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1. Introduction

Tropical linear algebra is a relatively new area of mathematics, having only been
studied in depth since around 1960. Cuninghame-Green was one of the pioneers
in the area, with many of his results being presented in [1]. Since then, a number
of mathematicians have further developed the theory and applications of tropical
linearity, and it has enjoyed prominence and influence in several mathematical
areas such as linear algebra, algebraic geometry and combinatorial optimization.
Tropical linear algebra gives us the ability to write seemingly non-linear problems
in a linear fashion using tropical linear operators, allowing an algebraic encoding
of many combinatorial problems and providing a framework with which some
discrete problems can be modelled [2,3].

Optimization problems over tropical linear algebra have been studied since
1970’s and 1980’s: see, e.g. K. Zimmermann [4] and U. Zimmermann [5]. A
crucial step was made by Butkovič [3], who developed a bisection scheme for
solving tropical linear programming. Krivulin [6–12] made a big contribution
to the area by solving a multitude of what we term as tropical pseudolinear and
tropical pseudoquadratic optimization problems, albeit with special constraints.
The connection between tropical linear algebra and mean payoff games was
discovered by Akian et al. [13], and this connection was further applied to trop-
ical linear-fractional programming by Gaubert et al. [14]. The present paper
aims to develop the tropical pseudolinear and pseudoquadratic optimization by
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considering a more general form of constraints and applying to it the connection
to mean-payoff games discovered in [13], following the approach of [14].

We now introduce the tropical linear algebra formally. Tropical semiring
is the set Rmax = R ∪ {−∞} equipped with the operations (⊕,⊗) defined by
a ⊕ b = max(a, b) and a ⊗ b = a + b. Algebraically, (Rmax,⊕,⊗) is a commuta-
tive idempotent semifield, meaning in particular that⊕ and ⊗ are commutative,
associative and satisfy the distributive law. Note that the ⊕ identity is −∞ and
the ⊗ identity is 0. Many of the tools and operations used in usual linear algebra
can be applied in tropical linear algebra. An important difference with rings is
that (R ∪ {−∞},⊕) does not form a group and thus there is no straightforward
subtraction in tropical algebra. Symmetrization over tropical algebra has been
known for a long time [2], being a kind of substitute for this shortcoming. Also
we can use the idempotent property of ⊕: for all x ∈ Rmaxx ⊕ x = x.

The definition of ⊕ and ⊗ is then extended to include matrices and vectors.
Suppose that A = (aij), B = (bij), C = (cij), where aij, bij, cij ∈ Rmax. When A
and B are of the same size, C = A ⊕ B if cij = aij ⊕ bij for all i, j. For matrices A
and B of compatible size, D = A ⊗ B if dij = ⊕

aik ⊗ bkj = maxk(aik + bkj).
The unit matrix, I, is defined as a square matrix whose diagonal entries are 0,

with all off-diagonal entries being −∞.
For a ∈ R ∪ {−∞} ∪ {+∞} we define its conjugate a− as −a if a ∈ R, +∞ if

a = −∞, and −∞ if a = +∞. This definition is easily extended to vectors: for
a column vector x = (xi) its conjugate is defined as a row vector x− = (x−

i ).
The ideas and methods of tropical linear algebra and mean-payoff games will

help us to solve the following main problems considered in this paper.

Problem 1.1 (Pseudolinear optimization with two-sided constraints): Given
p ∈ R

n
max, q ∈ (R ∪ {+∞})n, U,V ∈ R

m×n
max , b, d ∈ R

m
max, find

min
x∈Rn

x− ⊗ p ⊕ q− ⊗ x

subject to U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d.

and at least one finite x ∈ R
n that attains the minimum.

Problem 1.2 (Pseudoquadratic optimization with two-sided constraints):
Given C ∈ R

n×n
max , p ∈ R

n
max, q ∈ (R ∪ {+∞})n, U,V ∈ R

m×n
max , b, d ∈ R

m
max, find

min
x∈Rn

x− ⊗ C ⊗ x ⊕ x− ⊗ p ⊕ q− ⊗ x

subject to U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d.

and at least one finite x ∈ R
n that attains the minimum.

To our knowledge, these problems have not been considered before, and their
algorithmic solution based on parametric mean-payoff games, inspired by the
solution given by Gaubert et al. [14] for the tropical linear-fractional program-
ming, will be suggested in the present paper for the first time. The problems
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with the same objective function as Problem 1.1 but more special constraints
were studied by Krivulin [7,12] see also [6] and [15] where the objective fuc-
tion is strongly related to the one in Problem 1.1. Problems with similar objective
functions as in Problem 1.2 (in particular, containing the pseudoquadratic term
x− ⊗ C ⊗ x) were also studied byKrivulin [8,11,16]. However, the problems con-
sidered in these works have more special constraints than Problems 1.1 and 1.2.
In return for less general constraints, a comprehensive and concise description
of both optimal value and the whole solution set is offered in all of the above
references.

In contrast to that approach, we are not interested to describe all solutions.
Although it is possible to achieve such a description following, for example, the
double description algorithm by Allamigeon et al. [17], it is much more compli-
cated than in the case of special systems of constraints, and we are not intending
to do it here.

As in the case of the tropical linear or tropical linear-fractional program-
ming [3,14], there is a clear geometricmotivation to consider the problems posed
above, since the constraint U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d is a general form of two-
sided tropical affine constraints, that is, such constraints that describe the tropical
polyhedra.

We now show how this type of pseudo-quadratic optimization problem may
arise in practice, by considering an application to project scheduling, simi-
lar to the one described by Krivulin [8,11,16], but also including disjunctive
constraints, which were not considered in those works.

Suppose a particular project involves a set of n activities that have to be com-
pleted. Each activity has an initiation time xi and a completion time yi. We define
the time it takes to complete each activity to be its flow time, given by yi − xi.

We have ‘start-to-finish’ constraints, that activities cannot be completed until
specified times have elapsed after the initiation of other constraints, and that the
activities are completed as soon as possible within these constraints. This means
that x and y should satisfy the inequalities xj + cij ≤ yi for all i and j, where
cij = −∞ if there is no such constraint for some i and j. For the activity j to
start as soon as possible, we should havemaxj(cij + xj) = yi, and hence we obtain
yi − xi = −xi + maxj(cij + xj) for the flow time of task i. We will be also inter-
ested to minimize pi − xi and xi − qi for each task i, which means that we would
like task i not to delay too much after qi and not to start too much in advance
before pi. Note that in the project scheduling practice, one is interested either in
minimizing the greatest flow times or in minimizing the greatest of the above
mentioned time differences. However, it will be more mathematically convenient
for us to consider them together and pose the objective to minimize the greatest
of all flow times and the time differences pi − xi and xi − qi. Thus we obtain the
objective

min
x∈Rn

x− ⊗ C ⊗ x ⊕ x− ⊗ p ⊕ q− ⊗ x.
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This objective allows us to consider both kinds of objectives at the same time, as
we can allow some (or even all) entries of C, p or q− to be −∞.

The starting times of the tasks may be subject to more constraints: in the sim-
plest case it may be required that bi ≤ xi ≤ di for some i and some bi, di ∈ R, or
that uij + xj ≤ xi for some i and j and uij ∈ R. However, we may also have dis-
junctive constraints, where bi ≤ vij + xj, for some i and with bi, vij ∈ R, should
hold at least for one j. Similarly, we may have that maxk(uik + xk) ≤ vij + xj, for
some i with uik ∈ Rmax and vij ∈ R, should hold for at least one j. This motivates
considering the above objective functionwith constraint in the form of two-sided
tropical affine inequality

U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d,

which can capture all the above mentioned constraints.
The rest of the paper will be organized as follows. In Section 2 we recall the

basic knowledge and facts about tropical linear algebra and mean-payoff games
that are needed for this paper. In Section 3 we formulate Problem 1.1 in terms of
the associated parametric mean-payoff game and present the certificates of opti-
mality and unboundedness in terms of this game. In Sections 4 and 5 we develop
the bisection and Newton schemes for solving Problem 1.1. Two versions of the
Newton scheme are given: one for the case of real valued data and the other for the
case of integer data. In Section 6 we give an example and describe the numerical
experiments, which we conducted upon implementing the Newton and bisection
schemes in MATLAB. Finally, in Section 7 we explain how most of our results,
including the Newton and bisection schemes, extend to pseudoquadratic pro-
gramming (Problem 1.2). However, efficient implementation of these schemes
for this problem will be developed in another publication.

2. Preliminaries

2.1. Tropical linear algebra

Some of the main concepts of tropical linear algebra come from combinatorial
optimization [3].

With amatrixA ∈ (R ∪ {−∞})n×n we can associate aweighted digraphDA =
(N,E,w). It has the set of nodes N = {1, . . . , n}, set of arcs E ⊆ N × N such that
(i, j) ∈ E if and only if aij 	= −∞, and weight function w : E → R defined by
w(i, j) = aij. Vice versa, if we are given a weighted digraph D with n nodes, we
can associate with it a matrix AD ∈ (R ∪ {−∞})n×n, along the same lines.

One important player in tropical linear algebra is the maximum cycle mean,
ρ(A). Given a matrix A ∈ (R ∪ −∞)n×n, we define

ρ(A) = max
σ

w(A, σ)

l(σ )
.
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Here, σ denotes an elementary cycle. Also if we have σ = (i1 . . . iki1) then
w(A, σ) = ai1i2 ⊗ ai2i3 ⊗ . . . ⊗ aiki1 is the weight of σ = (i1 . . . iki1) and l(σ ) =
k is the length of the cycle σ . Note that ρ(A) is well defined for any matrixA, and
ρ(A) = −∞ if and only if DA is acyclic.

The importance of ρ(A) is due to the following. On the one hand, in the usual
linear algebra, the behaviour of some iterative algorithms crucially depends on
the existence and properties of (I − A)−1. In the tropical linear algebra, this is
replaced with the Kleene star defined by the formal series

A∗ = I ⊕ A ⊕ A2 ⊕ . . . .

This series converges and is equal to I ⊕ A ⊕ . . . ⊕ An−1 if and only if ρ(A) ≤ 0,
that is, if and only if there is no cycle in DA with a positive weight.

On the other hand, ρ(A) is crucial for the tropical eigenvector-eigenvalue
problem, or spectral problem in tropical linear algebra, which is the problem
of finding tropical eigenvalue λ and tropical eigenvector x 	= −∞ such that
A ⊗ x = λ ⊗ x. The connection between ρ(A) and the tropical spectral problem
is that the greatest tropical eigenvalue of any square matrix over Rmax is equal to
ρ(A), see [2,3].

2.2. Dual operators and conjugates

In tropical matrix algebra, matrix inverses exist only for a very special case
of diagonal and monomial matrices. However, we can overcome some of the
difficulties this poses by defining conjugates.

Dual operations are definedusing theminplus algebra,which is the setRmin =
R ∪ {+∞} equipped with operations (⊕′,⊗′) defined by a ⊕′ b = min(a, b) and
a ⊗′ b = a + b for all a, b ∈ Rmin.

Recalling the definition of scalar conjugate a → a−, the conjugate of a matrix
A with entries in R ∪ {−∞}, denoted A�, can be then defined by

(A�)ij = a−
ji ∀ i, j.

Note that as A has entries in Rmax and can be used to perform max-plus mul-
tiplication, A� has entries in R ∪ {+∞} and can be used to perform min-plus
multiplication.

Below we will use the following property of scalar conjugates: for a, x ∈ Rmax
and b ∈ R ∪ {+∞}, we have a ⊗ x ≤ b if and only if x ≤ a− ⊗′ b. This property
can be easily extended to matrices:

Proposition 2.1 (e.g. [3, Theorem 1.6.25]): Let A ∈ R
m×n
max , x ∈ R

n
max and b ∈

(R ∪ {+∞})m. Then

A ⊗ x ≤ b if and only if x ≤ A� ⊗′ b.
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The scalar and matrix conjugations discussed above were introduced by
Cuninghame-Green [1] and as residuations of max-plus scalar and matrix mul-
tiplication by Baccelli et al. [2]. In particular, we use the notation � following
Baccelli et al. [2] to emphasize the duality between the operatorA⊗ and its resid-
uation A�⊗′, but we prefer to use a more intuitive notation a− and x− for scalars
and vectors.

2.3. Two-sided systems andmin–max functions

The following is an obvious corollary of Proposition 2.1:

A ⊗ x ≤ B ⊗ x if and only if x ≤ A# ⊗′ (B ⊗ x).

Here we assume that there is a finite entry in each row of B and each column of
A. With this assumption, the inequality x ≤ A# ⊗′ (B ⊗ x) can be written as the
following system of inequalities:

xj ≤ min
k : akj∈R

(
−akj + max

l : bkl∈R

(bkl + xl)
)

∀ j = 1, .., n. (1)

The expression on the right-hand side of (1) can be written as the component of
amin-max function f (x) = A� ⊗′ (B ⊗ x):

fj(x) = min
k : akj∈R

(
−akj + max

l : bkl∈R

(bkl + xl)
)
.

This function belongs to the class of topical functions investigated byGaubert and
Gunawardena [18]. For the present paper, we will only need that the cycle-time
vector of f :

χ(f ) = lim
k→∞

f k(0)
k

, (2)

exists and is well-defined [19]. Here, 0 denotes the vector with all components
equal to 0.

In what follows, expression of the form A�Bwill denote the min-max function
x �→ A� ⊗′ (B ⊗ x). In particular, note that, by default, the min-plus multipli-
cation is always to be expected after the � sign. Cycle-time vectors of such
functions χ(A�B) and their individual components χj(A�B) play a crucial role
in the mean-payoff game approach to tropical optimization problems.

2.4. Mean payoff games

Consider the following zero-sum two player sequential game defined by twom ×
nmatricesA = (aij) andB = (bkl) overRmax. The game is played on theweighted
directed graph (V ,E,w) where the set of nodes V = [m] ∪ [n] is the union of
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m nodes corresponding to the rows of the system A ⊗ x ≤ B ⊗ x and n nodes
corresponding to the variables. The arc set E contains 1) the arcs (k, l) for which
bkl ∈ R and 2) the arcs (j, i) for which aij ∈ R, and these arcs are weighted by
w(k, l) = bkl and w(j, i) = −aij, respectively. The nodes in [m] are the nodes at
which playerMax is active, and the nodes in [n] are the nodes at which playerMin
is active. The game starts at a node j ∈ [n] of Min, and first Min chooses to move
a pawn to some node i ∈ [m] of Max, via a weighted arc for which aij 	= −∞.
In doing so, player Max receives the payment −aij from Min. Then player Max
chooses to move to some l ∈ [n] for which bil 	= −∞. Player Max then receives
a payment of bil from player Min, and then the game proceeds sequentially in
turns. Player Max then wishes to maximize the average reward per turn of the
infinite trajectory thus created, and Min wishes to minimize it.

Ehrenfeucht andMycielski [20], who introduced this game, also showed that it
is equivalent to a finite game, which ends as soon as the trajectory forms a cycle.
In this finite game, we also assume that Max and Min play according to some
positional strategies: they choose in advance some mapping σ : [m] → [n] and
τ : [n] → [m] such that Max always moves the pawn from i ∈ [m] to σ(i) ∈ [n]
and Min moves the pawn from j ∈ [n] to τ(j) ∈ [m], so that biσ(i) 	= −∞ and
aτ(j)j 	= −∞ for all i ∈ [m] and j ∈ [n]. The two positional strategies form a
digraph, whose arc set is a subset of the edges in the original mean payoff game,
with each node having a unique outgoing arc, either (i, σ(i)) or (j, τ(j)) (see, for
example, [14]). The mean weight per turn of the first cycle formed by the trajec-
tory is then the reward of player Max, and the game is called winning for Max
if this reward is nonnegative. Max then wants to maximize his reward by choos-
ing a better positional strategy, and Min counterplays to minimize her loss by
choosing her positional strategy.

Note that the assumption written above guarantees that Max and Min have at
least one positional strategy that they can use.

The mathematical expression for the reward of Max in the finite mean-payoff
game starting at node j of Min, given that Max employs positional strategy σ and
Min employs positional strategy τ , is

�A,B(j, τ , σ) = 1
k

( k∑
t=1

(
brtst − art+1st

))
,

Here r1s1r2s2 . . . rkskr1 is the unique cycle formed by the trajectory, which starts
at a node j of Min and develops according to the positional strategies σ and τ . It
is assumed that rk+1 = r1.

Ehrenfeucht andMycielski [20] showed that suchmean-payoff game (both the
infinite and the finite version of it) has value in pure strategies. The following can
be deduced from [20] and Gaubert and Gunawardena [19].

Proposition 2.2 ([19,20]): For a mean payoff game, where A,B ∈ R
m×n
max both

have a finite entry in each row and column, there exist τ ∗, σ ∗ such that for all
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j = 1, . . . , n

min
τ∈T

�A,B(j, τ , σ ∗) = �A,B(j, τ ∗, σ ∗) = max
σ∈S

�A,B(j, τ ∗, σ), (3)

where T and S denote, respectively, the sets of positional strategies available to Min
and to Max. Moreover, �A,B(j, τ ∗, σ ∗) = χj(A�B) for all j (where χj(A�B) is the
jth component of the cycle-time vector defined in (2)).

Finally, the relationship between mean-payoff games and the solvability of
tropical two-sided systems can be summarized in the following result.

Proposition 2.3 ([13, Theorem 3.1]): For a mean payoff game, where A,B ∈
R
m×n
max both have a finite entry in each row and column and σ ∗ and τ ∗ are equilib-

rium strategies, we have �A,B(j, σ ∗, τ ∗)(= χj(A�B)) ≥ 0 if and only if there exists
x ∈ R

n
max such that A ⊗ x ≤ B ⊗ x and xj > −∞.

Let us now consider the following example of a mean payoff game.

Example 2.4: Let the matrices A, B, given by:

A =
⎡
⎣ 3 −∞

7 −∞
−∞ 0

⎤
⎦ and B =

⎡
⎣ 2 −∞

−∞ 1
−3 4

⎤
⎦ .

The two-sided systemA ⊗ x ≤ B ⊗ x is given by the following system of inequal-
ities:

3 + x1 ≤ 2 + x1
7 + x1 ≤ 1 + x2

x2 ≤ max(−3 + x1, 4 + x2).

(4)

We immediately see from the first inequality that there is no solution with x1 >

−∞. In fact, the solution set of this system is {(−∞, t) : t ∈ Rmax}.
The corresponding game is given in Figure 1 (left). Here squares denote the

nodes at which Max makes a move and circles denote the nodes at which Min
makes a move.

Let playersMax andMin choose positional strategies σ : 1 → 1, 2 → 2, 3 →
2 and τ : 1 → 1, 2 → 3, respectively. The game is then played on a subgraph of
the graph of the mean-payoff game. This subgraph is shown in Figure 1 (right).

Clearly, the rewards ofMax for the trajectories starting at the two nodes ofMin
are:

�A,B(1, σ , τ) = −1, �A,B(2, σ , τ) = 4.

Also, it can be checked thatσ ∗ = σ and τ ∗ = τ is an equilibriumpair of strategies
of Max andMin, in the sense of the saddle point property (3). The above rewards
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Figure 1. The mean payoff game corresponding to system (4) and its restriction.

are the values of the games starting at nodes 1 and 2 ofMin. Here,Max is winning
if the game starts at node 2 of Min but losing if the game starts at node 1 of Min.
This correlates with the fact that system (4) has a solution with x2 > −∞, but
not with x1 > −∞, as predicted by Proposition 2.3.

In what follows, we will often abbreviate mean payoff game(s) to MPG.

3. MPG representation of pseudolinear optimization

3.1. Pseudolinear optimization over alcoved polyhedra

Consider the following problem.

Problem 3.1 (Pseudolinear optimization over alcoved polyhedra): GivenU ∈
R
n×n
max , p, g ∈ R

n
max, q, h ∈ (R ∪ {+∞})n such that ρ(U) ≤ 0 andU ⊗ g ≤ h, find

min
x∈Rn

x− ⊗ p ⊕ q− ⊗ x

subject to g ≤ x ≤ h
U ⊗ x ≤ x.

and describe all x ∈ R
n for which the minimum is attained.

Note that whenever we have qi = +∞ it means that q−
i = −∞, so that xi does

not appear in the objective function (but x−
i still may appear when pi 	= −∞).

When hi = +∞, it means that xi is not bounded from above by any constant,
and if gi = −∞ then xi is not bounded from below.

Problem 3.1 was considered and solved by Krivulin [7], for the case of real q
and h. The solution set to the system of constraints in this problem is an alcoved
polyhedron. The geometry of such polyhedra is combining tropical and ordinary
convexity: see, e.g. Joswig and Kulas [21], or De La Puente and Claveria [22] for
a more recent reference.
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It follows from the results of [7] that an alcoved polyhedron described by

P = {x : g ≤ x ≤ h, U ⊗ x ≤ x}

is non-empty if and only if the conditions ρ(U) ≤ 0 and U∗ ⊗ g ≤ h hold. Note
that these are precisely the conditions that are assumed in Problem 3.1.

The proof of the proposition below is due to Krivulin [7], although the case
where some entries of h and q are equal to +∞ was not considered in that work.
See also Appendix of the present paper for a new alternative proof, which makes
use of the connection to mean-payoff games.

Proposition 3.2 ([7, Theorem 6]): The optimal value of Problem 3.1 is

θ = (q− ⊗ U∗ ⊗ p)⊗
1
2 ⊕ h− ⊗ U∗ ⊗ p ⊕ q− ⊗ U∗ ⊗ g,

If θ is finite then the solution set of this problem is

{U∗ ⊗ v : g ⊕ θ− ⊗ p ≤ v ≤ (U∗)# ⊗′ (θ ⊗ q ⊕′ h), v ∈ R
n}. (5)

Here and below, t⊗1/2 is the same as t/2 for any t ∈ Rmax in the usual notation.
(Note that one can define t⊗α := α × t for arbitrary t ∈ Rmax and α ≥ 0, but we
will not need it in this paper.)

3.2. Pseudolinear optimization as parametric MPG

The purpose of this section is to recast Problem 1.1 as a parametric mean-payoff
game. To begin, we can rewrite that problem in the following way, introducing
new variable λ:

min
x∈Rn,λ∈R

λ

subject to x− ⊗ p ⊕ q− ⊗ x ≤ λ,
U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d.

(6)

The first inequality is equivalent to x− ⊗ p ≤ λ and q− ⊗ x ≤ λ. The first of these
inequalities is equivalent to x−

i ⊗ pi ≤ λ for all i, which is the same as pi ≤ xi ⊗ λ

for all i. Hence we obtain that (6) is equivalent to:

min
x∈Rn,λ∈R

λ

subject to p ≤ λ ⊗ x, q− ⊗ x ≤ λ,
U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d.

(7)

Introducing z = (y t)T where y ∈ R
n
max and t ∈ Rmax, we see that a finite solution

to the system of constraints in (7) exists if and only if the following parametric
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two-sided system

A ⊗ z ≤ B(λ) ⊗ z,

where

A =
⎛
⎝ U b

−∞ p
q− −∞

⎞
⎠ and B(λ) =

⎛
⎝ V d

λ ⊗ I −∞
−∞ λ

⎞
⎠ , (8)

has a finite solution (z ∈ R
n+1).

Thus, we reformulate Problem 1.1 as

min{λ ∈ R : A ⊗ z ≤ B(λ) ⊗ z is solvable with z ∈ R
n+1},

where A and B(λ) are given by (8).
We now reformulate this problem in terms of MPG, using Proposition 2.3,

by introducing the function �(λ) defined as the minimal value of the MPG
associated with the system A ⊗ z ≤ B(λ) ⊗ z:

min{λ ∈ R : �(λ) ≥ 0}, where �(λ) = min
i

χi(A#B(λ)).

We also define functions �τ(λ) and �σ(λ) corresponding to MPG where the
strategies of Min and Max are restricted to τ and σ , respectively:

�τ(λ) = min
i

χi(A#
τB(λ)), �σ(λ) = min

i
χi(A#Bσ (λ))

where

(Aτ )ij =
{
aij if i = τ(j)
−∞ otherwise.

, (Bσ )ij =
{
bij if j = σ(i)
−∞ otherwise.

Proposition 2.2 then implies the following result:

Proposition 3.3: Let � be the set of all strategies of player Min and T be the set of
all strategies of player Max. Then

min
τ∈T

�τ(λ) = �(λ) = max
σ∈�

�σ (λ). (9)

The following elementary properties of �(λ), �σ(λ) and �τ(λ) are the same
as in [14, Theorem 8].

Proposition 3.4: For A and B(λ) given by (8), functions�(λ),�σ(λ) and�τ(λ)

are non-decreasing, piecewise-linear and continuous.
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Figure 2. MPG corresponding to tropical pseudolinear programming.

3.3. MPG diagram of the problem

AnalysingA and B(λ) of (8) we can build anMPG diagram corresponding to this
two-sided system, as shown in Figure 2. On this diagramwe can see three groups
of square nodes of Max: [m], [n] and [1], with groups of arcs coming in and out
of them, corresponding to U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d, p ≤ λ ⊗ x and q− ⊗ x ≤ λ,
respectively (wherem, n and 1 indicate the numbers of nodes in each group).Min
has just two groups of circle nodes: [n] and [1], corresponding to the variables and
to the free-standing column, respectively. An arc between two nodes of any two
groups of nodes exists if and only if the corresponding entry of the matrix or the
vector, by which the group connection is marked, is finite.

Using this MPG diagram we can establish the following optimality and
unboundedness certificates for Problem 1.1, similar to Theorems 12 and 13
in [14]. Both certificates refer to some groups of nodes of Max shown in Figure
2. Their proofs, being similar to those in [14], are deferred to Appendix.

Proposition 3.5 (Optimality certificate): λ∗ is optimal if and only if �(λ∗) ≥ 0
and there exists τ such that in the mean-payoff game defined by Aτ and B(λ∗) all
cycles accessible from some node of Min have non-positive weights, and all cycles of
zero weight accessible from that node of Min contain a node of Max that does not
belong to the left group [m] of its nodes.

Proposition 3.6 (Unboundedness certificate): The problem is unbounded if and
only if, for some σ , all cycles of the graph defined by A and Bσ (0) contain nodes of
Max that are only from the [m] group (on the left) and have a nonnegative weight.

We now consider the case when all data in the problems are integer.

Proposition 3.7: When the finite entries of p, q, U, b, V, d are all integer, the
optimal value of Problem 1.1, if finite, is an integer multiple of 1/2.
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Proof: For the MPG in Figure 2, for each λ there is ε > 0 such that

�(μ) = �A,B(μ)(j, σ , τ)

for some j, τ and σ and all μ ∈ [λ − ε, λ]. This implies that

λ∗ = min{λ : �A,B(λ)(j, σ , τ) ≥ 0} = min{λ : kλ + s ≥ 0},
for some j, σ , τ , k and s. Here we recall that�A,B(λ)(j, σ , τ) is the weight of a cycle
(divided by the number of turns). Inspecting Figure 2 we can see that a cycle can
collect no more than two repetitions of λ, hence in the above expression for λ∗
we can have k equal to 1 or 2, which means that the denominator of the optimal
value is bounded by 2. �

4. Bisectionmethod

Since�(λ) is a non-decreasing function, we can use the bisectionmethod to find
min{λ : �(λ) ≥ 0}. Recall that�(λ) ≥ 0 is equivalent to existence of x ∈ R

n that
solves

x− ⊗ p ⊕ q− ⊗ x ≤ λ,

U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d.
(10)

In general, this method can be only approximate, but in the case of integer input
(i.e. when all finite entries of U, V, b, d, p, q are integer) it can be made precise,
since by Proposition 3.7 in this case the optimal λ is an integer multiple of 1/2.
In the description of the bisection method given below, rounding up (�·�) means
finding the least λ greater than or equal to the given number and an integer mul-
tiple of 1/2. Similarly, rounding down (�·�) means finding the biggest λ less than
or equal to the given number and an integer multiple of 1/2.

Before we give a description of the bisection method, we need to have the
upper and the lower bounds, with which we can start.

Upper bound: Using an MPG solver such as described in [23] or [24], find
x ∈ R

n such that U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d. Then compute

λ
(+)
1 = ⌊

x− ⊗ p ⊕ q− ⊗ x
⌋

(11)

for this x. Then we know that �(λ
(+)
1 ) ≥ 0.

Lower bound: We define λ
(−)
1 as the optimal value of the unconstrained

problem

min
x∈Rn

x− ⊗ p ⊕ q− ⊗ x.

Using the result of Krivulin [6, Theorem 4] (a slight extension to the case q ∈
(R ∪ {+∞})n), we have

λ
(−)
1 = (q− ⊗ p)⊗

1
2 (12)

As this unconstrained problem is a relaxation of the problem in question, we
either have that�(λ

(−)
1 ) ≥ 0 and thenλ

(−)
1 is the optimal value of the constrained
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problem, or we have �(λ
(−)
1 ) < 0 and then we continue with the bisection

method. If q− ⊗ p is finite, which we assume, then the problem is bounded from
below. Note that q− ⊗ p is finite if and only if there exists at least one i such that
both qi and pi are finite. We now describe the bisection algorithm.

Algorithm 1 Integer Bisection
Input: U, V , b, d, p with integer or −∞ entries, q with integer or +∞ entries.
1: Compute λ

(−)
1 by (12).

2: if �(λ
(−)
1 ) ≥ 0 then

3: Find a finite solution x to (10) with λ = λ
(−)
1 and return.

4: else
5: Compute λ

(+)
1 by (11) and proceed with k = 1.

6: end if
7: while λ

(−)

k < λ
(+)

k do
8: λk = (λ

(−)

k + λ
(+)

k )/2.
9: if �(λk) < 0 then
10: λ

(+)

k+1 = λ
(+)

k and λ
(−)

k+1 = �λk�.
11: else
12: λ

(+)

k+1 = �λk� and λ
(−)

k+1 = λ
(−)

k .
13: end if
14: k = k + 1.
15: end while
16: Find a finite solution x to (10) with λ = λ

(+)

k = λ
(−)

k and return.
Output: (λ, x).

It is clear that in this algorithm, for each λ
(+)

k we have �(λ
(+)

k ) ≥ 0, and for
each λ

(−)

k we have�(λ
(−)

k ) ≤ 0 and�(λ′) < 0 whenever λ′ < λ
(−)

k . This implies
that when λ = λ

(+)

k = λ
(−)

k , we indeed have �(λ) = 0 and �(λ′) < 0 for any
λ′ < λ, so this λ is the optimal value of the problem.

Example 4.1: This example demonstrates that (q− ⊗ p)⊗1/2 does not always
work as a good lower bound. Consider a pseudolinear optimization problem
(Problem 1.1) with

U =
(

0 −∞
−∞ 0

)
, b =

( −∞
−∞

)
, V =

( −∞ 0
0 −∞

)
,

d =
( −∞

−∞
)
,

p =
(

0
−∞

)
, q =

( +∞
0

)
.
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In this example, pi and qi are not finite at the same time for any i, so (q− ⊗
p)⊗1/2 = −∞, but the problem is bounded and its optimal value is 0. Indeed,
we are seeking minimum over max(x−

1 , x2) on the line x1 = x2, which is
equal to 0.

5. Newton iterations

5.1. Formulation

Let us begin this section by introducing the concepts of left-optimal strategy.
By the right-hand side of (9), �(·) is a pointwise maximum of a finite num-
ber of functions �σ(·), for σ ∈ �. Therefore, for each λ there exists �′ ⊆ �

such that �σ(λ) = �(λ) for each σ ∈ �′. Furthermore, each of these �σ(·) is
a piecewise-linear and continuous function, so there exists a small enough ε > 0
such that each �σ(·) with σ ∈ �′ is linear on [λ − ε, λ] and is bigger than any
�σ(·) with σ /∈ �′. This implies that there exists σ ∗ such that �σ ∗

(μ) = �(μ)

for all μ ∈ [λ − ε, λ]. Such σ ∗ is called a left-optimal strategy at λ. Left-optimal
strategies play the role of derivatives in Algorithm 2 stated below. Iterations of
this algorithm will refer to efficient solution of the following problem

min{λ : �σ(λ) ≥ 0}, (13)

which will be explained in Section 5.3.

Algorithm 2 Newton iterations, left-optimal strategies
Input: U, V , b, d, p with entries in Rmax and q with entries in R ∪ {+∞}.
1: Set λ0 = +∞, compute λ1 by (11) and proceed with k = 1.
2: while λk < λk−1 do
3: Find a left-optimal strategy σk of Player Max at λk.
4: Solve (13) with σ = σk and let λk+1 be the optimal value of (13).
5: k = k + 1.
6: end while
7: Find a solution x ∈ R

n to system (10) with λ = λk.
Output: (λ, x).

The following result and its proof are similar to the corresponding statement
from Gaubert et al. [14], therefore the proof is omitted.

Proposition 5.1: Newton algorithm finds a solution of a tropical pseudoquadratic
optimization problem in a finite number of steps, limited by the number of strategies
of player Max in the associated MPG.

In the general case (i.e. when the data are arbitrary real numbers) left-optimal
strategies can be found using the algebra of germs, for which we also refer the
reader to Gaubert et al. [14].
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5.2. The case of integer data

In this section we will discuss how to implement Newton’s algorithm in the case
when all given data (i.e. coefficients of U, V, b, d, p and q) are integer.

We first explain how to find the left-optimal strategies in the case of integer
data. By the arguments similar to those of Proposition 3.7, λk appearing in New-
ton iterations are of the form l/2 where l is an integer, while the breakpoints of
�(λ) can be at rational points with denominators not exceeding 2(n + 1). The
greatest denominator of a distance between λk and such a breakpoint is bounded
from above by 4(n + 1). Therefore, if we take ε = 1/4(n + 1), we can be sure
that if σk is optimal at λk − ε then it is optimal for any λ ∈ [λk − ε, λk], thus
left-optimal.

However, in the case of integer data, instead of finding a left-optimal strategy
we can find an optimal strategy σk at λ

[−]
k , defined as the largest multiple of 1/2

less than λk if it is not a multiple of 1/2 (which may happen if k = 1), and as
λk − 1/2 if it is. We use the notation λ

[−]
k here to distinguish it from the notation

λ
(−)

k (and λ
(+)

k ) used in the bisection method.
If we have �σk(λ

[−]
k ) ≥ 0, then the Newton iterations proceed, and if

�σk(λ
[−]
k ) < 0 then �(λ) < 0 for all λ < λk and we must stop. So we have the

following modification of Algorithm 2, where optimal strategies can be found
using some MPG solvers such as the algorithm by Dhingra and Gaubert [23].

Algorithm 3 Integer Newton iterations
Input: U, V , b, d, p with integer or −∞ entries, and q with integer or +∞

entries.
1: Set λ0 = +∞, compute λ1 by (11) and proceed with k = 1.
2: while λk < λk−1 do
3: Compute λ

[−]
k and find an optimal strategy σk of player Max at λ[−]

k .
4: Solve (13) with σ = σk and let λk+1 be the optimal value of (13).
5: k = k + 1.
6: end while
7: Find a finite solution x to system (10) with λ = λk−1.

Output: (λ, x).

Note that in this algorithm the sequence of λi is strictly decreasing until the
last step, at which we may have λk = λk−1, λk > λk−1 or even λk = +∞ if the
problem (13) is infeasible for σ = σk.

5.3. Finding the least zero of a partial spectral function

Here we discuss how to solve (13). The problem can be translated back to two-
sided system where it becomes the problem of finding
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min{λ ∈ R : A ⊗ z ≤ Bσ (λ) ⊗ z has a solution z ∈ R
n+1}, (14)

where Bσ is the matrix with entries equal to bσ
ij = bij when j = σ(i) and to −∞

otherwise, and σ is the strategy of Max appearing in (13). Recalling (8), we can
rewrite (14) as

min
λ∈R, x∈Rn

λ s.t. p ≤ λ ⊗ x, q− ⊗ x ≤ λ, U ⊗ x ⊕ b ≤ Vσ ⊗ x ⊕ dσ .

(15)
where (Vσ dσ ) = (V d)σ , and (V d)σ is defined as Bσ above: we leave the entries
of B for which j = σ(i) untouched and set all the remaining entries to −∞. We
now work with the system of constraints

U ⊗ x ⊕ b ≤ Vσ ⊗ x ⊕ dσ . (16)

Proposition 5.2: System (16) is equivalent to

F ⊗ xJ ⊕ G ⊗ xJ ≤ xJ , lJ ≤ xJ ≤ uJ xJ ≤ uJ . (17)

and further to

R ⊗ x ≤ x, l ≤ x ≤ u for R =
(

F G
−∞ −∞

)

for some set J ⊆ [n], its complement J = [n] \ J, matrices F, G, and vectors l and u.

Proof: Define the index set J as follows:

J = {j ∈ [n] : σ(i) = j for some i}.

Now for any j ∈ J consider all i such that σ(i) = j. Denote the set of such i by Ij
and observe that

⋃
j∈J∪{n+1} Ij = [m]. We have two cases:

Case 1: j ∈ J. In this case we obtain

n⊕
k=1

(v−
ij ⊗ uik ⊗ xk) ⊕ v−

ij ⊗ bi ≤ xj, j ∈ J, i ∈ Ij (18)

for all such i ∈ Ij, and summing it up over i ∈ Ij we have

n⊕
k=1

⊕
i∈Ij

(v−
ij ⊗ uik ⊗ xk) ⊕

⊕
i∈Ij

(v−
ij ⊗ bi) ≤ xj, j ∈ J. (19)

Observe that (19) is equivalent to the system of inequalities (18) where i runs
over Ij, and equivalent to the subsystem of (16), consisting of inequalities i such
that σ(i) ∈ [n].



18 J. PARSONS ET AL.

Case 2. j = n+ 1. In this case we obtain

n⊕
k=1

(uik ⊗ xk) ⊕ bi ≤ di, i ∈ In+1

for all i ∈ In+1. Considering these inequalities for all i ∈ In+1 and seeing that bi ≤
di in this case is just a necessary condition for (16) to be consistent, we see that
the system of such inequalities taken over i ∈ In+1 is equivalent to the system

xk ≤ min
i∈In+1

u−
ik ⊗′ di. (20)

This is a system of upper bounds on xk (some of them can be equal to +∞ if all
the corresponding uik are −∞).

Equation (16) is thus equivalent to the system of (19) and (20). Combining
these two, one can easily recognize (17).

Next we observe that the constraint given by F ⊗ xI ⊕ G ⊗ xJ ≤ xI can be
written as [

F G
−∞ −∞

]
⊗
[
xI
xJ

]
≤
[
xI
xJ

]
which is equivalent to R ⊗ x ≤ x. �

The above proposition implies that the problemwhich we have to solve at each
iteration is the following problem

min
x∈Rn

x− ⊗ p ⊕ q− ⊗ x s.t. l ≤ x ≤ u and R ⊗ x ≤ x. (21)

Recognizing Problem 3.1, we recall that Proposition 3.2 yields the optimal value

θ = (q− ⊗ R∗ ⊗ p)⊗
1
2 ⊕ u− ⊗ R∗ ⊗ p ⊕ q− ⊗ R∗ ⊗ l (22)

and the solution set

x = {R∗ ⊗ v : l ⊕ θ− ⊗ p ≤ v ≤ (R∗)# ⊗′ (θ ⊗ q ⊕′ u), v ∈ R
n}. (23)

of this problem. Thus we can compute λk = θ using (22) and at optimality we
can take any vector from (23) as a solution of the system of constraints in (15)
and hence also system (10) with λ = λk = θ . For a finite vector v we can take a
vector with the following components:

vi =

⎧⎪⎨
⎪⎩

((R∗)# ⊗′ (θ ⊗ q ⊕′ u))i, if ((R∗)# ⊗′ (θ ⊗ q ⊕′ u))i 	= +∞,
li ⊕ θ− ⊗ pi, otherwise if li ⊕ θ− ⊗ pi 	= −∞,
0, otherwise.

Note that the computation of θ in (22) requires no more than O(n3) operations
and can be performed very efficiently by shortest path algorithms.
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6. Example and numerical experiments

6.1. Example

Consider the pseudolinear optimization problem where

U =
( −∞ −2

3 −∞
)
, b =

( −∞
−∞

)
,

V =
(

1 0
−∞ 1

)
, d =

( −∞
1

)
,

p =
(

0
−∞

)
, q =

( −1
0

)
. (24)

6.1.1. Application of bisection (Algorithm 1 )

Start:We first compute λ
(−)
1 = (q− ⊗ p)⊗

1
2 = 1

2 . We find that �(λ
(−)
1 ) = −1

3 <

0, so we proceed. Using the alternating method of [24], we obtain a finite
solution x0 = (−8 − 8)� for U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d. Let λ(+)

1 = (x0)− ⊗ p ⊕
q− ⊗ x0 = 8.

Iterations: For k = 1, let λ1 = λ
(+)
1 +λ

(−)
1

2 = 17
4 . Since �(λ1) = 2 > 0, set λ

(+)
2 =

�λ1� = 4 and λ
(−)
2 = λ

(−)
1 = 1

2 .

For k = 2, we check that λ(+)
2 	= λ

(−)
2 and compute λ2 = λ

(+)
2 +λ

(−)
2

2 = 9
4 . Since

�(λ2) = 5
6 > 0, set λ(+)

3 = �λ2� = 2 and λ
(−)
3 = λ

(−)
2 = 1

2 .

For k = 3, we check that λ(+)
3 	= λ

(−)
3 and compute λ3 = λ

(+)
3 +λ

(−)
3

2 = 5
4 . Since

�(λ3) = 1
6 > 0, set λ(+)

4 = �λ3� = 1 and λ
(−)
4 = λ

(−)
3 = 1

2 .

For k = 4, we check that λ(+)
4 	= λ

(−)
4 and compute λ4 = λ

(+)
4 +λ

(−)
4

2 = 3
4 . Since

�(λ4) = −1
6 < 0, set λ(+)

5 = λ
(+)
4 = 1 and λ

(−)
5 = �λ4� = 1.

We have λ
(−)
5 = λ

(+)
5 = 1, so we stop, this is the optimal value of the prob-

lem. Using the alternating method, we obtain a finite solution x = (−1 1)T

for system (10) with λ = λ
(−)
5 = 1. Then return (λ

(−)
5 , x) as a solution of the

problem.

6.1.2. Application of Newtonmethod (Algorithm 3 )

Start.We begin with the same λ1 = 8 as in the bisection method.

Iterations: We first find an optimal strategy σ1 at λ
[−]
1 = 7.5 with σ1(1) = 1,

σ1(2) = 3, where 1 and 2 are nodes of Max that correspond to the inequalitites
of the system U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d (recall that Max does not have choice at
any other node of the associated MPG).
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Following Proposition 5.2, we find that min{λ : �σ1(λ) ≥ 0} is equivalent
to (21), where

R =
( −∞ −3

−∞ −∞
)
, l =

( −∞
−∞

)
, u =

( −2
+∞

)
.

Then we obtain

λ2 = (q− ⊗ R∗ ⊗ p)⊗
1
2 ⊕ u− ⊗ R∗ ⊗ p ⊕ q− ⊗ R∗ ⊗ l = 2.

At iteration 2 we check that λ2 < λ1 and find an optimal strategy σ2 at λ
[−]
2 = 1.5

with σ2(1) = 2 and σ2(2) = 2. Following Proposition 5.2, we next solve (21) with

R =
( −∞ −∞

2 −∞
)
, l =

( −∞
−∞

)
, u =

( +∞
+∞

)
.

We obtain

λ3 = (q− ⊗ R∗ ⊗ p)⊗
1
2 ⊕ u− ⊗ R∗ ⊗ p ⊕ q− ⊗ R∗ ⊗ l = 1.

At iteration 3, we check that λ3 < λ2 and find an optimal strategy σ3 at λ
[−]
3 =

0.5 with σ3(1) = 2 and σ3(2) = 2, which is the same as at the previous iteration.
Obviously, we obtain λ4 = 1 = λ3, so we stop. As σ2 = σ3 is an optimal strategy
also at λ3 = λ4 = 1, we can find a finite solution using

x = R∗ ⊗ ((R∗)� ⊗′ (θ ⊗ q ⊕′ u)) = (−1 1)�

and return λ = 1 and x = (−1 1)� as an optimal solution to the problem. The
Newton iterations are shown on Figure 3.

Figure 3. Application of Newton method to the problem given by (24).
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Figure 4. Percentage of the cases where (q− ⊗ p)⊗1/2 is an optimal value for m = n from 1 to
70. Finite entries are randomly picked from [−500, 500] (left) and from [−500000, 500000] (right).
Results for the cases where all entries are finite (lower graphs) are shown versus the cases where
approximately 30% of all entries are finite (upper graphs).

6.2. Numerical experiments

We implementedAlgorithms 1 and 3 inMATLABand ran somenumerical exper-
iments. Before running these experiments we checked the percentage of cases for
which (q− ⊗ p)⊗1/2 (the optimal value of the unconstrained problem) is an opti-
mal value of the constrained problem so that no algorithm is required. Before
checking this, the program checked that the system of constraints is feasible
and (q− ⊗ p)⊗1/2 is finite. For m = n ranging from 1 to 70 we ran 2000 experi-
ments for each dimension for the cases where the entries are all finite or we have
approximately 30% of finite entries, and where the finite entries are randomly
and uniformly selected in the interval [−500, 500] or [−500000, 500000] (for all
four combinations). The results are shown in Figure 4. We see that, in general,
for very low dimensions it is highly likely that (q− ⊗ p)⊗1/2, but the probability
of this quickly falls to the level of 40% or slightly below, and then starts to grow
very slowly. We also observed how this percentage behaves for dimensions up
to 400 performing just 20 experiments for each dimension and each situation,
and recorded that (q− ⊗ p)⊗1/2 was optimal in 41% of all solvable instances with
finite q− ⊗ p.

We also performed similar experiments with rectangular matrices with 50
rows and number of columns ranging from 35 to 90, see Figure 5. Unlike in
the previous experiments, the results do not depend on the range of entries
or sparsity. The percentage of cases where (q− ⊗ p)⊗1/2 is optimal increases
monotonically from 15 − 20% for n = 35 to almost 100% when n = 90. Cases
n<35 were not checked, because for such low nmost of the randomly generated
constraint systems become infeasible.

Next, we checked the performance of Newton and bisection algorithms, in the
same vein as in Gaubert et al. [14]. In our experiments, U and V were square
matrices with dimensions ranging from 1 to 400, with the range of finite entries
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Figure 5. Percentage of the caseswhere (q− ⊗ p)⊗1/2 is an optimal value form = 50 andn from
35 to 90.

[−500, 500] or [−500000, 500000], with finite entries only or with approximately
30% of finite entries. Results are shown in Figures 6 and 7. For each dimension,
both methods were run exactly once, after repeatedly ignoring the cases where
the system of constraints was infeasible or the value (q− ⊗ p)⊗1/2 was infinite or
optimal for the generated problem.We see that, as in the case of linear-fractional
programming [14], the ‘average number’ ofNewton iterations (computed here for
dimension d as the average taken over dimensions in the range [d − 10, d + 10]
and shown by thick broken line) slowly grows with dimension and, in the case of
entries ranging in [−500, 500] becomes similar to the number of bisection itera-
tions before the dimension 400 is reached. Unlike in the case of linear-fractional
programming, here we were able to implement bisection also in the case of sparse
data (30% of finite entries). Similarly to [14], we observed that the number of
bisection iterations grows with the range of the finite entries (for an obvious rea-
son, since it means that the interval between lower and upper bounds increases).
In particular, the gap between bisection andNewton iterations still remains quite
big for d = 400 for [−500000, 500000]. However, the number of bisection iter-
ations also decreases with the increase in dimension: this is different from what
was observed in tropical linear-fractional programming [14] where the number
of these iterations was stable.

7. Pseudoquadratic optimization

In this section wewill consider pseudoquadratic optimization problemwith two-
sided constraints: Problem 1.2. Like Problem 1.1, which we considered earlier, it
can be also represented by parametric MPG and solved by means of bisection
and Newton methods, calling an MPG solver at each iteration. Below we discuss
the details of it, as well as similarity and difference between the pseudoquadratic
and pseudolinear tropical optimization.



OPTIMIZATION 23

Figure 6. Number of iterations of bisection (upper graphs) and Newton iterations (lower graphs)
for randomly generated problems of dimension 1 to 400 with the range of entries between−500
and 500 with finite entries only (left) and with approximately 30% of finite entries (right).

Figure 7. Number of iterations of bisection (upper graphs) and Newton iterations (lower graphs)
for randomly generated problems of dimension 1 to 400 with the range of entries between
−500000 and 500000 with finite entries only (left) and with approximately 30% of finite entries
(right)

As a starter, using that x− ⊗ C ⊗ x ≤ λ is equivalent to C ⊗ x ≤ λ ⊗ x, we
can recast Problem 1.2 as the problem of finding the least λ such that A ⊗ z ≤
B(λ) ⊗ z, is solvable with z ∈ R

n+1, where

A =

⎛
⎜⎜⎝

U b
C −∞

−∞ p
q− −∞

⎞
⎟⎟⎠ and B(λ) =

⎛
⎜⎜⎝

V d
λ ⊗ I −∞
λ ⊗ I −∞
−∞ λ

⎞
⎟⎟⎠ . (25)

Themean-payoff game diagram corresponding to this system is given in Figure 8.
Comparing it with Figure 2, we see a new group of nodes [n] on top of
the diagram, corresponding to the inequalities C ⊗ x ≤ λ ⊗ x. With respect
to this game, we are solving the problem min{λ : �(λ) ≥ 0}, where �(λ) =
mini χi(A�B(λ)), with A and B(λ) defined in (25). The theory of Section 3.2
applies verbatim.
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Figure 8. MPG diagram corresponding to pseudoquadratic optimization.

It can be also checked that both certificates stated in Propositions 3.5 and 3.6
extend to the pseudoquadratic optimization with no change, now referring to the
groups of nodes in Figure 8. However, in the pseudoquadratic programming the
cycles in the graph of the game can collect up to n+ 1 repetitions of λ. Therefore,
in the case of integer data, we can only say that the denominator of optimal value
is bounded from above by n+ 1. The same is true for any reduced MPG defined
by A and Bσ (λ).

An initial upper bound for the bisection method, following Section 4, can be
computed as

λ
(+)
0 = x− ⊗ C ⊗ x ⊕ q− ⊗ x ⊕ x− ⊗ p,

where x ∈ R
n is a solution to U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d. The lower bound comes

from the unconstrained pseudoquadratic problemminx∈Rn x− ⊗ C ⊗ x ⊕ q− ⊗
x ⊕ x− ⊗ p, the optimal value of which was found by Krivulin [10] to be

λ
(−)
0 = ρ(C) ⊕ (q− ⊗ p)⊗1/2.

With these initial bounds we can run a usual bisection scheme as an approximate
method, or we can still use Algorithm 1 as its exact version, but rounding up (�·�)
now means finding the least rational number greater than or equal to the given
number andwith denominator bounded by n+ 1. Similarly, rounding down (�·�)
means finding the biggest rational number less than or equal to the given one and
with denominator bounded by n+ 1. These operations are still not too difficult:
suppose thatλ is not a integer and setλ = a + c

b , where a ∈ Z, b ∈ N, c ∈ N ∪ {0}
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and c
b is an irreducible proper fraction if c 	= 0. Then we have

�λ� =
{

λ, if c = 0 or b ≤ n+1,
a + e1

d1 , otherwise,
�λ� =

{
λ, if c = 0 or b ≤ n+1,
a + e2

d2 , otherwise,
(26)

where
e1
d1

= min

{
�� cd+1

b ��
d

: 1 ≤ d ≤ n + 1

}
,

and
e2
d2

= max

{
�� cd−1

b ��
d

: 1 ≤ d ≤ n + 1

}
, (27)

and ��·�� and ��·��, respectively, mean the usual operations of rounding up and
rounding down to the nearest integers, respectively.

We also haveNewton iterations (Algorithm 2) based on left-optimal strategies,
which are found using the algebra of germs in general case. In the case of integer
data, the denominators of λk do not exceed n+ 1 and the denominators of break-
points of �(λ) do not exceed (n + 1)2. Hence the largest possible denominator
of the distance between λk and a breakpoint does not exceed (n + 1)3, so we can
take ε = 1/(n + 1)3 to ensure that a strategy that is optimal at λ − ε is optimal
for the whole interval [λ − ε, λ].

Integer version of Newton iterations (Algorithm 3) also works, but in this
algorithm λ[−] should be defined as the largest rational number that is (1) strictly
smaller than λ, (2) has a denominator bounded by n+ 1. Following the notation
in (26), we can obtain:

λ[−] =

⎧⎪⎨
⎪⎩

λ − 1
n + 1

, if λ is integer,

a + e2
d2

, otherwise,

where e2
d2 is defined as in (27).

Solution of (13) is an important ingredient in any modification of Newton
algorithm. This is treated exactly as in Section 5.3, since C ⊗ x ≤ λ ⊗ x does not
add to the available strategies of Max, and they are still determined by the right-
hand side of the system U ⊗ x ⊕ b ≤ V ⊗ x ⊕ d. Proposition 5.2 then leads us
to a problem of the following type:

min
x∈Rn

x− ⊗ p ⊕ q− ⊗ x ⊕ x− ⊗ C ⊗ x

s.t. l ≤ x ≤ u and R ⊗ x ≤ x.

An explicit expression for the optimal value of this problem and solution set was
obtained in Krivulin [8, Theorem 4] and it can be used instead of (22) and (23).
However, the computational complexity of computing the optimal value of this
problem rises to O(n5).
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Appendices

Appendix 1. Proof of Proposition 3.2

We first represent Problem 3.1 equivalently as

min
x∈Rn ,λ∈R

{λ : x− ⊗ p ⊕ q− ⊗ x ≤ λ, g ≤ x ≤ h, U ⊗ x ≤ x}. (A1)

By multiplying the inequality U ⊗ x ≤ x by U, we deduce that U⊗2 ⊗ x ≤ U ⊗ x ≤ x, and
hence, by continuing to multiply the inequality by U we determine that U∗ ⊗ x ≤ x. Con-
versely, U∗ ⊗ x ≤ x implies that U ⊗ x ≤ x. Hence, we can restate (A1) as follows

min
x∈Rn ,λ∈R

{λ : p ≤ λ ⊗ x, q− ⊗ x ≤ λ, g ≤ x, h− ⊗ x ≤ 0, U∗ ⊗ x ≤ x}. (A2)

Figure A1 provides a mean-payoff game representation of this problem. Here, the group of
n nodes of Min (in a circle) corresponds to n variables and the lone-standing node of Min
(circle in the bottom) corresponds to the free column. There are two individual nodes of Max
corresponding to q− ⊗ x ≤ λ and h− ⊗ x ≤ 0. The remaining 3n nodes of Max are split into
three groups of n nodes: 1) the group on the top (U∗ ⊗ x ≤ x), 2) the group on the left (g ≤ x)
and 3) the group on the right (p ≤ λ ⊗ x). It is also agreed that an arc between two nodes exists
if and only if the corresponding entry of the vector or the matrix marking the corresponding
group of arcs on the diagram is finite.

Observe that at every node at which playerMax is active, there is no choice tomake as there
is only one arc leaving that node. Also, let j′ be the node (of one of the [n] groups of nodes of
Max on the left and on the right) chosen by Min at the bottom node (corresponding to the
free column). Assuming this choice of Min and examining the mean-payoff game diagramwe
see that the total weight of any cycle can be written as si1i2 + · · · + siki1 , where

sij ∈
{

{−u∗
ji} if j 	= j′

{−u∗
j′i, qi − pj′ + 2λ, qi + λ − gj′ , hi + λ − pj′ , hi − g′

j } if j = j′,
(A3)
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Figure A1. The parametric mean-payoff game corresponding to (A2).

where the above possibilities for sij are valid only if all matrix and vector entries that take part
in them are finite. Hence we obtain that the optimal value of (A2) is equal to the least value of
λ such that

0 ≤ min
j′

min
i1,...,ik

{si1i2 + · · · siki1} (A4)

where sij can take the values described in (A3).
As at every node of player Max there is no choice, we can delete these nodes and aggregate

theweights. Also, we can omit the cycles whoseweights are composed entirely from the entries
of (U∗)�, as these cycle weights do not depend on λ and are nonnegative. We are then left
with the cycles that go through the node of Min in the bottom of the diagram and hence also
through j′. Note that, as node j′ can appear in a cycle only once, there will be at most one
occurrence of the second case, where all terms except for the first one come from the arcs
in the lower part of the diagram (going to node n+ 1 of Min and back). All other sij can be
compressed to an entry of (U∗)� by using inequality

u∗
i1i2 + · · · + u∗

ik−1ik ≤ u∗
i1ik ,

valid since (U∗)⊗(k−1) = U∗ for each k> 1. Thus we have to consider all 3-cycles of the
following form:
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Here w1 + w2 is one of the finite values in {gi − pj′ + 2λ, qi + λ − gj′ , hi + λ − pj′ , hi −
gj′ }, and i is such that u∗

ij′ and one of these values are finite.
So we need to find the minimal λ such that:

(1) −u∗
ij′ + qi − pj′ + 2λ ≥ 0 for all i and j′ such that u∗

ij′ , qi and pj′ are finite: this is equivalent

to λ ≥ (q− ⊗ U∗ ⊗ p)⊗
1
2 ;

(2) −u∗
ij′ + qi + λ − gj′ ≥ 0 for all i and j′ such that u∗

ij′ , qi and gj′ are finite: equivalent to
λ ≥ q− ⊗ U∗ ⊗ g;

(3) −u∗
ij′ + hi + λ − pj′ ≥ 0 for all i and j′ such that u∗

ij′ , hi and pj′ are finite: equivalent to
λ ≥ h− ⊗ U∗ ⊗ p;

(4) −u∗
ij′ + hi − gj′ ≥ 0 for all i and j′ such that u∗

ij′ , hi and gj′ are finite: this is always satisfied
by the problem assumption U∗ ⊗ g ≤ h.

Hence the optimal value of λ is equal to (q− ⊗ U∗ ⊗ p)⊗
1
2 ⊕ h− ⊗ U∗ ⊗ p ⊕ q− ⊗ U∗ ⊗

g, as claimed.
We now deduce the representation of solution set (this part of the proof is similar to that

of Krivulin [7, Theorem 6]). The solution set is given by the same inequalities as in (A1) but
for the optimal value λ = θ , so it is the (finite part of the) alcoved polyhedron described by
the following inequalities:

x− ⊗ p ≤ θ , q− ⊗ x ≤ θ

g ≤ x, x ≤ h,

U ⊗ x ≤ x

(A5)

The first inequality can be rewritten as p ≤ θ ⊗ x and the second inequality can be rewritten
as x ≤ θ ⊗ q, and then the first four inequalities of (A5) can be merged into

g ⊕ θ− ⊗ p ≤ x ≤ θ ⊗ q ⊕′ h. (A6)

It remains to prove that a finite x satisfies (A6) and U ⊗ x ≤ x if and only if x is as in (5).
Assume first that a finite x satisfies (A6) andU ⊗ x ≤ x. The latter inequality is equivalent

to U∗ ⊗ x = x, and therefore from the right-hand side of (A6) we have U∗ ⊗ x ≤ θ ⊗ q ⊕′ h
and, using Proposition 2.1, x ≤ (U∗)� ⊗′ (θ ⊗ q ⊕′ h). As we also have x ≥ g ⊕ θ− ⊗ p from
the left-hand side of (A6), we obtain that x = U∗ ⊗ v, where v = x satisfies

g ⊕ θ− ⊗ p ≤ x = v ≤ (U∗)� ⊗′ (θ ⊗ q ⊕′ h),

hence x is as in (5).
Now assume that x is as in (5). Since x = A∗ ⊗ v and A ⊗ A∗ ≤ A∗, it satisfies A ⊗ x ≤ x.

Since v is finite, x = U∗ ⊗ v is also finite.We also have g ⊕ θ− ⊗ p ≤ x sinceU∗ ⊗ v ≥ v, and
x = U∗ ⊗ v ≤ θ ⊗ q ⊕′ h follows by Proposition 2.1.

Appendix 2. Proofs of optimality and unboundedness certificates

The proofs written below work both in pseudolinear and in pseudoquadratic case.

A.1. Proof of Proposition 3.5

λ∗ is optimal if and only if �(λ∗) = 0 and �(λ) < 0 for all λ < λ∗. By the left-hand side
of (9), �(·) is a pointwise minimum of a finite number of continuous non-decreasing func-
tions�τ (·). Therefore, the above property implies that λ∗ is optimal if and only if there exists
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a strategy τ of Min such that�τ (λ
∗) = 0 and�τ (λ) < 0 for all λ < λ∗. We can further find j

and small enough ε such that�τ (λ) = χj(A
�
τB(λ)) = aλ + b for all λ ∈ [λ∗ − ε, λ] and some

a> 0.
Since χj(A

�
τB(λ)) is the maximal cycle mean (per turn) over all the cycles accessible from

the node j of Min in the reduced game defined by Aτ and B, having �τ (λ
∗) = 0 means

that in the mean-payoff game defined by Aτ and B(λ∗) all cycles accessible from the node
j of Min have non-positive weight and at least one of them has zero weight. Furthermore,
χj(A

�
τB(λ)) = aλ + bwith some a> 0 and b for all λ ∈ [λ∗ − ε, λ∗] if and only if all cycles of

zero weight accessible from the node j of Min contain one of the nodes of player Max that is
not from the [m] group on the left of Figure 2 or Figure 8. Thus we have deduced that existence
of a strategy τ with the claimed properties is equivalent to the optimality of λ∗.

A.2. Proof of Proposition 3.6

The problem is unbounded if and only if�(λ) ≥ 0 for all λ ∈ R. Since�(λ) = maxσ �σ (λ),
this condition is equivalent to the following:

∀ λ ∈ R ∃σ s.t. �σ (λ) ≥ 0, (A7)

which can occur if and only if there exist σ and λ′ ∈ R such that�σ (λ) = a for all λ ≤ λ′ and
some constant a ≥ 0 since function �σ (λ) is non-decreasing, piecewise-linear and continu-
ous, which also yields that such σ canmake�(λ) ≥ 0 hold for all λ ∈ R. Thus condition (A7)
can equivalently be written as:

∃σ s.t. �σ (λ) ≥ 0 ∀ λ ∈ R.

Now we use that �σ (λ) = mini χi(A�Bσ (λ)) = miniminτ �A,B(λ)(i, τ , σ) to rewrite the
above condition as follows:

∃σ s.t. ∀ i, ∀ τ�A,B(λ)(i, τ , σ) ≥ 0 ∀ λ ∈ R, (A8)

which is equivalent to saying that the weights of all cycles in the digraph defined by A and
Bσ (λ) are nonnegative and cannot contain λ. Obviously, this condition does not depend on
the value of λ, which can be set to 0 as in the claim.

Note that the weight of a cycle must contain λ if and only if such cycle contains a node of
Max, which is not from the [m] group (on the left of Figure 2 or 8) since any other node of
Max has unique outgoing arc with weight λ. Therefore, condition (A8) holds if and only if any
cycle is avoiding these nodes of Max and all cycles have a nonnegative weight.
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