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Abstract
Automatic text classification using machine learning is significantly affected by the text representation model. The structural 
information in text is necessary for natural language understanding, which is usually ignored in vector-based representations. 
In this paper, we present a graph kernel-based text classification framework which utilises the structural information in text 
effectively through the weighting and enrichment of a graph-based representation. We introduce weighted co-occurrence 
graphs to represent text documents, which weight the terms and their dependencies based on their relevance to text clas-
sification. We propose a novel method to automatically enrich the weighted graphs using semantic knowledge in the form 
of a word similarity matrix. The similarity between enriched graphs, knowledge-driven graph similarity, is calculated using 
a graph kernel. The semantic knowledge in the enriched graphs ensures that the graph kernel goes beyond exact matching 
of terms and patterns to compute the semantic similarity of documents. In the experiments on sentiment classification and 
topic classification tasks, our knowledge-driven similarity measure significantly outperforms the baseline text similarity 
measures on five benchmark text classification datasets.

Keywords Automatic text classification · Document similarity measure · Graph-based text representation · Graph 
enrichment · Graph kernels · Supervised term weighting · SVM

1 Introduction

Research on automatic text classification has gained impor-
tance due to the information overload problem and the need 
for faster and more accurate extraction of knowledge from 
huge data sources. Text classification assigns predefined 
labels to documents based on their content. An important 
step in automatic text classification is the effective represen-
tation of text. Bag-of-words is the most commonly used text 
representation scheme and is based on term independence 
assumption, where a text document is regarded as a set of 
unordered terms and is represented as a vector. It is simple 
and fast, but ignores the structural information in text such 
as the syntactic and semantic information. In contrast, the 
graph-based representation scheme is much more expres-
sive than the bag-of-words representation, and can repre-
sent structural information such as term dependencies. It has 

been shown that graph-based representation can outperform 
bag-of-words representation [12, 18, 26–28, 32, 37].

Document similarity is used in many text processing 
tasks such as text classification, clustering and information 
retrieval. Document similarity is usually measured as the 
distance/similarity between the vector representations of text 
documents under the assumption that terms are independ-
ent and unordered, thus the structural information in text is 
lost. Since the association between terms in text contributes 
towards the meaning of the text document, considering the 
structural information in measuring similarity can poten-
tially improve the accuracy of document classification.

A graph kernel measures the similarity between graphs 
based on the comparison of graph substructures. Using a 
graph kernel to measure document similarity enables the 
consideration of structural information in text. The similar-
ity value computed by a graph kernel is dependent on the 
information represented in the graphs. Therefore, the ques-
tion of how to represent text using a graph is crucial to the 
graph kernel approach to similarity-based text classification. 
Two main challenges in this approach are (1) the effective 
representation of the structural information in text and (2) 
the efficient utilisation of the rich information in the graph 
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representation to compute similarity based on the main con-
tent of the documents.

In this paper, we present a graph-based text classification 
framework addressing these challenges. The text document 
is initially represented by a weighted co-occurrence graph. 
Then it is transformed to an enriched document graph by 
automatically creating similar nodes and edges (or associa-
tions), using a similarity matrix based on word similarities. 
Since a supervised term weighting method is used to weight 
the terms and their associations, the matching terms and pat-
terns contribute to document similarity based on their rele-
vance. The graph enrichment enables the similarity measure 
to go beyond exact matching of terms and associations. We 
use an edge walk graph kernel to utilise the information in 
the enriched weighted graphs for calculating the similarity 
between text documents. The kernel function takes as input 
a pair of weighted co-occurrence graphs and gives as output 
a similarity value based on matching relevant content of the 
text documents. The kernel matrix is built by computing the 
similarity between every pair of text graphs, which is then 
used to train SVM, a kernel-based classifier, for learning and 
predicting the classes of documents. Our proposed text clas-
sification framework aims to represent text document more 
richly and utilise such rich information efficiently, therefore 
we can expect this approach to have improved performance, 
advancing the state-of-the-art in text classification. Hence, 
the novel contributions made in this paper are (1) the pro-
posed weighting of the graph, (2) the automatic enrichment 
of graphs and (3) the application of the new graph-based 
text representation to build the knowledge-driven similarity 
measure.

The rest of the paper is organised as follows. Section 2 
discusses related work. Section 3 introduces the proposed 
weighted graph representation of text documents. Section 4 
presents the method for automatic graph enrichment using 
a knowledge base. Section 5 describes the utilisation of the 
information in the proposed graphs using graph kernels. Sec-
tion 6 presents the experiments and results. Finally, Sect. 7 
concludes the paper.

2  Related work

There are works on kernel methods [29] that allow us to 
compute the similarity between structured objects such as 
trees, graphs and sequences. Text can be viewed as struc-
tured objects and the kernels for structured objects can be 
applied to compare the text documents for different text pro-
cessing tasks such as information retrieval, text classification 
and text clustering.

Graph kernels are instances of the R-convolution kernels 
[13] that provide a way for comparing discrete structures. 
R-convolution kernels compare objects by decomposing the 

objects into parts and combining the results of the com-
parisons of the parts of the objects. Different substructures 
such as random walks, shortest path, cycles, subtrees have 
been considered to compute the similarity between graphs. 
Gärtner et al. [10] defined the random walk graph kernel 
approach that counts all pairs of matching walks in the two 
graphs. Subtree kernels count the common subtree patterns 
in the graphs [25]. Kernels based on cyclic patterns consider 
common cycles in the graphs [14]. Borgwardt and Kriegel 
[6] defined the shortest path graph kernel that compares all 
the shortest paths in the graphs.

Lodhi et al. [17] proposed the idea of string kernels for 
measuring document similarity. A string kernel compares 
ordered subsequences of characters in the document which 
need not be contiguous. Similarly, Cancedda et  al. [8] 
worked with word-sequence kernel that considers sequences 
of words instead of characters. The word-sequence kernels 
compute similarity based on the number of matching word 
sequences and non-contiguous subsequences are penalized.

The information in knowledge bases such as WordNet 
[19] and Wikipedia can be utilised to improve the perfor-
mance of text classification. Siolas and d’Alché Buc [30] 
introduced semantic smoothing by incorporating a-priori 
knowledge from WordNet into text classification. The 
semantic smoothing of tf-idf feature vectors is performed 
using a smoothing matrix that contains the semantic similar-
ity between words obtained using WordNet. This results in 
the increase in the feature value of the terms that are related 
semantically. Siolas et al. showed that the introduction of 
semantic knowledge in SVM and k-NN improves the clas-
sification performance. There are other works [5, 20] that 
used WordNet for designing a semantic smoothing kernel 
for text classification. They calculated the similarity between 
words based on the semantic relationship of these terms in 
WordNet. Cristianini et al. [9] incorporated into a kernel 
the semantic relations between terms calculated using LSI. 
Wang and Domeniconi [35] developed semantic kernels by 
embedding the knowledge derived from Wikipedia and used 
it to improve the performance of document classification.

Supervised semantic smoothing kernels exist that utilise 
class information in building a semantic matrix [1, 2, 36]. 
A sprinkled diffusion kernel that uses both co-occurrence 
information and class information for word sense disam-
biguation is presented in [36]. In this approach, the smooth-
ing helps in increasing the semantic relationship between 
terms in the same class. But, it does not distinguish the com-
mon terms between classes. Class meaning kernel (CMK) 
[2] is a supervised semantic kernel that considers the mean-
ingfulness of terms in the classes using Helmholtz principle 
from Gestalt theory. In order to increase the importance of 
class specific terms compared to common terms, the seman-
tic smoothing is done using the semantic matrix built from 
class-based meaning values of terms. Class weighting kernel 
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(CWK) [1] smooths the representation of documents using 
class-based term weights that calculates the importance of 
the terms in the classes. Hence, there are different variants of 
semantic kernels with variations in the design of the seman-
tic smoothing matrix. Since a document is represented as 
a vector and is based on a term independence assumption, 
these semantic kernels [1, 2, 5, 9, 20, 30, 35, 36] do not 
consider term dependencies such as the order of words or 
the distance between words in the computation of similarity 
between documents.

Walk-based kernels that are products of node kernels have 
been proposed that captures semantic similarity between 
words using word embeddings. Srivastava et al. [31] devel-
oped an approach that considers both syntactic and semantic 
similarity through a random walk-based kernel. It extends 
beyond label matching as word embeddings (SENNA) are 
used to represent words. Kim et al. [15] proposed a con-
volution sentence kernel based on word2vec embeddings. 
They smooth the delta word kernel to capture the seman-
tic similarity of words. The similarity between sentences 
is obtained by combining the similarity of all the phrases. 
Although these approaches go beyond label matching, there 
is a high computational cost due to the calculation of dis-
tance between all possible pairs of words in the sentences.

Bleik et al. [3] used the graph kernel approach to compare 
biomedical articles represented as graphs. They mapped the 
biomedical documents into concept graphs using Unified 
Medical Language System (UMLS) database and used graph 
kernel functions to compute the similarity between the text 
documents. Gonçalves and Quaresma [11] represented text 
documents as graphs using discourse representation theory. 
The graph-based semantic representations of documents are 
then compared using a graph kernel based on direct product 
graph. Nikolentzos et al. [21] used a modified shortest path 
graph kernel to compute the similarity of two text docu-
ments represented as graph-of-words. The graph-of-words 
representation of text document is converted to shortest path 
graph. The edges in the shortest path graph connect vertices 
if the shortest distance between them is not above a threshold 
d and each edge is labelled by the inverse of the shortest dis-
tance between the vertices that the edge connects. The simi-
larity between the text documents is based on the number of 
matching terms and takes into account the distance between 
the terms in the documents. Our work differs from theirs in 
the graph-based representation of the text documents and 
the information considered while calculating the similar-
ity between graphs. The two main advantages of using the 
proposed enriched co-occurrence graph representation of 
text for document similarity are (1) it considers the relevant 
content of each document as the terms and associations are 
weighted ensuring that irrelevant information in text is not 
taken into account while calculating the similarity between 

documents that affects the categorization of documents and 
(2) it matches synonymous terms and similar patterns.

3  Graph representation of text

In this section, we introduce the proposed graph representa-
tion of text.

3.1  Proposed weighted co‑occurrence graph 
representation

The first step in the proposed text classification approach is 
the construction of a graph for each of the documents to be 
classified. We represent each text document as a weighted 
co-occurrence graph. The nodes represent the unique terms 
in the document and the edges connect nodes that co-occur 
within a predefined sliding window of fixed size. We weight 
the nodes and the edges based on the relevance of the terms 
and their associations respectively.

The relevance of the terms is determined using the super-
vised term weight factor—supervised relevance weight (srw) 
that we proposed in [28]. The supervised term weight fac-
tor gives higher weight to terms that help in distinguishing 
the documents in different classes. It is calculated from the 
information on the distribution of the training documents in 
the predefined classes.

The calculation of srw for each term t involves three steps. 
Step one is the calculation of class_rel_prob(t,Ci) for each 
class Ci which is given in Eq. (1) where a, b and c denote 
the number of documents in class Ci that contain the term 
t, the number of documents in class Ci that do not contain 
the term t and the number of documents not in class Ci that 
contain the term t respectively. Hence, class_rel_prob(t,Ci) 
determines the concentration of term t in class Ci compared 
to its concentration in other classes. The number of docu-
ments in class Ci that do not contain the term t is considered 
so that higher weights are not assigned to terms in classes 
having more training documents.

Step two is the calculation of the average densities of the 
term t in the classes as shown in Eq. (2) where C is the total 
number of classes and Ni is the total number of documents 
in class Ci . The sum of densities of the term t in the classes 
is divided by the number of classes to obtain the average 
density of the term t. The inverse of the average densities of 
the term is used in the supervised term weight calculation for 
reducing the over weighting of commonly occurring terms.

(1)
class_rel_prob(t,Ci) = log2

(
2 +

a

max(1, c)

)

× log2

(
2 +

a

max(1, b)

)
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Finally, step three calculates srw for a term t as shown in Eq. 
(3). The class_rel_prob(t,Ci) value for a term t is determined 
for each class Ci . max_class_rel(t) is the maximum of the 
class_rel_prob(t,Ci) values for a term t.

The weights of nodes and edges are calculated using super-
vised term weights. The weight of each node v (representing 
term t), denoted by wnode(v) , is calculated as in Eq. (4) where 
f(t) is the frequency of term t in the document that the graph 
represents.

We use edge weights to represent the strength of the asso-
ciation between the co-occurring words. For two connect-
ing nodes vi and vj representing terms ti and tj respectively, 
with an edge e = (vi, vj) ∈ E , the weight for e, denoted by 
wedge(e) , is calculated as

where � is the number of times that the terms ti and tj co-
occur in the document within a fixed size sliding window.

The advantage of using the supervised term weight fac-
tor for weighting the nodes and edges is the reduction in the 
weights of the irrelevant nodes and relationships. Hence, 
the information in our proposed enriched graph represen-
tation enables the similarity measure to take into account 
the relevant terms and associations shared between docu-
ments. After representing each document by a weighted 
co-occurrence graph, the next step is the enrichment of the 
co-occurrence graph using a similarity matrix, which is 
explained in Sect. 4.

4  Automatic enrichment of graphs

There are many methods to calculate the semantic similar-
ity between words, such as ontology, thesaurus and word 
embedding-based approaches. We utilise the similarities 
between words obtained using word embeddings to build 
a word similarity matrix. We used a similarity matrix that 
only contains similarity values greater than a threshold T 
(set as 0.9 in our experiments). This similarity matrix is used 
to automatically enrich the weighted co-occurrence graph 

(2)avg_density(t) =

∑C

i=1

�
a

Ni

�

C

(3)srw(t) = max_class_rel(t) × log10

(
1

avg_density(t)

)

(4)wnode(v) = f (t) × srw(t)

(5)wedge(e) = � ×

√
srw(ti) × srw(tj)

built for each document in order to add similar nodes (called 
as node enrichment) and similar edges/patterns (called as 
edge enrichment). For example, during node enrichment, 
if the co-occurrence graph has a node that denotes the term 
‘likes’, then the terms in the similarity matrix that are similar 
to ‘likes’ and are not in the co-occurrence graph are added 
automatically as new nodes; these nodes are then assigned 
weights based on the weights of similar nodes. During edge 
enrichment, if the co-occurrence graph has an edge connect-
ing ‘likes’ and ‘hot’ corresponding to the pattern ‘likes hot’, 
similar patterns such as ‘loves warm’ are added automati-
cally by connecting the nodes ‘loves’ and ‘warm’ and the 
edges are assigned weights based on the weights of similar 
patterns. The automatic enrichment of graphs consisting of 
node enrichment and edge enrichment is explained in Sects. 
4.1 and 4.2 respectively. The steps to convert the weighted 
co-occurrence graph to an enriched graph is illustrated 
in Fig. 1. The algorithm for automatic enrichment of the 
weighted co-occurrence graph using a similarity matrix � is 
described below (in Algorithm 1).

Fig. 1  Steps to convert the weighted co-occurrence graph to an 
enriched graph
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4.1  Node enrichment

The similarity matrix � =
(
sij
)
p×p

 is a p × p matrix where p 
is the number of unique terms in the training documents and 
sij is the similarity between the word embeddings of terms ti 
and tj obtained using Word2Vec. The nodes in the document 
graph are represented by a node vector � = [n1,… , np] 
where ni is the weight of the nodes calculated using Eq. (4). 
The enriched node vector is obtained by multiplying � by 
the similarity matrix as shown in Eq. (6). Hence, node 
enrichment is done with a semantic kernel [29] that uses 
supervised term weighting and a semantic matrix built from 
word embedding-based semantic similarity between words.

In Eq. (6), new nodes that are semantically similar to the 
existing nodes are added if not present in the graph, and the 
weights of the nodes are assigned/updated as given below in 
Eq. (7). Let �(vi) be the set of the nodes which are semanti-
cally similar to node vi that represents the term ti . The newly 
added nodes have the initial weight denoted as wnode(vi) 
equal to 0 and are assigned weights based on the weights 
of the similar nodes. The weights of the existing nodes are 
updated if there are similar nodes in the graph.

4.2  Edge enrichment

The proposed graph enrichment method helps in considering 
not only the semantic terms shared but also the relationships. 
The edge enrichment is done so that document similarity 
goes beyond exact matching of patterns in documents. The 
edge enrichment method uses similarity matrix to transform 

(6)�̂ = � × �

(7)ŵnode(vi) = wnode(vi) +
∑

vj∈�(vi)

(sij × wnode(vj))

beverages drinks hot john likes loves warm








beverages 1 0.9 0.0 0.0 0.0 0.0 0.0
drinks 0.9 1 0.0 0.0 0.0 0.0 0.0
hot 0.0 0.0 1 0.0 0.0 0.0 0.8
john 0.0 0.0 0.0 1 0.0 0.0 0.0
likes 0.0 0.0 0.0 0.0 1 0.9 0.0
loves 0.0 0.0 0.0 0.0 0.9 1 0.0
warm 0.0 0.0 0.8 0.0 0.0 0.0 1

Fig. 2  The similarity matrix for our toy example using seven words 
where the values correspond to the similarity between words

the adjacency matrix representation of a document graph to 
an enriched representation.

The weighted co-occurrence graph is represented as an 
adjacency matrix A. Edge enrichment is done by utilising 
the adjacency matrix A and the similarity matrix S. During 
edge enrichment, similar edges/patterns are added and the 
weights of the edges are assigned/updated. Edge enrichment 
using the similarity matrix � converts the adjacency matrix 
� to � as given below in Eq. (8) where �

�
= � × � and 

�
�
= �

�
× � . It is ensured that �

�
 is a symmetric matrix 

before �
�
 is calculated. �

�
 and �

�
 are converted to boolean 

matrices �
�
 and �

�
 respectively by setting non zero values in 

�
�
 and �

�
 to 1. We obtain only the newly added elements 

of �
�
 , i.e. the zero elements in �

�
 that are changed to non-

zero elements in �
�
 , by computing 

(
�
�
− �

�

)
⊙�

�
 where 

⊙ corresponds to the element-wise product of matrices.

Equation (9) shows the computation of the final adjacency 
matrix �̂ which is obtained by adding � with diagonal 
matrix from the enriched node vector �̂ = [n̂1,… , n̂p] . �̂ is 
the adjacency matrix representation of the enriched graph.

(8)� = �
�
+
(
�
�
− �

�

)
⊙�

�
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4.3  Example to illustrate node enrichment 
and edge enrichment

Initially, a similarity matrix is built from the unique words in 
the training documents. Suppose the unique words obtained 
from the training documents are ‘beverages’, ‘drinks’, ‘hot’, 
‘john’, ‘likes’, ‘loves’ and ‘warm’. The similarity matrix for 
the toy example is given in Fig. 2. The two documents to 
be compared in the example are ‘John loves hot drinks’ and 
‘John likes warm beverages’. Even though the sentences 

(9)�̂ = � +

⎡
⎢⎢⎢⎣

n̂1 0 0 … 0

0 n̂2 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … n̂p

⎤⎥⎥⎥⎦

are similar, similarity measures based on term overlap/key-
word matching do not give accurate similarity value as only 
one word in the documents match. The proposed automatic 
graph enrichment method builds enriched graphs with simi-
lar structures for documents with similar meaning resulting 
in accurate similarity calculation.

The initial weighted co-occurrence graph representations 
of the documents (obtained with a predefined sliding win-
dow of size 2) are given below in Figs. 3 and 4. The initial 
weights of the nodes and edges are assumed as 1 in this 
example. In actual cases, the weights of nodes and edges are 
calculated as in Eqs. (4) and (5) respectively.

During node enrichment (that corresponds to Eq. (6)), 
new nodes are added with weights based on the weights 
of the similar nodes as shown in Figs. 5 and 6. In Fig. 5, 
the nodes corresponding to the words ‘likes’, ‘warm’ and 
‘beverages’ are the newly added nodes which are semanti-
cally similar to the existing nodes that represent the words 
‘loves’, ‘hot’ and ‘drinks’ respectively. Similarly, in Fig.  6, 
the nodes that denote the words such as ‘loves’, ‘hot’ and 
‘drinks’ are the nodes added during the node enrichment 
step. These newly added nodes are assigned weights based 
on the weights of the similar nodes in the graph. For exam-
ple, in Fig.  5, the node ‘likes’ is assigned a weight of 0.9 
which is obtained by computing the product of the weight 
of the similar node ‘loves’ and the value of its similarity to 
the node. 

The graph is represented as an adjacency matrix before 
enriching the edges. The adjacency matrices in Figs. 7 
and 8 denote the graphs in Figs. 5 and  6 respectively. These 
are symmetric matrices with values that correspond to the 
weights of edges in the graphs.

Fig. 3  Co-occurrence graph representation of ‘John loves hot drinks’ 
with the initial weights of nodes and edges assumed as 1

Fig. 4  Co-occurrence graph representation of ‘John likes warm bev-
erages’ with the initial weights of nodes and edges assumed as 1

Fig. 5  Node enrichment of graph of ‘John loves hot drinks’ that adds 
similar nodes and this step corresponds to Eq. (6)

Fig. 6  Node enrichment of graph of ‘John likes warm beverages’ that 
adds similar nodes and this step corresponds to Eq. (6)

beverages drinks hot john likes loves warm








beverages 0.0 0.0 0.0 0.0 0.0 0.0 0.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 0.0
hot 0.0 1.0 0.0 0.0 0.0 1.0 0.0
john 0.0 0.0 0.0 0.0 0.0 1.0 0.0
likes 0.0 0.0 0.0 0.0 0.0 0.0 0.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 0.0
warm 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 7  Adjacency matrix representation of ‘John loves hot drinks’

beverages drinks hot john likes loves warm








beverages 0.0 0.0 0.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hot 0.0 0.0 0.0 0.0 0.0 0.0 0.0
john 0.0 0.0 0.0 0.0 1.0 0.0 0.0
likes 0.0 0.0 0.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.0 0.0 0.0 0.0 0.0
warm 1.0 0.0 0.0 0.0 1.0 0.0 0.0

Fig. 8  Adjacency matrix representation of ‘John likes warm bever-
ages’
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Edge enrichment carried out utilising the similarity 
matrix converts the adjacency matrix to matrix M as shown 
in Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18. During edge 
enrichment, similar patterns are added and weighted based 

on the weights of the existing edges. For example, for the 
‘hot drinks’ edge in the graph in Fig. 5, the patterns that 
are similar to it such as ‘hot beverages’ and ‘warm drinks’ 
are added with the initial transformation using similarity 

Fig. 9  Matrix �
�
 for ‘John 

loves hot drinks’
beverages drinks hot john likes loves warm









beverages 0.0 0.0 0.9 0.0 0.0 0.0 0.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 0.8
hot 0.9 1.0 0.0 0.0 0.9 1.0 0.0
john 0.0 0.0 0.0 0.0 0.9 1.0 0.0
likes 0.0 0.0 0.9 0.9 0.0 0.0 0.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 0.8
warm 0.0 0.8 0.0 0.0 0.0 0.8 0.0

beverages drinks hot john likes loves warm








beverages 0.0 0.0 0.9 0.0 0.0 0.0 0.72
drinks 0.0 0.0 1.64 0.0 0.0 0.0 1.60
hot 1.8 1.81 0.0 0.0 1.8 1.81 0.0
john 0.0 0.0 0.0 0.0 1.8 1.81 0.0
likes 0.0 0.0 0.9 0.9 0.0 0.0 0.72
loves 0.0 0.0 1.64 1.0 0.0 0.0 1.60
warm 0.72 0.8 0.0 0.0 0.72 0.8 0.0

Fig. 10  Matrix �
�
 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm








beverages 0.0 0.0 0.9 0.0 0.0 0.0 0.72
drinks 0.0 0.0 1.0 0.0 0.0 0.0 0.8
hot 0.9 1.0 0.0 0.0 0.9 1.0 0.0
john 0.0 0.0 0.0 0.0 0.9 1.0 0.0
likes 0.0 0.0 0.9 0.9 0.0 0.0 0.72
loves 0.0 0.0 1.0 1.0 0.0 0.0 0.8
warm 0.72 0.8 0.0 0.0 0.72 0.8 0.0

Fig. 11  Matrix �
�
 for ‘John loves hot drinks’

Fig. 12  Matrix �
�
 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm








beverages 0.0 0.0 1.0 0.0 0.0 0.0 0.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 1.0
hot 1.0 1.0 0.0 0.0 1.0 1.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 0.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 1.0
warm 0.0 1.0 0.0 0.0 0.0 1.0 0.0

Fig. 13  Matrix �
�
 for ‘John loves hot drinks’

beverages drinks hot john likes loves warm








beverages 0.0 0.0 1.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.0 0.0 0.0 0.0 1.0
hot 1.0 0.0 0.0 0.0 1.0 0.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.0 1.0 0.0 0.0 1.0
warm 1.0 1.0 0.0 0.0 1.0 1.0 0.0

Fig. 14  Matrix �
�
 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm








beverages 0.0 0.0 1.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 1.0
hot 1.0 1.0 0.0 0.0 1.0 1.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 1.0
warm 1.0 1.0 0.0 0.0 1.0 1.0 0.0

Fig. 15  Matrix �
�
 for ‘John loves hot drinks’

beverages drinks hot john likes loves warm








beverages 0.0 0.0 1.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 1.0
hot 1.0 1.0 0.0 0.0 1.0 1.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 1.0
warm 1.0 1.0 0.0 0.0 1.0 1.0 0.0

Fig. 16  Matrix �
�
 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm








beverages 0.0 0.0 0.8 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.0 0.0 0.0 0.0 0.9
hot 0.8 0.0 0.0 0.0 0.8 0.0 0.0
john 0.0 0.0 0.0 0.0 1.0 0.9 0.0
likes 0.0 0.0 0.8 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.0 0.9 0.0 0.0 0.9
warm 1.0 0.9 0.0 0.0 1.0 0.9 0.0

Fig. 17  Matrix � for ‘John loves hot drinks’

beverages drinks hot john likes loves warm








beverages 0.0 0.0 1.6 0.0 0.0 0.0 1.64
drinks 0.0 0.0 0.72 0.0 0.0 0.0 0.9
hot 0.8 0.72 0.0 0.0 0.8 0.72 0.0
john 0.0 0.0 0.0 0.0 1.81 1.8 0.0
likes 0.0 0.0 1.6 1.0 0.0 0.0 1.64
loves 0.0 0.0 0.72 0.9 0.0 0.0 0.9
warm 1.81 1.8 0.0 0.0 1.81 1.8 0.0



1074 International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

matrix (which correspond to elements in �
�
 in Eq. (8)) as 

shown in Fig. 9. In the subsequent transformation using 
similarity matrix, the ‘warm beverages’ edge is added 
(which corresponds to an element in � in Eq. (8)) as given 

in Fig. 17. Similarly, for the ‘warm beverages’ edge in the 
graph in Fig. 6, the patterns that are similar to it such as 
‘warm drinks’ and ‘hot beverages’ are added with the initial 
transformation using similarity matrix (which correspond 
to elements in �

�
 in Eq. (8)) as shown in Fig. 10. In the 

subsequent transformation using similarity matrix, the ‘hot 
drinks’ edge is added (which corresponds to an element in 
� in Eq. (8)) as given in Fig. 18. The boolean matrices in 
Figs. 13, 14, 15 and 16 are obtained by setting the non zero 
values of matrices in Figs. 9, 10, 11 and 12 to one. The 
final adjacency matrix representations of the graphs (which 
corresponds to �̂ in Eq. (9)) are shown in Figs. 19 and 20. 
The adjacency matrix representations are converted to the 
enriched graphs as given in Figs. 21 and 22. Hence, the two 
documents have similar enriched graph structures which lead 
to accurate calculation of similarity between the text docu-
ments. The advantage of using graph kernels for text similar-
ity is that we can compare terms (represented by nodes) and 
patterns (represented by edges) in documents effectively and 
efficiently. The proposed graph enrichment enables the graph 
kernels to go beyond exact matching of terms and patterns.          

5  Graph kernel‑based text classification

In this section, we explain the calculation of similarity 
between the enriched graph representations of text and then 
briefly describe the classification pipeline.

5.1  Graph kernels for measuring document 
similarity

The kernel approach allows the extension of linear algo-
rithms to non-linear models, and helps in the application 
of algorithms to structured representation such as strings, 
trees and graphs. The kernel function is a dot product in an 
implicit feature space. This helps in replacing the dot prod-
ucts in kernel machines and hence, kernel methods solve the 
problem of direct application of existing pattern recognition 
algorithms to graphs [7].

Fig. 18  Matrix � for ‘John likes warm beverages’

beverages drinks hot john likes loves warm








beverages 0.9 0.0 0.9 0.0 0.0 0.0 0.72
drinks 0.0 1.0 1.0 0.0 0.0 0.0 0.8
hot 0.9 1.0 1.0 0.0 0.9 1.0 0.0
john 0.0 0.0 0.0 1.0 0.9 1.0 0.0
likes 0.0 0.0 0.9 0.9 0.9 0.0 0.72
loves 0.0 0.0 1.0 1.0 0.0 1.0 0.8
warm 0.72 0.8 0.0 0.0 0.72 0.8 0.8

Fig. 19  Final adjacency matrix representation of ‘John loves hot 
drinks’ obtained after graph enrichment, corresponding to �̂ in Eq. 
(9)

beverages drinks hot john likes loves warm








beverages 1.0 0.0 0.8 0.0 0.0 0.0 1.0
drinks 0.0 0.9 0.72 0.0 0.0 0.0 0.9
hot 0.8 0.72 0.8 0.0 0.8 0.72 0.0
john 0.0 0.0 0.0 1.0 1.0 0.9 0.0
likes 0.0 0.0 0.8 1.0 1.0 0.0 1.0
loves 0.0 0.0 0.72 0.9 0.0 0.9 0.9
warm 1.0 0.9 0.0 0.0 1.0 0.9 1.0

Fig. 20  Final adjacency matrix representation of ‘John likes warm 
beverages’ obtained after graph enrichment, corresponding to �̂ in 
Eq. (9)

Fig. 21  Enriched co-occurrence graph of ‘John loves hot drinks’ 
obtained after graph enrichment

Fig. 22  Enriched co-occurrence graph of ‘John likes warm beverages’ 
obtained after graph enrichment

beverages drinks hot john likes loves warm








beverages 0.0 0.0 0.8 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.72 0.0 0.0 0.0 0.9
hot 0.8 0.72 0.0 0.0 0.8 0.72 0.0
john 0.0 0.0 0.0 0.0 1.0 0.9 0.0
likes 0.0 0.0 0.8 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.72 0.9 0.0 0.0 0.9
warm 1.0 0.9 0.0 0.0 1.0 0.9 0.0
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A kernel measures the similarity between objects. The 
kernel matrix created should satisfy the two important 
mathematical properties of matrix symmetry and positive 
semi-definiteness [33]. To compare two documents di and 
dj represented by enriched weighted co-occurrence graphs 
Gi = (Vi,Ei) and Gj = (Vj,Ej) respectively, we use an edge 
walk kernel [6, 21] as shown in Eq. (10) to compare the 
edges in both the graphs. The edge walk kernel is explained 
below in Eqs. (10), (11) and (12). The normalization factor 
is the product of the frobenius norms of the adjacency matri-
ces Ai and Aj of the graphs Gi and Gj respectively so that 
the similarity value is not affected by the number of nodes 
and edges in the graph. ||Ai||F and ||Aj||F correspond to the 
frobenius norms of the adjacency matrices of the graphs Gi 
and Gj respectively. Let ui and vi be the vertices that belong 
to the set of vertices Vi in Gi , ei be the edge linking ui and 
vi in Gi , uj and vj be the vertices that belong to the set of 
vertices Vj in Gj , ej be the edge connecting uj and vj in Gj . 
k
(1)

walk
 is a kernel that compares edge walks of length 1 in the 

graphs Gi and Gj . It is the product of the kernel function on 
the edge and the two nodes that the edge connects as defined 
in Eq. (11).

A delta kernel function, knode , is used for comparing the 
vertices and is equal to 1 if the terms corresponding to the 
vertices are the same and 0 if the terms are different. kedge is 
a kernel function for comparing the edges in the graphs and 
is defined in Eq. (12). It is the product of the weight of the 
edge ei in Gi denoted as wedge(ei) and the weight of the edge 
ej in Gj denoted as wedge(ej) . Hence, the numerator in Eq. (10) 
is equivalent to the sum of the elements in the element-wise 
product of the adjacency matrices Ai and Aj.

The delta kernels are positive definite. The kernel k(1)
walk

 is a 
product of the delta kernels multiplied by a positive number, 

(10)k(di, dj) =

∑
ei�Ei,ej�Ej

k
(1)

walk
(ei, ej)

��Ai��F × ��Aj��F

(11)k
(1)

walk
(ei, ej) =knode(ui, uj) × kedge(ei, ej) × knode(vi, vj)

(12)kedge(ei, ej) =

{
wedge(ei) × wedge(ej) if ei�Ei ∧ ej�Ej

0 otherwise

thus preserving positive definiteness. The edge walk kernel 
function is a sum of the positive definite kernels divided by 
a positive number. Hence, the positive definiteness is pre-
served and it is a valid kernel. The similarity between every 
pair of graphs is determined using the edge walk kernel, 
and the values obtained are used to build a kernel matrix. 
The most common kernel-based classifier is SVM [16]. The 
kernel matrix is then used with SVM classifier to learn and 
predict the classes of the document. The worst case time 
complexity of the graph kernel is O (n + m) where n is the 
number of unique nodes (or the size of the vocabulary) and 
m is the number of edges. Hence, it is higher than that of the 
document similarity measure with bag-of-words representa-
tion (unigram features) whose time complexity is O(n).

5.2  Graph kernel‑based text classification pipeline

The proposed graph kernel-based text classification pipeline 
is shown in Fig. 23. The documents are initially represented 
as weighted co-occurrence graphs where the nodes represent 
the unique terms and the edges represent the association 
between the words co-occurring within a predefined slid-
ing window of size 2. The supervised term weight factor is 
utilised to assign weight to nodes and edges. These graphs 
are enriched automatically using a similarity matrix built 
with similarity values obtained using word embeddings. A 
graph kernel based on edge matching is employed to calcu-
late the similarity between a pair of documents. The similar-
ity values are then used to build a kernel matrix. The kernel 
matrix is fed to a SVM to learn and predict the classes of 
the documents.

6  Experiments and results

In this section, we describe the experiments performed on 
sentiment analysis and topic classification tasks to evaluate 
the performance of the proposed knowledge-driven graph 
similarity measure for text classification. The datasets used 
are briefly explained below.

– Sentence polarity dataset This dataset consists of 5331 
positive and 5331 negative movie reviews [23].

Fig. 23  Graph kernel-based text 
classification pipeline
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– Subjectivity dataset This dataset consists of 5000 sub-
jective and 5000 objective sentences on movie reviews 
labelled according to their subjectivity status [22].

– News This dataset is a collection of 32,602 short text 
documents which are news collected from RSS feeds of 
the websites—nyt.com, usatoday.com and reuters.com 
and classified based on their topics. The topics are sports, 
business, US, health, sci&tech, world and entertainment. 
The document consists of the title, description, link, id, 
data, source and category of the news. We have used only 
the description and category of the news [34].

– Multi-domain sentiment dataset This dataset consists of 
8000 product reviews obtained from amazon.com where 
the products are books, dvd, electronics and kitchen 
[4]. There are 1000 positive reviews and 1000 negative 
reviews for each of the four product domains.

– 20 Newsgroups1 The 20 Newsgroups dataset contains 
20,000 newsgroup documents classified into 20 differ-
ent categories.

In the proposed method, each document is represented as 
a weighted co-occurrence graph where the nodes represent 
the unique terms in the document and edges link words that 
co-occur within a predefined sliding window. The weight 
of the node is stored in the self-loop which corresponds to 
the importance of the term based on its relevance in clas-
sifying the text documents. Nodes that correspond to unim-
portant terms have lower weight than nodes that represent 
the main content of the document. Similarly, the edges that 
connect co-occurring words have weights that are depend-
ent on the relevance of the co-occurring words. The graphs 
are enriched using a word similarity matrix that contains 
similarities greater than or equal to 0.9. The text8 corpus 
(obtained from Wikipedia)2 is used to build the word2vec 
model for deriving the word embedding vectors. The simi-
larity values of the top five similar words for each unique 
word in the training set are used to create the similarity 
matrix. The threshold for the similarity between the word 
vectors is set as 0.9 to obtain the closely related terms or 
synonyms. The graph enrichment process can become slow 
with increase in the size and density of the similarity matrix. 
The different ways to increase the speed of the enrichment 
process are given below:

(i) Set a threshold for the similarity values in the similar-
ity matrix. This would result in a sparse matrix reducing the 
time for matrix operations in graph enrichment.

(ii) Build a similarity matrix with only the most relevant 
features which would reduce the size of the matrix.

(iii) Also, the graph enrichment process for different doc-
uments could be done in parallel since they are not depend-
ent on each other. This would make it considerably faster.

We have compared the proposed approach with linear 
kernel, cosine similarity, Sorensen similarity [24], Tani-
moto similarity [24], radial basis function (RBF) kernel, 
class meaning kernel (CMK) [2], class weighting kernel 
(CWK) [1] and the shortest path graph kernel (spgk) [6, 21] 
method which is a graph kernel approach for text classifica-
tion with a different graph representation of text. The linear 
kernel, cosine similarity and RBF kernel are computed with 
tf-idf weighted feature vectors of documents. The Sorensen 
similarity and Tanimoto similarity measures are calculated 
with boolean vectors of documents. In CMK and CWK, the 
documents are represented as tf weighted vectors and the 
semantic smoothing is then done using semantic matrix built 
from meaning values of terms and supervised term weights 
respectively. In the shortest path graph kernel method, the 
co-occurrence graph is converted to a shortest path graph 
with edges connecting nodes that have the shortest distance 
not above a threshold d and the edges are labelled by the 
inverse of the shortest distance between the nodes. The 
evaluation metrics used to assess the performance of text 
classification are precision, recall and F1 score. The perfor-
mance of shortest path graph kernel with different values of 
d has been evaluated. The proposed method is also experi-
mented with co-occurrence graphs built using predefined 
sliding window w of sizes 2, 3 and 4. The kernel matrices are 
built with the similarity values obtained using linear kernel, 
cosine similarity, Sorensen similarity, Tanimoto similarity, 
RBF kernel, CMK, CWK, spgk and proposed method. The 
row in the kernel matrix represents the similarity of a docu-
ment to be classified with the documents in the training set. 
Each kernel matrix is fed to SVM to evaluate the perfor-
mance of text classification using the similarity measure.

The proposed similarity measure is implemented using 
python. The networkx, gensim and scikit-learn are the 
python packages used to create the graphs, word2vec model 
and the kernel SVM respectively. Table 1 shows the preci-
sion, recall and F1 scores obtained for the sentiment clas-
sification datasets. Table 2 shows the precision, recall and 
F1 scores obtained for the topic classification tasks. Table 3 
shows the performance of the proposed method with co-
occurrence graphs built using predefined sliding window 
w of sizes 2, 3 and 4. The results reported in these tables 
are obtained by tenfold cross validation except for the 20 
Newsgroups dataset that has a standard train/test split. The 
validation set is 20 percent of the training set and is used 
to optimize the value of the parameter C in SVM. The best 
value of C from the set of values {0.01,0.1,1,10,100,1000} 
is then used to classify the documents in the testing set.

Tables 4 and 5 compare the classification performances 
(using train/test split) of the proposed method and the 2 http://mattm ahone y.net/dc/textd ata.html

1 http://ana.cacho po.org/datas ets-for-singl e-label -text-categ oriza tion

http://mattmahoney.net/dc/textdata.html
http://ana.cachopo.org/datasets-for-single-label-text-categorization
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Table 1  Precision, recall and F1 scores for sentiment classification tasks using different similarity measures

In the underlined datasets, the improvements of the proposed method over linear kernel are statistically significant at p < 0.01 using sign test

Dataset Metric Linear Cosine Sorensen Tanimoto RBF Spgk Proposed method

d=1 d=2 d=3 d=4

Polarity Precision 77.15 77.15 76.65 77.36 77.09 77.13 77.18 77.43 77.77 81.47
Recall 77.12 77.11 76.60 77.33 77.07 77.10 77.14 77.39 77.74 81.42
F1 77.12 77.11 76.59 77.32 77.06 77.10 77.13 77.39 77.74 81.42

Subjectivity Precision 90.98 91.12 90.21 90.86 91.07 90.82 91.02 90.85 90.85 92.74
Recall 90.94 91.08 90.18 90.84 91.03 90.80 91.00 90.82 90.83 92.73
F1 90.94 91.08 90.18 90.84 91.03 90.80 91.00 90.82 90.83 92.73

Books Precision 80.58 80.91 79.88 79.85 80.29 80.85 81.13 81.11 80.55 86.12
Recall 80.44 80.77 79.69 79.74 80.09 80.74 81.09 81.04 80.49 86.04
F1 80.42 80.79 79.66 79.72 80.06 80.72 81.09 81.03 80.48 86.04

Dvd Precision 81.70 82.61 79.67 80.59 81.88 80.63 81.86 81.30 81.34 87.40
Recall 81.55 82.50 79.50 80.50 81.70 80.50 81.75 81.25 81.25 87.20
F1 81.53 82.49 79.47 80.49 81.68 80.48 81.73 81.24 81.24 87.19

Electronics Precision 80.72 80.25 81.07 82.36 80.29 83.07 83.38 84.13 84.05 86.01
Recall 80.45 80.05 81.00 82.30 79.95 83.00 83.30 84.05 84.00 85.90
F1 80.41 80.01 80.99 82.29 79.98 82.99 83.29 84.04 83.99 85.89

Kitchen Precision 84.96 85.78 85.18 85.52 85.27 85.78 85.86 85.82 86.07 90.20
Recall 84.90 85.70 84.95 85.35 85.20 85.70 85.75 85.70 85.95 90.10
F1 84.89 85.69 84.92 85.33 85.19 85.69 85.69 85.74 85.94 90.09

Table 2  Precision, recall and F1 scores for topic classification tasks using different similarity measures

In the underlined datasets, the improvements of the proposed method over linear kernel are statistically significant at p < 0.01 using sign test

Dataset Metric Linear Cosine Sorensen Tanimoto RBF Spgk Proposed method

d=1 d=2 d=3 d=4

20NG Precision 80.33 83.44 83.77 83.58 80.52 81.72 81.64 81.41 81.44 85.10
Recall 79.23 83.03 83.27 82.97 78.59 80.92 80.72 80.55 80.56 84.19
F1 79.31 83.03 83.27 82.95 78.94 81.01 80.79 80.59 80.60 84.36

News Precision 82.49 82.89 81.34 81.39 82.63 80.88 80.92 80.91 81.01 84.39
Recall 82.44 82.83 81.29 81.40 82.55 80.85 80.89 80.90 81.00 84.30
F1 82.34 82.76 81.16 81.30 82.40 80.72 80.74 80.74 80.85 84.20

Table 3  Precision, recall and F1 
scores for the proposed method 
with graph representation 
built using predefined sliding 
window of different sizes

Dataset Proposed method

w=2 w=3 w=4

Precision Recall F1 Precision Recall F1 Precision Recall F1

Polarity 81.47 81.43 81.42 81.38 81.35 81.34 81.15 81.11 81.11
Subjectivity 92.74 92.73 92.73 92.81 92.80 92.80 92.63 92.62 92.62
Books 86.12 86.04 86.04 86.24 86.14 86.13 85.75 85.64 85.63
Dvd 87.40 87.20 87.19 87.54 87.35 87.34 87.05 86.90 86.89
Electronics 86.01 85.90 85.89 86.82 86.70 86.69 86.63 86.50 86.49
Kitchen 90.20 90.10 90.09 89.90 89.80 89.79 90.02 89.90 89.89
20NG 85.10 84.19 84.36 85.17 83.91 84.18 85.15 83.54 83.88
News 84.39 84.30 84.20 83.87 83.76 83.65 83.72 83.58 83.44
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supervised semantic kernels i.e. CMK and CWK for senti-
ment and topic classification tasks. Since CMK and CWK 
require long training time, the performance is evaluated by 
splitting the dataset into training and testing set in the 80:20 
ratio. The default value of 1 for parameter C in SVM is used 

to classify the documents. In text classification with CMK 
and CWK, attribute selection (as reported in their experi-
ments [1, 2]) is applied using mutual information to select 
the best 2000 terms. CWKwfs and CMKwfs correspond to 
the supervised semantic kernels CWK and CMK without 

Fig. 24  Classification perfor-
mance with different sizes of 
training set

Table 4  Comparison of 
precision, recall and F1 scores 
of sentiment classification tasks 
using supervised semantic 
kernels

Dataset Metric CWK CWKwfs CMK CMKwfs Proposed method

Polarity Precision 62.56 77.49 63.16 75.89 78.38
Recall 62.07 77.46 62.68 75.82 78.36
F1 61.69 77.46 62.33 75.81 78.35

Subjectivity Precision 82.83 91.43 81.73 90.10 91.46
Recall 82.75 91.40 81.60 90.10 91.45
F1 82.74 91.40 81.58 90.10 91.45

Books Precision 66.29 72.61 72.21 76.73 81.96
Recall 66.17 72.43 71.93 76.69 81.95
F1 66.11 72.37 71.85 76.69 81.95

Dvd Precision 69.57 78.00 71.93 76.50 84.32
Recall 69.50 78.00 71.50 76.50 84.25
F1 69.47 78.00 71.36 76.50 84.24

Electronics Precision 74.00 79.50 74.02 81.05 81.51
Recall 74.00 79.50 74.00 81.00 81.50
F1 74.00 79.50 73.99 81.00 81.50

Kitchen Precision 75.71 83.27 82.32 83.35 91.25
Recall 75.50 83.25 82.25 83.25 91.25
F1 75.45 83.25 82.24 83.24 91.25
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performing this feature selection. There is a considerable 
improvement in the performance of these semantic kernels 
without feature selection.

The proposed approach significantly outperforms the 
baseline similarity measures for text classification on all 
datasets in terms of precision, recall and F1 score as shown 
in Tables 1, 2, 4 and 5. The highest precision, recall and 
F1 score for each dataset are highlighted in bold in the 
tables. Table 6 shows the information considered by the pro-
posed approach for the computation of similarity between 
documents. The advantage of the proposed graph kernel 
approach for text classification is that it considers the con-
textual information and is not based on word independence 
approach as in vector space models. The similarity measure 
compares the relevant structural information in the docu-
ments and computes the semantic similarity between the 
documents. This is possible due to the semantic information 
available in the enriched graph representations of the docu-
ments. Table 3 shows that there is no considerable differ-
ence in the performance with an increase in the size of the 
predefined sliding window used to build the co-occurrence 
graphs. Figure 24 presents the results of document classi-
fication (in terms of F1 score) using the proposed method 
and linear kernel with different proportions of training set 
such as 0.1, 0.5 and 0.9. It shows that the proposed method 
consistently outperforms the linear kernel even with a small 
training set (of 10%).  

7  Conclusion

Graph-based representations of text are effective for text 
classification as they can model the structural information 
in text, which is required to understand its meaning. Con-
sidering the structural information in text when calculating 
the similarity between documents can improve the perfor-
mance of text classification. In this paper, we focused on 
building a text graph model that represents the structural 
information in text effectively, which helps to compare docu-
ments based on their main similar content. Supervised term 
weighting is utilised to weight the terms and their associa-
tions, so that the matching terms and patterns contribute 
to document similarity based on their relevance. The graph 
enrichment is carried out with the word similarity matrix to 
consider semantically similar terms and associations, going 
beyond exact matching of document content. We employed 
a graph kernel function that utilises the rich information 
in the enriched weighted graphs to compute the similarity 
between text documents accurately for improving the per-
formance of classification task. Our experimental results on 
sentiment analysis and topic classification tasks show that 
the proposed graph kernel-based approach for text classifi-
cation detects and exploits the structural patterns in text to 
compute the semantic similarity between text documents, 
resulting in a significant improvement in text classification 
performance. The similarity matrix used in the enrichment 

Table 5  Comparison of 
precision, recall and F1 scores 
of topic classification tasks 
using supervised semantic 
kernels

Dataset Metric CWK CWKwfs CMK CMKwfs Proposed method

20NG Precision 73.84 79.76 69.29 73.78 85.01
Recall 73.56 79.19 68.98 73.52 83.94
F1 73.55 79.12 69.00 73.49 84.15

News Precision 71.34 83.04 69.24 78.60 83.95
Recall 71.05 83.15 68.66 78.56 84.02
F1 71.04 83.06 68.27 78.42 83.89

Table 6  Advantages of the proposed method. Information considered for the computation of similarity between documents

a Based on the distance between words.
b Based on the number of co-occurrences and relevance of the terms. Distance is not taken into account since terms that co-occur closely are only 
considered

Information considered Linear Cosine Sorensen Tanimoto RBF spgk CWK CMK Pro-
posed 
method

Importance of terms based on class information 
(Supervised term weight)

No No No No No No Yes Yes Yes

Co-occurrence information No No No No No Yes No No Yes
Importance of associations No No No No No Yes

a No No Yes
b

Incorporation of external knowledge No No No No No No No No Yes
Semantic similarity of terms and associations No No No No No No No No Yes
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could be improved by designing it based on the application, 
in order to utilise domain knowledge and increase the accu-
racy of the similarity measure. An interesting future work is 
to use an ontology-based similarity matrix with more accu-
rate similarity values to enrich the graph and consider the 
similar concepts and relationships in measuring document 
similarity. The proposed text classification framework can 
be adapted for different domains by designing the similarity 
matrix based on the domain. The graph enrichment method 
can be extended to calculate similarity between text docu-
ments for other applications such as document clustering, 
information retrieval and relevance-based document ranking.
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