

University of Birmingham

Knowledge-driven graph similarity for text
classification
Shanavas, Niloofer; Wang, Hui; Lin, Zhiwei; Hawe, Glenn

DOI:
10.1007/s13042-020-01221-4

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Shanavas, N, Wang, H, Lin, Z & Hawe, G 2021, 'Knowledge-driven graph similarity for text classification',
International Journal of Machine Learning and Cybernetics, vol. 12, pp. 1067–1081.
https://doi.org/10.1007/s13042-020-01221-4

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 07. May. 2024

https://doi.org/10.1007/s13042-020-01221-4
https://doi.org/10.1007/s13042-020-01221-4
https://birmingham.elsevierpure.com/en/publications/73dd1997-fd4a-4265-a3ee-2e6684a165df

Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081
https://doi.org/10.1007/s13042-020-01221-4

ORIGINAL ARTICLE

Knowledge‑driven graph similarity for text classification

Niloofer Shanavas1 · Hui Wang1 · Zhiwei Lin1 · Glenn Hawe1

Received: 16 November 2019 / Accepted: 3 October 2020 / Published online: 19 November 2020
© The Author(s) 2020

Abstract
Automatic text classification using machine learning is significantly affected by the text representation model. The structural
information in text is necessary for natural language understanding, which is usually ignored in vector-based representations.
In this paper, we present a graph kernel-based text classification framework which utilises the structural information in text
effectively through the weighting and enrichment of a graph-based representation. We introduce weighted co-occurrence
graphs to represent text documents, which weight the terms and their dependencies based on their relevance to text clas-
sification. We propose a novel method to automatically enrich the weighted graphs using semantic knowledge in the form
of a word similarity matrix. The similarity between enriched graphs, knowledge-driven graph similarity, is calculated using
a graph kernel. The semantic knowledge in the enriched graphs ensures that the graph kernel goes beyond exact matching
of terms and patterns to compute the semantic similarity of documents. In the experiments on sentiment classification and
topic classification tasks, our knowledge-driven similarity measure significantly outperforms the baseline text similarity
measures on five benchmark text classification datasets.

Keywords Automatic text classification · Document similarity measure · Graph-based text representation · Graph
enrichment · Graph kernels · Supervised term weighting · SVM

1 Introduction

Research on automatic text classification has gained impor-
tance due to the information overload problem and the need
for faster and more accurate extraction of knowledge from
huge data sources. Text classification assigns predefined
labels to documents based on their content. An important
step in automatic text classification is the effective represen-
tation of text. Bag-of-words is the most commonly used text
representation scheme and is based on term independence
assumption, where a text document is regarded as a set of
unordered terms and is represented as a vector. It is simple
and fast, but ignores the structural information in text such
as the syntactic and semantic information. In contrast, the
graph-based representation scheme is much more expres-
sive than the bag-of-words representation, and can repre-
sent structural information such as term dependencies. It has

been shown that graph-based representation can outperform
bag-of-words representation [12, 18, 26–28, 32, 37].

Document similarity is used in many text processing
tasks such as text classification, clustering and information
retrieval. Document similarity is usually measured as the
distance/similarity between the vector representations of text
documents under the assumption that terms are independ-
ent and unordered, thus the structural information in text is
lost. Since the association between terms in text contributes
towards the meaning of the text document, considering the
structural information in measuring similarity can poten-
tially improve the accuracy of document classification.

A graph kernel measures the similarity between graphs
based on the comparison of graph substructures. Using a
graph kernel to measure document similarity enables the
consideration of structural information in text. The similar-
ity value computed by a graph kernel is dependent on the
information represented in the graphs. Therefore, the ques-
tion of how to represent text using a graph is crucial to the
graph kernel approach to similarity-based text classification.
Two main challenges in this approach are (1) the effective
representation of the structural information in text and (2)
the efficient utilisation of the rich information in the graph

 * Niloofer Shanavas
 shanavas-n@ulster.ac.uk

1 School of Computing, Ulster University,
Jordanstown BT37 0QB, UK

http://orcid.org/0000-0002-5003-6795
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-020-01221-4&domain=pdf

1068 International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

representation to compute similarity based on the main con-
tent of the documents.

In this paper, we present a graph-based text classification
framework addressing these challenges. The text document
is initially represented by a weighted co-occurrence graph.
Then it is transformed to an enriched document graph by
automatically creating similar nodes and edges (or associa-
tions), using a similarity matrix based on word similarities.
Since a supervised term weighting method is used to weight
the terms and their associations, the matching terms and pat-
terns contribute to document similarity based on their rele-
vance. The graph enrichment enables the similarity measure
to go beyond exact matching of terms and associations. We
use an edge walk graph kernel to utilise the information in
the enriched weighted graphs for calculating the similarity
between text documents. The kernel function takes as input
a pair of weighted co-occurrence graphs and gives as output
a similarity value based on matching relevant content of the
text documents. The kernel matrix is built by computing the
similarity between every pair of text graphs, which is then
used to train SVM, a kernel-based classifier, for learning and
predicting the classes of documents. Our proposed text clas-
sification framework aims to represent text document more
richly and utilise such rich information efficiently, therefore
we can expect this approach to have improved performance,
advancing the state-of-the-art in text classification. Hence,
the novel contributions made in this paper are (1) the pro-
posed weighting of the graph, (2) the automatic enrichment
of graphs and (3) the application of the new graph-based
text representation to build the knowledge-driven similarity
measure.

The rest of the paper is organised as follows. Section 2
discusses related work. Section 3 introduces the proposed
weighted graph representation of text documents. Section 4
presents the method for automatic graph enrichment using
a knowledge base. Section 5 describes the utilisation of the
information in the proposed graphs using graph kernels. Sec-
tion 6 presents the experiments and results. Finally, Sect. 7
concludes the paper.

2 Related work

There are works on kernel methods [29] that allow us to
compute the similarity between structured objects such as
trees, graphs and sequences. Text can be viewed as struc-
tured objects and the kernels for structured objects can be
applied to compare the text documents for different text pro-
cessing tasks such as information retrieval, text classification
and text clustering.

Graph kernels are instances of the R-convolution kernels
[13] that provide a way for comparing discrete structures.
R-convolution kernels compare objects by decomposing the

objects into parts and combining the results of the com-
parisons of the parts of the objects. Different substructures
such as random walks, shortest path, cycles, subtrees have
been considered to compute the similarity between graphs.
Gärtner et al. [10] defined the random walk graph kernel
approach that counts all pairs of matching walks in the two
graphs. Subtree kernels count the common subtree patterns
in the graphs [25]. Kernels based on cyclic patterns consider
common cycles in the graphs [14]. Borgwardt and Kriegel
[6] defined the shortest path graph kernel that compares all
the shortest paths in the graphs.

Lodhi et al. [17] proposed the idea of string kernels for
measuring document similarity. A string kernel compares
ordered subsequences of characters in the document which
need not be contiguous. Similarly, Cancedda et al. [8]
worked with word-sequence kernel that considers sequences
of words instead of characters. The word-sequence kernels
compute similarity based on the number of matching word
sequences and non-contiguous subsequences are penalized.

The information in knowledge bases such as WordNet
[19] and Wikipedia can be utilised to improve the perfor-
mance of text classification. Siolas and d’Alché Buc [30]
introduced semantic smoothing by incorporating a-priori
knowledge from WordNet into text classification. The
semantic smoothing of tf-idf feature vectors is performed
using a smoothing matrix that contains the semantic similar-
ity between words obtained using WordNet. This results in
the increase in the feature value of the terms that are related
semantically. Siolas et al. showed that the introduction of
semantic knowledge in SVM and k-NN improves the clas-
sification performance. There are other works [5, 20] that
used WordNet for designing a semantic smoothing kernel
for text classification. They calculated the similarity between
words based on the semantic relationship of these terms in
WordNet. Cristianini et al. [9] incorporated into a kernel
the semantic relations between terms calculated using LSI.
Wang and Domeniconi [35] developed semantic kernels by
embedding the knowledge derived from Wikipedia and used
it to improve the performance of document classification.

Supervised semantic smoothing kernels exist that utilise
class information in building a semantic matrix [1, 2, 36].
A sprinkled diffusion kernel that uses both co-occurrence
information and class information for word sense disam-
biguation is presented in [36]. In this approach, the smooth-
ing helps in increasing the semantic relationship between
terms in the same class. But, it does not distinguish the com-
mon terms between classes. Class meaning kernel (CMK)
[2] is a supervised semantic kernel that considers the mean-
ingfulness of terms in the classes using Helmholtz principle
from Gestalt theory. In order to increase the importance of
class specific terms compared to common terms, the seman-
tic smoothing is done using the semantic matrix built from
class-based meaning values of terms. Class weighting kernel

1069International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

(CWK) [1] smooths the representation of documents using
class-based term weights that calculates the importance of
the terms in the classes. Hence, there are different variants of
semantic kernels with variations in the design of the seman-
tic smoothing matrix. Since a document is represented as
a vector and is based on a term independence assumption,
these semantic kernels [1, 2, 5, 9, 20, 30, 35, 36] do not
consider term dependencies such as the order of words or
the distance between words in the computation of similarity
between documents.

Walk-based kernels that are products of node kernels have
been proposed that captures semantic similarity between
words using word embeddings. Srivastava et al. [31] devel-
oped an approach that considers both syntactic and semantic
similarity through a random walk-based kernel. It extends
beyond label matching as word embeddings (SENNA) are
used to represent words. Kim et al. [15] proposed a con-
volution sentence kernel based on word2vec embeddings.
They smooth the delta word kernel to capture the seman-
tic similarity of words. The similarity between sentences
is obtained by combining the similarity of all the phrases.
Although these approaches go beyond label matching, there
is a high computational cost due to the calculation of dis-
tance between all possible pairs of words in the sentences.

Bleik et al. [3] used the graph kernel approach to compare
biomedical articles represented as graphs. They mapped the
biomedical documents into concept graphs using Unified
Medical Language System (UMLS) database and used graph
kernel functions to compute the similarity between the text
documents. Gonçalves and Quaresma [11] represented text
documents as graphs using discourse representation theory.
The graph-based semantic representations of documents are
then compared using a graph kernel based on direct product
graph. Nikolentzos et al. [21] used a modified shortest path
graph kernel to compute the similarity of two text docu-
ments represented as graph-of-words. The graph-of-words
representation of text document is converted to shortest path
graph. The edges in the shortest path graph connect vertices
if the shortest distance between them is not above a threshold
d and each edge is labelled by the inverse of the shortest dis-
tance between the vertices that the edge connects. The simi-
larity between the text documents is based on the number of
matching terms and takes into account the distance between
the terms in the documents. Our work differs from theirs in
the graph-based representation of the text documents and
the information considered while calculating the similar-
ity between graphs. The two main advantages of using the
proposed enriched co-occurrence graph representation of
text for document similarity are (1) it considers the relevant
content of each document as the terms and associations are
weighted ensuring that irrelevant information in text is not
taken into account while calculating the similarity between

documents that affects the categorization of documents and
(2) it matches synonymous terms and similar patterns.

3 Graph representation of text

In this section, we introduce the proposed graph representa-
tion of text.

3.1 Proposed weighted co‑occurrence graph
representation

The first step in the proposed text classification approach is
the construction of a graph for each of the documents to be
classified. We represent each text document as a weighted
co-occurrence graph. The nodes represent the unique terms
in the document and the edges connect nodes that co-occur
within a predefined sliding window of fixed size. We weight
the nodes and the edges based on the relevance of the terms
and their associations respectively.

The relevance of the terms is determined using the super-
vised term weight factor—supervised relevance weight (srw)
that we proposed in [28]. The supervised term weight fac-
tor gives higher weight to terms that help in distinguishing
the documents in different classes. It is calculated from the
information on the distribution of the training documents in
the predefined classes.

The calculation of srw for each term t involves three steps.
Step one is the calculation of class_rel_prob(t,Ci) for each
class Ci which is given in Eq. (1) where a, b and c denote
the number of documents in class Ci that contain the term
t, the number of documents in class Ci that do not contain
the term t and the number of documents not in class Ci that
contain the term t respectively. Hence, class_rel_prob(t,Ci)
determines the concentration of term t in class Ci compared
to its concentration in other classes. The number of docu-
ments in class Ci that do not contain the term t is considered
so that higher weights are not assigned to terms in classes
having more training documents.

Step two is the calculation of the average densities of the
term t in the classes as shown in Eq. (2) where C is the total
number of classes and Ni is the total number of documents
in class Ci . The sum of densities of the term t in the classes
is divided by the number of classes to obtain the average
density of the term t. The inverse of the average densities of
the term is used in the supervised term weight calculation for
reducing the over weighting of commonly occurring terms.

(1)
class_rel_prob(t,Ci) = log2

(
2 +

a

max(1, c)

)

× log2

(
2 +

a

max(1, b)

)

1070 International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

Finally, step three calculates srw for a term t as shown in Eq.
(3). The class_rel_prob(t,Ci) value for a term t is determined
for each class Ci . max_class_rel(t) is the maximum of the
class_rel_prob(t,Ci) values for a term t.

The weights of nodes and edges are calculated using super-
vised term weights. The weight of each node v (representing
term t), denoted by wnode(v) , is calculated as in Eq. (4) where
f(t) is the frequency of term t in the document that the graph
represents.

We use edge weights to represent the strength of the asso-
ciation between the co-occurring words. For two connect-
ing nodes vi and vj representing terms ti and tj respectively,
with an edge e = (vi, vj) ∈ E , the weight for e, denoted by
wedge(e) , is calculated as

where � is the number of times that the terms ti and tj co-
occur in the document within a fixed size sliding window.

The advantage of using the supervised term weight fac-
tor for weighting the nodes and edges is the reduction in the
weights of the irrelevant nodes and relationships. Hence,
the information in our proposed enriched graph represen-
tation enables the similarity measure to take into account
the relevant terms and associations shared between docu-
ments. After representing each document by a weighted
co-occurrence graph, the next step is the enrichment of the
co-occurrence graph using a similarity matrix, which is
explained in Sect. 4.

4 Automatic enrichment of graphs

There are many methods to calculate the semantic similar-
ity between words, such as ontology, thesaurus and word
embedding-based approaches. We utilise the similarities
between words obtained using word embeddings to build
a word similarity matrix. We used a similarity matrix that
only contains similarity values greater than a threshold T
(set as 0.9 in our experiments). This similarity matrix is used
to automatically enrich the weighted co-occurrence graph

(2)avg_density(t) =

∑C

i=1

�
a

Ni

�

C

(3)srw(t) = max_class_rel(t) × log10

(
1

avg_density(t)

)

(4)wnode(v) = f (t) × srw(t)

(5)wedge(e) = � ×

√
srw(ti) × srw(tj)

built for each document in order to add similar nodes (called
as node enrichment) and similar edges/patterns (called as
edge enrichment). For example, during node enrichment,
if the co-occurrence graph has a node that denotes the term
‘likes’, then the terms in the similarity matrix that are similar
to ‘likes’ and are not in the co-occurrence graph are added
automatically as new nodes; these nodes are then assigned
weights based on the weights of similar nodes. During edge
enrichment, if the co-occurrence graph has an edge connect-
ing ‘likes’ and ‘hot’ corresponding to the pattern ‘likes hot’,
similar patterns such as ‘loves warm’ are added automati-
cally by connecting the nodes ‘loves’ and ‘warm’ and the
edges are assigned weights based on the weights of similar
patterns. The automatic enrichment of graphs consisting of
node enrichment and edge enrichment is explained in Sects.
4.1 and 4.2 respectively. The steps to convert the weighted
co-occurrence graph to an enriched graph is illustrated
in Fig. 1. The algorithm for automatic enrichment of the
weighted co-occurrence graph using a similarity matrix � is
described below (in Algorithm 1).

Fig. 1 Steps to convert the weighted co-occurrence graph to an
enriched graph

1071International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

4.1 Node enrichment

The similarity matrix � =
(
sij
)
p×p

 is a p × p matrix where p
is the number of unique terms in the training documents and
sij is the similarity between the word embeddings of terms ti
and tj obtained using Word2Vec. The nodes in the document
graph are represented by a node vector � = [n1,… , np]
where ni is the weight of the nodes calculated using Eq. (4).
The enriched node vector is obtained by multiplying � by
the similarity matrix as shown in Eq. (6). Hence, node
enrichment is done with a semantic kernel [29] that uses
supervised term weighting and a semantic matrix built from
word embedding-based semantic similarity between words.

In Eq. (6), new nodes that are semantically similar to the
existing nodes are added if not present in the graph, and the
weights of the nodes are assigned/updated as given below in
Eq. (7). Let �(vi) be the set of the nodes which are semanti-
cally similar to node vi that represents the term ti . The newly
added nodes have the initial weight denoted as wnode(vi)
equal to 0 and are assigned weights based on the weights
of the similar nodes. The weights of the existing nodes are
updated if there are similar nodes in the graph.

4.2 Edge enrichment

The proposed graph enrichment method helps in considering
not only the semantic terms shared but also the relationships.
The edge enrichment is done so that document similarity
goes beyond exact matching of patterns in documents. The
edge enrichment method uses similarity matrix to transform

(6)�̂ = � × �

(7)ŵnode(vi) = wnode(vi) +
∑

vj∈�(vi)

(sij × wnode(vj))

beverages drinks hot john likes loves warm

beverages 1 0.9 0.0 0.0 0.0 0.0 0.0
drinks 0.9 1 0.0 0.0 0.0 0.0 0.0
hot 0.0 0.0 1 0.0 0.0 0.0 0.8
john 0.0 0.0 0.0 1 0.0 0.0 0.0
likes 0.0 0.0 0.0 0.0 1 0.9 0.0
loves 0.0 0.0 0.0 0.0 0.9 1 0.0
warm 0.0 0.0 0.8 0.0 0.0 0.0 1

Fig. 2 The similarity matrix for our toy example using seven words
where the values correspond to the similarity between words

the adjacency matrix representation of a document graph to
an enriched representation.

The weighted co-occurrence graph is represented as an
adjacency matrix A. Edge enrichment is done by utilising
the adjacency matrix A and the similarity matrix S. During
edge enrichment, similar edges/patterns are added and the
weights of the edges are assigned/updated. Edge enrichment
using the similarity matrix � converts the adjacency matrix
� to � as given below in Eq. (8) where �

�
= � × � and

�
�
= �

�
× � . It is ensured that �

�
 is a symmetric matrix

before �
�
 is calculated. �

�
 and �

�
 are converted to boolean

matrices �
�
 and �

�
 respectively by setting non zero values in

�
�
 and �

�
 to 1. We obtain only the newly added elements

of �
�
 , i.e. the zero elements in �

�
 that are changed to non-

zero elements in �
�
 , by computing

(
�
�
− �

�

)
⊙�

�
 where

⊙ corresponds to the element-wise product of matrices.

Equation (9) shows the computation of the final adjacency
matrix �̂ which is obtained by adding � with diagonal
matrix from the enriched node vector �̂ = [n̂1,… , n̂p] . �̂ is
the adjacency matrix representation of the enriched graph.

(8)� = �
�
+
(
�
�
− �

�

)
⊙�

�

1072 International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

4.3 Example to illustrate node enrichment
and edge enrichment

Initially, a similarity matrix is built from the unique words in
the training documents. Suppose the unique words obtained
from the training documents are ‘beverages’, ‘drinks’, ‘hot’,
‘john’, ‘likes’, ‘loves’ and ‘warm’. The similarity matrix for
the toy example is given in Fig. 2. The two documents to
be compared in the example are ‘John loves hot drinks’ and
‘John likes warm beverages’. Even though the sentences

(9)�̂ = � +

⎡
⎢⎢⎢⎣

n̂1 0 0 … 0

0 n̂2 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … n̂p

⎤⎥⎥⎥⎦

are similar, similarity measures based on term overlap/key-
word matching do not give accurate similarity value as only
one word in the documents match. The proposed automatic
graph enrichment method builds enriched graphs with simi-
lar structures for documents with similar meaning resulting
in accurate similarity calculation.

The initial weighted co-occurrence graph representations
of the documents (obtained with a predefined sliding win-
dow of size 2) are given below in Figs. 3 and 4. The initial
weights of the nodes and edges are assumed as 1 in this
example. In actual cases, the weights of nodes and edges are
calculated as in Eqs. (4) and (5) respectively.

During node enrichment (that corresponds to Eq. (6)),
new nodes are added with weights based on the weights
of the similar nodes as shown in Figs. 5 and 6. In Fig. 5,
the nodes corresponding to the words ‘likes’, ‘warm’ and
‘beverages’ are the newly added nodes which are semanti-
cally similar to the existing nodes that represent the words
‘loves’, ‘hot’ and ‘drinks’ respectively. Similarly, in Fig. 6,
the nodes that denote the words such as ‘loves’, ‘hot’ and
‘drinks’ are the nodes added during the node enrichment
step. These newly added nodes are assigned weights based
on the weights of the similar nodes in the graph. For exam-
ple, in Fig. 5, the node ‘likes’ is assigned a weight of 0.9
which is obtained by computing the product of the weight
of the similar node ‘loves’ and the value of its similarity to
the node.

The graph is represented as an adjacency matrix before
enriching the edges. The adjacency matrices in Figs. 7
and 8 denote the graphs in Figs. 5 and 6 respectively. These
are symmetric matrices with values that correspond to the
weights of edges in the graphs.

Fig. 3 Co-occurrence graph representation of ‘John loves hot drinks’
with the initial weights of nodes and edges assumed as 1

Fig. 4 Co-occurrence graph representation of ‘John likes warm bev-
erages’ with the initial weights of nodes and edges assumed as 1

Fig. 5 Node enrichment of graph of ‘John loves hot drinks’ that adds
similar nodes and this step corresponds to Eq. (6)

Fig. 6 Node enrichment of graph of ‘John likes warm beverages’ that
adds similar nodes and this step corresponds to Eq. (6)

beverages drinks hot john likes loves warm

beverages 0.0 0.0 0.0 0.0 0.0 0.0 0.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 0.0
hot 0.0 1.0 0.0 0.0 0.0 1.0 0.0
john 0.0 0.0 0.0 0.0 0.0 1.0 0.0
likes 0.0 0.0 0.0 0.0 0.0 0.0 0.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 0.0
warm 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 7 Adjacency matrix representation of ‘John loves hot drinks’

beverages drinks hot john likes loves warm

beverages 0.0 0.0 0.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hot 0.0 0.0 0.0 0.0 0.0 0.0 0.0
john 0.0 0.0 0.0 0.0 1.0 0.0 0.0
likes 0.0 0.0 0.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.0 0.0 0.0 0.0 0.0
warm 1.0 0.0 0.0 0.0 1.0 0.0 0.0

Fig. 8 Adjacency matrix representation of ‘John likes warm bever-
ages’

1073International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

Edge enrichment carried out utilising the similarity
matrix converts the adjacency matrix to matrix M as shown
in Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18. During edge
enrichment, similar patterns are added and weighted based

on the weights of the existing edges. For example, for the
‘hot drinks’ edge in the graph in Fig. 5, the patterns that
are similar to it such as ‘hot beverages’ and ‘warm drinks’
are added with the initial transformation using similarity

Fig. 9 Matrix �
�
 for ‘John

loves hot drinks’
beverages drinks hot john likes loves warm

beverages 0.0 0.0 0.9 0.0 0.0 0.0 0.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 0.8
hot 0.9 1.0 0.0 0.0 0.9 1.0 0.0
john 0.0 0.0 0.0 0.0 0.9 1.0 0.0
likes 0.0 0.0 0.9 0.9 0.0 0.0 0.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 0.8
warm 0.0 0.8 0.0 0.0 0.0 0.8 0.0

beverages drinks hot john likes loves warm

beverages 0.0 0.0 0.9 0.0 0.0 0.0 0.72
drinks 0.0 0.0 1.64 0.0 0.0 0.0 1.60
hot 1.8 1.81 0.0 0.0 1.8 1.81 0.0
john 0.0 0.0 0.0 0.0 1.8 1.81 0.0
likes 0.0 0.0 0.9 0.9 0.0 0.0 0.72
loves 0.0 0.0 1.64 1.0 0.0 0.0 1.60
warm 0.72 0.8 0.0 0.0 0.72 0.8 0.0

Fig. 10 Matrix �
�
 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm

beverages 0.0 0.0 0.9 0.0 0.0 0.0 0.72
drinks 0.0 0.0 1.0 0.0 0.0 0.0 0.8
hot 0.9 1.0 0.0 0.0 0.9 1.0 0.0
john 0.0 0.0 0.0 0.0 0.9 1.0 0.0
likes 0.0 0.0 0.9 0.9 0.0 0.0 0.72
loves 0.0 0.0 1.0 1.0 0.0 0.0 0.8
warm 0.72 0.8 0.0 0.0 0.72 0.8 0.0

Fig. 11 Matrix �
�
 for ‘John loves hot drinks’

Fig. 12 Matrix �
�
 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm

beverages 0.0 0.0 1.0 0.0 0.0 0.0 0.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 1.0
hot 1.0 1.0 0.0 0.0 1.0 1.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 0.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 1.0
warm 0.0 1.0 0.0 0.0 0.0 1.0 0.0

Fig. 13 Matrix �
�
 for ‘John loves hot drinks’

beverages drinks hot john likes loves warm

beverages 0.0 0.0 1.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.0 0.0 0.0 0.0 1.0
hot 1.0 0.0 0.0 0.0 1.0 0.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.0 1.0 0.0 0.0 1.0
warm 1.0 1.0 0.0 0.0 1.0 1.0 0.0

Fig. 14 Matrix �
�
 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm

beverages 0.0 0.0 1.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 1.0
hot 1.0 1.0 0.0 0.0 1.0 1.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 1.0
warm 1.0 1.0 0.0 0.0 1.0 1.0 0.0

Fig. 15 Matrix �
�
 for ‘John loves hot drinks’

beverages drinks hot john likes loves warm

beverages 0.0 0.0 1.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 1.0
hot 1.0 1.0 0.0 0.0 1.0 1.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 1.0
warm 1.0 1.0 0.0 0.0 1.0 1.0 0.0

Fig. 16 Matrix �
�
 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm

beverages 0.0 0.0 0.8 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.0 0.0 0.0 0.0 0.9
hot 0.8 0.0 0.0 0.0 0.8 0.0 0.0
john 0.0 0.0 0.0 0.0 1.0 0.9 0.0
likes 0.0 0.0 0.8 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.0 0.9 0.0 0.0 0.9
warm 1.0 0.9 0.0 0.0 1.0 0.9 0.0

Fig. 17 Matrix � for ‘John loves hot drinks’

beverages drinks hot john likes loves warm

beverages 0.0 0.0 1.6 0.0 0.0 0.0 1.64
drinks 0.0 0.0 0.72 0.0 0.0 0.0 0.9
hot 0.8 0.72 0.0 0.0 0.8 0.72 0.0
john 0.0 0.0 0.0 0.0 1.81 1.8 0.0
likes 0.0 0.0 1.6 1.0 0.0 0.0 1.64
loves 0.0 0.0 0.72 0.9 0.0 0.0 0.9
warm 1.81 1.8 0.0 0.0 1.81 1.8 0.0

1074 International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

matrix (which correspond to elements in �
�
 in Eq. (8)) as

shown in Fig. 9. In the subsequent transformation using
similarity matrix, the ‘warm beverages’ edge is added
(which corresponds to an element in � in Eq. (8)) as given

in Fig. 17. Similarly, for the ‘warm beverages’ edge in the
graph in Fig. 6, the patterns that are similar to it such as
‘warm drinks’ and ‘hot beverages’ are added with the initial
transformation using similarity matrix (which correspond
to elements in �

�
 in Eq. (8)) as shown in Fig. 10. In the

subsequent transformation using similarity matrix, the ‘hot
drinks’ edge is added (which corresponds to an element in
� in Eq. (8)) as given in Fig. 18. The boolean matrices in
Figs. 13, 14, 15 and 16 are obtained by setting the non zero
values of matrices in Figs. 9, 10, 11 and 12 to one. The
final adjacency matrix representations of the graphs (which
corresponds to �̂ in Eq. (9)) are shown in Figs. 19 and 20.
The adjacency matrix representations are converted to the
enriched graphs as given in Figs. 21 and 22. Hence, the two
documents have similar enriched graph structures which lead
to accurate calculation of similarity between the text docu-
ments. The advantage of using graph kernels for text similar-
ity is that we can compare terms (represented by nodes) and
patterns (represented by edges) in documents effectively and
efficiently. The proposed graph enrichment enables the graph
kernels to go beyond exact matching of terms and patterns.

5 Graph kernel‑based text classification

In this section, we explain the calculation of similarity
between the enriched graph representations of text and then
briefly describe the classification pipeline.

5.1 Graph kernels for measuring document
similarity

The kernel approach allows the extension of linear algo-
rithms to non-linear models, and helps in the application
of algorithms to structured representation such as strings,
trees and graphs. The kernel function is a dot product in an
implicit feature space. This helps in replacing the dot prod-
ucts in kernel machines and hence, kernel methods solve the
problem of direct application of existing pattern recognition
algorithms to graphs [7].

Fig. 18 Matrix � for ‘John likes warm beverages’

beverages drinks hot john likes loves warm

beverages 0.9 0.0 0.9 0.0 0.0 0.0 0.72
drinks 0.0 1.0 1.0 0.0 0.0 0.0 0.8
hot 0.9 1.0 1.0 0.0 0.9 1.0 0.0
john 0.0 0.0 0.0 1.0 0.9 1.0 0.0
likes 0.0 0.0 0.9 0.9 0.9 0.0 0.72
loves 0.0 0.0 1.0 1.0 0.0 1.0 0.8
warm 0.72 0.8 0.0 0.0 0.72 0.8 0.8

Fig. 19 Final adjacency matrix representation of ‘John loves hot
drinks’ obtained after graph enrichment, corresponding to �̂ in Eq.
(9)

beverages drinks hot john likes loves warm

beverages 1.0 0.0 0.8 0.0 0.0 0.0 1.0
drinks 0.0 0.9 0.72 0.0 0.0 0.0 0.9
hot 0.8 0.72 0.8 0.0 0.8 0.72 0.0
john 0.0 0.0 0.0 1.0 1.0 0.9 0.0
likes 0.0 0.0 0.8 1.0 1.0 0.0 1.0
loves 0.0 0.0 0.72 0.9 0.0 0.9 0.9
warm 1.0 0.9 0.0 0.0 1.0 0.9 1.0

Fig. 20 Final adjacency matrix representation of ‘John likes warm
beverages’ obtained after graph enrichment, corresponding to �̂ in
Eq. (9)

Fig. 21 Enriched co-occurrence graph of ‘John loves hot drinks’
obtained after graph enrichment

Fig. 22 Enriched co-occurrence graph of ‘John likes warm beverages’
obtained after graph enrichment

beverages drinks hot john likes loves warm

beverages 0.0 0.0 0.8 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.72 0.0 0.0 0.0 0.9
hot 0.8 0.72 0.0 0.0 0.8 0.72 0.0
john 0.0 0.0 0.0 0.0 1.0 0.9 0.0
likes 0.0 0.0 0.8 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.72 0.9 0.0 0.0 0.9
warm 1.0 0.9 0.0 0.0 1.0 0.9 0.0

1075International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

A kernel measures the similarity between objects. The
kernel matrix created should satisfy the two important
mathematical properties of matrix symmetry and positive
semi-definiteness [33]. To compare two documents di and
dj represented by enriched weighted co-occurrence graphs
Gi = (Vi,Ei) and Gj = (Vj,Ej) respectively, we use an edge
walk kernel [6, 21] as shown in Eq. (10) to compare the
edges in both the graphs. The edge walk kernel is explained
below in Eqs. (10), (11) and (12). The normalization factor
is the product of the frobenius norms of the adjacency matri-
ces Ai and Aj of the graphs Gi and Gj respectively so that
the similarity value is not affected by the number of nodes
and edges in the graph. ||Ai||F and ||Aj||F correspond to the
frobenius norms of the adjacency matrices of the graphs Gi
and Gj respectively. Let ui and vi be the vertices that belong
to the set of vertices Vi in Gi , ei be the edge linking ui and
vi in Gi , uj and vj be the vertices that belong to the set of
vertices Vj in Gj , ej be the edge connecting uj and vj in Gj .
k
(1)

walk
 is a kernel that compares edge walks of length 1 in the

graphs Gi and Gj . It is the product of the kernel function on
the edge and the two nodes that the edge connects as defined
in Eq. (11).

A delta kernel function, knode , is used for comparing the
vertices and is equal to 1 if the terms corresponding to the
vertices are the same and 0 if the terms are different. kedge is
a kernel function for comparing the edges in the graphs and
is defined in Eq. (12). It is the product of the weight of the
edge ei in Gi denoted as wedge(ei) and the weight of the edge
ej in Gj denoted as wedge(ej) . Hence, the numerator in Eq. (10)
is equivalent to the sum of the elements in the element-wise
product of the adjacency matrices Ai and Aj.

The delta kernels are positive definite. The kernel k(1)
walk

 is a
product of the delta kernels multiplied by a positive number,

(10)k(di, dj) =

∑
ei�Ei,ej�Ej

k
(1)

walk
(ei, ej)

��Ai��F × ��Aj��F

(11)k
(1)

walk
(ei, ej) =knode(ui, uj) × kedge(ei, ej) × knode(vi, vj)

(12)kedge(ei, ej) =

{
wedge(ei) × wedge(ej) if ei�Ei ∧ ej�Ej

0 otherwise

thus preserving positive definiteness. The edge walk kernel
function is a sum of the positive definite kernels divided by
a positive number. Hence, the positive definiteness is pre-
served and it is a valid kernel. The similarity between every
pair of graphs is determined using the edge walk kernel,
and the values obtained are used to build a kernel matrix.
The most common kernel-based classifier is SVM [16]. The
kernel matrix is then used with SVM classifier to learn and
predict the classes of the document. The worst case time
complexity of the graph kernel is O (n + m) where n is the
number of unique nodes (or the size of the vocabulary) and
m is the number of edges. Hence, it is higher than that of the
document similarity measure with bag-of-words representa-
tion (unigram features) whose time complexity is O(n).

5.2 Graph kernel‑based text classification pipeline

The proposed graph kernel-based text classification pipeline
is shown in Fig. 23. The documents are initially represented
as weighted co-occurrence graphs where the nodes represent
the unique terms and the edges represent the association
between the words co-occurring within a predefined slid-
ing window of size 2. The supervised term weight factor is
utilised to assign weight to nodes and edges. These graphs
are enriched automatically using a similarity matrix built
with similarity values obtained using word embeddings. A
graph kernel based on edge matching is employed to calcu-
late the similarity between a pair of documents. The similar-
ity values are then used to build a kernel matrix. The kernel
matrix is fed to a SVM to learn and predict the classes of
the documents.

6 Experiments and results

In this section, we describe the experiments performed on
sentiment analysis and topic classification tasks to evaluate
the performance of the proposed knowledge-driven graph
similarity measure for text classification. The datasets used
are briefly explained below.

– Sentence polarity dataset This dataset consists of 5331
positive and 5331 negative movie reviews [23].

Fig. 23 Graph kernel-based text
classification pipeline

1076 International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

– Subjectivity dataset This dataset consists of 5000 sub-
jective and 5000 objective sentences on movie reviews
labelled according to their subjectivity status [22].

– News This dataset is a collection of 32,602 short text
documents which are news collected from RSS feeds of
the websites—nyt.com, usatoday.com and reuters.com
and classified based on their topics. The topics are sports,
business, US, health, sci&tech, world and entertainment.
The document consists of the title, description, link, id,
data, source and category of the news. We have used only
the description and category of the news [34].

– Multi-domain sentiment dataset This dataset consists of
8000 product reviews obtained from amazon.com where
the products are books, dvd, electronics and kitchen
[4]. There are 1000 positive reviews and 1000 negative
reviews for each of the four product domains.

– 20 Newsgroups1 The 20 Newsgroups dataset contains
20,000 newsgroup documents classified into 20 differ-
ent categories.

In the proposed method, each document is represented as
a weighted co-occurrence graph where the nodes represent
the unique terms in the document and edges link words that
co-occur within a predefined sliding window. The weight
of the node is stored in the self-loop which corresponds to
the importance of the term based on its relevance in clas-
sifying the text documents. Nodes that correspond to unim-
portant terms have lower weight than nodes that represent
the main content of the document. Similarly, the edges that
connect co-occurring words have weights that are depend-
ent on the relevance of the co-occurring words. The graphs
are enriched using a word similarity matrix that contains
similarities greater than or equal to 0.9. The text8 corpus
(obtained from Wikipedia)2 is used to build the word2vec
model for deriving the word embedding vectors. The simi-
larity values of the top five similar words for each unique
word in the training set are used to create the similarity
matrix. The threshold for the similarity between the word
vectors is set as 0.9 to obtain the closely related terms or
synonyms. The graph enrichment process can become slow
with increase in the size and density of the similarity matrix.
The different ways to increase the speed of the enrichment
process are given below:

(i) Set a threshold for the similarity values in the similar-
ity matrix. This would result in a sparse matrix reducing the
time for matrix operations in graph enrichment.

(ii) Build a similarity matrix with only the most relevant
features which would reduce the size of the matrix.

(iii) Also, the graph enrichment process for different doc-
uments could be done in parallel since they are not depend-
ent on each other. This would make it considerably faster.

We have compared the proposed approach with linear
kernel, cosine similarity, Sorensen similarity [24], Tani-
moto similarity [24], radial basis function (RBF) kernel,
class meaning kernel (CMK) [2], class weighting kernel
(CWK) [1] and the shortest path graph kernel (spgk) [6, 21]
method which is a graph kernel approach for text classifica-
tion with a different graph representation of text. The linear
kernel, cosine similarity and RBF kernel are computed with
tf-idf weighted feature vectors of documents. The Sorensen
similarity and Tanimoto similarity measures are calculated
with boolean vectors of documents. In CMK and CWK, the
documents are represented as tf weighted vectors and the
semantic smoothing is then done using semantic matrix built
from meaning values of terms and supervised term weights
respectively. In the shortest path graph kernel method, the
co-occurrence graph is converted to a shortest path graph
with edges connecting nodes that have the shortest distance
not above a threshold d and the edges are labelled by the
inverse of the shortest distance between the nodes. The
evaluation metrics used to assess the performance of text
classification are precision, recall and F1 score. The perfor-
mance of shortest path graph kernel with different values of
d has been evaluated. The proposed method is also experi-
mented with co-occurrence graphs built using predefined
sliding window w of sizes 2, 3 and 4. The kernel matrices are
built with the similarity values obtained using linear kernel,
cosine similarity, Sorensen similarity, Tanimoto similarity,
RBF kernel, CMK, CWK, spgk and proposed method. The
row in the kernel matrix represents the similarity of a docu-
ment to be classified with the documents in the training set.
Each kernel matrix is fed to SVM to evaluate the perfor-
mance of text classification using the similarity measure.

The proposed similarity measure is implemented using
python. The networkx, gensim and scikit-learn are the
python packages used to create the graphs, word2vec model
and the kernel SVM respectively. Table 1 shows the preci-
sion, recall and F1 scores obtained for the sentiment clas-
sification datasets. Table 2 shows the precision, recall and
F1 scores obtained for the topic classification tasks. Table 3
shows the performance of the proposed method with co-
occurrence graphs built using predefined sliding window
w of sizes 2, 3 and 4. The results reported in these tables
are obtained by tenfold cross validation except for the 20
Newsgroups dataset that has a standard train/test split. The
validation set is 20 percent of the training set and is used
to optimize the value of the parameter C in SVM. The best
value of C from the set of values {0.01,0.1,1,10,100,1000}
is then used to classify the documents in the testing set.

Tables 4 and 5 compare the classification performances
(using train/test split) of the proposed method and the 2 http://mattm ahone y.net/dc/textd ata.html

1 http://ana.cacho po.org/datas ets-for-singl e-label -text-categ oriza tion

http://mattmahoney.net/dc/textdata.html
http://ana.cachopo.org/datasets-for-single-label-text-categorization

1077International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

Table 1 Precision, recall and F1 scores for sentiment classification tasks using different similarity measures

In the underlined datasets, the improvements of the proposed method over linear kernel are statistically significant at p < 0.01 using sign test

Dataset Metric Linear Cosine Sorensen Tanimoto RBF Spgk Proposed method

d=1 d=2 d=3 d=4

Polarity Precision 77.15 77.15 76.65 77.36 77.09 77.13 77.18 77.43 77.77 81.47
Recall 77.12 77.11 76.60 77.33 77.07 77.10 77.14 77.39 77.74 81.42
F1 77.12 77.11 76.59 77.32 77.06 77.10 77.13 77.39 77.74 81.42

Subjectivity Precision 90.98 91.12 90.21 90.86 91.07 90.82 91.02 90.85 90.85 92.74
Recall 90.94 91.08 90.18 90.84 91.03 90.80 91.00 90.82 90.83 92.73
F1 90.94 91.08 90.18 90.84 91.03 90.80 91.00 90.82 90.83 92.73

Books Precision 80.58 80.91 79.88 79.85 80.29 80.85 81.13 81.11 80.55 86.12
Recall 80.44 80.77 79.69 79.74 80.09 80.74 81.09 81.04 80.49 86.04
F1 80.42 80.79 79.66 79.72 80.06 80.72 81.09 81.03 80.48 86.04

Dvd Precision 81.70 82.61 79.67 80.59 81.88 80.63 81.86 81.30 81.34 87.40
Recall 81.55 82.50 79.50 80.50 81.70 80.50 81.75 81.25 81.25 87.20
F1 81.53 82.49 79.47 80.49 81.68 80.48 81.73 81.24 81.24 87.19

Electronics Precision 80.72 80.25 81.07 82.36 80.29 83.07 83.38 84.13 84.05 86.01
Recall 80.45 80.05 81.00 82.30 79.95 83.00 83.30 84.05 84.00 85.90
F1 80.41 80.01 80.99 82.29 79.98 82.99 83.29 84.04 83.99 85.89

Kitchen Precision 84.96 85.78 85.18 85.52 85.27 85.78 85.86 85.82 86.07 90.20
Recall 84.90 85.70 84.95 85.35 85.20 85.70 85.75 85.70 85.95 90.10
F1 84.89 85.69 84.92 85.33 85.19 85.69 85.69 85.74 85.94 90.09

Table 2 Precision, recall and F1 scores for topic classification tasks using different similarity measures

In the underlined datasets, the improvements of the proposed method over linear kernel are statistically significant at p < 0.01 using sign test

Dataset Metric Linear Cosine Sorensen Tanimoto RBF Spgk Proposed method

d=1 d=2 d=3 d=4

20NG Precision 80.33 83.44 83.77 83.58 80.52 81.72 81.64 81.41 81.44 85.10
Recall 79.23 83.03 83.27 82.97 78.59 80.92 80.72 80.55 80.56 84.19
F1 79.31 83.03 83.27 82.95 78.94 81.01 80.79 80.59 80.60 84.36

News Precision 82.49 82.89 81.34 81.39 82.63 80.88 80.92 80.91 81.01 84.39
Recall 82.44 82.83 81.29 81.40 82.55 80.85 80.89 80.90 81.00 84.30
F1 82.34 82.76 81.16 81.30 82.40 80.72 80.74 80.74 80.85 84.20

Table 3 Precision, recall and F1
scores for the proposed method
with graph representation
built using predefined sliding
window of different sizes

Dataset Proposed method

w=2 w=3 w=4

Precision Recall F1 Precision Recall F1 Precision Recall F1

Polarity 81.47 81.43 81.42 81.38 81.35 81.34 81.15 81.11 81.11
Subjectivity 92.74 92.73 92.73 92.81 92.80 92.80 92.63 92.62 92.62
Books 86.12 86.04 86.04 86.24 86.14 86.13 85.75 85.64 85.63
Dvd 87.40 87.20 87.19 87.54 87.35 87.34 87.05 86.90 86.89
Electronics 86.01 85.90 85.89 86.82 86.70 86.69 86.63 86.50 86.49
Kitchen 90.20 90.10 90.09 89.90 89.80 89.79 90.02 89.90 89.89
20NG 85.10 84.19 84.36 85.17 83.91 84.18 85.15 83.54 83.88
News 84.39 84.30 84.20 83.87 83.76 83.65 83.72 83.58 83.44

1078 International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

supervised semantic kernels i.e. CMK and CWK for senti-
ment and topic classification tasks. Since CMK and CWK
require long training time, the performance is evaluated by
splitting the dataset into training and testing set in the 80:20
ratio. The default value of 1 for parameter C in SVM is used

to classify the documents. In text classification with CMK
and CWK, attribute selection (as reported in their experi-
ments [1, 2]) is applied using mutual information to select
the best 2000 terms. CWKwfs and CMKwfs correspond to
the supervised semantic kernels CWK and CMK without

Fig. 24 Classification perfor-
mance with different sizes of
training set

Table 4 Comparison of
precision, recall and F1 scores
of sentiment classification tasks
using supervised semantic
kernels

Dataset Metric CWK CWKwfs CMK CMKwfs Proposed method

Polarity Precision 62.56 77.49 63.16 75.89 78.38
Recall 62.07 77.46 62.68 75.82 78.36
F1 61.69 77.46 62.33 75.81 78.35

Subjectivity Precision 82.83 91.43 81.73 90.10 91.46
Recall 82.75 91.40 81.60 90.10 91.45
F1 82.74 91.40 81.58 90.10 91.45

Books Precision 66.29 72.61 72.21 76.73 81.96
Recall 66.17 72.43 71.93 76.69 81.95
F1 66.11 72.37 71.85 76.69 81.95

Dvd Precision 69.57 78.00 71.93 76.50 84.32
Recall 69.50 78.00 71.50 76.50 84.25
F1 69.47 78.00 71.36 76.50 84.24

Electronics Precision 74.00 79.50 74.02 81.05 81.51
Recall 74.00 79.50 74.00 81.00 81.50
F1 74.00 79.50 73.99 81.00 81.50

Kitchen Precision 75.71 83.27 82.32 83.35 91.25
Recall 75.50 83.25 82.25 83.25 91.25
F1 75.45 83.25 82.24 83.24 91.25

1079International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

performing this feature selection. There is a considerable
improvement in the performance of these semantic kernels
without feature selection.

The proposed approach significantly outperforms the
baseline similarity measures for text classification on all
datasets in terms of precision, recall and F1 score as shown
in Tables 1, 2, 4 and 5. The highest precision, recall and
F1 score for each dataset are highlighted in bold in the
tables. Table 6 shows the information considered by the pro-
posed approach for the computation of similarity between
documents. The advantage of the proposed graph kernel
approach for text classification is that it considers the con-
textual information and is not based on word independence
approach as in vector space models. The similarity measure
compares the relevant structural information in the docu-
ments and computes the semantic similarity between the
documents. This is possible due to the semantic information
available in the enriched graph representations of the docu-
ments. Table 3 shows that there is no considerable differ-
ence in the performance with an increase in the size of the
predefined sliding window used to build the co-occurrence
graphs. Figure 24 presents the results of document classi-
fication (in terms of F1 score) using the proposed method
and linear kernel with different proportions of training set
such as 0.1, 0.5 and 0.9. It shows that the proposed method
consistently outperforms the linear kernel even with a small
training set (of 10%).

7 Conclusion

Graph-based representations of text are effective for text
classification as they can model the structural information
in text, which is required to understand its meaning. Con-
sidering the structural information in text when calculating
the similarity between documents can improve the perfor-
mance of text classification. In this paper, we focused on
building a text graph model that represents the structural
information in text effectively, which helps to compare docu-
ments based on their main similar content. Supervised term
weighting is utilised to weight the terms and their associa-
tions, so that the matching terms and patterns contribute
to document similarity based on their relevance. The graph
enrichment is carried out with the word similarity matrix to
consider semantically similar terms and associations, going
beyond exact matching of document content. We employed
a graph kernel function that utilises the rich information
in the enriched weighted graphs to compute the similarity
between text documents accurately for improving the per-
formance of classification task. Our experimental results on
sentiment analysis and topic classification tasks show that
the proposed graph kernel-based approach for text classifi-
cation detects and exploits the structural patterns in text to
compute the semantic similarity between text documents,
resulting in a significant improvement in text classification
performance. The similarity matrix used in the enrichment

Table 5 Comparison of
precision, recall and F1 scores
of topic classification tasks
using supervised semantic
kernels

Dataset Metric CWK CWKwfs CMK CMKwfs Proposed method

20NG Precision 73.84 79.76 69.29 73.78 85.01
Recall 73.56 79.19 68.98 73.52 83.94
F1 73.55 79.12 69.00 73.49 84.15

News Precision 71.34 83.04 69.24 78.60 83.95
Recall 71.05 83.15 68.66 78.56 84.02
F1 71.04 83.06 68.27 78.42 83.89

Table 6 Advantages of the proposed method. Information considered for the computation of similarity between documents

a Based on the distance between words.
b Based on the number of co-occurrences and relevance of the terms. Distance is not taken into account since terms that co-occur closely are only
considered

Information considered Linear Cosine Sorensen Tanimoto RBF spgk CWK CMK Pro-
posed
method

Importance of terms based on class information
(Supervised term weight)

No No No No No No Yes Yes Yes

Co-occurrence information No No No No No Yes No No Yes
Importance of associations No No No No No Yes

a No No Yes
b

Incorporation of external knowledge No No No No No No No No Yes
Semantic similarity of terms and associations No No No No No No No No Yes

1080 International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

could be improved by designing it based on the application,
in order to utilise domain knowledge and increase the accu-
racy of the similarity measure. An interesting future work is
to use an ontology-based similarity matrix with more accu-
rate similarity values to enrich the graph and consider the
similar concepts and relationships in measuring document
similarity. The proposed text classification framework can
be adapted for different domains by designing the similarity
matrix based on the domain. The graph enrichment method
can be extended to calculate similarity between text docu-
ments for other applications such as document clustering,
information retrieval and relevance-based document ranking.

Acknowledgements The authors would like to acknowledge the sup-
port from Ulster University through the Vice Chancellor’s Research
Scholarship (VCRS) Award.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Altınel B, Diri B, Ganiz MC (2015) A novel semantic smoothing
kernel for text classification with class-based weighting. Knowl
Based Syst 89:265–277

 2. Altınel B, Ganiz MC, Diri B (2015) A corpus-based semantic
kernel for text classification by using meaning values of terms.
Eng Appl Artif Intell 43:54–66

 3. Bleik S, Mishra M, Huan J, Song M (2013) Text categorization
of biomedical data sets using graph kernels and a controlled
vocabulary. IEEE/ACM Trans Comput Biol Bioinform (TCBB)
10(5):1211–1217

 4. Blitzer J, Dredze M, Pereira F (2007) Biographies, Bollywood,
boom-boxes and blenders: Domain adaptation for sentiment
classification. In: Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, Association for Com-
putational Linguistics, Prague, Czech Republic, pp 440–447

 5. Bloehdorn S, Basili R, Cammisa M, Moschitti A (2006) Seman-
tic kernels for text classification based on topological measures
of feature similarity. In: Sixth International Conference on Data
Mining (ICDM’06), pp 808–812

 6. Borgwardt KM, Kriegel HP (2005) Shortest-path kernels on
graphs. In: Fifth IEEE International Conference on Data Mining
(ICDM’05), p 8

 7. Bunke H, Riesen K (2011) Recent advances in graph-based pat-
tern recognition with applications in document analysis. Pattern
Recognit 44(5):1057–1067

 8. Cancedda N, Gaussier E, Goutte C, Renders JM (2003) Word-
sequence kernels. J Mach Learn Res 3(Feb):1059–1082

 9. Cristianini N, Shawe-Taylor J, Lodhi H (2002) Latent semantic
kernels. J Intell Inf Syst 18(2–3):127–152

 10. Gärtner T, Flach P, Wrobel S (2003) On graph kernels: Hardness
results and efficient alternatives. In: Schölkopf B, Warmuth MK
(eds) Learning Theory and Kernel Machines, Springer Berlin,
Heidelberg, pp 129–143

 11. Gonçalves T, Quaresma P (2009) Using graph-kernels to rep-
resent semantic information in text classification. In: Perner P
(ed) Machine Learning and Data Mining in Pattern Recognition,
Springer Berlin, Heidelberg, pp 632–646

 12. Hassan S, Mihalcea R, Banea C (2007) Random walk term
weighting for improved text classification. Int J Semant Comput
1(04):421–439

 13. Haussler D (1999) Convolution kernels on discrete structures.
Technical report, Department of Computer Science, University
of California, Tech. rep

 14. Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern kernels for
predictive graph mining. Association for Computing Machinery,
New York, NY, USA, KDD ’04, pp 158–167

 15. Kim J, Rousseau F, Vazirgiannis M (2015) Convolutional sen-
tence kernel from word embeddings for short text categorization.
In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, Association for Computational
Linguistics, Lisbon, Portugal, pp 775–780

 16. Leopold E, Kindermann J (2002) Text categorization with support
vector machines. How to represent texts in input space? Mach
Learn 46(1–3):423–444

 17. Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C
(2002) Text classification using string kernels. J Mach Learn Res
2(Feb):419–444

 18. Malliaros FD, Skianis K (2015) Graph-based term weighting
for text categorization. In: 2015 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining
(ASONAM), pp 1473–1479

 19. Miller GA (1995) Wordnet: a lexical database for english. Com-
mun ACM 38(11):39–41

 20. Nasir JA, Karim A, Tsatsaronis G, Varlamis I (2011) A knowl-
edge-based semantic kernel for text classification. In: Grossi R,
Sebastiani F, Silvestri F (eds) String Processing and Information
Retrieval, Springer Berlin, Heidelberg, pp 261–266

 21. Nikolentzos G, Meladianos P, Rousseau F, Stavrakas Y, Vazirgian-
nis M (2017) Shortest-path graph kernels for document similarity.
In: Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, Association for Computational
Linguistics, Copenhagen, Denmark, pp 1890–1900

 22. Pang B, Lee L (2004) A sentimental education: Sentiment analysis
using subjectivity summarization based on minimum cuts. Asso-
ciation for Computational Linguistics, USA, ACL ’04, p 271

 23. Pang B, Lee L (2005) Seeing stars: Exploiting class relationships
for sentiment categorization with respect to rating scales. In: Pro-
ceedings of the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), Association for Computational
Linguistics, Ann Arbor, Michigan, pp 115–124

 24. Ralaivola L, Swamidass SJ, Saigo H, Baldi P (2005) Graph ker-
nels for chemical informatics. Neural Netw 18(8):1093–1110

 25. Ramon J, Gärtner T (2003) Expressivity versus efficiency of graph
kernels. In: Raedt LD, Washio T (eds) Proceedings of the First
International Workshop on Mining Graphs, Trees and Sequences
(MGTS 2003) at the 14th European Conference on Machine
Learning and 7th European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases (ECML/PKDD 2003),
September 22 and 23, 2003, Cavtat-Dubrovnik, Croatia, pp 65–74

 26. Schenker A, Last M, Bunke H, Kandel A (2003) Classification of
web documents using a graph model. In: Seventh International
Conference on Document Analysis and Recognition, 2003. Pro-
ceedings., pp 240–244

http://creativecommons.org/licenses/by/4.0/

1081International Journal of Machine Learning and Cybernetics (2021) 12:1067–1081

1 3

 27. Shanavas N, Wang H, Lin Z, Hawe G (2016) Centrality-based
approach for supervised term weighting. In: 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW),
pp 1261–1268

 28. Shanavas N, Wang H, Lin Z, Hawe G (2016) Supervised graph-
based term weighting scheme for effective text classification. In:
Proceedings of the Twenty-second European conference on arti-
ficial intelligence. IOS Press, pp 1710–1711

 29. Shawe-Taylor J, Cristianini N et al (2004) Kernel methods for
pattern analysis. Cambridge University Press, Cambridge

 30. Siolas G, d’Alché-Buc F (2000) Support vector machines based
on a semantic kernel for text categorization. In: Proceedings of
the IEEE-INNS-ENNS International Joint Conference on Neural
Networks. IJCNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium, vol 5, pp 205–209

 31. Srivastava S, Hovy D, Hovy E (2013) A walk-based semantically
enriched tree kernel over distributed word representations. In: Pro-
ceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics,
Seattle, Washington, USA, pp 1411–1416

 32. Valle K, Ozturk P (2011) Graph-based representations for text
classification. India–Norway workshop on web concepts and tech-
nologies. Trondheim, Norway, pp 2363–2366

 33. Vishwanathan SVN, Schraudolph NN, Kondor R, Borgwardt KM
(2010) Graph kernels. J Mach Learn Res 11(Apr):1201–1242

 34. Vitale D, Ferragina P, Scaiella U (2012) Classification of short
texts by deploying topical annotations. In: Baeza-Yates R, de Vries
AP, Zaragoza H, Cambazoglu BB, Murdock V, Lempel R, Sil-
vestri F (eds) Advances in Information Retrieval, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 376–387

 35. Wang P, Domeniconi C (2008) Building semantic kernels for
text classification using wikipedia. Association for Computing
Machinery, New York, NY, USA, KDD ’08, pp 713–721

 36. Wang T, Li W, Liu F, Hua J (2017) Sprinkled semantic diffu-
sion kernel for word sense disambiguation. Eng Appl Artif Intell
64:43–51

 37. Wang W, Do DB, Lin X (2005) Term graph model for text classi-
fication. In: Li X, Wang S, Dong ZY (eds) Advanced Data Mining
and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp 19–30

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Knowledge-driven graph similarity for text classification
	Abstract
	1 Introduction
	2 Related work
	3 Graph representation of text
	3.1 Proposed weighted co-occurrence graph representation

	4 Automatic enrichment of graphs
	4.1 Node enrichment
	4.2 Edge enrichment
	4.3 Example to illustrate node enrichment and edge enrichment

	5 Graph kernel-based text classification
	5.1 Graph kernels for measuring document similarity
	5.2 Graph kernel-based text classification pipeline

	6 Experiments and results
	7 Conclusion
	Acknowledgements
	References

