(k) ≤ k + K, or i(k) = ∞
for every k < k1. Furthermore, we choose k2 ∈ N, k2 ≥ k1 large enough so
that i(k) > k +K for every k ≥ k2. In consequence, for every k ≥ k2 the seti ∈ N : F ◦ g1

⋃
j≤k

Uj

 ∩ g2(Ui) 6= ∅


can contain at most k−k1 numbers within the set {k1 +K, . . . , k +K}. But
this, in turn, means that there is l ∈ N, l > k such that i(l) ≤ k +K. At the
same time, i(l) > l +K ≥ k +K + 1; a contradiction.

Lemma 6.3. Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 <
inf ρ ≤ sup ρ <∞ and the property that the equation Φ]ρL = L|Φ([0,1]d) has no
bilipschitz solutions Φ: [0, 1]d → Rd. Let (Rk)k∈N and (Sk)k∈N be sequences
of pairwise disjoint cubes in Rd such that diamRk and diamSk are unbounded
and increasing and 2Sk ⊆ Rk for every k ∈ N, where 2Sk denotes the cube
with the same midpoint as Sk and sidelength twice the sidelength of Sk. For
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each k ∈ N, let φk : Rd → Rd denote the unique affine mapping Rd → Rd
with scalar linear part satisfying φk([0, 1]d) = Sk. For each k ∈ N, let Υk be
a finite subset of Rk such that

⋃
k∈N Υk is a separated net of

⋃
k∈NRk and

the normalised counting measure on the set φ−1
k (Υk ∩Sk) converges weakly to

ρL. Let h :
⋃
k∈N Υk → Zd be an injective mapping such that

B(h(Υk ∩ Sk), diamSk) ∩ Zd ⊆ h(Υk) (8)

for each k ∈ N. Then h is not bilipschitz. In fact,

sup
k∈N

max
{

Lip(h|Υk),Lip((h|Υk)−1)
}

=∞. (9)

Proof. The argument of the present proof in its original form is due to Bur-
ago and Kleiner; see [1, Proof of Lemma 2.1]. Moreover, a more detailed
presentation of the argument is given by the present authors in [2, Proof of
Lemma 3.4]. Therefore, we present the first part of the proof here quite suc-
cinctly, leaving several verifications to the reader, which may be thought of
as exercises. For further details, we refer the reader to the works [1] and [2].
Observe that

φ−1
k (2Sk) =

[
−1

2
,
3

2

]d
⊃ [0, 1]d = φ−1

k (Sk)

for all k. Suppose for a contradiction that the supremum of (9) is finite.
Then, denoting by lk the sidelength of the square Sk, we deduce that the
mappings fk := 1

lk
h ◦ φk, extended using Kirszbraun’s theorem from

Γk := φ−1
k (Υk) ∩

[
−1

2
,
3

2

]d
to the cube

[
−1

2 ,
3
2

]d, are uniformly Lipschitz and, after composing each fk
with a translation if necessary so that the image of every fk contains 0, they
are also uniformly bounded. Applying the Arzelà-Ascoli theorem, we may
pass to a subsequence of (fk)k∈N which converges uniformly to a Lipschitz
mapping f :

[
−1

2 ,
3
2

]d → Rd. Using the fact that each fk is bilipschitz on the
finer and finer net Γk of

[
−1

2 ,
3
2

]d, we deduce that f is also bilipschitz.
Let µk denote the normalised counting measure on

Γk := φ−1
k (Υk ∩ Sk)

so, by hypothesis, µk converges weakly to ρL. We claim that the pushforward
measures (fk|[0,1]d)]µk converge weakly to the Lebesgue measure on f([0, 1]d).
This claim, together with the uniform convergence of fk to f , implies that
f]ρL = L|f([0,1]d), contrary to the hypothesis on ρ.
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Therefore, to complete the proof, it only remains to verify the claim, that
is, to prove that (fk|[0,1]d)]µk converges weakly to L|f([0,1]d). This remaining
part of the proof is more subtle. The argument we give here is not present in
[1], but is an adaptation of [2, Proof of Lemma 3.2]. Although the adaptation
is quite simple, it requires good familiarity with the proof in [2] to construct
it. Therefore, we provide more details here.
Consider the sequence of measures

νk(A) :=
1

ldk

∣∣∣∣A ∩ 1

lk
Zd
∣∣∣∣ , A ⊆ Rd, k ∈ N,

which clearly converges weakly to the Lebesgue measure on Rd. For a given
continuous function ϕ : Rd → R with compact support we need to verify∣∣∣∣∣

∫
f([0,1]d)

ϕdνk −
∫
fk([0,1]d)

ϕd(fk|[0,1]d)]µk

∣∣∣∣∣ −→k→∞ 0. (10)

We bound the expression in (10) above by the sum of two terms:∣∣∣∣∣
∫
f([0,1]d)

ϕdνk −
∫
fk([0,1]d)

ϕdνk

∣∣∣∣∣+

∣∣∣∣∣
∫
fk([0,1]d)

ϕdνk −
∫
fk([0,1]d)

ϕd(fk|[0,1]d)]µk

∣∣∣∣∣
(11)

The first term is at most ‖ϕ‖∞ νk(f([0, 1]d)∆fk([0, 1]d)), which vanishes as
k → ∞ due to the weak convergence of νk to L, the uniform convergence of
fk to f and the fact that f is bilipschitz. We do not provide further details
here; the verification is left as an exercise with reference to [2, Lemma 3.1].
The second term may be bounded above by

‖ϕ‖∞
ldk
|Ak| , where Ak := fk([0, 1]d) ∩ 1

lk
Zd \ fk(Γk). (12)

We will argue that

Ak ⊆ B
(
∂f([0, 1]d), ‖fk − f‖∞

)
(13)

for all k sufficiently large. Once this is established the quantity of (12) is seen
to be at most

‖ϕ‖∞ L

(
B

(
∂f([0, 1]d), ‖fk − f‖∞ +

√
d

lk

))
,

which converges to zero as k →∞. Hence, to complete the verification of the
weak convergence of (fk|[0,1]d)]µk to L|f([0,1]d), we prove (13).
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From now on we treat k as fixed but sufficiently large. Recall that the
sequence of mappings fi|Γi : Γi → 1

li
Zd, i ∈ N, is uniformly bilipschitz and set

U := sup
i∈N

max
{

Lip(fi|Γi),Lip(fi|Γi
−1)
}
<∞.

Since the mappings fi :
[
−1

2 ,
3
2

]d → Rd were obtained as Kirszbraun’s exten-
sions of fi|Γi , we additionally note that Lip(fi) ≤ U for all i ∈ N. We also
write b for the maximum of the net constants of

⋃∞
i=1 Υi ∩ Si in

⋃∞
i=1 Si and

of
⋃∞
i=1 Υi in

⋃∞
i=1Ri. The condition (8) translates, after application of the

homeomorphism x 7→ x
lk
, to

B
(
fk(Γk),

√
d
)
∩ 1

lk
Zd ⊆ fk(φ−1

k (Υk)).

At the same time, Γk is a b
lk
-net of [0, 1]d, so that fk([0, 1]d) ⊆ B(fk(Γk),

Ub
lk

).
Since k is sufficiently large, it follows that

Ak ⊆
(
B
(
fk(Γk),

√
d
)
∩ 1

lk
Zd
)
\ fk(Γk) ⊆ fk(φ−1

k (Υk)) \ fk(Γk).

Thus, any point in Ak has the form fk(x) for some

x ∈ φ−1
k (Υk \ Sk) = Γk \ [0, 1]d.

If fk(x) /∈ f([0, 1]d) then fk(x) ∈ Ak \ f([0, 1]d) ⊆ fk([0, 1]d) \ f([0, 1]d), and
therefore, dist(fk(x), ∂f([0, 1]d)) ≤ ‖fk − f‖∞.
In the remaining case we have fk(x) ∈ f([0, 1]d). Since f is defined at

x ∈ Γk \ [0, 1]d ⊆
[
−1

2 ,
3
2

]d \ [0, 1]d and f is injective, we additionally have
f(x) /∈ f([0, 1]d). Thus, we deduce that

dist(fk(x), ∂f([0, 1]d)) ≤ ‖fk(x)− f(x)‖2 ≤ ‖fk − f‖∞ ,

as required.

Lemma 6.4. Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 <
inf ρ ≤ sup ρ <∞ and

∫
[0,1]d ρ dL = 1. Let (Sk)k∈N be a sequence of pairwise

disjoint cubes in Rd such that the sidelength lk ∈ N of Sk is unbounded and
increasing. Let (φk)k∈N denote the sequence of affine mappings φk with scalar
linear part lk and φk([0, 1]d) = Sk. Then there exists a sequence (Ξk)k∈N of
finite sets Ξk ⊆ Sk with the following properties:

(i) |Ξk| = ldk for every k ∈ N,
(ii)

⋃
k∈N Ξk is a separated net of

⋃
k∈N Sk,

(iii) The sequence (µk)k∈N, where µk is the normalised counting measure on
the set φ−1

k (Ξk), converges weakly to ρL.
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Proof. If property (i) is omitted, the proof is contained in [1, Proof of Lemma 2.1];
similar constructions are also given in [3] and [2]. Getting property (i) only re-
quires taking a little extra care in the construction of [1, Proof of Lemma 2.1].
Therefore, we present only minimal details here; the calculations and the veri-
fication of (i)–(iii) are left to the reader.
Let mk :=

⌊√
lk
⌋
for k ∈ N. Fix k ∈ N. We describe how to obtain the set

Ξk ⊆ Sk. Consider the standard partition (Tk,i)i∈[mdk] of the cube Sk into md
k

subcubes of equal size and choose a sequence (nk,i)i∈[mdk] satisfying

nk,i ∈

{⌊
ldk

∫
φ−1
k (Tk,i)

ρ dL

⌋
,

⌊
ldk

∫
φ−1
k (Tk,i)

ρ dL

⌋
+ 1

}
, i ∈ [md

k],∑
i∈[mdk]

nk,i = ldk.

It is now enough to define Ξk so that |Ξk ∩ Tk,i| = nk,i for all i ∈ [md
k] and the

separation and net constants of Ξk in Sk may be bounded respectively below
and above independently of k. For each i ∈ [md

k], we suggest the following
prescription of the set Ξk∩Tk,i: imagine we have a pot containing nk,i points.
In the first step, we take one point out of the pot and place it at the centre of
the cube Tk,i. Assume now that j ≥ 1 and that after j steps we have placed
exactly one point from the pot at the centre of each cube in each of the the
first j−1 dyadic partitions of the cube Tk,i. In step j+1, we consider the jth
dyadic partition of Tk,i and arbitrarily transfer remaining points from the pot
onto the vacant centres of each of the 2dj cubes in this partition until either
the pot is empty or all of the 2dj centres are occupied. When the pot is empty,
the procedure terminates and the placement of the nk,i points determines the
set Ξk ∩ Tk,i.

Construction 6.5. Let ρ : [0, 1]d → (0,∞) be a measurable function with
0 < inf ρ ≤ sup ρ < ∞ and

∫
[0,1]d ρ dL = 1, l = (lk)k∈N be a strictly increas-

ing sequence of natural numbers and ψ : (0,∞) → (0,∞) be an increasing
function. We define a separated net X(ρ, l, ψ) as follows: Let

Uk := [0, l2k]
d, k ∈ N.

and choose arbitrarily a mapping gψ :
⊔
Uk → Rd such that gψ and the se-

quence (Uk)k∈N satisfy the conditions (2) and (3) of Lemma 6.2 and ad-
ditionally 0 ∈ gψ(U1). Set Rk := gψ(Uk) for each k ∈ N. Next, fix a
sequence (Sk)k∈N of cubes such that each Sk has sidelength lk, Sk ⊆ Rk,
dist(Sk,Rd \ Rk) ≥

l2k
4 and the vertices of ∂Sk belong to the lattice 1

2Z
d \ Zd.

Let (Ξk)k∈N be the sequence of finite sets Ξk ⊆ Sk given by Lemma 6.4. Fi-
nally, we define the separated net X(ρ, l, ψ) by

X(ρ, l, ψ) :=
⋃
k∈N

Ξk ∪

(
Zd \

⋃
k∈N

Sk

)
.
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Lemma 6.6. Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 <
inf ρ ≤ sup ρ < ∞ and the property that the equation Φ]ρL = L|Φ([0,1]d)

has no bilipschitz solutions Φ: [0, 1]d → Rd. Let l = (lk)k∈N be a strictly
increasing sequence of natural numbers. Let ψ1, ψ2 : (0,∞) → (0,∞) be in-
creasing functions such that ψ2(R+K) ∈ o(ψ1(R)) for any fixed K ∈ N and
l2k ∈ o(ψ2(k)). Then the separated nets

Xi := X(ρ, l, ψi), i = 1, 2,

given by Construction 6.5 are bilipschitz non-equivalent.

Proof. Assume that X1 and X2 are BL equivalent and let f : X2 → X1 be a
bijection with

L := max
{

Lip(f),Lip(f−1)
}
<∞.

Let the sequences (Uk)k∈N, (Ri,k := gψi(Uk))k∈N, (Si,k)k∈N and (Ξi,k)k∈N and
the mapping gi := gψi :

⊔
k∈N Uk → Rd be given by Construction 6.5 with the

setting ψ = ψi for i = 1, 2. In particular, this means that

Xi =
⋃
k∈N

Ξi,k ∪

(
Zd \

⋃
k∈N

Si,k

)
, i = 1, 2. (14)

Observe that the conditions of Lemma 6.2 are satisfied by ψ1, ψ2, (Uk)k∈N, g1,
g2, F := f−1 and D := X1. Therefore, by Lemma 6.2, there is a subsequence
(Unk)k∈N of (Un)n∈N such that f−1

(
X1 ∩ g1

(⋃
n∈N Un

))
∩ g2(Unk) = ∅ for

every k ∈ N. This translates to

f(X2 ∩R2,nk) ∩
⋃
n∈N

R1,n = ∅ for every k ∈ N. (15)

In what follows it is occasionally necessary to assume that the first index n1

of the subsequence Unk is chosen sufficiently large so that, for example, an

inequality like
l2nk
4 > 2lnk holds for all k ∈ N. We will no longer mention this

explicitly.
For each k ∈ N, we set R̃k := R2,nk , S̃k := S2,nk and Υk := X2 ∩ R2,nk .

Observe that Υk ∩ S̃k = Ξ2,nk and that Υk ∩ (R̃k \ S̃k) = Zd ∩ R̃k \ S̃k.
Moreover, the function f |⋃

k∈N Υk has its image in Zd due to Υk ⊆ R̃k =
R2,nk , (15), (14) and S1,n ⊆ R1,n. Thus, the only condition of Lemma 6.3
which is not clearly satisfied by the sequences R̃k, S̃k, Υk and the function
h := f |⋃

k∈N Υk :
⋃
k∈N Υk → Zd is (8); we verify it shortly. However, first we

point out that, once its conditions are verified, applying Lemma 6.3 in the
above setting gives that h = f |⋃

k∈N Υk and therefore also f is not bilipschitz,
which is the desired contradiction.
It therefore only remains to verify condition (8) of Lemma 6.3 for (R̃k)k∈N,

(S̃k)k∈N, (Υk)k∈N and the function h. Let

v ∈ B(f(Υk ∩ S̃k),diam S̃k) ∩ Zd.
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We claim that v ∈ X1. If v is not in X1 then, by the definition of X1

in Construction 6.5 and (14), we must have v ∈
⋃
n∈N S1,n ⊂

⋃
n∈NR1,n.

Let b denote the net constant of X1 ∩
⋃
n∈NR1,n in

⋃
n∈NR1,n and choose

v′ ∈ X1 ∩
⋃
n∈NR1,n so that ‖v′ − v‖2 ≤ b. Let u′ ∈ X2 with f(u′) = v′ and

fix a point w ∈ Υk ∩ S̃k. Then∥∥u′ − w∥∥
2
≤ L

∥∥f(u′)− f(w)
∥∥

2
≤ L

(
diam f(Υk ∩ S̃k) + diam S̃k + b

)
≤ 3
√
dL2lnk <

l2nk
4
.

This bound on ‖u′ − w‖2 together with w ∈ S̃k and dist(S̃k,Rd \ R̃k)) ≥
l2nk
4

implies that u′ ∈ X2 ∩ R̃k. But, according to (15), this in turn requires
v′ = f(u′) /∈

(⋃
n∈NR1,n

)
, contrary to the choice of v′. We conclude that

v ∈ X1.
Now, we can choose z ∈ X2 such that v = f(z). Then

‖z − w‖2 ≤ L ‖f(z)− f(w)‖2 ≤ L
(

diam f(Υk ∩ S̃k) + diam S̃k

)
≤ L2

√
dlnk + L

√
dlnk <

l2nk
4
≤ dist(S̃k,Rd \ R̃k).

It follows that z ∈ X2 ∩ R̃k = Υk and so v = f(z) ∈ f(Υk).

Lemma 6.7. Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 <
inf ρ ≤ sup ρ < ∞ and

∫
[0,1]d ρ dL = 1, l = (lk)k∈N be a strictly increas-

ing sequence of natural numbers and ψ : (0,∞) → (0,∞) be an increasing
function. Let Xψ := X(ρ, l, ψ) be the separated net given by Construc-
tion 6.5 and φ : (0,∞) → (0,∞) be an increasing, concave function such
that φ(ψ(k)) ∈ Ω(lk). Then φ ∈ dispR(Xψ,Zd).

Proof. The conditions on the sidelength and the location of Sk and on the
size of |Ξk| in Construction 6.5 and Lemma 6.4(i) ensure that |Xψ ∩ Sk| =∣∣Zd ∩ Sk∣∣. Therefore, we may define a bijection h : Xψ → Zd as follows: on
the set Xψ \

⋃
k∈N Sk we define h as the identity. Finally, for each k ∈ N we

define h|Xψ∩Sk arbitrarily as a bijection Xψ ∩ Sk → Zd ∩ Sk.
The mapping h defined above clearly satisfies

sup
x∈B(0,R)

‖h(x)− x‖2 = max
x∈B(0,R)∩

⋃
k∈N Sk

‖h(x)− x‖2 ≤ max
k : Sk∩B(0,R)6=∅

diamSk.

(16)
On the other hand, the conditions of Construction 6.5, in particular the
properties of the mapping gψ coming from Lemma 6.2 and 0 ∈ gψ(U1), ensure
that

Sk ⊆ Rd \B(0, ψ(k)) (17)
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for every k > 1. Moreover, given R > infx∈S2 ‖x‖2, there is a maximal n ∈ N,
n ≥ 2 such that infx∈Sn ‖x‖2 ≤ R. We infer, using (17), that R ≥ ψ(n).
This, in combination with (16) implies

supx∈B(0,R) ‖h(x)− x‖2
φ(R)

≤
maxk∈[n] diamSk

φ(ψ(n))
=

√
dln

φ(ψ(n))
∈ O(1).

Putting together Lemmas 6.6 and 6.7 it is easy to finish the proof of The-
orem 6.1:

Proof of Theorem 6.1. Let ρ : [0, 1]d → (0,∞) be a measurable function with
0 < inf ρ ≤ sup ρ <∞ and the property that the equation Φ]ρL = L|Φ([0,1]d)

has no bilipschitz solutions Φ: [0, 1]d → Rd. Let l = (lk)k∈N be a strictly
increasing sequence of natural numbers. Let Λ′ denote the collection of all
increasing functions ψ : (0,∞) → (0,∞) for which φ(ψ(k)) ∈ Ω(lk) and l2k ∈
o(ψ(k)). For each ψ ∈ Λ′ let Xψ := X(ρ, l, ψ) be the separated net of Rd
given by Construction 6.5. Define an equivalence relation ∼ on Λ′ by ψ1 ∼ ψ2

if Xψ1 and Xψ2 are BL equivalent. Finally, we may define Λ := Λ′/ ∼. The
assertions of the theorem are now readily verified using Lemmas 6.6 and
6.7.

7 Hierachy of ω-regularity of separated nets.

Here we prove Theorem 7.1 and Corollary 7.2. The statements are repeated
for the reader’s convenience.

Theorem 7.1. Let d ≥ 2, α0 = α0(d) be the quantity of [2, Theorem 1.2]
and ω be a modulus of continuity in the sense of Definition 1.2 such that
ω(t) = t

(
log 1

t

)α0 for t ∈ (0, a) and some a > 0. Then the notion of ω-
regularity of separated nets in Rd is strictly weaker than that of bilipschitz
equivalence.

Proof. Define φ : (0,∞)→ (0,∞) by φ(t) = (log t)α0 . Then, by Theorem 6.1
there is a separated net X ⊆ Rd which is BL non-equivalent to the integer
lattice Zd, but for which dispR(X,Zd) ∩O(φ(R)) 6= ∅. At the same time, [2,
Thm 1.2 & Prop 1.3] assert that there are ω-irregular separated nets Y ⊆ Rd
and that all such separated nets Y satisfy dispR(Y,Zd) ∩ O(φ(R)) = ∅. We
conclude that the separated net X must be ω-regular.

Corollary 7.2. For any dimension d ≥ 2 the notions of ω-regularity of sep-
arated nets in Rd, according to Definition 1.2, admit at least three distinct
notions.

Proof. Let ω1(t) = t
(
log 1

t

)α0 , where α0 = α0(d) is given by Theorem 7.1,
ω2(t) = t and let X ⊆ Rd be a separated net given by [2, Theorem 1.2],
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meaning that X is both ω1- and ω2-irregular. According to [8, Theorem 5.1]
there exists a Hölder modulus of continuity ω3(t) = tβ for some β ∈ (0, 1)
such that X is ω3-regular. In light of Theorem 7.1, it is now clear that ω1,
ω2 and ω3 define pairwise distinct notions of ω-regularity.
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