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Abstract: Immune-mediated cholangiopathies are characterised by the destruction of small and large
bile ducts causing bile acid stasis, which leads to subsequent inflammation, fibrosis, and eventual
cirrhosis of the liver tissue. A breakdown of peripheral hepatic immune tolerance is a key feature
of these diseases. Regulatory T cells (Tregs) are a major anti-inflammatory immune cell subset,
and their quantities and functional capacity are impaired in autoimmune liver diseases. Tregs can
undergo phenotypic reprogramming towards pro-inflammatory Th1 and Th17 profiles. The inflamed
hepatic microenvironment influences and can impede normal Treg suppressive functions. Mast cell
(MC) infiltration increases during liver inflammation, and active MCs have been shown to be an
important source of pro-inflammatory mediators, thus driving pathogenesis. By influencing the
microenvironment, MCs can indirectly manipulate Treg functions and inhibit their suppressive and
proliferative activity. In addition, direct cell-to-cell interactions have been identified between MCs
and Tregs. It is critical to consider the effects of MCs on the inflammatory milieu of the liver and
their influence on Treg functions. This review will focus on the roles and crosstalk of Tregs and MCs
during autoimmune cholangiopathy pathogenesis progression.

Keywords: primary biliary cholangitis; primary sclerosing cholangitis; immune tolerance;
inflammation; plasticity

1. Introduction

Cholangiopathies refer to chronic diseases of the bile ducts within the liver.
Cholangiocytes—the epithelial cells lining the bile ducts—engage in the modification of bile
volume and composition as well as in liver injury and repair [1]. All cholangiopathies are
associated with bile flow obstruction, immune responses, and cholangiocyte proliferation,
leading to biliary fibrosis, ductopenia, and eventually, biliary cirrhosis [2].

Cholangiopathies are classified into primary and secondary subtypes depending on
whether the bile ducts are directly targeted (primary) or the bile duct degradation is a
consequence of another pathological process or injury (secondary). Cholangiopathies lead
to substantial morbidity and mortality due to the challenges linked with disease manage-
ment and the lack of effective medical therapies [3]. The two major types of autoimmune
cholestatic liver disease are primary biliary cholangitis (PBC) (previously known as primary
biliary cirrhosis) and primary sclerosing cholangitis (PSC). These conditions are charac-
terised by a sustained immune-mediated inflammatory response targeting cholangiocytes,
which leads to the destruction of bile ducts and subsequent biliary stricturing due to exces-
sive fibrotic deposition [4]. The progressive deterioration of the bile ducts causes impaired
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secretion and hepatic retention of bile toxins, which ultimately lead to biliary cirrhosis and
hepatic failure requiring liver transplantation [5].

PBC is characterised by T-lymphocyte-mediated destruction of the intrahepatic small
bile ducts [6], cholestatic liver biochemistries, and the presence of antimitochondrial anti-
bodies (AMAs) [7]. These highly disease-specific autoantibodies are directed against the E2
subunit of the pyruvate dehydrogenase complex and are present in 90–95% of PBC patients
and less than 1% of healthy controls [8,9]. In PSC, circulating autoantibodies are not as
frequent, but rather auto-inflammation is a more typical characteristic of the condition [10].
Serological findings show non-specific immune abnormalities such as elevated levels of
circulating immune complexes, immunoglobulins, non-organ specific autoantibodies, and
T-lymphocyte infiltration within the portal tracts [11]. PSC radiological diagnostic images
demonstrate a beaded pattern of both intra and extrahepatic bile ducts, and histologi-
cal features suggest collagen fibre deposition around the bile ducts and infiltration of
T cells [3,12].

The breakdown in peripheral tolerance to the biliary epithelium is a key driver of
both PSC and PBC [13]. The strongest genetic associations of these diseases occupy distinct
regions of the MHC (major histocompatibility complex), and most of the non-MHC asso-
ciations are found in other autoimmune diseases, indicating altered immunoregulatory
pathways [14]. In this review, we will discuss the role and interplay between regulatory T
cells (Tregs) and mast cells (MCs) in the context of autoimmune cholangiopathies.

2. Treg Defects in Immune-Mediated Cholangiopathies

Tregs are crucial in the maintenance of peripheral tolerance and restraining aberrant
immune responses. Self-reactive T cells reaching the periphery are subject to constant
control and suppression by Tregs [15,16]. Tregs are defined by the expression of the
core transcription factor FoxP3 [17–19], high levels of CD25 (the α-chain of the IL-2 re-
ceptor, and low levels of the IL-7 receptor (CD127) [20] (CD4+CD25highCD127low) (for
reviews, see [21–23]).

The critical role of Tregs in the mediation of immune tolerance and prevention of
autoimmunity is illustrated by the IPEX (immune dysregulation polyendocrinopathy
enteropathy X-linked) syndrome, which is characterised by mutations in the human
FoxP3 gene that impair Treg development. In this condition, dysfunctional or deficient
CD4+CD25+ Tregs cannot prevent the emergence of severe autoimmune and inflammatory
diseases [24,25]. Similarly, Scurfy mice with a mutation in the FoxP3 gene spontaneously
develop fatal systemic autoimmune and inflammatory conditions [26].

Tregs are present within the human liver [27–31] and have been demonstrated to
reside in portal tracts in proximity to effector CD4+ and CD8+ T cells. They play major roles
in controlling liver inflammation, and the dysregulation of their quantities and functions
has profound negative effects in the context of immune-mediated cholangiopathies [29].
The Treg to CD8+ effector T cell ratio was found to be lower in both blood and liver tissue
of PBC patients compared to healthy controls [32,33], causing a subsequent breakdown
in peripheral tolerance [32,33]. Evidence suggests that CD25 dysfunction may drive the
persistence of autoreactive T cells in immune-mediated biliary disorders [34,35]. Human
CD25 deficiency was observed to cause spontaneous development of a biliary condi-
tion [34], and CD25-deficient mice develop autoimmune cholangitis resembling human
PBC [35]. Scurfy mice also exhibit PBC-like liver disease, characterised by bile duct damage
induced by infiltrating autoreactive CD8+ T cells and upregulation of genes encoding
pro-inflammatory cytokines [36].

In addition to Treg deficiencies, Th17 cells have been implicated in the emergence
of inflammation and fibrosis in PBC [37–40]. Th17 cells are a unique CD4+ subset char-
acterised by the production of the pro-inflammatory cytokine IL-17. This cytokine is a
key driver of hepatic inflammation and fibrosis and is linked with the development of
autoimmune liver diseases. IL-17 increases the production of inflammatory mediators (e.g.,
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IL-6, IL-1β, TNFα) and pro-fibrotic mediators (e.g., Periostin, TGF-β, α-SMA), leading to
collagen production [41].

The methylation status of the FoxP3 locus determines the stability of the Treg pop-
ulation [42,43] and fine-tunes the Treg/Th17 balance [39]. The FoxP3 promoter exhibits
a highly methylated state in PBC patients compared to healthy patients and leads to a
skewed Treg/Th17 differentiation axis towards Th17 cells [39]. The Th17 lineage-defining
transcription factor RORγt is upregulated in PBC patients [39,40]. This upregulation causes
dysregulation of the cytokine milieu in PBC with enrichment of pro-Th17 cytokines (IL-1β,
IL-6, IL-23) and concurrent downregulation of FoxP3 and TGF-β expression in Tregs.

An analysis of the intrahepatic microenvironment demonstrated increased frequencies
of TGF-β1 and IFN-γ in PBC livers, suggesting a role of these Th1 -related cytokines
in PBC pathogenesis [44]. A negative correlation between CD4+CD25+ Tregs and IFN-
γ was reported [44], signifying that the imbalance of CD4+CD25+ Tregs and cytotoxic
cytokines may have important roles during PBC disease progression. Additionally, the
inhibitory cytokine IL-35, which contributes to the suppressive properties of Tregs, is
lower in PBC patients [45]. Plasma IL-35 concentration is lower in PBC patients than in
healthy controls and negatively correlated to pro-inflammatory cytokine levels while being
positively correlated to TGF-β concentration [46].

Tregs from PBC patients were also reported to have an increased sensitivity to IL-12
stimulation, even at low concentrations, which induces their differentiation into Th1-like
cells (elevated levels of IFN-γ and T-bet expression) via STAT4 phosphorylation [47]. Tregs
from PBC livers but not peripheral blood showed a significantly higher expression of
IL-12Rβ2 compared to other cholestatic liver diseases and healthy controls [47]. This
suggests that PBC Tregs have an increased plasticity tendency toward pro-inflammatory
cell subsets, with the inflamed liver microenvironment driving this phenotype.

The transgenic dnTGFβRII mouse model, where both CD4+ and CD8+ T cells ex-
press a dominant negative type II TGF-β receptor transgene, also pointed out functional
Treg defects. These mice spontaneously develop several features characteristic of human
PBC [48]. In this model, Tregs exhibit defective suppressive functions rather than quan-
titative defects; they undergo phenotypic reprogramming towards a pro-inflammatory
profile (Ccl5, Granzyme B and IFN-γ upregulation) and eventually promote autoimmu-
nity [49,50]. Compensating this Treg defect via wild-type (WT) Treg adoptive transfer
reduced disease severity in the dnTGFβRII models [51]. In contrast to the above-mentioned
studies, the group of Gilberto Filaci revealed profound defects in the CD8-dependent
regulatory pathway in PBC patients [52]. No reduction in the frequencies and numbers
of circulating CD4+CD25+ and CD8+CD28- Tregs were detected, and CD4+ Treg sup-
pressive functions were not reduced. Nonetheless, the CD8+ Treg lineage exhibits not
only a lesser in vitro generation capacity but also significantly lower immunosuppressive
functional properties [52].

The role of Tregs in PSC is studied less extensively than in PBC [45,46]; however, a few
studies have also highlighted Treg dysfunction. Christoph Schramm’s laboratory identified
a significant decrease in circulating and intrahepatic Treg frequencies in PSC, as well as a
reduced functionality (albeit the Treg dysfunction is limited) [53]. Without establishing a
causal link, a low Treg number was associated with a polymorphism within the IL2RA gene
locus [53]. Treatment of Mdr2−/− mice with IL-2/IL-2ab complexes resulted in significantly
higher numbers of Tregs in the liver [54]. This treatment caused a reduced production of
IFN-γ and IL-17 and an increased IL-10 production by the isolated and re-stimulated liver
lymphocytes. However, these changes had no significant effects on portal inflammation
or fibrosis. The enriched hepatic Tregs displayed a significantly reduced suppressive
function alongside lower FoxP3 expression and IL-12Rβ2 upregulation in comparison to
splenic Tregs after in vivo expansion. This is likely due to the increased expression of IL-12
within the liver, which, in combination with the upregulation of IL-12Rβ2 in hepatic Tregs,
may cause the reduced suppressive capacity in liver-derived Tregs [54]. In addition, IL-2
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regulates liver Treg homeostasis in PSC by inducing CD39+ Tregs to suppress effector CD8+

T cell proliferation, thereby reducing biliary injury and fibrosis progression [55].
Over the last decade, advances in the knowledge of clinical-grade isolation reagents,

cell-sorting strategies, and good manufacturing practice facilities have made GMP Treg
infusion into patients a feasible therapy to restore peripheral tolerance in immune-mediated
cholangiopathies [56]. So far, the above-mentioned in vitro and in vivo studies suggest
that both PSC and PBC, would benefit from enhancing Treg frequency and function with
GMP-Treg therapy alone or in combination with cytokine manipulation.

3. Hepatic Mast Cells and Their Roles in Immune-Mediated Cholangiopathies

MCs are multi-functional, tissue-resident immune cells that play multiple crucial roles
in different inflammatory settings [57]. Previously, they were only known as effector cells;
however, with ongoing research, it is now understood that they can exert immunomod-
ulatory effects and enhance or suppress the initiation, scale, and/or duration of immune
responses [58,59]. They originate from CD34+ hematopoietic stem cells and mature under
the influence of cKIT ligand and stem cell factor (SCF) [59,60]; unlike most immune cells,
MCs exit the bone marrow in an incompletely differentiated state and complete maturation
within the tissue wherein they reside [61]. Different tissues of residence provide different
maturation conditions, leading to phenotypical diversity in MCs. This heterogeneity is
a result of the microenvironmental conditions that dictate gene expression and pheno-
typic development, resulting in biochemical, histochemical, and functional differences [62].
MCs are classified into two main subtypes: mucosal MCs that produce only tryptase and
connective tissue MCs that produce both tryptase and chymase.

The cytoplasm of MCs has 50–200 large granules containing inflammatory mediators,
which are released upon cell activation [57]—a process termed degranulation. Activation
of MCs can occur via immune complexes (mostly via IgE engagement), complement prod-
ucts (C3a and C5a) [63], ligation of pattern receptors [64], certain neuropeptide receptors
(such as acetylcholine, GABA, substance P, dopamine) [65], and venoms from poisonous
animals [66]. During degranulation, MCs release an abundance of mediators, including
growth factors (e.g., VEGF, FGF, TGF-β); cytokines (e.g., TNF, IFN-γ, IL-1, −2, −6, −10)
and chemokines (e.g., CCL1, 2, 3, 4, 5, TGFβ, CXL2); as well as pro-inflammatory lipid
mediators, such as prostaglandins and leukotrienes [67]. Pre-formed mediators from cy-
toplasmic granules include vasoactive amines (histamine and serotonin), proteoglycans
(e.g., heparin), proteases (e.g., tryptases and chymases), as well as pre-stored cytokines
(e.g., TNFα) [68]. Activation of MCs does not always cause degranulation, however,
and MCs can release inflammatory mediators in situations where degranulation is
not visible [69].

The knowledge of MC function within the human liver is still limited. Further funda-
mental studies characterising the biological activities of these complex cells are urgently
needed to understand the role they play in not only liver homeostasis but also during
inflammatory states such as in autoimmune disorders and infectious hepatitis. Several
studies, however, have already highlighted an emerging role of MCs in autoimmune
liver diseases.

MCs have been detected within the human liver [70] and tend to associate with
connective tissues found near hepatic arteries, veins, and bile ducts of the portal tracts
(known histologically as portal triads) [71–73]. In these areas, MCs were reported to reside
in proximity to vascular smooth muscle cells [74] and may participate in the regulation
of the peribiliary vascular plexus along the intrahepatic biliary tree, likely via chymase,
endothelin-1, and nitric oxide signalling [74]. There is an anatomical association between
MCs and neurons, and there have been multiple reports of MC and nerve crosstalk [75,76],
with research suggesting that MCs act as important mediators between the immune and
nervous systems. The liver is innervated by sympathetic and parasympathetic nerve
fibres [77], and significantly higher numbers of MCs were observed near S100-positive
nerve fibres in PBC in comparison to healthy livers [78] (Figure 1).
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Figure 1. The location of mast cells within an inflamed liver. PSC/PBC livers share the pathological
feature of extensive fibrosis. Beading of intra- and extra-hepatic bile ducts is a common feature in
PSC and is due to collagen fibre deposition around the bile ducts, leading to compression. MCs have
been observed to infiltrate areas of fibrosis and damaged bile ducts. Generally, MCs tend to associate
with connective tissues found near hepatic arteries, veins, and bile ducts of the portal tracts. MCs
reside close to vascular smooth muscle cells and may be involved in the regulation of the peribiliary
vascular plexus along the intrahepatic biliary tree and in proximity to the nerve fibres around portal
tracts. MC liver infiltration is significantly increased in immune-mediated cholangiopathies such as
PSC and PBC.

Numerous studies report increased numbers of MCs in cholangiopathies showing
supportive evidence of MC involvement [71,79–81]. Both PSC and PBC share the patholog-
ical component of extensive fibrotic reactions, and MCs release a wide array of pro-fibrotic
mediators (e.g., IL-1β, TNFα, TGFβ, FGF, histamine, tryptase, and chymase) [82]. All these
factors are upregulated in cholestatic livers, and elevated histamine levels are associated
with pruritus and trigger collagen production from fibroblasts [83–85]. MC numbers sig-
nificantly increase in PBC livers in comparison to healthy and alcoholic livers, and their
frequency correlates with the degree of liver fibrosis [72,79].Similar findings have been
observed in PSC; cKIT-positive MCs infiltrate damaged bile ducts (identified to be SCF-
positive), with a significantly higher infiltration of MCs reported in PSC than in chronic
hepatitis C [80].

In vitro human studies are largely correlative, and therefore, in vivo murine models
are utilised to demonstrate further evidence of MC influence in cholangiopathies. The two
models commonly applied for functional studies are the KitW/Wv and Kitw/sh mice mod-
els [86]. Both strains carry mutations in the cKIT receptor, resulting in major deficiencies
in MC populations. The introduction of MCs into WT and Kitw/sh mice induces chronic
inflammation around the periportal area, leading to an increased ductular reaction, hepatic
fibrosis, and biliary senescence [87]. TGF-β1 was identified as a crucial driver of this pheno-
type, and the injection of Kitw/sh mice with MCs lacking TGF-β1 reversed these parameters.
MC reintroduction did not seem to promote hepatocyte damage, thus demonstrating a
preference for MC-cholangiocyte interactions. When bile duct ligation (BDL) was induced
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in Kitw/sh mice, liver damage was reduced compared to WT mice with less proliferation,
hepatic stellate cell (HSC) activation/fibrosis, and TGF-β1 expression/secretion [88]. These
parameters were reversed in BDL Kitw/sh mice after MC injection, providing supporting
evidence of the role of MCs in cholangiopathies.

Histamine was highlighted as another important mediator in cholangiopathy progres-
sion. Mdr2−/− mice treated with an MC stabiliser that blocks histamine release showed a
significant reduction in biliary proliferation [70]. Immunohistochemistry and qPCR analy-
ses revealed that treated mice had lower α-SMA, collagen type-1, and fibronectin levels,
suggesting that MC-derived histamine may promote liver fibrosis. Decreased VEGF-α gene
expression was also identified, demonstrating the role of histamine in vascular cell prolif-
eration [70]. Co-culture experiments of HSCs and MCs conditioned to inhibit histamine
production resulted in a significantly decreased proliferation of HSCs and a reduction in
fibrosis markers and TGF-β1 [70]. These data suggest that MC-derived histamine alters
HSC activation, driving fibrosis.

In addition, increased bile acid levels are a characteristic of PSC and PBC, and it has
been shown that specific bile acids can cause MC activation in vitro and regulate histamine
secretion. Ursodeoxycholic acid (UDCA)—a natural bile acid and a common treatment
for biliary disorders—was found to reduce MC numbers, HSC activation, inflammation,
and fibrosis in both Mdr2−/− mice and PSC patients [89]. In vitro, UDCA decreased
histamine release, and it was concluded that bile acids stimulate MC histamine release,
which contributes to disease progression. Recently, it was shown that the Farnesoid X
receptor (FXR)—also known as the bile acid receptor—regulates the ductular reaction in
cholestasis [90]. Both biliary FXR and MC were upregulated during cholestatic liver disease,
and the specific inhibition of MC-FXR signalling lessened the severity of cholestatic liver
injury by reducing bile acid levels and reducing FXR/FGF15 signalling and histamine
(HA/HRH1) signalling. These effects led to overall decreased biliary senescence.

4. Crosstalk between Mast Cells and Regulatory T Cells

Research on the crosstalk of Tregs and MCs within the hepatic environment is scarce;
however, interactions have been identified in other tissues. Signalling can occur via several
different mechanisms and appears to be bi-directional in nature. It is difficult to predict the
pathways that occur between hepatic MCs and Tregs and how these pathways are dysregu-
lated during cholangiopathies. Here, we will review some of the molecular interactions
reported between MCs and Tregs and discuss the crosstalk and potential deregulation in
the context of immune-mediated cholangiopathies.

Firstly, MCs are crucial mediators for Treg-mediated functions to occur. In certain
models, MCs were shown to be protective in their interaction with Tregs. Inducible MHC
class II expression by MCs gives them the ability to present antigens to Tregs directly and
support their activation [91]. Tolerant allografts acquired a unique genetic signature with
a high expression of MC gene signatures (MC protease 1 and 5, Tph1, FcεRI), with Tregs
unable to maintain graft tolerance in MC-deficient mouse models [92]. The transfer of WT
Tregs into Kitw/wv mice completely prevented the shielding effects against the development
of NTS (nephrotoxic serum nephritis), which normally occurs in WT mice [91,93].

One of the most detailed mechanisms of MC and Treg interactions is the OX40-OX40L
pathway. Both Tregs and MCs constitutively express OX40 and OX40L, respectively [94,95].
The expression of both molecules increased in response to pro-inflammatory effects such as
CD28 ligation and IFN-γ signalling [96]. Tregs directly suppress FcεRI-dependent MC de-
granulation through cell-to-cell contacts requiring OX40-OX40L interactions between MCs
and Tregs [97]. This interaction leads to increased cAMP (cyclic adenosine monophosphate)
levels and a reduced Ca2+ influx. Blocking cAMP in MCs reverses the inhibitory effects
of Tregs and restores normal Ca2+ levels and degranulation. The depletion of Tregs in a
mouse model of systemic anaphylaxis (an IgE-mediated hypersensitivity reaction involving
MC degranulation) enhanced the extent of histamine release [97]. Considering that Treg
depletion and functional defects are present in PSC and PBC, we can hypothesise that the
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increased histamine levels in these conditions may occur because of the lack of control of
Tregs over MC degranulation.

Conversely, OX40/OX40L signalling between MCs and Tregs has also been found to
suppress the regulatory effects of Tregs over T effector cells. Concurrent IL-6 abundance
and scarcity of Th1/Th2 cytokines in the presence of activated MCs skews Tregs and effector
T cells into Th17 cells through mechanisms involving OX40 engagement [98]. This feature
is important to note since Th17 cells are associated with the development of autoimmune
liver diseases [99,100]. The frequency of IL-17-secreting infiltrating cells was elevated in
liver tissues of PBC patients and contributed to disease pathogenesis [101]. IL-6 can be
produced by both MCs and Tregs; however, MCs only produce IL-6 in an IgE-sensitised
and antigen-stimulated state, while effector T cells only produce IL-6 when stimulated
by MCs, regardless of their activation or Treg presence. Interestingly, Treg suppression
was only fully restored when both Tregs and effector T cells were OX40-deficient; this
suggests that OX40 signalling may reduce effector T cell susceptibility to Treg suppression
as well as directly hinder Treg functions. The abundance of IL-6 within an inflamed
human liver [102] could be a contributing factor in enabling this pathway to occur. Tregs
themselves can also enhance MC production of IL-6 in a contact-dependent manner via
surface-bound TGFβ1 [103].

IL-2 is essential in the maintenance of Treg suppressive functions [104], and studies
suggest MCs can regulate Treg expansion via IL-2 secretion. In a lung inflammation
model, IL-33 induced IL-2 production by MCs, which resulted in Treg expansion and
reduced inflammation [105]. In a skin inflammation model, IgE stimulation together with
IL-33 enhanced IL-2 production by MCs [106]. A recent study identified that in an OIT
(oral immunotherapy) murine model, desensitised MCs promote the expansion of Tregs
via cytokine secretion [107]. Desensitisation of MCs is achieved by exposure to serially
increasing doses of the relevant antigen, leading to temporary hyposensitivity to that
antigen [108]. When CD4+ T cells were co-cultured with either desensitised or active,
allergic MCs, the desensitised MCs could expand the Treg population. In this desensitised
state, MCs secreted significantly higher amounts of IL-2 and IL-10, inducing FoxP3+ Tregs
via an IL-33 independent mechanism [107]. The authors theorised that in the desensitised
state, continuous stimulation of IgE by an antigen modulates FcεRI signal transduction,
resulting in a functional change in MCs and the release of immunoregulatory mediators.
The transfer of IL2−/− MCs into Kitw/sh mice did not dampen the inflammatory response
in the same way as the transfer of WT MCs [109]. It was found that MC-derived IL-2 may
be involved in maintaining the ratio between Tregs and effector T cells, and in the absence
of IL-2, this ratio is skewed to promote effector T cell expansion. These studies highlight
the importance of MC-derived IL-2 in the regulation of Treg functions in PBC and PSC.

Histamine was reported to directly affect Tregs and dampen their ability to suppress ef-
fector T cells. Higher histamine levels in co-culture experiments of histamine and Tregs led
to a reduction in T cell effector suppression—an effect that was not observed in the absence
of Tregs [110]. This occurred via H1 receptor stimulation on Tregs by histamine, which
caused downregulation of CD25 and FoxP3 expression, thus limiting Treg-suppressive
functions [110]. Constitutive CD25 expression on Tregs acts as a suppressive mechanism by
outcompeting available IL-2 and inhibiting effector T cell proliferation [111]. Tregs can also
suppress the release of histamine-preformed granules in vivo via the OX40/OX40L path-
way in mouse models [97]. It is therefore plausible that the accumulation of MCs together
with reduced Treg populations and functionality in PSC/PBC promotes histamine overpro-
duction by MCs, which in turn further suppresses Treg function via the downregulation of
FoxP3 and CD25.

Tregs have been shown to mediate the recruitment and functions of MCs via IL-9
production in vivo [92] and in NTS and gastric carcinoma models [112,113]. The neutralisa-
tion of IL-9 accelerated graft rejection in tolerant mice in skin transplantation models [92].
Co-localisation between SCF and IL-9 was identified in a tolerogenic liver allograft. This
co-localisation was correlated with the activation of FoxP3 and IL-10 production, which
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resulted in the activation of hepatic MCs and histamine production [114]. These data
suggest that hepatic Tregs may also be a source of SCF. A combination of IL-9 together
with SCF could promote the proliferation of MCs from MC progenitors [115]. More-
over, IL-9 was shown to have crucial roles in the adoptive transfer of Tregs in NTS
models with Tregs depending on IL-9 -mediated MC recruitment to conduct their im-
munosuppressive effects [112]. Therefore, IL-9 may be a crucial regulator of tolerance in
immune-mediated cholangiopathies.

Treg-derived TGF-β1 has also been implied to play roles in the suppression of MC
activation; in vitro assays revealed that TGF-β1 deficiency in Tregs impaired their capacity
to suppress MC activation [116]. The same study found that the haploinsufficiency of
TGF-β1 led to a significant gut tissue MC expansion and a steep increase in serum IgE
concentrations. In line with the bi-directional nature of the interaction between MCs and
Tregs, MC-derived TGF-β1 induces differentiation of CD4+ T cells into Tregs in vitro [117].
A positive feedback loop system has been reported through TGF-β1 and IL-9 in gastric
carcinoma, with Tregs promoting MC proliferation via IL-9 and MCs inducing increased
Tregs cells via TGF-β1 secretion. TGF-β1 production has also been observed in hepatic
MCs [114], suggesting that a similar interaction may occur in the liver.

TNF-α stimulation enhances the immunoregulatory functions of murine MCs. More
specifically, TNF-α treated MCs showed inhibited degranulation, which promoted CD4+

T cell differentiation to CD4+CD25+FoxP3+ T cells in co-culture studies, with MC degranu-
lation inhibiting this effect [118]. The study also reported shifts in MC cytokine expression
from a Th1 to a Th2 profile via a mechanism involving the upregulation of ICOSL (inducible
co-stimulatory ligand) on MCs and MAPK phosphorylation. Studies have found that Th2
cytokines may play a role in the pathogenesis of PBC [119]. In PBC patients, elevated TNF-α
levels were associated with greater disease severity, and UDCA treatments significantly
reduce this cytokine [120]. Therefore, even though TNF-α stimulated MCs can increase
Treg differentiation, the harmful Th2 effects may outweigh any protective functions.

Chymase inhibitors were found to be effective in reducing inflammation and led to a
significant increase in the expression of immune-tolerance-related cytokines (IL-10, TGF-β1,
IL-17A), FoxP3, and the amount of Tregs [121]. It is possible that MC-derived chymase
is downregulating immune-tolerance related cytokines, thus inhibiting suppressive Treg
functions; however, the mechanisms are not clear. Chymases can have a wide variety
of substrates leading to a range of different effects. They may degrade harmful and
pro-inflammatory substances or instead degrade protective molecules or even activate
molecules that contribute to pathology [122]. The effects of chymases may depend on
the availability of different chymase substrates, which are determined by the tissue and
pathological setting. In the context of autoimmune diseases, mMCP-4 (mouse mast cell
protease 4) contributes to the inflammatory response in arthritis and encephalomyelitis
animal models [123,124]. Chymase was also reported to be increased in PBC livers [79].
MC-derived chymase may suppress Treg functions and/or recruitment, and thus, the
increased chymase release due to MC accumulation in immune cholangiopathies worsens
disease progression.

MCs exhibit cell plasticity, and cell cytokine signals, epigenetic changes, and other
microenvironmental factors can rapidly and substantially alter their phenotype [125]. For
example, IFN-γ stimulation of MCs caused a change in their signalling properties and in
inflammatory conditions, with abundant IFN-γMCs functioning as amplifiers of inflam-
mation [121]. IFN-γ-primed MCs formed immunologic synapses with antigen-experienced
CD4+ T cells. These interactions promoted the generation of Th22 and IL-22/IFN-γ produc-
ing cells via a TNF-α/IL-6 dependent mechanism [126]. This suggests that priming MCs
towards a pro-inflammatory state may also promote Treg suppression.

The described interactions of Treg and MCs (Figure 2) suggest bi-directional regulatory
interactions between the cells. Tregs may regulate MC functions, and when Tregs become
dysfunctional in cholangiopathies, this control may be lost. This, in turn, may shift the MC
regulatory functions over Tregs from supportive to inhibitory and drive disease progression
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further. Modulating the MC phenotype may be crucial in restoring peripheral tolerance in
autoimmune diseases.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 15 
 

 

become dysfunctional in cholangiopathies, this control may be lost. This, in turn, may shift 

the MC regulatory functions over Tregs from supportive to inhibitory and drive disease 

progression further. Modulating the MC phenotype may be crucial in restoring peripheral 

tolerance in autoimmune diseases. 

 

Figure 2. Molecular interactions between Regulatory T Cells (Tregs) and Mast Cells (MCs). Tregs 

can produce IL-9 to promote MC recruitment and proliferation via IL-9R engagment. MCs can se-

crete IL-2 and expand the Treg population via stimulation of IL-2R. This mechanism involves the 

activation of JAK1 and JAK3, then activating STAT3 and STAT5, which translocate into the nucleus 

to increase the expression of the FoxP3 gene. The OX40/OX40L signalling pathway has bi-directional 

effects. OX40 stimulation on MCs increases expression of cAMP and decreases cellular Ca2+ influx; 

as a result, FcεRI-dependent MC degranulation is suppressed, which blocks histamine release. On 

Tregs, OX40L signalling together with IL-6 can skew Tregs into IL-17-producing Th17-like cells. 

Histamine secreted by MCs binds to Histamine H1 receptor (HRH1) on Tregs and directly down-

regulates FoxP3 and CD25. TGF-β1 secreted by Tregs can inhibit FcεRI signalling in MCs and pre-

vent their activation. On the other hand, MC-derived TGF-β1 can promote the differentiation of 

CD4+ T cells into Tregs. 

5. Conclusion and Final Remarks 

Controlling the untoward effector arm of the immune system is crucial in the treat-

ment of cholangiopathies such as PBC and PSC. In the context of GMP Treg infusion ther-

apy as an option for autoimmune liver diseases, it is critical to consider the effects of the 

inflammatory milieu of the liver and the potential reprogramming of the Treg phenotype 

towards effector lineages. The emerging role of MCs in the control of Tregs renders them 

an important innate cell population to consider in this context. 

The reintroduction of the Treg population into the inflamed hepatic microenviron-

ment may not be sufficient for restoring immune tolerance; the blockage of MC mediators, 

which suppress Treg functions or even promote their differentiation into pro-inflamma-

tory, Th17-like cells, must also be considered. Modification of the hepatic microenviron-

ment may be crucial to see the full benefits of Treg infusion therapy. Future research 

Figure 2. Molecular interactions between Regulatory T Cells (Tregs) and Mast Cells (MCs). Tregs can
produce IL-9 to promote MC recruitment and proliferation via IL-9R engagment. MCs can secrete
IL-2 and expand the Treg population via stimulation of IL-2R. This mechanism involves the activation
of JAK1 and JAK3, then activating STAT3 and STAT5, which translocate into the nucleus to increase
the expression of the FoxP3 gene. The OX40/OX40L signalling pathway has bi-directional effects.
OX40 stimulation on MCs increases expression of cAMP and decreases cellular Ca2+ influx; as a
result, FcεRI-dependent MC degranulation is suppressed, which blocks histamine release. On Tregs,
OX40L signalling together with IL-6 can skew Tregs into IL-17-producing Th17-like cells. Histamine
secreted by MCs binds to Histamine H1 receptor (HRH1) on Tregs and directly downregulates FoxP3
and CD25. TGF-β1 secreted by Tregs can inhibit FcεRI signalling in MCs and prevent their activation.
On the other hand, MC-derived TGF-β1 can promote the differentiation of CD4+ T cells into Tregs.

5. Conclusions and Final Remarks

Controlling the untoward effector arm of the immune system is crucial in the treatment
of cholangiopathies such as PBC and PSC. In the context of GMP Treg infusion therapy as an
option for autoimmune liver diseases, it is critical to consider the effects of the inflammatory
milieu of the liver and the potential reprogramming of the Treg phenotype towards effector
lineages. The emerging role of MCs in the control of Tregs renders them an important
innate cell population to consider in this context.

The reintroduction of the Treg population into the inflamed hepatic microenvironment
may not be sufficient for restoring immune tolerance; the blockage of MC mediators, which
suppress Treg functions or even promote their differentiation into pro-inflammatory, Th17-
like cells, must also be considered. Modification of the hepatic microenvironment may
be crucial to see the full benefits of Treg infusion therapy. Future research focusing on
the interplay of these two cell types within the hepatic environment is needed to fully
understand their emerging crosstalk in immune-mediated cholangiopathies.
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