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ABSTRACT 13 

Aviation emissions are the only direct source of anthropogenic particulate 14 

pollution at high altitudes, which can form contrails and contrail-induced clouds, with 15 

consequent effects upon global radiative forcing. In this study, we develop a predictive 16 

model, called APMEP-CNN, for aviation non-volatile particulate matter (nvPM) 17 
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emissions using a convolutional neural network (CNN) technique. The model is 18 

established with data sets from the newly published aviation emission databank and 19 

measurement results from several field studies on the ground and during cruise 20 

operation. The model also takes the influence of sustainable aviation fuels (SAFs) on 21 

nvPM emissions into account by considering fuel properties. This study demonstrates 22 

that the APMEP-CNN can predict nvPM emission index in mass (EIm) and number (EIn) 23 

for a number of high-bypass turbofan engines. The accuracy of predicting EIm and EIn 24 

at ground level is significantly improved (R2 = 0.96 and 0.96) compared to the published 25 

models. We verify the suitability and the applicability of the APMEP-CNN model for 26 

estimating nvPM emissions at cruise and burning SAFs and blend fuels, and find that 27 

our predictions for EIm are within ±36.4% of the measurements at cruise and within 28 

±33.0% of the measurements burning SAFs in average. In the worst case, the APMEP-29 

CNN prediction is different by -69.2% from the measurements at cruise for the JT3D-30 

3B engine. Thus, the APMEP-CNN model can provide new data for establishing 31 

accurate emission inventories of global aviation and help assess the impact of aviation 32 

emissions on human health, environment and climate. 33 

 34 

HIGHLIGHTS 35 
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⚫ Application of convolutional neural network for aviation emission predictions. 36 

⚫ Good agreement on nvPM emissions at cruise between measurements and 37 

calculation. 38 

⚫ Capability of predicting nvPM emissions for aircrafts burning SAFs. 39 

 40 
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SYNOPSIS 45 

The results of this paper provide accurate predictions of nvPM emissions from in-use 46 

aircraft engines, which impact airport local air quality and global radiative forcing. 47 

 48 
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1. INTRODUCTION 51 

In the past twenty years, impacts from aviation emissions on human health, airport 52 

local air quality, and climate change have attracted increasing interest (Stettler et al., 53 

2011; Yim et al., 2013; Yim et al., 2015). Non-volatile particulate matter (nvPM) as one 54 

of the major pollutants from aviation has been widely studied (Liati et al., 2014; Lobo 55 

et al., 2015; Lobo et al., 2016) and currently regulated in engine certification process 56 

by the International Civil Aviation Organization (ICAO) (ICAO, 2021). At present, 57 

aviation is the only anthropogenic source that emits nvPM at cruise altitude (~ 10,000 58 

m) in the upper troposphere or lower stratosphere (Jensen and Toon, 1997; Peck et al., 59 

2013). In fact, more than 90% of global aviation fuel is consumed at cruise altitude 60 

(Zhang et al., 2019).  61 

Aviation nvPM, often assumed to be predominantly composed of black carbon 62 

(BC) or soot, has been widely considered as one of the major contributors to climate 63 

change (Lee et al., 2009; Lee et al., 2021). The nvPM emissions from aviation at cruise 64 

altitude can influence the global radiation balance via two mechanisms: (i) the direct 65 

absorption of solar radiation. The nvPM strongly absorbs solar light in the spectral 66 

range from ultraviolet to infrared (Lee et al., 2021). Additionally, compared to the nvPM 67 

emissions from other anthropogenic sources, nvPM from aviation emission has a long 68 
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lifetime cycle, which thus leads to an appreciable positive radiative forcing (RF) (Bond 69 

et al., 2013); (ii) an indirect effect by forming contrails and contrail cirrus, which could 70 

be more significant than the direct effect (Bond et al., 2013). A recent study on the 71 

V2527-A5 engine of a research A320 airplane by Voigt et al. (Voigt et al., 2021) 72 

demonstrated that contrail ice particles (IP) are closely correlated to nvPM emissions 73 

and 80-90% of the IP have nvPM cores, indicating that such particles, although small 74 

in particle size (~ 20-30 nm), can serve as ice nucleus (IN) at the cruise condition (e.g. 75 

at T = 230 K and P = 25 kPa). From a recent study by Lee et al., the net effective RF 76 

induced by aviation activities is +100.9 mW/m2 in 2018 mostly attributed to contrail 77 

cirrus (+57.4 mW/m2) (Lee et al., 2021). It is generally agreed that the RF of contrail 78 

cirrus will increase in the coming years. This increase was estimated to occur by a factor 79 

of 3 from 2006 to 2050, reaching to 160 or even 180 mW/m2 by then, attributed to both 80 

a large increase in air traffic and a slight shift in the air traffic towards high altitudes 81 

(Wilkerson et al., 2010; Bock and Burkhardt, 2019). According to the report by the 82 

Intergovernmental Panel on Climate Change (IPCC), RF from aviation could have a 7% 83 

contribution to anthropogenic RF by 2050 (Sabogal, 2011). A recent study provided 84 

experimental evidence that burning sustainable aviation fuels (SAF) can result in a 50 85 

to 70% reduction of ice number concentration and a slight increase in ice crystal size 86 
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(Voigt et al., 2021). Although the formation and the evolution of contrails and contrail 87 

cirrus is one of the main undetermined factors that influence the prediction of future 88 

global radiation balance (Solomon et al., 2007), the microphysical interaction between 89 

aircraft nvPM emissions and the formation of contrails is still not fully understood. 90 

Precise prediction of aviation nvPM emissions, especially those at cruise altitude, 91 

becomes critical in assessing the complex influences of aviation on climate. At present, 92 

there are several approaches being used to estimate the emission index for mass and 93 

number of nvPM (EIm and EIn), including the first order approximation version 3.0 94 

(FOA3) (Wayson et al., 2009), the formation and oxidation (FOX) (Stettler et al., 95 

2013a), the improved formation and oxidation (ImFOX) (Abrahamson et al., 2016), the 96 

approximation for soot from alternative fuels (ASAF) (Speth et al., 2015), and the 97 

smoke correlation for particle emission–CAEP11 (SCOPE11) (Agarwal et al., 2019). 98 

The FOA3 converts the results of smoke measurements, smoke numbers (SN), into 99 

nvPM mass concentrations. It was approved by ICAO (ICAO, 2011) in 2007 to evaluate 100 

nvPM emissions around airports worldwide. However, the SN instrument measures the 101 

light opacity of the particles collected on filter papers (ICAO, 2008). Its application to 102 

aviation emissions has been limited by two factors: insensitivity to ultrafine particles 103 

and insufficient resolution (Jones, 2002; Rye et al., 2012; Stettler et al., 2013b). Modern 104 
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high-bypass turbofan aircraft engines such as the CFM56 and IAE-V2500 generate 105 

nvPM emissions in the range of 20-100 nm (Saffaripour et al., 2020; ICAO, 2021). For 106 

these engines, correlations between the nvPM mass concentrations and the SN are 107 

usually poor (Abrahamson et al., 2016). The FOX does not depend on SN measurement, 108 

but uses engine conditions as the input variables, thus avoiding the intrinsic 109 

uncertainties of SN measurement. However, the fuel parameters are not incorporated in 110 

the FOX model, so it may not be readily used to predict EIm from SAFs, yet a study by 111 

Christie et al. showed that the FOA3 could still be valid for blends of SAFs with the 112 

conventional jet fuels (Christie et al., 2017). It has also been found that the predicted 113 

EIm by FOX were about 4 times higher than the measurements (Abrahamson et al., 114 

2016; Durdina et al., 2016; Durdina et al., 2017). In addition, Agarwal et al. developed 115 

a method for estimating EIm and EIn from aircraft engines, called SCOPE11 (Agarwal 116 

et al., 2019). This method predicts EIn by assuming a log-normal size distribution and 117 

correlating geometric mean diameter (GMD) and geometric standard deviation (GSD) 118 

with a function of measured nvPM mass concentration. Similarly, because it is difficult 119 

to accurately measure the low SN produced by modern high bypass engines, the 120 

SCOPE11 is unreliable to predict nvPM emissions for low-emission engines. 121 

SAF is one of the major and attractive solutions adopted by the global aviation 122 
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community to mitigate aviation impact on climate (Undavalli and Khandelwal, 2021). 123 

A number of dedicated measurement programs have been carried out to evaluate the 124 

reduction of aviation emissions by using SAFs (Anderson et al., 2011; Beyersdorf et al., 125 

2014; Moore et al., 2017; Durdina et al., 2021). For the purpose of estimating the effects 126 

of a variety of SAFs on nvPM emission mitigation, a new method called ASAF has 127 

been developed (Speth et al., 2015). The ASAF models the total rate of polycyclic 128 

aromatic hydrocarbons (soot precursor) formation as the sum of a component 129 

independent of fuel aromatic content and a component proportional to fuel aromatic 130 

content, and establishes the relationship between the total amount of nvPM generation 131 

and engine thrust setting, aromatic content of SAF and conventional aviation fuel. 132 

Through some assumptions and mathematical processing as well as combining with 133 

other estimation models suitable for conventional aviation fuel, the nvPM emissions 134 

burning SAFs can be predicted by the ASAF approach.  135 

Most of the current predicting methods aim to estimate nvPM emissions around 136 

airports, which are important to local air quality and human health. However, in 137 

evaluating the influence of aviation on global radiative balance, emissions at cruise 138 

altitude contribute the most because the majority of the aviation fuel is consumed during 139 

cruise operation. A common approach to predict emissions at cruise altitude is to 140 
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extrapolate the ground measurement values using dynamic ratios based on the 141 

Döpelheuer and Lecht correlation (Döpelheuer and Lecht, 1998). Abrahamson et al. 142 

developed the ImFOX, which can be directly used to predict nvPM emissions at cruise 143 

and burning SAFs (Abrahamson et al., 2016). However, the ImFOX only considers the 144 

hydrogen content of fuels and ignores the influence of other components, such as 145 

naphthalene and aromatics (Abrahamson et al., 2016), making the emission estimation 146 

values of the mode accurate for some specific data, but much less for other data, so the 147 

estimation values are still not satisfactory (Durdina et al., 2017). Previous studies 148 

showed that the content of naphthalene and aromatics in fuel can greatly affect aviation 149 

nvPM emissions (Moore et al., 2015; Durdina et al., 2017).  150 

In recent years, artificial intelligent technologies such as machine learning 151 

methods have been applied broadly and successfully in various research areas (Ma et 152 

al., 2018; Nielsen and Voigt, 2018). As a representative of machine learning methods, 153 

neural network can obtain better fitting accuracy than the conventional linear statistical 154 

models by introducing nonlinear functions (Ukrainec et al., 1989). Until now, in the 155 

field of aviation emission estimation, there has been no attempt of using neural 156 

networks. Given that the prediction of aviation nvPM emissions is in fact a multiple 157 

regression problem, we believe that applying the convolutional neural network (CNN) 158 
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approach in this field could provide a reasonable solution. 159 

In this study, we develop a new approach based on CNN to estimate nvPM 160 

emissions from aircraft engines, by using a large variety of parameters about engine 161 

parameters, fuel properties, and ambient conditions as inputs. In particular, the newly 162 

published ICAO emission databank from ground tests and a series of open data from 163 

cruise experiments are utilized to develop the CNN model, which is capable of handling 164 

multi-dimensional data sets unlike the conventional empirical models. This study aims 165 

to address the following unsolved issues: (i) how to accurately predict emissions at 166 

cruise altitude based on emission measurements on the ground; (ii) how to estimate the 167 

impact of SAF under a wide range of engine conditions because there is limited 168 

experimental data using the SAF currently available. This approach can be used to 169 

improve nvPM inventory prediction from the current fleet and will be beneficial to 170 

evaluate the impact of aviation nvPM emissions on environment and climate change. 171 

 172 

2. MATERIALS AND METHODS 173 

In this study, we categorize five measurement data groups from four of previous 174 

aircraft field measurements either on the ground or at cruise altitude (Petzold et al., 175 

1999; Schumann et al., 2002; Anderson et al., 2011; Moore et al., 2017; Voigt et al., 176 
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2021), and the ICAO 2021 Aircraft Engine Emissions Databank (EEDB) (ICAO, 2021). 177 

The comprehensive variables representing engine specific parameters (ESP), engine 178 

operational parameters (EOP), fuel properties (FP), and ambient conditions (AC) and 179 

nvPM emission data are used for the development of the predictive model of aviation 180 

nvPM emissions. We consider the influencing factors of nvPM emissions as the results 181 

of ESP, EOP, FP and AC, no matter whether the aircraft is on the ground or at cruise, 182 

burning conventional aviation fuels or SAFs. The input variables for the APMEP-CNN 183 

model in predicting EIm and EIn are the same and listed in the Table 1. 184 

Table 1. Input Variables for the APMEP-CNN Model 185 

Input Variables 

ESP EOP AC FP 

pressure ratio 

bypass ratio 

maximum rated thrust 

fuel flow rate 

thrust ratio 

ambient temperature 

ambient pressure 

aromatics content 

2.1. Measurement Data Sources 186 

2.1.1. Emission Data for Aircrafts on the Ground 187 

The EEDB provides the average values of nvPM emission measurement data for 188 

each engine with maximum rated thrust of more than 26.7 kN during the landing and 189 
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take-off (LTO) cycle, which contains four specified thrust settings (ICAO, 2021). The 190 

EEDB includes the following information: (i) engine certification data, including 191 

bypass ratio, overall pressure ratio, and the maximum rated thrust under international 192 

standard atmospheric sea level static conditions (T = 288 K, P = 101325 Pa); (ii) fuel 193 

and combustion data, including the average heat of combustion of the fuel, hydrogen 194 

content, aromatics content, naphthalene content, sulfur content, and fuel flow rate; (iii) 195 

ambient data, including pressure, temperature, and relative humidity. In the EEDB, 196 

there are a total of 784 sets of measurement data for 196 engines from ten aircraft engine 197 

manufacturers. As shown is the EEDB, some of the reported EIm and EIn are corrected 198 

for system losses in accordance with the ICAO Appendix 8 of Annex 16 Vol II, but 199 

others are not. 200 

2.1.2. Emission Data for Aircrafts at Cruise 201 

Three of the five data groups used in the CNN modeling are the emission data of 202 

aircrafts at cruise from three field studies by Moore et al. (Moore et al., 2017), Voigt et 203 

al. (Voigt et al., 2021), and Schumann et al. (Petzold et al., 1999; Schumann et al., 2002), 204 

respectively. Moore et al. measured the emissions of the CFM56-2C1 engine equipped 205 

with the NASA DC-8 research aircraft from the NASA HU-25 Falcon aircraft using the 206 

NASA Langley Aerosol Research Group (LARGE) suite of in situ instruments, which 207 
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were not corrected for diffusional, inertial and sedimentation losses given uncertainties 208 

associated with the condensation particle counter (CPC) detection efficiency curves 209 

(Moore et al., 2017). The uncertainty associated with neglecting these corrections was 210 

estimated to be 7%-9% on EIn and around 3% on EIm (Moore et al., 2017). They 211 

examined the influence of three different fuels, a low-sulfur-content Jet-A fuel, a 212 

medium-sulfur-content Jet-A fuel and a 50/50 (by volume) blend of the low-sulfur-213 

content Jet-A fuel with an hydrotreated esters and fatty acids (HEFA) biojet fuel, on 214 

nvPM emissions at cruise (Moore et al., 2017). In the process of studying the influence 215 

of clean aviation fuels on the formation of contrail-induced clouds, Voigt et al. 216 

measured the emissions of the IAE-V2527-A5 engine equipped with an Airbus A320-217 

232 aircraft with CPCs based on TSI, Model 3010 counters (TSI, Inc, USA), and 218 

provided the measured values of nvPM emissions under different fuel components, in 219 

which CPC data have been corrected for reduced detection efficiencies in low pressure 220 

environments and particle losses in the thermodenuder, with an overall uncertainty in 221 

nonvolatile particle number concentrations of ±15% (Voigt et al., 2021). Schumann 222 

et al. compiled the cruise data of aircraft nvPM emissions during the experiment of 223 

SULFUR 1-7, including the CF6-80C2A2, CFM56-3B1, CFM56-5C4 and PW JT3D-224 

3B engines, and studied the influence of different sulfur contents on the composition of 225 
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aircraft exhaust plumes (Petzold et al., 1999; Schumann et al., 2002). For these emission 226 

data, the loss correction was not mentioned in the paper. 227 

2.1.3. Emission Data for Aircrafts burning Sustainable Aviation Fuels 228 

The last data group is the compiled aircraft emission data based on the Alternative 229 

Aviation Fuel EXperiment I (AAFEX-I) field measurement campaign (Anderson et al., 230 

2011), where five different fuels were tested: a standard JP-8 (or baseline) fuel and 231 

several commercially available SAFs, such as a Fischer-Tropsch (FT) fuel synthesized 232 

from natural gas (FT-1), a FT fuel prepared from coal (FT-2), and 50:50 blends of FT-233 

1 and FT-2 with JP-8. The influence on the gaseous and PM emissions burning different 234 

fuels for CFM56-2C1 engines was systematically investigated by National Aeronautics 235 

and Space Administration (NASA) and collaborators. The CFM56 engine series are the 236 

most widely used engine type on commercial aircraft at present (almost all B737 use 237 

one version of this engine type). It should be noted that the AAFEX data sets are not 238 

corrected for the system line losses or background aerosol interference, different from 239 

the ICAO EEDB in the sampling, measurements and reporting practices since the ICAO 240 

EEDB complies with the Annex 16 requirements on nvPM emissions. 241 

2.2. Modeling Procedure – the Convolutional Neural Network Method 242 

The existing nvPM emission prediction models of aircraft engines are different in 243 
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mechanism, characteristics and details, from the FOA3 which depends on SN and 244 

converts SN into nvPM mass concentrations, to the semi-empirical FOX and ImFOX 245 

which predict nvPM mass emissions based on the proprietary engine cycle data. In this 246 

study, we develop a new modeling method to predict nvPM emission indices for 247 

individual aircraft engine, based on the CNN technology. CNN is an end-to-end feature 248 

extraction method, of which two-dimensional (2D) convolution is suitable for image 249 

processing and one-dimensional (1D) convolution is usually used to deal with multiple 250 

regression problems. The detailed modelling procedure of the CNN approach used in 251 

this study is shown in Fig. 1. 252 

There are four major steps during the CNN modeling procedure: data processing, 253 

model selection, model training and model prediction. In the first step, a process of 254 

feature selection is performed on the data relevant to nvPM emission. During the 255 

process, the Pearson correlation coefficient (PCC) and the maximum information 256 

coefficient (MIC) (Reshef et al., 2011) are used to select the attributing features that 257 

have a greater correlation with emission indices, to reduce modelling complexity, to 258 

improve the model capability and robustness, and to ensure the model accuracy. The 259 

selected features are the input variables for the APMEP-CNN model, which are listed 260 

in Table 1. After the feature selection, the EEDB data group with high-correlation 261 
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characteristics are divided into three sets to train, validate and test the model. The 262 

training set, which uses approximately 60% of all the data, is to process the training 263 

error with the gradient descent method and learn the common parameters (such as 264 

weight coefficients, deviations, etc.) of the constructed regressor; the validation set, 265 

using 20% of all the data, is to adjust the hyperparameters of the regressor (such as the 266 

epochs, the number of network layers, the number of neurons in each layer, etc.) and 267 

preliminarily evaluate the capability of the model; and the test set, using the other 20% 268 

of all the data, is to measure the performance of the regressor and evaluate the 269 

generalization ability of the final model. About 60% of the other four data groups are 270 

used for testing as well, 20% and 20% are used for training and validation in order to 271 

make a correction to the data-driven model burning SAFs or at cruise.  272 
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 273 

Figure 1. Establishment procedure of the proposed APMEP-CNN modelling approach. 274 

a. Data processing; b. Model selection; c. Model training; d. Model prediction. 𝑋1, 𝑋2, 275 

𝑋3 represent the normalized model training set, validation set and test set inputs. 𝑋1
′ , 276 

𝑋2
′  , 𝑋3

′   represent the input of model training set, validation set and test set after 277 

principal component analysis. 𝑌1, 𝑌2, 𝑌3 represent the experimental values of model 278 

training set, validation set and test set processed by ‘A’ scaler. 𝑌1
′, 𝑌2

′, 𝑌3
′ represent 279 

the output of model training set, validation set and test set in the iterative process. 𝑌3
″ 280 

represent the output of model test set after inverse processing by ‘A’ scaler. ‘A’ scaler: 281 

logarithm the data before standardization. 282 
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All data are converted to be dimensionless by scaling to eliminate the problem of 283 

excessive differences among the used data, caused by the dimensional differences. The 284 

scaling process is beneficial to accelerate the convergence speed of model training and 285 

to improve the accuracy of the model. Among the data sets, the independent variables 286 

are normalized. To obtain better results in testing, EIm and EIn are converted to 287 

logarithms, and then the logarithm of EIn is standardized. The goal of principal 288 

component analysis (PCA) is to map a high-dimensional data set into a low-289 

dimensional space through certain linear projections, then to maximize the amount of 290 

data information (maximum variance) in the projected dimensions, leading to a 291 

reduction of data dimensions and still retaining original data characteristics. The 292 

dimensions after PCA for EIm and EIn are seven and eight, then the EIm and EIn are 293 

modeled as seven-dimensional and eight-dimensional structural models, respectively. 294 

In the step of model selection, a hyperparametric data set is established by setting 295 

different numbers of hidden layers (1, 2), numbers of neurons (16, 32, 64, 128, 256, 296 

512, 1024), epochs (500-5000 with a step of 50), and batch sizes (16, 32, 64, 128, 256, 297 

512). A grid search experiment is then carried out on hyperparameters using K-fold 298 

cross-validation. Models with different hyperparameters are trained in the step of model 299 

training. 300 
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In this study, 1D convolution and max pooling operations are used to transform 301 

the high-dimensional data of the input layer to the hidden layer, extracting its features 302 

to reduce the dimensionality of the original data set effectively. The 1D convolution 303 

kernel and the pooling kernel slide along different experiment data to obtain features of 304 

ESP, EOP, FP and AC. As shown in Fig. 2 for EIn, the experiment data have dimension 305 

N (N = 8). Blue boxes represent the convolution kernel with window length M (M = 3) 306 

and step length 1, and the feature dimension obtained by convolution is N - M + 1. 307 

Yellow boxes represent the pooling kernel with window length P (P = 2), and the feature 308 

dimension obtained by pooling is (N - M + 1) / P. Then, we have established a 309 

convolution-pooling module, and the feature mapping by convolution and pooling are 310 

shown in Eqs. 1 and 2 respectively. 311 

 𝜐𝑗
𝑙 = 𝑓 [∑𝜐𝑗

𝑙−1𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑖

𝑖𝜖𝑁

] (1) 

where 𝜐𝑗
𝑙 is the convolution feature mapping of the 𝑗-th output of the neuron in layer 312 

𝑙, 𝜐𝑗
𝑙−1 is the output of layer 𝑙 − 1, which is the input of layer 𝑙, 𝑘𝑖𝑗

𝑙  is the coefficient 313 

in a convolution kernel from the 𝑖-th neuron in layer 𝑙 − 1 to the 𝑗-th neuron in layer 314 

𝑙, 𝑏𝑗
𝑖 is the deviation of the 𝑗-th neuron in layer 𝑙, 𝑓 is the Relu activation function 315 

(Glorot et al., 2011). 316 
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 𝜈𝑗
𝑙 = 𝑚𝑎𝑥

𝑖𝑙−1∈𝑁
𝜈𝑗
𝑙−1 (2) 

where 𝜈𝑗
𝑙 is the pooling feature mapping of the 𝑗-th output of the neuron in layer 𝑙, 317 

𝜈𝑗
𝑙−1 is the output of layer 𝑙 − 1, which is the input of layer 𝑙, 𝑖𝑙−1 ∈ 𝑁 represents N 318 

output in layer 𝑙 − 1. 319 

 320 

Figure 2. Operating principle of convolution kernel and pooling kernel. The blue and 321 

yellow boxes represent a convolution kernel with window length 3 and a pooling kernel 322 

with window length 2. The feature maps are obtained by sliding over the data related 323 

to engine emissions. 324 

As shown in Fig. 3, the CNN constructed in this study for predicting EIm is 325 

composed of two convolution layers with the window lengths of three and two, two 326 

max pooling layers with the window lengths of two and one, one flatten layer, one 327 

dropout layer and one fully connected layer. For EIn, there are also two convolution 328 
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layers with the window lengths of three and two, two max pooling layers with the 329 

window lengths of two and one. The pre-processed data is first extracted and 330 

dimensioned through the convolution layer and pooling layer, and then input to the 331 

flatten layer, which is used for the transition from the convolution layer to the fully 332 

connected layer to make the multi-dimensional data one-dimensional. The function of 333 

dropout layer is to randomly delete the neurons in the fully connected neural network 334 

with specified probability, to reduce the over-fitting effect and to enhance the robustness 335 

of the model. The last fully connected layer is used to synthesize the extracted features, 336 

which is described by the weight matrix of each neuron connection obtained by using 337 

the feedforward network topology with the back propagation (BP) algorithm. 338 

 339 

Figure 3. Network structure of the proposed APMEP-CNN model. 340 

In the step of model training, the loss is calculated by taking the absolute value of 341 
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the difference between the actual experimental value and the predicted value of the 342 

model, then put into the model to adjust the weights of all connections in the network, 343 

where, an adaptive optimization algorithm, called Adam, is used to be the optimizer 344 

(Kingma and Ba, 2014), with mean square error (MSE) as the loss function. This 345 

process continued until the set conditions are reached. 346 

Finally, as the result of model selection, it is determined that the number of hidden 347 

layers is one and one; the number of neurons is 256 and 256; the epoch is 2840 and 348 

3925; and the batch size is 128 and 256 for EIm and EIn respectively. 349 

 350 

3. RESULTS AND DISCUSSION 351 

3.1. Training/Validation and Test Results of the Convolutional Neural Network 352 

Method 353 

In this study, the EEDB data group at ground level, namely take-off condition, 354 

climb-out condition, approach condition, idle condition, are divided into three sets, in 355 

which approximately 60% for training, 20% for validation, 20% for testing, while the 356 

other field measurement results are also divided into three sets, 20% for training, 20% 357 

for validation, and 60% for testing. The training/validation and the test results of EIm 358 

and EIn for 196 high-bypass turbofan aircraft engines predicted by the APMEP-CNN 359 
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are shown in Fig. 4. There are 789 sets of data corrected and 51 sets of data uncorrected, 360 

thus the APMEP-CNN is a mixed model. To investigate the influence from the 361 

corrections for system losses, we establish three CNN models, labelled as model A, B, 362 

C, by using the fully corrected data, or the completely uncorrected data, or the mixed 363 

data, respectively. All the three models are used to calculate the nvPM emissions of five 364 

designated engines to evaluate the system error caused by the use of uncorrected data. 365 

The results (take RRMSE as the error index) are as follows: the EIm calculated with 366 

model A differs from the experimental value by 0.161, the EIn differs by 0.067; the EIm 367 

calculated with model B differs by 0.237, the EIn differs by 1.131; the EIm calculated 368 

with model C differs by 0.300, and the EIn differs by 0.098. Therefore, the EIm system 369 

error caused by the use of the uncorrected data is 0.237, and the EIn system error is 370 

1.131. 371 

The predicted training/validation and test values of EIm and EIn are in great 372 

agreement with the experimental data. As shown in Fig. 4b, 98.10% of the predicted 373 

EIm are within a factor of two from the measured EIm, compared to 48.3% for FOA3, 374 

14.6% for FOX and 24.7% for ImFOX. Similarly, 99.37% of the predicted EIn are 375 

within a factor of two from the measured EIn in Fig. 4d. From a consequent correlation 376 

analysis, the test results are satisfactory with the relative root mean square error 377 
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(RRMSE, dividing the root mean square error by the average of the measurement values) 378 

being 0.34, 0.23, and the coefficient of determination (R2) being 0.96, 0.96 for EIm and 379 

EIn respectively. It should be noted that the plots in Fig. 4 are in log-log scale, so 380 

majority of the agreements between the APMEP-CNN model and experimental 381 

measurements seen in the plots are within a factor of less than 2. 382 

 383 

Figure 4. Comparison between the predicted and measured emission indices using the 384 

APMEP-CNN for the training/validation and test data sets. a. Results of EIm from the 385 

training (60%) and validation (20%) data set; b. Results of EIm from the test (20%) data 386 

set; c. Results of EIn from the training (60%) and validation (20%) data set; d. Results 387 

of EIn from the test (20%) data set. Shaded gray areas with different transparency 388 
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represent error bounds with different sizes. 389 

3.2. Predictions of nvPM Emissions during the LTO Cycle 390 

In order to evaluate the predictive accuracy of the APMEP-CNN compared with 391 

other existing models, measurement data in the EEDB related to 76 aircraft engines for 392 

APMEP-CNN, FOX and ImFOX, and 74 for FOA3, are utilized to predict nvPM 393 

emissions during the LTO cycle (These measurement data haven’t been used in the 394 

training or validation step, but only for testing. The data in Section 3.3 and 3.4 is the 395 

same). In Fig. 5, a comparison between predicted and measured values of EIm at the 396 

ICAO certification test points (i.e., 7, 30, 85, 100% thrust) using four models is shown 397 

in a log-log scale. 398 

 399 

Figure 5. Comparison between predicted EIm using different models with measured 400 

EIm in the ICAO EEDB. Shaded gray areas with different transparency represent error 401 

bounds with different sizes. 402 

The prediction of the APMEP-CNN correlates better with the measurements than 403 
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those of FOA3, FOX and ImFOX, with RRMSE = 0.22, R2 = 0.98 for APMEP-CNN; 404 

RRMSE = 0.92, R2 = 0.67 for FOA3; R2 < 0 for FOX and ImFOX. When using the 405 

FOX to estimate EIm, about 17.1% of the total results are negative. For the current 406 

version of FOX and ImFOX, the predicted EIm are overestimated especially at take-off 407 

and climb-out, as displayed in Fig. 5. The negative R2 values indicates that FOX and 408 

ImFOX perform worse than a mean EIm value, suggesting that these two methods might 409 

be unsuitable for newer high-bypass gas turbine engines in the EEDB. However, the 410 

FOX and the ImFOX are promising in describing the clear trend between EIm and thrust, 411 

also they are suitable for predicting nvPM emissions from older engines (Stettler et al., 412 

2013a; Abrahamson et al., 2016). As shown in Fig. 5, the majority of EIm predicted by 413 

FOA3 are lower than the measured values. There may be three reasons for the 414 

underestimation from FOA3: (i) the insufficient resolution in measuring SN at low 415 

emissions, since the prediction of the FOA3 is based on the SN measurements of aircraft 416 

engines, which tend to underestimate when the emissions are low (Stettler et al., 2013b); 417 

(ii) the insensitivity in detecting small particles as nvPM from turbofan aircraft engines 418 

is normally in the range of 20-100 nm (Saffaripour et al., 2020); and (iii) the difference 419 

in the SN measurements by engine manufacturers. However, the FOA3 is still highly 420 

valuable because it can be applied universally across all combustor technologies as long 421 
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as SN can be accurately measured (Abrahamson et al., 2016). For four thrust settings, 422 

97.4% of the APMEP-CNN predictions agree to within a factor of two from the 423 

measurements, representing an improvement compared with other methods. 424 

3.3. Predictions of nvPM Emissions at Cruise 425 

Because the training and validation processes have used the measurement results 426 

at both the ground level and cruise, the APMEP-CNN can also be used to predict nvPM 427 

emissions during cruise operations. Our prediction are compared with previous 428 

measurement studies on six commercial aircraft engines, including CF6-80C2A2, 429 

CFM56-3B1, CFM56-5C4, JT3D-3B, CFM56-2C1, and V2527-A5 during the 430 

SULFUR 1-7 experiments, the ACCESS experiments and the ECLIF projects (Petzold 431 

et al., 1999; Schumann et al., 2002; Moore et al., 2017; Voigt et al., 2021). The predicted 432 

values and the measurement values are listed in Table 2, in which the predicted EIm of 433 

the CF6-80C2A2, CFM56-3B1, CFM56-5C4, JT3D-3B, CFM56-2C1 and V2527-A5 434 

engines are different from the measurements (Petzold et al., 1999; Schumann et al., 435 

2002; Moore et al., 2017; Voigt et al., 2021) by 21.1%, 27.3%, 60.0%, -69.2%, 4.5% 436 

and * respectively (* means there is no measurement data), while for the predicted EIn, 437 

the differences are 38.8%, 44.3%, 53.3%, -24.8%, 36.5% and 46.6%, respectively. 438 

Conventionally, both the FOA3 and the FOX predict engine emissions during 439 
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cruise operation by using the dynamic ratio relationship proposed by Döpelheuer and 440 

Lecht to scale the ground values to the cruise values (Döpelheuer and Lecht, 1998; 441 

Stettler et al., 2013a). When the ICAO-certified SN results are used to estimate nvPM 442 

emissions at cruise, the predicted values of EIm are usually smaller than the 443 

measurement results. Some previous studies have shown that the updated FOA3 could 444 

also lead to an underestimation(Stettler et al., 2013a; Abrahamson et al., 2016).. The 445 

ImFOX uses a direct cruise prediction method (Abrahamson et al., 2016), which only 446 

needs the information for fuel flow rate and fuel hydrogen content as the inputs to 447 

calculate the EIm at cruise. However,  we find that the ImFOX predictions of EIm are 448 

quite different from the measurement results. In terms of parameter selection, the 449 

APMEP-CNN model is quite different from the conventional models, capable of 450 

considering more relevant parameters as the input parameters, thus can provide better 451 

predictions than the conventional models. 452 

Table 2. Comparison between Measured and Predicted Emission Indices at Cruise 453 

Aircraft A310-300 B737-300 A340 B707 DC-8 A320 

Engine CF6-80C2A2 CFM56-3B1 CFM56-5C4 JT3D-3B CFM56-2C1 V2527-A5 

Power (%) 18.9 22.5 19.9 40.0 24.8 29.9 

EIm_measured a 19 ± 10 11 ± 5 10 ± 3 500 ± 100 22 c \ 
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EIn_measured b 6 ± 1.2 3.5 ± 0.7 1.8 ± 0.5 17 ± 3 4.99 c 27 

EIm_APMEP-CNN a 23 d 14 d 16 d 154 d 23 c 48 

EIn_APMEP-CNN b 8.33 d 5.05 d 2.76 d 12.78 d 6.81 c 39.58 

a In the unit of mg/kg-fuel; b In the unit of 1014 #/kg-fuel; c Not corrected for system losses; d 

There are no data for the aromatics content in these measurements, thus we establish a model 

using hydrogen content as one of the CNN input variables, instead of aromatic content; \ No 

measurement data. 

3.4. Predictions of nvPM Emissions burning Sustainable Aviation Fuels 454 

Because the training and validation processes have used the measurement results 455 

from aircraft engines burning both conventional aviation fuels or SAFs, the APMEP-456 

CNN can also be used to predict nvPM emissions burning different fuels. The predicted 457 

EIm of the CFM56-2C1 engine burning JP-8, FT-1, FT-2, the mixed fuel Blend-1 and 458 

Blend-2 under different engine thrusts are shown in Fig. 6, in comparison with the 459 

measured results. The APMEP-CNN can predict the values of EIm with RRMSE = 0.48, 460 

R2 = 0.89, and EIn with RRMSE = 0.27, R2 = 0.91.  461 
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 462 

Figure 6. Comparison between the predicted emission indices of nvPM using the 463 

APMEP-CNN model with the measured results for the CFM56-2C1 engine while 464 

burning JP-8, FT-1, FT-2, Blend-1 and Blend-2 during the AAFEX-I campaign. a) The 465 

EIm burning JP-8 vs engine power; b) The EIm burning FT-1 and FT-2 vs engine power; 466 

c) The EIm burning Blend-1 and Blend-2 vs engine power; d) The EIn burning JP-8 vs 467 

engine power; e) The EIn burning FT-1 and FT-2 vs engine power; f) The EIn burning 468 

Blend-1 and Blend-2 vs engine power. 469 

As displayed in six subgraphs of Fig. 6, the APMEP-CNN is able to capture the 470 

relationship between the nvPM emissions and the variation in fuel composition, in 471 

which the increase of aromatic and naphthalene content or the decrease of hydrogen 472 

content results in the increase of EIm and EIn, as observed by previous studies (Marx 473 
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and Namer, 1988; Corporan et al., 2004; Corporan et al., 2007; DeWitt et al., 2008; 474 

Timko et al., 2010; Corporan et al., 2011; Cain et al., 2013; Beyersdorf et al., 2014; 475 

Brem et al., 2015; Durand et al., 2021). The reason for the predictive accuracy of the 476 

APMEP-CNN model maybe twofold: (i) the APMEP-CNN considers both fuel 477 

components and engine optional parameters,; (ii) the APMEP-CNN uses the most 478 

recent emission measurements of EIm and EIn from the ICAO EEDB (ICAO, 2021). 479 

This also confirms the important influence of fuel properties on aviation nvPM 480 

formation (Moore et al., 2015).  481 

 482 

4. CONCLUSIONS 483 

In conclusion, with the newly published ICAO emission databank and extra open 484 

measurement results from several field campaigns including cruise tests and SAF tests, 485 

we develop the APMEP-CNN, a new aviation nvPM emission predictive model via 486 

convolutional neural network, which can predict nvPM emissions on the ground and at 487 

cruise for a large number of high-bypass commercial aircraft turbofan engines burning 488 

either conventional aviation fuels or SAFs. The developed APMEP-CNN model has 489 

been demonstrated to be able to provide relatively accurate estimates of nvPM 490 

emissions. Further measurements of aviation emissions during cruise operation will be 491 
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helpful to further verify the APMEP-CNN and eventually enable establishment of a 492 

more accurate global inventory of aviation nvPM emissions. 493 

In despite of the success in predicting aviation nvPM emissions, the APMEP-CNN 494 

still has two intrinsic limitations: (i) the complexity of such brain-inspired neural 495 

networks makes them remarkably capable, yet it also renders them opaque to human 496 

understanding, turning them into ‘black-box’ systems, which means that researchers 497 

cannot trace the course of the neural network calculations. However, we demonstrated 498 

that the satisfactory estimation of nvPM emissions can be achieved with a certain 499 

degree of accuracy; (ii) compared with traditional aviation nvPM emission prediction 500 

methods, the APMEP-CNN usually needs a large quantity of measurement data. 501 

Although this approach makes a reasonable prediction of nvPM emissions, the amount 502 

of training data could be still insufficient, and the acquisition of a large number of 503 

relevant data is a major challenge in the field of aviation emission, especially at cruise. 504 

Alternatively, a flight simulation ground test facility, which can simulate flight 505 

conditions by providing airflow at pressures and temperatures experienced at cruise, 506 

may be used to alleviate the scarcity of cruise data by conducting cruise-like 507 

experiments with dramatically lower costs and higher accuracy. In the future, with the 508 

continuous progress of relevant measurements both on the ground and at cruise (or 509 
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cruise simulation ground tests) burning both conventional aviation fuels and SAFs, the 510 

APMEP-CNN may achieve even more accurate prediction results. To address the 511 

opaqueness issue of mainstream neural networks, some new and promising transparent 512 

machine learning techniques could be utilized, which could offer system transparency 513 

to enable us to form coherent explanations of the system's decisions and actions without 514 

sacrificing prediction accuracy. 515 

 516 

NOMENCLATURE 517 

Abbreviation Full Name 

AAFEX-I Alternative Aviation Fuel EXperiment I 

AC Ambient Condition 

ACCESS Alternative Fuel Effects on Contrails and Cruise Emissions Study 

APMEP-

CNN 

Aviation nvPM Emission Prediction Based on the Convolutional 

Neural Network 

ASAF Approximation for Soot from Alternative Fuels 

BC Black Carbon 

BP Back Propagation 
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CNN Convolutional Neural Network 

CPC Condensation Particle Counter 

EEDB Engine Emissions Database 

EIm Mass Emission Index 

EIn Number Emission Index 

EOP Engine Operational Parameter 

ESP Engine Specific Parameter 

FOA3 First Order Approximation Version 3.0 

FOX Formation and Oxidation 

FP Fuel Property 

FT Fischer-Tropsch 

GMD Geometric Mean Diameter 

GSD Geometric Standard Deviation 

HEFA Hydrotreated Esters and Fatty Acids 

ICAO International Civil Aviation Organization 

ImFOX Improved Formation and Oxidation 

IN Ice Nucleus 

IP Ice Particle 
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IPCC Intergovernmental Panel on Climate Change 

LARGE Langley Aerosol Research Group 

LTO Landing and Take-off 

MIC Maximum Information Coefficient 

MSE Mean Square Error 

NASA National Aeronautics and Space Administration 

nvPM Non-volatile Particulate Matter 

PCA Principal Component Analysis 

PCC Pearson Correlation Coefficient 

R2 the Coefficient of Determination 

RF Radiative Forcing 

RRMSE Relative Root Mean Square Error 

SAF Sustainable Aviation Fuel 

SCOPE11 Smoke Correlation for Particle Emission–CAEP11 

SN Smoke Number 

1D One-Dimensional 

2D Two-Dimensional 

 518 
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