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Abbreviations: ADB, antibody diluting buffer; ANOVA, one-way analysis of variance; BDNF, 

brain-derived neurotrophic factor; BMSC, bone marrow-derived mesenchymal stem cells; 

BSA, bovine serum albumin; CNS, central nervous system; CNTF, ciliary neurotrophic 

factor; dpl, days post-lesion; DPSC, dental pulp stem cells; FBS, foetal bovine serum; FGF-

2, fibroblast growth factor-2; GAP-43, growth-associated protein-43; GFAP, glial fibriliary 

acidic protein; GDNF, glial cell line-derived neurotrophic factor; NGF, nerve growth factor; 

NT-3, neurotrophin-3; NTF, neurotrophic factors; OCT, optical coherence tomography; ONC, 

optic nerve crush; PBS, phosphate-buffered saline; PFA, paraformaldehyde; RGC, retinal 

ganglion cell; RNFL, retinal nerve fibre layer; SCI, spinal cord injury; standard error of the 

mean, SEM; TrK, tropomyosin receptor kinase. 
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Abstract

Purpose

To investigate the potential therapeutic benefit of intravitreally implanted dental pulp stem 

cells (DPSC) on axotomised adult rat retinal ganglion cells (RGCs) using in vitro and in vivo

neural injury models.

Methods 

Conditioned media collected from cultured rat DPSC and bone marrow-derived 

mesenchymal stem cells (BMSC) were assayed for nerve growth factor (NGF), brain-derived 

neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) secretion using ELISA. DPSC or 

BMSC were co-cultured with retinal cells, with or without Fc-TrK inhibitors, in a transwell 

system and the number of surviving III-tubulin+ retinal cells and length/number of III-

tubulin+ neurites were quantified. For the in vivo study, DPSC or BMSC were transplanted 

into the vitreous body of the eye after a surgically-induced optic nerve crush injury. At 7, 14 

and 21 days post-lesion (dpl), optical computerized tomography (OCT) was used to measure 

the retinal nerve fibre layer thickness as a measure of axonal atrophy. At 21 dpl, numbers of 

Brn-3a+ RGCs in parasagittal retinal sections and growth associated protein-43+ axons in 

longitudinal optic nerve sections were quantified as measures of RGC survival and axon 

regeneration, respectively. 

Results

Both DPSC and BMSC secreted NGF, BDNF and NT-3, with DPSC secreting significantly 

higher titres of NGF and BDNF than BMSC. DPSC, and to a lesser extent BMSC, promoted 

statistically significant survival and neuritogenesis/axogenesis of III-tubulin+ retinal cells in

vitro and in vivo where the effects were abolished after TrK receptor blockade. 

Conclusion 



4 
 

Intravitreal transplants of DPSC promoted significant neurotrophin-mediated RGC survival 

and axon regeneration after optic nerve injury. 

Key words: Dental pulp stem cells; Mesenchymal stem cells; Axon regeneration; 

Neuroprotection; Cell transplantation. 
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Introduction

Trauma is the most common cause of central nervous system (CNS) injury with, in America 

alone, 11,000 people a year suffering a spinal cord injury (SCI)1, 80,000 a year suffering 

severe traumatic brain injury2 and between 0.5 to 5.0% of head injuries resulting in traumatic 

optic neuropathy3. Chronic degenerative diseases are another leading cause of CNS 

damage, including glaucoma, a condition that affects retinal ganglion cells (RGCs) and is the 

2nd leading cause of blindness worldwide4. Lost neurons are not replaced and severed axons 

do not regenerate after CNS injury and thus recovery of lost sensory and motor function is 

severely limited.  

The failure of CNS axons to regenerate after injury is partly attributed to a non-permissive 

trophic environment comprised of both a paucity of neurotrophic growth factors and an 

abundance of axon growth inhibitory molecules5. Neurotrophins, a class of neurotrophic 

factors (NTF), include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) 

and neurotrophin-3 (NT-3). They promote regeneration of injured axons and the survival of 

axotomised neurons after binding to the tropomyosin receptor kinase -A, -B and -C (TrK) 

receptors, respectively6. Inhibitory ligands, which derive from degenerate myelin7, 8 and scar 

tissue6, 9 in CNS lesion sites, induce receptor-mediated growth cone collapse of regenerating 

injured axons. 

Thus, inducing changes to the microenvironment of injured neurons/axons to promote 

neuronal survival and disinhibited axon regeneration represents a potential treatment 

approach. The delivery of NTF to neuron somata rather than to the lesion site has proved a 

successful therapeutic strategy6. For example, several studies have successfully promoted 

RGC survival after intravitreal delivery of exogenous NTF to the vitreous after optic nerve 

injury10, 11. To promote a significant effect, however, repeated injections of NTF combinations 

are necessary, which are highly invasive for the patient, indicating that a continuous delivery 

mechanism is preferred12, 13. Moreover, bolus administration of neurotrophins act to down-
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regulate the TrK receptors14, 15, an effect that may be avoided by opting for a lower but 

continuous delivery regime. Cellular therapy is regarded as a promising means of altering 

the trophic environment of damaged CNS neurons such as RGCs. This strategy has met 

with some success, for example, using intravitreally administered fibroblasts genetically 

altered to release NTF combinations16 after optic nerve crush (ONC), which acts as an 

effective model of CNS injury in general and retinal neuron disease in particular6.

As an alternative to engineered cells, naturally occurring stem cells have been used to 

promote CNS repair, providing a source of either replacement neurons17, 18 or NTF 

combinations that promote endogenous neuron survival and axon regeneration by altering 

the local trophic microenvironment19. Stem cell based CNS studies have increasingly used 

NTF-secreting bone marrow-derived mesenchymal stem cells (BMSC) as a cellular 

therapy20, 21. Moreover, BMSC conditioned medium is neuroprotective in culture22 and 

intravitreal BMSC transplantation is neuroprotective for RGCs after optic nerve injury23 and 

glaucoma24.

However, an emerging alternative stem cell source is the dental pulp which contains self-

renewing and pluripotent stem cells25. Dental pulp stem cells (DPSC) are isolated from the 

dental pulp of both infant and adult mammalian teeth with relative ease of access and few 

ethical hurdles. Thus, DPSC represent a potential autologous and allogeneic cellular therapy 

for CNS injury, particularly since recent evidence suggests that they are more potent than 

BMSC at promoting functional recovery after spinal cord injury21. Although largely 

uncharacterised, a few studies have explored their potential to play a direct role in neuronal 

replacement due to their neural crest origin26. DPSC differentiate into neurons under defined 

in vitro conditions27, 28 and their integration into the CNS after transplantation has been 

described29.

Less focus has been given to exploiting DPSC as an indirect NTF therapy, i.e. using DPSC-

derived NTF to promote endogenous CNS neuron survival and axon regeneration. DPSC 
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express mRNA for NGF, glial cell line-derived neurotrophic factor (GDNF) and BDNF30-32.

When transplanted into the hippocampus, DPSC secrete ciliary neurotrophic factor (CNTF), 

vascular endothelial growth factor, NGF and fibroblast growth factor-2 (FGF-2)33, which 

could explain the findings of Sakai et al, 2012 who demonstrated some functional recovery 

after complete transection of the spinal cord by transplanting DPSC into the lesion site21.

The authors witnessed both an improvement in locomotory BBB34 scores and axon growth 

into the cell implant and across the lesion site at greater levels than after BMSC transplant. 

This observation, along with the greater expression of neurotrophic factor mRNA by DPSC 

compared to BMSC21 indicates that DPSC produce higher titres of neurotrophic factors 

compared to BMSC. DPSC transplanted into a cerebral infarct site after middle cerebral 

artery occlusion also promoted significant recovery in forelimb sensorimotor function. The 

transplanted DPSC differentiated into astrocyte-like cells suggesting DPSC contributed to 

neural regeneration as a supportive cell through NTF secretion35.

In the present study, we investigated the neuroprotective and axogenic properties of primary 

adult rat DPSC for axotomised RGCs. We carried out in vitro co-culture studies of DPSC 

with primary adult rat retinal cultures and compared III-tubulin+ retinal cell survival and 

neurite outgrowth in these cultures with that in BMSC/retinal cell co-cultures. Using specific 

TrK-Fc fusion protein blockers of the neurotrophin receptors, we determined a III-tubulin+

retinal cell neuroprotective and axogenic role for DPSC-derived neurotrophins. In addition, 

we used an in vivo model of ONC injury to determine the effects of intravitreal stem cell 

transplantation on Brn-3a+ RGC survival and axon regeneration. Our findings demonstrate 

that DPSC promote RGC survival and axon regeneration through the secretion of 

neurotrophins to a greater extent than do BMSC and hence we propose that DPSC have 

potential as a cellular therapy to treat RGC injury and degenerative disease. 
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Experimental Procedures 

All reagents were purchased from Sigma (Poole, UK) unless otherwise specified. 

DPSC isolation and culture 

Three adult male Sprague-Dawley rats weighing 170-200g (Charles River, Kent, UK) were 

housed under Home Office guidelines and killed by “Schedule 1 Methods” before extraction 

of both upper and lower incisors. The dental pulp was removed under sterile conditions in 

DMEM (Life Technologies, Gibco, UK) supplemented with 1% penicillin/streptomycin (P/S), 

sliced into 1mm3 fragments and incubated in 4ml of 0.25% trypsin-EDTA for 30min at 37°C.  

Trypsin was inactivated by adding an equal volume of DMEM containing 1% P/S and 10% 

foetal bovine serum (FBS). A single cell population was obtained by passing the cell 

suspension through a 70μm cell strainer (BD Biosciences, Oxford, UK), which was 

centrifuged at 150xg for 5min. Cell pellets were resuspended in DMEM containing 1% P/S 

and 10% FBS and seeded into T25 flasks (Corning, Amsterdam, NL) in a total volume of 

5ml. Cultures were maintained at 37°C in 5% CO2 and medium was changed 24h after 

seeding, and every 3d thereafter, with cells passaged when 80% confluent using 0.05% 

trypsin. Each animal provided stem cells for separate cultures to supply conditioned medium 

for the ELISA before cells from 3 cultures were pooled for the in vitro co-culture/in vivo

transplantation experiments. 

BMSC isolation and culture 

BMSC were isolated from femurs removed from the same animals described above. In 

sterile conditions, the ends of the femurs were detached, and the bone marrow flushed with 

10ml of DMEM. Cell aspirates were centrifuged at 150xg for 5min before cells were 

resuspended in DMEM containing 1% P/S and 10% FBS. Cell suspensions were seeded 

into T25 flasks in a total volume of 5ml. Cultures were maintained at 37°C in 5% CO2 and 

medium was changed 24h after seeding and every 3d thereafter, with cells passaged when 
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80% confluent. Each animal provided stem cells for separate cultures to supply conditioned 

medium for the ELISA before cells from 3 cultures were pooled for the in vitro co-culture/in 

vivo transplantation experiments. 

NGF/BDNF/NT-3 ELISA 

To quantify the neurotrophins produced by BMSC and DPSC, conditioned medium was 

taken from cells at passage 2-4, cultured for 48h and assayed using EMAX Immunoassay kits 

(Promega, Southampton, UK) for rat NGF, BDNF and NT-3 as well as CNTF (R&D systems, 

UK) according to the manufacturer’s instructions. Briefly, a standard curve was constructed 

using the provided neurotrophin standards and test samples of conditioned medium at 

varying dilutions were run in duplicate after acid treatment, with neurotrophin concentrations 

extrapolated from the standard curve. 

Retinal cell co-culture 

Cell culture 24-well plates (BD Biosciences) were coated for 60min with 100μg/ml poly-D-

lysine and then for 30min with 20μg/ml laminin. After terminal anaesthesia, eyes were 

removed from 3 male Sprague-Dawley rats weighing 170-200g (Charles River) and the 

retinae minced in 1.25ml of papain (Worthington Biochem, NJ, USA) containing 62.5μl of 

DNase I (Worthington Biochem) and incubated for 90min at 37°C. The retinal cell 

suspension was centrifuged at 300xg for 5min and the pellet resuspended in a solution 

containing 1.35ml of EBSS (Worthington Biochem), 150μl of reconstituted albumin 

ovomucoid inhibitor (Worthington Biochem) and 75μl of DNase I. After adding to the top of 

2.5ml of albumin ovomucoid inhibitor to form a discontinuous density gradient, the retinal cell 

suspension was centrifuged at 70xg for 6min. The resulting retinal cell pellet was 

resuspended in 1ml of supplemented Neurobasal-A (24.2ml Neurobasal-A (Gibco) 

supplemented with 500μl of B27 supplement (Life Technologies, Invitrogen, UK), 62.5μl of L-

glutamine (200mM; Invitrogen) and 125μl of gentamycin (Invitrogen)) and seeded at a 

density of 125,000 cells/800μl in each well of the 24 well plate. 
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DPSC and BMSC were used at passage 2-4 and plated at a density of 50,000 cells/200μl

into a 0.4μm porous cell culture insert (Millicell, Millipore, UK) that was inserted into each of 

the 24 wells containing retinal cells to give a total volume of 1ml of medium per well. 

Particular wells containing retinal cell cultures were also treated with 5μg/ml TrKA-Fc, TrKB-

Fc and/or TrKC-Fc (single or combinatorial treatments; R&D systems) fusion TrK-specific 

protein inhibitors36 as well as the general kinase inhibitor k252a (50nM). A combination of 

recombinant human NGF, BDNF and NT-3 was also added to selected retinal cell cultures 

(all at 60ng/ml) to act as a positive control. 

Co-cultures were incubated for 4d at 37°C before immunocytochemical staining of retinal 

cells for III-tubulin. All experiments were repeated on 3 separate occasions. Each of the 

treatment groups in each of the 3 experimental runs comprised 3 replicate wells containing 

retinal cells harvested from one animal. The DPSC/BMSC tested in each of the 3 

experimental runs represented pooled cells from 3 animals. 

In vivo experimental design 

The experimental design for the in vivo experiment is detailed in Figure 1. Briefly, 18 animals 

(36 eyes) were divided into 6 groups of 6 eyes. The first 6 animals (12 eyes) received a 

bilateral ONC and DPSC transplanted intravitreally, living cells in the right eye and dead 

cells in the left. The next 6 animals (12 eyes) received the same allocation but BMSC were 

transplanted instead of DPSC. The final 6 rats (12 eyes) received a unilateral ONC to the left 

eye, while the right eye served as an intact control. Both eyes in each animal of this group 

received an intravitreal control injection of phosphate-buffered saline (PBS) instead of cell 

suspension to control for the transplantation procedure. Optical coherence tomography 

(OCT) was used to measure retinal nerve fibre layer thickness (RNFL) of animals every 7d, 

including 7d before the surgery and excluding the day of the surgery. Animals were killed at 

21 days after ONC/cell transplantation. 
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Animals 

All animal procedures were performed in strict accordance to the UK Home Office Animals 

Scientific Procedures Act, 1986, ARVO statement for the use of animals in ophthalmic and 

vision research and approved by the University of Birmingham Ethical Review Sub-

Committee. Eighteen adult female Sprague Dawley rats weighing 150-200g (Charles River) 

were housed in conditions of 21°C and 55% humidity under a 12h light and dark cycle, given 

food/water ad libitum and were under constant supervision from trained staff. Anaesthesia 

was induced with 5% Isoflurane/1.5L per minute O2 (National Veterinary Supplies, Stoke, 

UK) and was maintained at 3.5% during surgery. 

Surgical procedures 

Following anaesthetic induction as described above, a subcutaneous injection of 

buprenorphine (0.1ml/100g; National Veterinary Supplies) was given and the animal secured 

in a head-holding frame. Intraorbital ONC was performed as described previously37. Briefly, 

the optic nerve was surgically exposed and crushed using forceps 1mm posterior to the 

lamina cribrosa with no damage to retinal blood vessels. Immediately after ONC, a glass 

micropipette, produced in-house from a glass capillary rod (Harvard Apparatus, Edenbridge, 

Kent, UK) using a Flaming-Brown micropipette puller (Sutter Instruments, California, USA) 

preloaded with 150,000 cells suspended in 5μl of PBS, was used to inject living or dead cells 

(killed by heating for 30 minutes at 80°C; or PBS alone in controls), into the vitreous of the 

eye. After surgery, animals were placed in heated recovery cages and monitored for 

recovery of normal behaviour, after which they were returned to home cages. 

OCT of RNFL 

Every 7d, including 7d before the surgery but excluding the week of the surgery (Figure 1), 

OCT was performed on rats (anaesthetised as detailed above) using a Spectralis HRA3 

confocal scanning laser ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). 
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OCT images were taken of the retina around the optic nerve head and the in-built software 

was used to segment the gathered images and quantify the RNFL thickness. 

Tissue preparation 

At 21 dpl, animals were given an intraperitoneal injection of 1ml sodium pentobarbital 

(National Veterinary Supplies) and perfused intracardially with 4% paraformaldehyde (PFA; 

TAAB, Reading, UK) in PBS while under terminal anaesthesia. Eyes and optic nerves were 

removed and immersion fixed in 4% PFA in PBS for 2h at 4°C before cryoprotection in 10%, 

20% and 30% sucrose solution in PBS for 24h with storage at 4°C. Eyes and optic nerves 

were then embedded using optimal cutting temperature embedding medium (Thermo 

Shandon, Runcorn, UK) in peel-away mould containers (Agar Scientific, Essex, UK) by rapid 

freezing under crushed dry ice and were stored at -80°C. After embedding, eyes and optic 

nerves were sectioned on a cryostat microtome (Bright, Huntingdon, UK) at -22°C at a 

thickness of 20μm and 15μm, respectively, and mounted on positively charged glass slides 

(Superfrost Plus, Fisher Scientific, Pittsburgh, USA). Longitudinal optic nerve and 

parasagittal eye sections were left to dry on slides overnight at 37°C before storage at -

30°C. Optic nerve sections were chosen at random for analysis whereas eye sections were 

chosen with the optic nerve head visible. 

Immunohistochemistry

Mounted tissue sections were equilibrated to room temperature, hydrated in PBS for 2 X 

5min, permeabilized in 0.1% triton x-100 in PBS for 20min at room temperature and washed 

for 2 X 5min in PBS before isolation with a hydrophobic PAP pen (Immedge pen; Vector 

Laboratories, Peterborough, UK). Non-specific protein binding sites in sections were blocked 

by incubation in blocking buffer (75μl; 0.5% bovine serum albumin (g/ml), 0.3% Tween-20, 

15% normal goat/donkey serum (Vector Laboratories) in PBS) in a humidified chamber for 

30min at room temperature and then sections were drained and incubated with primary 

antibody diluted in antibody diluting buffer (ADB; 0.5% bovine serum albumin, 0.3% Tween-
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20 in PBS) overnight at 4°C. The following day, slides were washed for 3 X 5min in PBS. 

Tissue sections were then incubated with secondary antibody diluted in ADB for 1h in a 

hydrated incubation chamber at room temperature. After 1h, slides were washed for 3 X 

5min in PBS, mounted in Vectorshield mounting medium containing DAPI (Vector 

Laboratories) and stored at 4°C before microscopic analysis. Antibodies used in this staining 

are detailed in Table 1. 

Immunocytochemistry 

Cells in 24 well plates were fixed in 4% PFA for 10min, washed for 3 X 10min of PBS, 

blocked in blocking solution as described above for 20min and incubated with primary 

antibody diluted in ADB for 1h at room temperature. After 1h, cells were washed for 3 X 

10min in PBS, incubated with the secondary antibody diluted in ADB for 1h at room 

temperature, washed for 3 X 10min in PBS, mounted in Vectorshield mounting medium 

containing DAPI and stored at 4°C. Antibodies used in this staining are detailed in Table 1. 

Microscopy and analysis 

Fluorescently stained sections were analysed by an operator blinded to treatment groups, 

using a Zeiss Axioplan-2 fluorescent microscope (Carl Zeiss Ltd, Hertfordshire, UK). For 

immunocytochemistry, all retinal cells that were positive for the neuronal marker III-

tubulin38, with or without neurites, were counted over each entire well of the 24 well plate, 

with the number of III-tubulin+ retinal cells with neurites and the total number of III-tubulin+

retinal cells being recorded. Neurite outgrowth was measured in images taken at 20X 

magnification using an Axiocam HRc camera (Carl Zeiss Ltd). Each well was divided into 9 

equal sectors and the length of the longest neurite per III-tubulin+ retinal cell in each sector 

was measured using Axiovision software (Carl Zeiss Ltd). 

For immunohistochemistry, Brn3a+ RGCs39 were counted in 20μm thick sections of the 

retina, along a 250μm linear region of the ganglion cell layer, stretching out horizontally 
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either side of the optic nerve. Four sections per retinae and 6 retinae from 6 different animals 

per treatment group were quantified. 

For in vivo quantification of axon regeneration, 20X magnification images were taken of 

growth associated protein-43 (GAP-43) stained longitudinal sections of the optic nerves and 

composite images were constructed in Photoshop CS3 (Adobe Systems Inc, San Jose, CA, 

USA). Photoshop CS3 was used to contrast enhance selected images to improve the 

visibility of GAP-43+ axons, with all manipulations kept identical across the treatment groups. 

RGC axon regeneration in vivo was quantified in the composite images by counting the 

number of GAP-43+ axons extending across a line set at 90° across the optic nerve at 100, 

200, 400, 800 and 1200μm distal (towards the chiasm) to the centre of the crush site 

(identified by laminin+ staining) of 6 optic nerves from 6 different animals per treatment group 

and 3 sections per optic nerve. By measuring the diameter of the nerve at each 

measurement point, the number of axons/mm width was calculated. This value was then 

used to derive ad, the total number of axons extending distance d in an optic nerve with 

radius r using the formula described by others40:   

Statistics 

All statistical tests were performed using SPSS 17.0 and data were presented as mean ± 

standard error of the mean (SEM). The Kolmogorov-Smirnov test was used to ensure all 

data were normally distributed before parametric testing using a one-way analysis of 

variance (ANOVA) with a Tukey post-hoc test. Statistical difference was considered 

significant at p values < 0.05. 
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Results

DPSC secreted NGF, BDNF and NT-3 

DPSC secreted NGF (281 ± 68pg/24h/105 cells), BDNF (1600 ± 338pg/24h/105 cells) and 

NT-3 (270 ± 53pg/24h/105 cells) in culture, as analysed by ELISA (Figure 2). These 

neurotrophic titres were 2-3 fold higher than those detected in conditioned medium from 

BMSC cultures (91.3 ± 24.2, 749 ± 237, 166 ± 46pg/24h/105 cells, respectively) with the 

differences for NGF and BDNF being statistically significant (p<0.05). CNTF was 

undetectable in all samples tested (data not shown). 

DPSC promoted III-tubulin+ retinal cell survival and neuritogenesis in a co-

culture assay 

DPSC promoted a significant (p<0.05) increase in the survival of co-cultured III-tubulin+

retinal cells (340.3 ± 10.4 cells/well) compared with retinal cells cultured alone (92.7 ± 20.8 

cells/well), co-cultured with BMSC (227 ± 27.6 cells/well) or treated with recombinant human 

NGF, BDNF and NT-3 (278.7 ± 8 cells/well; Figure 3). 

DPSC also promoted a significant (p<0.05) increase in the number of III-tubulin+ retinal 

cells with neurites as well as the neurite length (161.6 ± 5.8 μm, 172.7 ± 9.5μm, respectively; 

Figure 3) compared with either retinal cells cultured alone (36 ± 5.2 μm, 22.7 ± 5.2μm) or co-

cultured with BMSC (137.8 ± 2.3 μm, 91 ± 12.6μm; Figure 3). The combination of 

recombinant human NGF, BDNF and NT-3, significantly (p<0.05) increased the number of 

III-tubulin+ retinal cells with neurites (142.3 ± 10.1 cells/well) as well as the neurite length 

(155.4 ± 27.4μm) compared with retinal cells cultured alone, or when co-cultured with BMSC 

(p>0.05). 

Fc-TrK receptor blockers attenuated the survival and neuritogenic effects of 

DPSC



16 
 

The number of III-tubulin+ retinal cells surviving in DPSC co-cultures (340.3 ± 10.4 

cells/well) was significantly (p<0.05) decreased after treatment with Fc-TrKA (182.7 ± 16.4 

cells/well), Fc-TrKB (165.3 ± 3 cells/well) and Fc-TrKC (193 ± 17.1 cells/well) used alone or 

in combination (99.3 ± 9 cells/well, Figure 3). In BMSC co-cultures, III-tubulin+ retinal cell 

survival (227 ± 27.6 cells/well) was significantly (p<0.05) reduced with Fc-TrKA (145.3 ± 5.4 

cells/well), Fc-TrKB (138 ± 5.5 cells/well) or Fc-TrKA, B and C together (85.7 ± 17.1 

cells/well), but not after adding Fc-TrKC (158.3 ± 10.3 cells/well; p>0.05).  

Fc-TrKA, B and C used individually significantly (p<0.05) decreased both the number of 

neurite bearing cells (84 ± 9.5, 64 ± 5.3, 74.7 ± 12.9 cells/well, respectively) as well as the 

length (112.4 ± 9.1μm, 86.7 ± 9μm, 103.7 ± 1.1μm) of neurites in DPSC/retinal cell co-

cultures compared with DPSC/retinal cells co-cultured without inhibitors (Figure 3). 

Combining the Fc-TrK inhibitors further attenuated the number of III-tubulin+ retinal cells 

with neurites (38 ± 4.9 cells/well) as well as neurite length (53.9 ± 7.9μm) seen in the 

DPSC/retinal cell co-culture. Similar effects, although less exaggerated, were seen in the 

BMSC/retinal cell co-cultures. Accordingly, a statistically significant (p<0.05) reduced neurite 

length from 137.8 ± 2.3μm to 65.4 ± 2μm was only seen when the three neurotrophin 

inhibitors were combined in the BMSC/retinal cell co-culture, but not when each inhibitor was 

used in isolation. 

DPSC transplants preserved RNFL thickness for up to 14 days after optic 

nerve crush injury 

All transplanted animals and eyes survived the experiment with no observable adverse 

effects. 

Since the RNFL comprises RGC axons that pass over the surface of the retina towards the 

optic disk, RNFL thickness was used to measure post-axotomy RGC axonal atrophy and did 

not significantly (p<0.05) change in uninjured animals over time. In ONC animals, RNFL 

thickness was reduced significantly (p<0.05) from 49.3 ± 2.1μm to 30.2 ± 1.5μm at 7 dpl, 
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21.4 ±1.6μm at 14 dpl and 17 ± 1.2μm at 21 dpl (Figure 4). Animals receiving dead 

DPSC/BMSC transplantations showed a similar thinning in RNFL thickness with no 

significant (p<0.05) difference from ONC alone. However, there was no significant (p<0.05) 

RNFL thinning at 7 dpl in animals that were injected with living DPSC/BMSC (46.2 ± 1.4μm, 

46 ± 2.1μm, respectively) compared with intact animals at 7 dpl (45.7 ± 1.2μm) indicating a 

neuroprotective effect of the DPSC. At 14 dpl, RNFL thickness of the DPSC transplanted 

animal had decreased to 32.8 ± 0.7μm, which was significantly (p<0.05) lower than that in 

intact animals (45.4 ± 0.2μm) but still significantly (p<0.05) higher than in untreated animals 

(21.4 ± 1.6μm). This is in contrast to animals that received BMSC in which RNFL thickness 

decreased to 28.5 ± 1.6μm by 14dpl, which was not significantly (p>0.05) different from 

untreated animals. By 21 dpl, the RNFL in animals receiving either DPSC or BMSC (24 ±

1.3μm, 22 ± 1.8μm, respectively) had reduced to a thickness not significantly (p>0.05) 

different to that seen in untreated animals at 21 dpl (17 ± 1.2μm). 

Transplanted intravitreal DPSC survived in vivo for 21 days

Viable DPSC were detected in the vitreous at 21dpl associated with elevated levels of BDNF 

and NT-3 in the retina at 21dpl compared to eyes transplanted with dead DPSC (Figure 5). 

Activated glial fibriliary acidic protein+ (GFAP) glia were also observed in eyes transplanted 

with DPSC but not with dead DPSC. Similar findings were observed with BMSC (data not 

shown). 

Intravitreal DPSC transplants protected RGCs from death after ONC

Intravitreal DPSC transplantation after ONC significantly increased (p<0.05) RGC survival at 

21 dpl (27.9 ± 2.0 RGCs/mm of retina) compared with animals receiving BMSC transplants 

(16.2 ± 1.3 RGCs/mm of retina), dead DPSC transplants (5.7 ± 0.6 RGCs/mm of retina) or 

ONC alone (6.9 ± 1.1 RGCs/mm of retina; Figure 6), as determined by Brn3a+ staining. 

Nonetheless, RGC survival after BMSC transplantation was also significantly (p<0.05) 
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greater than in animals receiving dead BMSC transplants (8.4 ± 1.1 RGCs/mm of retina) or 

in untreated animals, demonstrating that BMSC exerted some neuroprotective effect for 

RGC, although at a lower level than did DPSC. 

Intravitreal DPSC transplants after ONC promoted RGC axon regeneration

At distances of 100, 200, 400, 800 and 1200μm distal to the crush site, the number of 

regenerating GAP-43+  RGC axons was significantly (p<0.05) increased (284.7 ± 33.0, 221.0 

± 23.3, 214.5 ± 26.0, 181.9 ± 42.0, 115.9 ± 25.6 axons/nerve, respectively) after intravitreal 

transplantation of DPSC compared with BMSC (133.7 ± 21.1, 115.9 ± 25.0, 85.4 ± 19.8, 77.2 

± 10.4, 50.4 ± 10.3 axons/nerve, respectively), dead DPSC (68.7 ± 19.6, 54.4 ± 11.0, 42.7 ±

8.6, 31.7 ± 15.3, 9.5 ± 4.9 axons/nerve, respectively) or untreated (78.1 ± 16.9, 48.6 ± 7.2, 

34.9 ± 6.0, 11.7 ± 3.7, 2.5 ± 1.5 axons/nerve, respectively; Figure 7) at 21 dpl. BMSC 

transplanted animals had significantly (p<0.05) greater numbers of regenerating RGC axons 

in the distal optic nerve compared with untreated animals at all distances and significantly 

(p<0.05) greater numbers of regenerating axons compared to animals receiving dead BMSC 

(59.7 ± 6.5, 45.5 ± 8.6, 46.7 ± 9.2, 40.4 ± 9.9, 18.2 ± 5.3 axons/nerve, respectively) at 

distances of 100 and 200μm distal to the crush site.  

Discussion

This study provides evidence that DPSC, through secretion of neurotrophins, significantly 

increase both survival and neuritogenesis of primary adult rat III-tubulin+ retinal cells in an 

in vitro co-culture assay. Furthermore, when transplanted into the vitreous body of adult rats 

after ONC, DPSC significantly promote Brn-3a+ RGC survival and axon regeneration. 

Noteworthy, the neuroprotective and pro-regenerative effects of DPSC seen in these in vitro 

and in vivo models was greater than that observed with BMSC, which can be related to their 

enhanced neurotrophic profile as determined by ELISA and suggests that DPSC have a 

greater potential to repair CNS/retinal injury.  
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Our findings are consistent with a recent study that demonstrated greater positive effects of 

locally transplanted DPSC on locomotory recovery from SCI than did BMSC transplants21.

Moreover, the improvement in locomotory function after cell transplantation into a SCI site 

occurred in the absence of local neuronal differentiation, suggesting that the transplanted 

cells acted indirectly, creating a more supportive trophic environment for endogenous axonal 

sprouting/growth.  

Our finding that DPSC enhanced III-tubulin+ retinal cell survival and neurite outgrowth in a 

co-culture model can be attributed to the release of soluble factors, since the two 

populations of cells were separated by a porous membrane. Moreover, the use of specific 

Fc-TrK inhibitors enabled us to identify DPSC-derived NGF, BDNF and NT-3 as important 

NTF responsible for this neuroprotective and neuritogenic effect. Use of individual Fc-TrK 

inhibitors as opposed to combined demonstrated that NGF, BDNF and NT-3 each had 

equally important neuroprotective and neuritogenic effects. The ELISA measurements 

confirmed the secretion of these factors by the DPSC, corroborating previous work showing 

that DPSC express multiple NTF mRNA, including neurotrophins21, 31-33. Interestingly, BMSC 

exhibited a less potent neurotrophic effect on cultured III-tubulin+ retinal cells than DPSC; 

and this novel observation can be related to their reduced neurotrophin profile. Of note, 

K252a, a non-specific blocker of TrK receptors as well as other protein kinases, further 

reduced the neuritogenic effect of DPSC/BMSC compared to Fc-Trk blockade. These 

findings suggest that other TrK-independent growth factors may also mediate the 

neurotrophic effects of DPSC/BMSC. Indeed, DPSC express other trophic factors such as 

GDNF30. By contrast, neuroprotection was similarly reduced after both K252a and TrK 

blockade, suggesting that the stem cell-derived neurotrophins NGF, BDNF and NT-3 were 

the primary RGC neuroprotective agents. 

Axotomy interrupts the supply of retrogradely transported neuroprotective NTF and, in many 

cases, the neuron subsequently dies, with RGCs being exquisitely sensitive to such 

adversities10, 41. Neurotrophins also play an important role in growth cone 
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formation/elongation and are relatively abundant in the peripheral nervous system compared 

with the CNS, possibly explaining the disparity between the axon regenerative response of 

the two sites. DPSC/BMSC provide an alternative source of NTF for axotomised RGCs, 

protecting them from death and promoting RGC axogenesis. 

After ONC, RGCs begin dying from 7 dpl42 with 80-90% dead by two to three weeks6, 10, 41,

thus making this a suitable in vivo model to assess DPSC-mediated effects on RGC survival. 

We utilised two methods of assessing RGC number in our in vivo model, firstly OCT was 

used to measure the thickness of the RNFL, which is comprised of the axons of the RGCs. 

These are lost concomitantly with RGC death and thus provide a means of monitoring 

axonal atrophy in real time. Secondly, Brn3a+ RGCs in the ganglion cell layer of retinal 

sections were counted at 21 dpl, a method that excludes amacrine cells and astrocytes from 

the counts39.

OCT recordings showed that in intact animals, RNFL thickness remained constant overtime, 

whereas after ONC, RNFL thickness was progressively and significantly reduced. DPSC or 

BMSC transplantation resulted in 100% RGC neuroprotection for up to 7 dpl but by 14 dpl, 

significant neuroprotection was only seen in animals treated with DPSC. By 21 dpl, RNFL 

thickness was decreased in all ONC groups suggesting that cell-mediated neuroprotection 

was failing. Thus, the OCT data suggest that RGC death was significantly delayed but not 

entirely averted. Reasons for the transient neuroprotective effect of the transplanted cells 

may be ligand-mediated down-regulation of the TrK receptors14, 15 and/or gradual loss of the 

grafted cells with concomitant loss of neurotrophin-mediated protection of RGCs.  However, 

Y chromosome+ immunohistochemical staining indicated that DPSC persisted in the vitreous 

of rats 21 days after transplantation. Further studies are required to analyse in detail the 

survival and fate of the transplanted stem cells in the vitreous of the eye. 
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Corroborating the OCT results, significantly more Brn3a+ RGCs were present in the retinae 

of animals that received intravitreal transplants of either BMSC or DPSC compared with 

controls (i.e. untreated animals or those receiving dead BMSC/DPSC). This corroborates the 

RNFL thickness data suggesting that OCT is a valid method for monitoring RGC survival, 

although immunocytochemical analysis proves a more direct as well as a more sensitive 

approach. RGC survival was more pronounced in animals receiving DPSC compared with 

those receiving BMSC transplants, correlating with our in vitro co-culture results as well as 

ELISA data, highlighting higher titres of neurotrophins produced by the DPSC. These 

findings are also consistent with well documented data demonstrating therapeutic short term 

effects of injected recombinant neurotrophins10, 11.

This study provides new evidence that DPSC are neuroprotective for RGCs and is supported 

by the reports of reduced numbers of apoptotic neurons seen after SCI when DPSC are 

transplanted into the lesion site21. Three other studies have shown significant RGC survival 

after intravitreal cell transplantation. The first two used BMSC in an animal model of 

glaucoma24 and optic nerve transection23 and the other study used intravitreally transplanted 

fibroblasts genetically modified to express NTF in the same ONC rat model used in this 

study16. All these studies showed significant, though short term, RGC survival and attribute 

this effect to the release of NTF by the transplanted cells. In particular, it was reported that 

BMSC transplantation resulted in RGC survival of 66% compared with 46% in untreated 

animals at 8 dpl23. This protection appears substantially less than that achieved in the 

current study (complete protection after 7 days) as assessed by OCT but can be explained 

by the fact that the authors23 transplanted BMSC 3 days before the ONC, meaning that the 

RGC counts were done 11 days after BMSC transplantation. It is likely that the efficacy of 

the transplanted cells diminished significantly by 11 days and that the neuroprotective effect 

was equally diminished. This also concurs with our findings that the neuroprotective effects 

of the transplanted cells became less pronounced over time. 
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The promising neurite outgrowth stimulated by the DPSC seen in the in vitro co-culture 

experiments were supported by the GAP-43+ RGC axon regenerative response seen in the 

in vivo ONC experiment. Accordingly, intravitreal transplantation of DPSC increased the 

number of GAP-43+ axons in the proximal stump with many crossing the lesion site and 

regenerating into the distal optic nerve. As well as more pronounced axon regeneration 

through the lesion site, the distal nerve stump contained significantly more GAP-43+ axons 

that persisted for long distances through the putative axon growth inhibitory environment of 

the distal optic nerve. Finally, less laminin+ scar tissue was seen at crush sites traversed by 

regenerating axons, which is a well-documented correlation6, 43. Indeed, in all the 

DPSC/BMSC transplanted animals with regenerating RGC axons, no scar tissue was 

present at the lesion site. This phenomenon has been attributed to secretion of 

metalloproteinases and plasminogen by the regenerating axons that block meningeal 

fibroblast migration into the wound and degrade scar tissue6, 44. Thus, the lack of scar tissue 

is an additional indication of DPSC-induced RGC axon regeneration.  

This study demonstrates the potential therapeutic benefit of DPSC to stimulate the growth of 

axons along the long non-permissive distances required to restore neural function. Our 

finding also suggest that the regenerating axons were disinhibited by the DPSC-derived 

neurotrophins, presumably through regulated intramembrane proteolysis of inhibitory 

receptors and dissolution of chondroitin sulphate proteoglycans45, and corroborates a 

previous ONC study in which a significant number of RGC axons regenerated into the distal 

optic nerve after intravitreal transplantation of fibroblasts genetically modified to express 

FGF-2, BDNF and NT-316. Our results also support the recent work that concluded that the 

transplantation of DPSC promoted axonal regeneration across a SCI lesion site21.

It cannot be ruled out and is not mutually exclusive in the aforementioned explanation that 

the neuroprotective and neuritogenic/axogenic effects seen in this study are attributable to 

an indirect interaction between the stem cell-derived neurotrophins and the III-tubulin+

retinal cells mediated by GFAP+ retinal glia, which also secrete NTF. In addition, 
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inflammation triggers the release of CNTF from GFAP+ retinal glia resulting in RGC 

neuroprotection and axogenesis46, 47. In this study, we show glial cell activation 21 days after 

stem cell transplantation, which suggests that glia have a role in the induction of stem cell-

directed neuroprotection/axogenesis although increased neurotrophin titres in eyes at 21 dpl 

may be stem cell-derived, glial-derived or a combination of both. Thus, it is possible that up-

regulation of glial NTF production contributed to the neuroprotective and axogenic effects 

seen after stem cell transplantation. 

We report here for the first time that intravitreal BMSC promoted a small but significant 

regeneration of RGC axons, even at 1200μm distal to the crush site. Nonetheless, DPSC 

promoted significantly greater regeneration of RGC axons than did BMSC, reflecting their 

elevated neurotrophin secretion profile and underlining the potential benefit of DPSC above 

other mesenchymal cell sources.  

An important future consideration would be to develop a safe and more sustained delivery 

mechanism for the cells. In the present study cells were injected as a suspension which 

carries with it certain risks, such as migration of the cells into endogenous tissue and their 

uncontrolled proliferation. Encapsulation of cells in biologically compatible materials for 

transplantation into the vitreous has already been shown with a retinal cell line that had been 

genetically modified to release CNTF in both animal models48 and patients49. Not only did 

the encapsulated cells survive for 6 months49 but they were also retrievable. Further studies 

are ongoing in our laboratory to develop a similar delivery mechanism for adult human 

DPSC. 

Conclusions

We demonstrate here for the first time that DPSC secrete multiple neurotrophins which were 

at least in part responsible for promoting axotomised RGC neuroprotection and 

neuritogenesis/axogenesis, both in vitro and in vivo. DPSC were more effective than BMSC, 
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which is likely due to the higher titres of neurotrophin secretion by the DPSC. DPSC may be 

a promising alternative for a CNS regenerative cell therapy. 
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Legends

Figure 1: Experimental design used for in vivo experiment 

Timeline of the in vivo experiment detailing the times when the OCT recordings and tissue 

collections were undertaken, in relation to the day of the ONC and DPSC/BMSC 

transplantation. 

Figure 2: NGF, BDNF and NT-3 secretion from DPSC and BMSC 

DPSC and BMSC conditioned medium, collected after 48h of cell culture, was assayed using 

specific ELISAs for rat NGF, BDNF and NT-3 (n = 3; Black lines indicate significant 

difference at p<0.05). 

Figure 3: Effects of DPSC and BMSC on III-tubulin+ retinal cells in vitro 

III-tubulin+ retinal cells, cultured either alone (A i), with exogenous neurotrophins (A ii), with 

BMSC (with or without TrK inhibitors, A iii and A iv, respectively) or with DPSC (with or 

without TrK inhibitors, A v and A vi, respectively). All images are representative of the entire 

culture, 9 separate culture wells per treatment with every 3 wells using a different animal 

(scale bars = 100μm). The number of surviving III-tubulin+ retinal cells (B), number of III-

tubulin+ retinal cells with neurites (C) and the length of the longest III-tubulin+ retinal cell 

neurite (D) when retinal cells were co-cultured with BMSC (blue bars), DPSC (red bars), 

exogenous neurotrophins (green bars) or alone (purple bars). Black lines indicate significant 

difference at p<0.05. The effects of TrKA, B and C Fc-inhibitors as well as K252a on III-

tubulin+ retinal cell survival and neuritogenesis in DPSC and BMSC co-cultures are shown 

(points marked with an * indicate significant difference from uninhibited cultures at p<0.05). 

Figure 4: RNFL thickness after ONC

OCT images of retina from an uninjured rat (A) and a rat 21 days after ONC (B) are shown 

with red lines outlining the RNFL. OCT images were taken of the retinal section surrounding 
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the optic nerve head, indicated by the green line (C). Images are representative of the 6 

animals used in each treatment group (scale bar = 200μm). The graph (D) depicts changes 

in RNFL thickness over time for uninjured optic nerves (orange line), DPSC transplanted 

eyes (red line), BMSC transplanted eyes (blue line), dead DPSC transplanted eyes (dashed 

red line) and dead BMSC transplanted eyes (dashed blue line). Points marked with an * 

indicate significant difference from untreated/dead cell transplanted animals at p<0.05. 

Figure 5: DPSC survival and trophic effects 21 days after ONC/cell transplantation 

Immunohistochemically stained 20μm thick parasagittal sections of retina and vitreous, 

stained for BDNF (A and B), NT-3 (C and D), GFAP (E and F) and Y chromosome (G) 21 

days after ONC and intravitreal transplantation of DPSC (A, C, E and G) or dead DPSC (B, 

D and F) with outer nuclear layer (ONL), inner nuclear layer (INL) and ganglion cell layer 

(GCL) labelled. A negative control with the primary antibodies omitted is included (F).  All 

images are representative of the 2 images per section, 4 sections per retina, 6 retinae from 6 

different animals per treatment group. DAPI was used as a nuclear counter stain (scale bars 

= 100μm). 

Figure 6: RGC survival 21 days after ONC/cell transplantation

Immunohistochemically stained 20μm thick parasagittal sections of retina, stained for III-

tubulin (green) and Brn3a (red) in intact animals (A i) and 21 days after ONC (A ii) and 

intravitreal transplantation of dead BMSC (A iii), dead DPSC (A iv), living BMSC (A v) and 

living DPSC (A vi) with outer nuclear layer (ONL), inner nuclear layer (INL) and ganglion cell 

layer (GCL) labelled. All images are representative of the 2 images per section, 4 sections 

per retina, 6 retinae from 6 different animals per treatment group. DAPI was used as a 

nuclear counter stain (scale bars = 100μm). In panel B, the number of Brn3a+ RGCs, 

counted in a 1mm region of the GCL 21 dpl is shown. Black lines indicate significant 

difference at p<0.05.
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Figure 7: Regeneration of RGC axons in the optic nerve, 21 days after ONC/cell 

transplantation

Immunohistochemically stained 15μm thick longitudinal sections of optic nerves, stained for 

GAP-43 (green) and laminin (red) 21 days after ONC and DPSC (A i) or dead DPSC (A ii) 

transplantation with the crush site marked by an *. All images are representative of 3 

sections per nerve, 6 nerves from 6 different animals per treatment group (scale bars = 

100μm). The number of regenerating axons was measured at 100, 200, 400, 800 and 

1200μm from the ONC site at 21 dpl in untreated animals (purple bars), animals receiving 

intravitreal dead DPSC transplants (red dashed bars), dead BMSC (blue dashed bars), living 

BMSC (blue bars) and living DPSC (red bars), black lines indicate significant difference at 

p<0.05. Note GAP-43+ axons outside basal lamina of optic nerve = peripheral innervation of 

the tissue. 



Antigen Dilution Supplier Catalogue no. 
BDNF 1:200 Promega #G1641 
NT-3 1:200 Millipore #AB1780SP 
GFAP 1:200 Sigma #G9269 
RBMY 1:100 Santa Cruz #SC-14572 

III-tubulin 1:500 Sigma #T8660 
Brn3a 1:200 Santa Cruz #SC-31984 
GAP-43 1:400 Zymed Laboratories #33-5000 
Laminin 1:200 Sigma #L9393
Mouse IgG (Fluor 488) 1:400 Molecular probes #A-21202
Rabbit IgG (Fluor 488) 1:400 Molecular probes #A-21206 
Rabbit IgG (Fluor 594) 1:400 Molecular probes #A-21207 
Goat IgG (Fluor 594) 1:400 Molecular probes #A-11058 

Table 1: Antibodies used in immunohistochemistry and immunocytochemistry – see text for 

definitions of abbreviations

 
















