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Abstract
G protein-coupled receptors (GPCRs) are valuable therapeutic targets for many dis-
eases. A central question of GPCR drug discovery is to understand what determines 
the agonism or antagonism of ligands that bind them. Ligands exert their action via the 
interactions in the ligand binding pocket. We hypothesized that there is a common set 
of receptor interactions made by ligands of diverse structures that mediate their ac-
tion and that among a large dataset of different ligands, the functionally important in-
teractions will be over-represented. We computationally docked ~2700 known β2AR 
ligands to multiple β2AR structures, generating ca 75 000 docking poses and pre-
dicted all atomic interactions between the receptor and the ligand. We used machine 
learning (ML) techniques to identify specific interactions that correlate with the ago-
nist or antagonist activity of these ligands. We demonstrate with the application of 
ML methods that it is possible to identify the key interactions associated with agonism 
or antagonism of ligands. The most representative interactions for agonist ligands 
involve K972.68×67, F194ECL2, S2035.42×43, S2045.43×44, S2075.46×641, H2966.58×58, and 
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1  |  INTRODUC TION

G-protein-coupled receptors (GPCRs) remain a therapeutically 
important family of proteins with over 100 receptors targeted by 
500 drugs approved for clinical use.1 The human β2-adrenoceptor 
(β2AR)2,3 responds to stimulation by the endogenous agonist li-
gands adrenaline and noradrenaline by inducing Gs-mediated 
cAMP signaling and is a valuable target for small molecule smooth 
muscle relaxants used to treat asthma and other pulmonary dis-
eases.4,5 Endogenous agonist activity can be readily inhibited by 
so-called antagonist drugs that prevent receptor activation by oc-
cupying the binding pocket without activation and blocking agonist 
access. A large number of ligands have been developed to target 
β-adrenoceptors (βAR) over the last 60 years since the pioneering 
discovery of beta-blockers by Sir James Black.5–9

All GPCRs share a common architecture of a bundle of seven 
transmembrane helices (TMs), with the ligand binding pocket ac-
cessible from the extracellular space and an intracellular effector 
binding site that becomes available following transition into an ac-
tive receptor conformation.10 One of the key features of GPCRs is 
that they are highly dynamic and adopt many distinct conformations 
that are important for the engagement of signaling partners, e.g., 
activation of the Gs protein or arrestins.11 It is generally thought that 
ligands control GPCR activity by preferentially stabilizing active or 
inactive conformations.12 With 35 reported structures with 13 di-
verse ligands in inactive and active states reported, β2AR is one of 
the best-studied GPCRs from a structural perspective.

Structure-based drug design has become an integral part of the 
modern drug discovery process. Approaches to link ligand structure 
to its activity are generally based on the ligand chemical structure 
(similar chemical structures have similar activity paradigms) or by 
considering the interactions between the ligand and the receptor. 
Structural Interaction Fingerprints that describe the interactions 
of ligands with proteins13–15 have proven to be a very successful 
approach to score binding poses of ligands. A number of different 
interaction fingerprints have been developed, with more complex 
ones that incorporate atomic interactions and different types of 
non-covalent interactions having superior performance.16 Several 
studies have attempted to link structural properties of the ligands 
and the interactions they make to the receptor to their functionality, 

based on available crystallographic structures and complemented 
with ligand docking17,18 or MD simulations.19 These studies show 
significant promise in using interaction fingerprints to rationalize the 
link between structure and function, however, the results of these 
studies were limited to the experimentally available structural data 
that cover only a very small fraction of known β2AR ligands. This 
limited their general ability to generate the new chemical knowledge 
needed to answer the key question in the drug discovery pipeline—
what is the next molecule to make?

Ligands exert their action on GPCRs via the interactions they 
make in the ligand binding pocket. We hypothesized that despite 
the observed structural diversity of ligands targeting a particular re-
ceptor, there should be common interacting atoms within the ligand 
binding pocket that mediate their action. Unfortunately, the 35 ex-
perimentally determined structures is a very small dataset to obtain 
a comprehensive representation of the interaction pattern between 
ligands and the receptor. We reasoned that among a large dataset of 
different ligands and their respective binding poses, the functionally 
important atomic interactions the ligands make with a particular re-
ceptor will be over-represented. To investigate this hypothesis, we 
assembled a database of ~2700 known β2AR ligands and computa-
tionally docked them to multiple experimentally determined β2AR 
structures, generating ca 75 000 docking poses (Figure 1A,B). This 
produced a large synthetic dataset suitable for Machine Learning 
applications. For each of the docking poses, we generated a detailed 
Atomic Interaction Fingerprint (AIF), which comprises a list of all the 
pairs of atoms involved in the interaction between a receptor and 
a ligand and a classification of each pairwise interaction as one of 
fifteen types of bond. In total, there were ca 1100 possible interac-
tion descriptors that we interchangeably call features (Figure 1C) in 
our dataset. Using pairwise correlation and Machine Learning (ML) 
approaches, we identified specific interactions between the ligands 
and the β2AR that correlated with their reported agonist or antago-
nist activity at the receptor (Table S1). In addition to a common set of 
interactions that were present for both ligand types, agonists make 
specific contacts with the amino acid residues H932.64×63

, K97
2.68×67

, 
S2035.42×43

, S204
5.43×44

, S207
5.46×461

, H296
6.58×58 and K3057.32×31 in 

transmembrane helices TM2, TM5, TM6, and TM7 while antagonists 
make specific interactions with W2866.48×48 and Y3167.43×42 in TM6 
and TM7. This approach successfully identifies the key features of 

K3057.32×31. Meanwhile, the antagonist ligands made interactions with W2866.48×48 
and Y3167.43×42, both residues considered to be important in GPCR activation. The 
interpretation of ML analysis in human understandable form allowed us to construct 
an exquisitely detailed structure-activity relationship that identifies small changes to 
the ligands that invert their pharmacological activity and thus helps to guide the drug 
discovery process. This approach can be readily applied to any drug target.

K E Y W O R D S
adrenoceptor, docking, drug discovery, GPCRs, machine learning, structure-activity 
relationship

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=29&familyId=4&familyType=GPCR
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the ligands in terms of the individual interactions they make with the 
receptor to exert their pharmacological action.

Importantly, we were able to discover more subtle relationships 
where small changes to the ligand result in significant changes to 

their pharmacology, the so-called activity cliffs encountered in every 
drug discovery program. This method represents a novel strategy for 
understanding the molecular mechanism of drug action on receptors 
and provides a valuable tool to guide the drug design process.

F I G U R E  1 Workflow of the project. (A) Source of beta-adrenoceptor ligands available at open access repositories which comprise our 
2683 compound dataset. (B) Molecular docking of test ligands to active and inactive β2AR structures was performed using Autodock Vina. 
(C) Interatomic interaction fingerprint (AIF) calculations were made using Arpeggio. In the case of the “filtered dataset”, the generated AIFs 
were filtered based on the presence of ionic interactions with D1133.32×32 and N3127.39×38.
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2  |  MATERIAL S AND METHODS

2.1  |  Dataset preparation

A dataset was compiled using the primary open access reposito-
ries GPCRdb,20,21 ChEMBL,22 ZINC,23 DrugBank,24 and Guide to 
Pharmacology.25 This dataset yielded a total of 2643 unique β2AR 
ligands, of which 1317 have reported pharmacological action, 
while 1326 compounds are binders with undetermined activity 
profiles. We classify ligands with known activity as either ago-
nists (including partial and full agonists) or antagonists (including 
inverse agonists).

Each ligand was assigned an internal ID (ranging from 1 to 
2643), and its corresponding SMILES string (line notation encod-
ing its molecular structure) and pharmacological action (agonist/
antagonist/binder) were retrieved from the relevant databases. 
The International Chemical Identifier key (InChIKey) was used as 
a unique identifier to distinguish between ligands across the data-
set.26 Both InChIKey and physicochemical properties appended 
for all compounds were acquired using the software Open Babel 
v3.1.1.27

2.2  |  Protein structures and ligand 
preparation and docking

The active-state protein coordinates were extracted from two crys-
tal structures of human β2AR bound to an ultrahigh-affinity agonist 
(BI-167107) coupled with the Gs protein28 or/and with a G protein-
mimicking nanobody (Nb6B9)29 from the Protein Data Bank (PDB 
code: 3SN6 and 4LDE, respectively). The inactive-state protein co-
ordinates were extracted from the human β2AR bound to the in-
verse agonist carazolol (PDB code: 5JQH).30

Receptor structures were aligned to use the same grid box of 
22 × 22 × 32  Å at the orthosteric binding site, protonated, and 
charged, yielding a protein input file for subsequent docking experi-
ments using UCSF Chimera.31

The SMILES representation of ligands along with their internal ID 
were protonated and converted to a spatial data file (SDF) and pdbqt 
formats using Obabel.

The semi-flexible molecular docking was carried out using the 
software AutoDock Vina32 and generated up to 10 poses for every 
compound. In total, 2643 compounds were docked in three β-
adrenoceptor structures, yielding almost 27 000 docking poses.

2.3  |  Interaction fingerprint 
calculations and filtering

The inter-atomic receptor-ligand interaction fingerprints (AIFs) were 
calculated for all docking poses generated for each compound using 
the software Arpeggio33 executed in Docker environment,34 a soft-
ware container platform. This method accounts for the presence 

of up to 15 subtypes of interatomic interactions, classified by atom 
type, distance, and angle constraints. The output was presented as 
binary values, with a 1 denoting the presence of a particular defined 
interaction and 0 indicating an absence.

A Python script was written to filter the Arpeggio results (to gen-
erate the “filtered dataset”) by imposing minimum constraints that 
enforced certain features deemed essential for β2AR ligand bind-
ing, which eliminated all irrelevant binding poses (around 50% rows). 
Criteria important for binding were based on prior knowledge de-
rived from the literature, in particular the presence of the ionic/polar 
interaction between D1133.32 and N3127.39 with the ethanolamine 
moiety of the ligands.

2.4  |  Generation of interaction matrix

A Python script was written to process each docking pose to gen-
erate a single MxN matrix for each PDB, where M is ligand poses 
(samples as “ligand internal ID_docking pose number”) and N are 
the specific atomic interaction (features as “receptor residue num-
ber/interacting atom—ligand interacting atom and interaction type” 
(e.g. “lig 752_04” and “301/O—N Polar,” respectively), present in the 
whole ligand set. The value 1 corresponds to the occurrence of a 
particular type of interaction and 0 to the non-occurrence of a par-
ticular type of interaction. As the AIF files generated by Arpeggio 
only contained the interaction present for a particular docking pose, 
the imputation of missing data was handled by setting any undefined 
(NaN) values to 0. Finally, we excluded the three subtypes of inter-
actions reported by Arpeggio: Clash, VdW Clash, and Proximal from 
subsequent analysis as they provided very little information but rep-
resented around 60% of the columns. We also included pharmaco-
logical action label (“agonist” or “antagonist”, if known, or “binder” if 
not known) for each ligand binding pose in the same data table as an 
additional column.

2.5  |  Descriptive statistical analysis

A descriptive statistical analysis of the frequency of the interatomic 
interactions was performed using a Python script. In this manner, 
the most frequently occurring features (those observed in at least 
10% of all docking poses) contributing to agonism and antagonism 
were clearly identified across all interaction types and collated for 
further analysis. This resulted in the reduction of the number of fea-
tures from ca 1100 to ca 100.

Subsequently, we computed the pairwise correlation between 
the columns representing atomic interactions and the column rep-
resenting pharmacological action using Pearson's correlation coeffi-
cient (r) method. The resulting value r for each interaction (feature) 
reflects how well it is correlated with the pharmacological action (ag-
onism or antagonism). Plots, graphs, and tables were generated with 
Excel, and statistical significance was determined using an unpaired 
t-test using Prism 8.

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=12065
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2.6  |  Machine learning dataset preparation

The dataset was then randomly shuffled and split, via stratification, 
into cross-validation and final hold-out datasets. The cross-validation 
set was used for training and validation during hyperparameter opti-
mization. The hold-out dataset comprised 20% of the original data-
set and allowed us to gauge whether the validation scores were good 
estimations of model performance when generalizing to unseen 
data. The hold-out set was not used during any training or optimiza-
tion procedures.

2.7  |  Model selection

2.7.1  |  Performance metric

For the filtered dataset the Random Forest classifier and for the un-
filtered dataset XGBoost classifier were used. Matthews correlation 
coefficient (MCC) was used as the performance metric for all mod-
els.35 The MCC metric is defined as follows:

 where TP is the number of true positives, TN the number of true neg-
atives, FP the number of false positives, and FN the number of false 
negatives. The MCC for binary classification weights both positive and 
negative classes equally, while also being robust to severe class imbal-
ances. A value of +1 indicates a perfect positive correlation, that is a 
total agreement between prediction and observation. An MCC score 
of 0 indicates no correlation, that is the classifier performs no better 
than a random coin flip. Finally, −1 indicates a perfect negative correla-
tion, that is a total disagreement between prediction and observation.

2.7.2  | Model performance estimation

Model performance was validated using repeated-stratified-k-fold 
cross-validation. Cross-validation entails splitting the dataset into k 
equally sized partitions, termed folds. One of the folds is extracted 
and used for validating a model on unseen data. The remaining folds 
are then used to train the model. This process is then repeated using 
each of the k folds as the validation set. The optimal model is the one 
that has the best performance on average across all k-folds. Cross-
validation generally provides a less optimistic estimation of model 
generalizability on unseen data, which is finally tested on the hold-
out set. Due to class imbalances in the data, stratification is used 
to ensure that the original distribution of classes is maintained in 
each fold, thus preventing any fold from being populated by a single 
class.36 Model estimation can be noisy and so by performing cross-
validation over many repeats one obtains a more precise estimation 
of true model performance. Bootstrap resampling was used to es-
timate model uncertainty.37 Confidence intervals were calculated 

with respect to a 99% confidence level. Bayesian hyperparameter 
optimization (BHO) was utilized to determine high-performing model 
parameter configurations when tested on unseen data. BHO was set 
to maximize the mean MCC across K-folds and repeats, model un-
certainty was then calculated using optimized models only.

Random forest classifier hyper parameters

Hyperparameter name Hyperparameter value

Criterion Gini

Estimators 2000

Max depth 5

Max-features 5

Splitter Best

Minimum samples split 2

Minimum samples leaf 1

Minimum weighted fraction leaf 0

Maximum leaf nodes Unlimited

Minimum impurity split None

Minimum impurity decrease None

XGBoost hyper parameters

Hyperparameter name Hyperparameter value

Eta 0.4306

gamma 0.2458

Learning rate 0.05873

Max delta step 7

Max depth 8

Minimum child weight 1.246

Number of estimators 1150

Scale positive weight 1

Subsample 0.7532

All other hyperparameters for XGBoost that are not specified 
were kept at their default values according to the XGBoost API guide 
(https://xgboo​st.readt​hedocs.io/en/lates​t/param​eter.html).

2.7.3  | Model feature importance analysis

The most important atomic interactions, for classifying agonist 
or antagonist ligands, were identified using the Shapley Additive 
Explanations (SHAP) method.38 Shapley values are based upon 
coalition game theory and inform one how to fairly distribute the 
prediction of a model among the features. The Shapley value for 
one feature is the average marginal contribution of a feature value 
across all the possible combinations of features. More concretely, 
the Shapley value assigns an importance to each feature by calculat-
ing the effect on model prediction when including a particular fea-
ture compared to the model prediction when the feature is withheld. 
Mathematically this can be formalized as:

MCC =
TP × TN − FP × FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

https://xgboost.readthedocs.io/en/latest/parameter.html
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 where 𝑆 refers to a subset of features that does not contain the fea-
ture for which we are calculating 𝜙𝑖. 𝑆 ⋃ 𝑖 is the subset that contains 
features in 𝑆 and feature 𝑖. Finally, 𝑆 ⊆ 𝑀/𝑖 represents all sets 𝑆 that are 
subsets of the total set of features 𝑀, excluding feature 𝑖. The compu-
tation time increases exponentially with the number of features; thus 
we used the TreeSHAP algorithm that approximates SHAP values for 
tree-based machine learning models in polynomial time.39 The main 
motivations for using the SHAP feature importance method over other 
popular methods, such as Gini and Permutation methods, is due to the 
following:

Consistency: The Gini feature importance method is sus-
ceptible to producing inconsistent feature importances that are 
biased to the specific ordering of features specified by their po-
sition, as split nodes, in the tree. TreeSHAP method is equivalent 
to averaging differences in model predictions over all possible 
orderings of the features and thus does not suffer from such 
inconsistencies.

Granular Interpretability: Although permutation importance 
is not biased to the specific structure of decision trees it only pro-
vides a global understanding of the most important features. With 
TreeSHAP, observations get their own set of SHAP values and, 
therefore, we can understand feature importance on a per sample 
basis.

2.7.4  |  Determining the optimal number of repeats

There is an exponential relationship between the number of times 
one has to repeat bootstrap or cross-validation and the level of pre-
cision to within which one would like to measure true model per-
formance. This leads to a trade-off between the precision and time 
complexity of model performance estimation. We thus estimate the 
optimal number of repeats to use for Bootstrap and cross-validation 
resampling methods to an acceptable level of precision as:

where 𝑧 is the ordinate on the Normal distribution curve that corre-
sponds to a particular level of confidence we have in our estimation, 
denoted α. 𝜎 is the population standard deviation, and 𝛿 is the specified 
precision of the estimate. We estimate the population standard de-
viation via repeated bootstrap resampling, thus each estimate of the 
number of repeats is specific to the variance of each model and its hy-
perparameter configuration (https://www.itl.nist.gov/div89​8/handb​
ook/ppc/secti​on3/ppc333.htm).

A precision of 1% (Marginal Error =  0.01) was selected for all 
resampling methods (Figure S1). Therefore, a minimum of 13 repeats 
for both the RFC and XGBoost were used during cross-validation 
and bootstrap resampling.

2.8  |  Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked 
to corresponding entries in http://www.guide​topha​rmaco​logy.
org, the common portal for data from the IUPHAR/BPS Guide to 
PHARMACOLOGY,3 and are permanently archived in the Concise 
Guide to PHARMACOLOGY 2021/22.2

3  |  RESULTS

3.1  |  β2AR agonists are on average bigger and 
more lipophilic compared to antagonists

To construct our dataset of currently known β2AR ligands we 
searched all available open access repositories such as GPCRdb, 
ChEMBL, DrugBank, Guide to Pharmacology, and ZINC. The curated 
database included 2683 unique β2AR ligands, of which 1317 had re-
ported pharmacological action (987 agonists and 330 antagonists/
inverse agonists). The remaining 1366 were classified as “known 
binders” with no assigned pharmacological activity (Figure 1A).

To understand if there are any obvious differences between 
agonists and antagonists, we compared their physicochemical (PC) 
properties predicted using OpenBabel software.27 We found that 
many PC property values for agonists were statistically different 
from those for antagonists (unpaired t-test, p < .0001), for example, 
molecular weight (MW) and lipophilicity (logP). The MW of ~70% 
of agonist ligands was in the 350–550 g/mol range, with an average 
of 469 ± 108 g/mol. In contrast, the antagonist ligands were typi-
cally smaller, with ~70% within a range of 200–400 g/mol (average 
358 ± 108 g/mol). The logP values of ~70% of agonists are in the 
range 3–7, with an average of 4.6 ± 1.6, whereas ~70% of antagonist 
ligands had logP values in the range 0–5 (average 3.1 ± 1.4). Taken to-
gether, the β2AR agonists profiled here tended to be more lipophilic 
and bigger in size. On the contrary, endogenous agonists adrena-
line and noradrenaline are small and water-soluble, suggesting that 
size and lipophilicity are not an intrinsic prerequisite of all agonists. 
We observed an identical linear correlation between the molecular 
weight and lipophilicity for both agonists and antagonists (Figure 2), 
suggesting that bigger compounds are more lipophilic. The likely 
explanation is that drug discovery efforts have focused on devel-
oping β2AR agonists formulated for the treatment of asthma. They 
are delivered to the lungs via inhalation with higher hydrophobicity 
increasing their duration of action at the target tissue. Therefore, 
although the observed differences in size and hydrophobicity are 
present in our data set, they are unlikely to have a functional role.

3.2  |  Generating atomic interaction fingerprints 
based on molecular docking poses

To obtain structural information on how ligands in the curated 
dataset interact with the receptor (i.e., ligand binding poses), we 

𝜙i =
∑

S⊆M�i

|S| ! (|M| − |S| − 1) !

|M| !
[
f(S ∪ i) − f(S)

]
,

n = z2
a

(
�2

�2

)

https://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm
https://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm
http://www.guidetopharmacology.org/
http://www.guidetopharmacology.org/
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performed molecular docking using the open-source AutoDock Vina 
software.32 For performance reasons, AutoDock Vina uses a semi-
rigid docking approach where the ligand is flexible but the receptor 
is rigid. In nature, they are both dynamic but this has the potential to 
create a very large conformational space that is impossible to enu-
merate, and the answers have to be learned from a limited number of 
examples. We included three representative β2AR structures in our 
study: the active conformational states (i) PDB 3SN6 stabilized by 
the Gs protein28 and (ii) PDB 4LDE stabilized by a nanobody,29 and 
(iii) the inactive conformational state PDB 5JQH.30

We obtained ~75 000 binding poses in total, ~25 000 poses 
for each PDB (up to 10 poses for ligand, for 2683 compounds) 
(Figure 1B). Each ligand binding pose was used to generate an atomic 
interaction fingerprint (AIF) using Arpeggio software,33 in total we 
obtained ~75 000 AIF files (Figure 1C). Each AIF included ~60 unique 
interactions on average between the atoms of the ligand and atoms 
of the receptor. When the type of atoms of each ligand and the type 
of bond formed are considered, this resulted in over 1100 possible 
types of interaction across the complete ligand dataset.

It is important to consider that the obtained AIF fingerprint data-
set contains noise because not all of the predicted docking poses 
are likely to be relevant or functionally important. The limitations 
of the ligand docking algorithms result in multiple alternative bind-
ing poses with very similar “quality scores”, with only one of the top 
ten solutions likely to correspond to the experimentally observed 
binding pose. While crystallographic structures typically represent 
one ligand binding pose, they tend to represent the lowest energy 
state of the system. On the contrary, molecular dynamics simulation 
and biophysical experiments suggest that ligands are dynamic when 
bound to the receptor.40 Therefore, it is important to consider mul-
tiple ligand docking poses in the analysis. We rationalized that in a 
large dataset of different ligands and their respective binding poses, 
the functionally important atomic interactions between the ligands 
and the receptor will be over-represented while the influence of the 
noise (irrelevant binding poses) would average out.

We improved the signal-to-noise ratio within our dataset by 
excluding irrelevant binding poses using prior knowledge based 

on crystallographic data (Figure  1C, filtering panel). The majority 
(ca 97%) of β2AR ligands have a prevalent β-hydroxy- amine motif 
that makes specific interactions with the receptor. We, therefore, 
excluded poses that did not display this ionic interaction between 
the oxygen of D1133.32×32 and the nitrogen atom of ethanolamine 
of the ligands and the hydrogen bond between the oxygen atom of 
N3127.39×38 and either the NH or beta-hydroxyl groups in the ligand 
scaffold; these have been observed in every experimental crystallo-
graphic structure of the β2AR. After applying this filter, we obtained 
~31 500 atomic interaction files (~10 500 poses and AIF files for each 
PDB), reducing the size of the original dataset by ~55%. We refer to 
this as the “filtered dataset.” As the filtering step also removed ~3% 
of ligands in our dataset that did not contain the β-hydroxy-amine 
motif or did not produce suitable poses, we have also included in 
our analysis the “full dataset” consisting of ~75 000 AIF files with no 
filtering for comparison.

3.3  |  Data-driven analysis reveals key interactions 
that drive agonism and antagonism of ligands

We constructed a ligand-receptor interaction matrix, organizing the 
atom-atom interactions and their types in the columns and each 
binding pose in rows for each PDB. We defined the ligand binding 
site as all residues that interact with at least one ligand binding pose 
in the dataset resulting in 30 residues in total (Table S2). The atoms 
of the ligand binding site provide a constant reference coordinate 
system to describe ligand-receptor interactions. We defined atomic 
interaction between specific atoms of the receptor, the specific 
atom (C, N, O, etc) in the ligand, and the nature of the interacting 
bond (polar, ionic, hydrophobic, etc). This strategy allowed us to 
encode the ligand-receptor interaction matrix that accommodates 
diverse ligands irrespective of their structural scaffold.

Using Pearson's pairwise correlation between the independent 
variables describing the presence or absence of an atomic inter-
action and the dependent variable denoting agonist/antagonist 
properties of the ligands, we identified atom-atom interactions (or 

F I G U R E  2 Physicochemical (PC) 
properties of the ligands (agonist 
in blue and antagonist in orange) 
predicted using OpenBabel software. 
Correlation between lipophilicity and 
molecular weight. Spearman correlation 
coefficient is 0.62 for agonist and 0.76 for 
antagonists.
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features) that are associated with agonism or antagonism in the fil-
tered dataset. From about 100 commonly observed interactions, we 
find that the most representative interactions for agonist ligands 
are hydrophobic/aromatic contacts involving K972.68×67, F194ECL2, 
H2966.58×58, and K3057.32×31 and polar/ionic/hydrogen bond con-
tacts with S2035.42×43, S2045.43×44, S2075.46×641, and H2966.58×58. 
The antagonists made specific hydrophobic/aromatic contacts with 
W2866.48×48 and Y3167.43×42 and polar/ionic/hydrogen bond con-
tacts with Y3167.43×42 (Figure 3A and Table S3).

While the majority of interactions had the same impact on re-
ceptor function (mediating agonism or antagonism) for all atoms 
of the individual residue, in some cases (D1133.32×32, D19245.51×51, 
F19345.52×52, T195ECL2, F2896.51×51, F2906.52×52, Y3087.35×34, 
N3127.39×38) this depended on the individual atoms of the residue 
and the nature of the interacting bond (Table S3). For example, 
the polar/ionic/hydrogen contact of the carbonyl oxygen (OD1, 
as defined by the Protein Data Bank format41) of D1133.32×32 with 
an oxygen atom of a ligand is predictive of agonism while interac-
tion with a nitrogen atom is predictive of antagonism. Contacts 
made by hydroxyl oxygen (OD2) of D1133.32×32 have the opposite 
effect: interaction with a nitrogen atom of the ligand corresponds 
to agonism, while interaction with an oxygen atom results in an-
tagonism. In another example, polar contacts of the sidechain 
nitrogen (ND2) of N3127.39×38 with oxygen atoms in the ligand 
corresponded to agonism while interaction with nitrogen leads to 
antagonism.

The full dataset was a more complex challenge as it contains 
more noise in terms of the number of different poses and also a more 
diverse range of ligands. Nonetheless, we also observed around 
100 common interactions, which were mostly the same as those 
determined for the filtered dataset. However, several interactions 
changed their relative importance (Figure 3B); for example, the im-
portance of S2045.43×44 as a determinant of agonism was reduced, 
while W3137.40×39 became more predictive of agonism. However, the 
core set of agonist-associated interactions made with S2035.42×43, 
S2075.46×461, and, F194ECL2, H2966.58×58, K3057.32×31, and K972.68×67 
remained the same.

To validate the performance of the Pearson's pairwise correla-
tion, we computed the maximum Matthews Correlation Coefficient 
(MCC) which measures the quality of binary classifications when the 
classes are of different sizes as in our case (ca 75% are agonists). For 
the filtered dataset, taking the maximum MCC with a cut-off score 
of 0.37, we obtained a pharmacological classification (agonist or an-
tagonist) with a MCC of 0.43 which corresponds to the accuracy of 
prediction of 79% (Figure S2A). For the full dataset (cut-off = 0.51), 
the MCC and accuracy decreased to 0.29 and 67%, respectively 
(Figure  S2B). An important consideration for interpretation of the 
prediction accuracy is that the training dataset may contain errors: 
compounds that are “wrongly” assigned to a particular class (e.g., ag-
onist or antagonist). Therefore, we would not expect the predictors 
to be 100% accurate during the validation step.

As the pairwise correlation approach identifies the relative im-
portance of individual interactions, we applied ML strategies (see 

methods for details) that can detect more complex patterns in the 
data than pairwise correlation analysis. We trained a Random Forest 
Classifier (RFC)42 on the filtered dataset and XGBoost43 on the full 
dataset. RFC constructs a multitude of decision trees and averages 
them to improve the predictive performance and control overfitting, 
reaching MCC values in the training of 0.81 and an accuracy of 92% 
on the filtered dataset (Figure S3 and S5A). The XGBoost algorithm 
that iteratively constructs optimized decision trees guided by the 
results of the previous steps performed remarkably well on the full 
dataset (Figure S4 and S5B), with a prediction performance on the 
holdout set of 0.78 MCC and 93% accuracy after full Bayesian opti-
mization. This suggests that there are predictive patterns in both the 
filtered and full datasets not captured by a simple predictor based on 
pairwise correlations.

It is, however, a considerable challenge to interpret what the 
ML algorithms have actually learned. We extracted the feature im-
portance for RFC trained on the filtered dataset (Figure 4A,B) and 
the feature importance for XGBoost trained on the full dataset 
(Figure 4C,D), using the Shapley Additive Explanations (SHAP) val-
ues which reflect the contribution of each feature to the prediction. 
In most cases, the presence of a particular interaction is predictive of 
agonism or antagonism. However, in a minority of cases, the absence 
of the interaction was more important for predictions (e.g., 193/CB--
1/C hydrophobic).

Overall, while the relative order of importance of individual 
features varied depending on the model, we observed the same 
set of interactions that were predictive of agonism or antagonism 
for both models (Table S4). The application of pairwise correlation 
analysis and ML methods allowed us to identify the key interac-
tions associated with agonism or antagonism of ligands (Figures 3 
and 5).

4  |  DISCUSSION

While an observation that on average agonists are larger and more 
hydrophobic could potentially be used to distinguish them from an-
tagonists in the βAR ligand dataset, the pharmacological action of 
ligands on GPCRs is far more specific than a simple function of their 
size or hydrophobicity.

4.1  |  Specific ligand-receptor interactions 
determine their pharmacological activity

While ML algorithms can successfully classify compounds into ago-
nists and antagonists, understanding what their decision is based on 
and translating this information into a language humans can under-
stand is crucial for their usefulness for drug discovery.44 Studying 
the ligand binding poses of thousands of ligands docked in the β2AR 
binding pocket allowed us to identify the key ligand-receptor in-
teractions which dictate a molecule's propensity to cause agonism 
or antagonism. The structurally diverse nature of the test set that 
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consisted of all ligands with reported activity in publicly accessible 
databases allowed us to identify several “hot spots” mediating the 
agonism or antagonism of ligands acting on β2AR. Agonism was 
mediated by residues in TM2 and TM5 and further facilitated by 
residues in TM6 and TM7. It is entirely plausible that certain ligands 
can successfully pull these TM regions together causing receptor 
activation in the process. In contrast, our data suggest that antago-
nism is mediated by the interaction of ligands with W2866.48×48, the 
so-called toggle switch, that has long been proposed to play a key 
role in the activation of GPCRs.45,46 The second mediator of antago-
nism is Y3167.43×42 which is involved in the so-called 3–7 lock that 
has previously been identified as important for GPCR activation.47 
Engaging these key residues in the ligand binding pocket likely pre-
vent the conformational rearrangements necessary for activation of 
the receptor.

4.2  |  Potential for developing more fine-grained 
models of ligand activity

While the assembled data classify compounds as agonist or antago-
nist, the pharmacological activity of compounds covers a spectrum 
from a very strong antagonist (aka inverse agonist) to that of a very 
strong agonist (aka full agonist). Another class of GPCR ligands, so-
called biased ligands, changes the balance between activating G 
protein and arrestin signaling pathways, with a potential to increase 
their therapeutic benefits.11,48 It is likely that such partial and biased 
ligands would also show a distinct AIF that is somewhat different 
from the all-inclusive agonist AIF we have identified in the current 
work. However, a large experimental dataset of partial or biased ago-
nists would be needed to explore this hypothesis, ideally collected in 
a uniform screen to minimize experimental and interpretational bias. 

F I G U R E  3 Schematic representation of the interactions predicted using the pairwise correlation approach. (A) filtered dataset and (B) 
full dataset. The type of interaction is summarized in squared shape for hydrophobic and aromatic contacts, round shape for the polar, 
ionic, and hydrogen bond contacts, and a combination of both. The dotted purple lines represent ionic and/or hydrogen bond contacts. The 
ethanolamine moiety of the BI-167107 ligands is highlighted in light blue.
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F I G U R E  4 Feature importance of the RFC (A, B) and XGBoost ML (C, D) models applying the SHAP value method. (A, C) The x-axis is the 
average magnitude change in model output when a feature is “hidden” from the model. Higher SHAP values indicate higher importance of 
the feature. (B, D) Local SHAP values per sample (each ligand pose) are sorted by the mean absolute SHAP value method. Gray represents a 
value of 0, thus indicating the absence of a particular atomic interaction for a specific sample. Black represents a value of 1, thus indicating 
the presence of a particular atomic interaction for a specific sample. The x-axis shows how the presence or absence of an atomic feature 
increases or decreases the likelihood of a sample being classified as an antagonist. The data are plotted for all samples in the dataset, 
showing the distribution of important values. The units of the x-axis using RFC and XGBoost are log odds.
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The analysis of the learning performance of RFC and XGBoost clas-
sifiers (Figure S5) suggests that reasonable performance is achieved 
with a limited dataset (ca 300–450 compounds), although further 
increases in the dataset size resulted in improved performance. It 
is likely that an even larger dataset would be required to predict 
continuous rather than a binary structure-activity relationship from 
AIFs.

Our methodology can be readily applied to any receptor (or 
drug target) for which an extensive set of ligands has been devel-
oped and characterized, and where in silico docking experiments can 
be performed. This can include data already in the public domain 
or through examining the results of an in house (e.g., commercial) 
drug-target screening campaign. The advantage here is that in many 
cases the same signaling assay will have been used to profile all the 
compounds, improving the consistency of the dataset. This would 
allow the relative importance of each atom-atom interaction to be 

assessed as a modifier of signaling output. Also, it may be possible 
to isolate functional readouts (e.g., β-arrestin versus G protein) and 
therefore make predictions about functional bias. Further tantaliz-
ing possibilities include the use of automated internet metasearch of 
publications and patents to assemble such datasets and reduce the 
number of compounds described as “known binders” if they are not 
available yet.

4.3  |  Potential for developing predictors of 
pharmacological activity for novel ligands

Being able to understand which atoms of the ligand drive agonist or 
antagonist activity significantly increases the value of in silico dock-
ing campaigns. Importantly, it opens doors to a more rational en-
gineering of ligands with improved and optimized pharmacological 

F I G U R E  5 Schematic representation of the interactions for the machine learning approach. (A) RFC for the filtered dataset and (B) 
XGBoost for the full dataset. The type of interaction is summarized in squared shape for hydrophobic and aromatic contacts, round shape 
for the polar, ionic, and hydrogen bond contacts, and a combination of both. The dotted purple lines represent ionic and/or hydrogen bond 
contacts. The black outlines represent the atomic interactions with higher feature importance. The ethanolamine moiety of the BI-167107 
ligands is highlighted in light blue.
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properties—facilitating the design of new ligands not present in 
the large virtual libraries and thus opening up a chemical space 
many orders of magnitude larger than the largest virtual libraries 
available.

From a computation perspective, it is a relatively straight-
forward task to generate a prediction of ligand pharmacological ac-
tivity based on the model learned and the predicted binding pose of 
the ligand and the corresponding AIF. However, large-scale docking 
experiments produce multiple possible ligand binding poses, and the 
existing scoring functions do not allow for reliable identification of 
the “correct” binding pose. The structural diversity of the ligands 
complicates the analysis even further as overlaying the predicted 
binding pose with the available experimental data is not always 
informative.

4.4  |  Limitations on the ability to correctly predict 
ligand activity

Our data strongly support the hypothesis that individual atomic 
interactions are correlated with ligand pharmacological activity. 
This is learned from a large dataset of ligand binding poses, where 
“correct” binding poses are a minority but the machine learning 
methods we used identified the structure-activity relationship be-
cause “wrong” binding poses averaged themselves out. Prediction 
of pharmacological activity, in contrast, is 100% dependent on hav-
ing a correct binding pose for the ligand. This is a problem that 
has not yet been solved in a satisfactory manner, and it limits the 
performance of any structure-based activity prediction method. It 
is clear that the future progress in our ability to predict the pharma-
cological activity of novel ligands will be closely correlated with our 
ability to correctly predict their ligand binding poses. The analysis 
of the structural properties of ligands (Figure S6) with “correct” and 
“wrong” predicted activity did not identify any specific clusters of 
ligands for which the prediction failed. This observation supports 
the idea that the quality of prediction is determined by the quality 
of the binding pose prediction. To summarize, the observed cor-
relations are informative and potentially useful to design novel 
ligands with desired pharmacological, their application in a com-
pletely automated pipeline needs further optimization of docking 
algorithms.

5  |  CONCLUSIONS

These results strongly support the hypothesis that the interatomic 
interactions between the receptor and its ligands are central to 
differentiate between their agonist and antagonist effects at the 
β2AR. The overview obtained of the interatomic interactions be-
tween receptor and ligand which correlate with an action will help 
the synthesis of new previously unseen compounds with a specific 
pharmacological activity. While the specific interatomic interactions 

between β2AR and its ligands that we describe are unlikely to be 
generalizable to other GPCRs (with the exception of closely related 
receptors such as β1AR), the same hypothesis and ML approach can 
be applied to other targets. The growth of GPCR ligand databases 
provides a rich data source to facilitate the application of this ap-
proach to other GPCRs, while conceptually this approach could be 
applied to any drug target.

The ability to predict the pharmacological action of a ligand 
based on its ligand binding pose will significantly advance drug dis-
covery projects contributing to a reduction of attrition during drug 
development. The tools presented have the potential to focus the 
efforts of chemists proposing new candidate molecules based on 
existing scaffolds and offer the opportunity to identify completely 
new scaffolds that may be more amendable to modifications from 
large-scale docking experiments, thus opening up a chemical space 
of many orders of magnitude larger than the largest virtual libraries 
available.
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