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Abstract: Insect herbivory is one of the most important ecological processes affecting plant–soil
feedbacks and overall forest ecosystem health. In this study, we assess how elevated carbon dioxide
(eCO2) impacts (i) leaf level insect herbivory and (ii) the stand-level herbivore-mediated transfer
of carbon (C) and nitrogen (N) from the canopy to the ground in a natural mature oak temperate
forest community in central England at the Birmingham Institute of Forest Research Free Air CO2

Enrichment (BIFoR FACE) site. Recently abscised leaves were collected every two weeks through the
growing season in August to December from 2017–2019, with the identification of four dominant
species: Quercus robur (pedunculate oak), Acer pseudoplatanus (sycamore), Crataegus monogyna (com-
mon hawthorn) and Corylus avellana (hazel). The selected leaves were scanned and visually analyzed
to quantify the leaf area loss from folivory monthly. Additionally, the herbivore-mediated transfer of
C and N fluxes from the dominant tree species Q. robur was calculated from these leaf-level folivory
estimates, the total foliar production and the foliar C and N contents. This study finds that the
leaf-level herbivory at the BIFoR FACE has not changed significantly across the first 3 years of eCO2

treatment when assessed across all dominant tree species, although we detected significant changes
under the eCO2 treatment for individual tree species and years. Despite the lack of any strong
leaf-level herbivory response, the estimated stand-level foliar C and N transferred to the ground via
herbivory was substantially higher under eCO2, mainly because there was a ~50% increase in the
foliar production of Q. robur under eCO2. This result cautions against concluding much from either
the presence or absence of leaf-level herbivory responses to any environmental effect, because their
actual ecosystem effects are filtered through so many (usually unmeasured) factors.

Keywords: carbon; free-air CO2 enrichment (FACE); leaf area loss; nitrogen; nutrient transfer

1. Introduction
1.1. Forests, Climate and CO2

Atmospheric carbon dioxide (CO2) concentrations are controlled by the exchange of
CO2 between the atmosphere, terrestrial biosphere and oceans, which impact the global
climate and overall carbon (C) budget [1]. Increasing atmospheric CO2 levels will likely
alter multiple important system properties through higher temperatures [2], precipitation
acidity [3], altered organic matter turnover [4], reduced soil moisture [5] and an overall
influence on plant and animal biodiversity, composition and competition [6,7]. Plants
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grown under elevated CO2 have enhanced global photosynthesis by 11.85–13.98 PgC of
carbon and are thus contributing a large proportion to the current terrestrial carbon sink [8].
Currently, CO2 fertilization offsets 20%–30% of the CO2 released by human activities [9],
predominantly due to carbon sequestration in mature forest ecosystems [10,11]. Both
experimental data and global climate models, however, predict that the CO2 fertilization
effect may subside over time, but at varying magnitudes, which could accelerate the rate
of climate change [12,13]. In order to moderate the progression of climate change, it is
important, therefore, to understand the uncertainty, pressures and responses of increasing
atmospheric CO2 concentrations on plants [14] and the associated impacts of this on the
terrestrial and C cycle. Temperate forests are particularly important, covering just 8% of
the global land area but accounting for 40% of the total C stored terrestrially [15]. These
forests are not only important for sequestering C from the atmosphere [16], but temperate
forest canopies promote insect species’ richness and abundance [17].

1.2. FACE Experiments

Forest-based free-air CO2 enrichment (FACE) experiments were established to help
understand forest ecosystem responses to a future atmosphere with CO2 enrichment. Ex-
tensive knowledge has already been gained with a decade of FACE studies showing an
increase in net primary productivity, leaf area index (LAI), nutrient cycling and soil micro-
bial activity [18]. However, because most of these historic FACE experiments (AspenFACE
and DukeFACE) were conducted on young mono-species forest plantations and concen-
trated around North American and European ecosystems [19], the conclusions from these
experiments may not easily translate to diverse and mature ecosystems which are more
representative of the natural forests around the world [20]. Currently, there are only two
ongoing forest FACE experiments in natural, mature forest ecosystems: EucFACE in the
eucalyptus forests of Australia and BIFoR in a mature northern temperate forest in the
United Kingdom [20].

1.3. Herbivory and CO2

One potentially critical process which remains understudied in FACE experiments is
the impacts of eCO2 on herbivory and the consequences for herbivore-mediated ecosystem
processes [21]. Insect herbivory is one of the most important ecological processes affecting
plant–soil feedbacks [22,23], forest ecosystem health [24,25], resource availability [26],
function and structure and the composition and productivity of plant communities [27].
Research has been conducted on the effects of eCO2 treatments on insect herbivory under
controlled situations [28], but studies based in mature and diverse forest ecosystems are still
rare [21,29]. Interactions between eCO2 and insect herbivory appear to be predominantly
regulated by plant chemistry and metabolism [30,31]. The responses of plants to eCO2
show that foliar nitrogen (N) decreases and leaf toughness, leaf biomass and the carbon-
to-nitrogen ratio increase [32–34]. This altered foliar chemistry then negatively impacts
herbivore performance by significantly decreasing the relative growth rate and pupal
weight [35]. It can also result in compensatory feeding due to a reduction in food quality,
causing increased defoliation, but still with a cost to the early stages of larval development
and the overall herbivore abundance [31]. However, the limited evidence for eCO2 impacts
on herbivore leaf damage from FACE studies suggests mixed, relatively weak responses.
Some studies show a decline in herbivory under eCO2, apparently related to leaf chemistry,
but this varies among species and years of measurement [36,37]. Another study found no
clear effect [29], while others found an increase in insect herbivory under eCO2 dependent
on the feeding guild and host plant type [21,38].

In this study, we assess how eCO2 impacts insect herbivory in a natural mature oak
temperate forest community [39]. Further, for the dominant oak species, we estimate the
net impact of CO2-induced shifts in canopy productivity, foliar chemistry and leaf-level
herbivory on ecosystem-level herbivore-mediated C and N fluxes from the canopy to the
ground. Specifically, we ask three questions:
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1. How does eCO2 affect leaf-level insect herbivory?
2. Do eCO2 effects on leaf-level herbivory vary among tree species and years?
3. How and why does eCO2 affect the herbivore-mediated transfer of C and N from the

forest canopy to the ground?

2. Materials and Methods
2.1. Study Site

The BIFoR FACE experiment is located in a mature, temperate oak forest on Orthic
Luvisol dominant soil [40] with a mul-moder humus classification in central England
(52.801◦ N, 2.301◦ W), United Kingdom. The forest is characterized as a deciduous forest
with a broadleaf tree species, with a dominant old oak (Quercus robur) overstory (~25 m
tall, 175 years old) and a mid-understory of sycamore (Acer pseudoplatanus) and hazel
(Corylus avellana).

The BIFoR FACE site consists of six structural arrays (eCO2, n = 3; Control, n = 3) and
three non-infrastructural arrays (Figure 1). Their location and pairings were determined
by testing key forest characteristics such as soil analysis, species distribution and biomass
densities [41]. Each array consists of 16 peripheral towers and one central tower ~1 m above
the canopy with a 15 m radius ground space for research. A highly consistent +150 ppm
above ambient eCO2 treatment has been applied within FACE ‘treatment’ arrays since
April 2017, running in parallel with ‘control’ arrays supplying ambient air via an identical
infrastructure [39]. The plot tree species composition and basal area were recorded for all
trees greater than 10 cm at diameter breast height (dbh) in all the arrays.
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Figure 1. (A). Map of the 19.1ha BIFoR FACE facility. Three enriched CO2 arrays are shown in orange;
three experimental control arrays are shown in blue. The red line indicates elevated walkways to
access plots, reducing forest floor disturbance. The 40 m high flux tower (blue triangle) collects
environmental conditions at the site. (B). An aerial view of the experimental design, illustrating the
treatment rings in relation to the ecosystem.
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2.2. Leaf Herbivory

Two 1 m2 leaf litter traps have been in place within each of the three control and
treatment arrays since 2017. Leaf litter was collected every two weeks through the growing
season in August to December from 2017–2019, with the identification of four dominant
species (S1): Quercus robur (pedunculate oak), Acer pseudoplatanus (sycamore), Crataegus
monogyna (common hawthorn) and Corylus avellana (hazel).

After sorting by species, 10 leaves per species per month from each trap were randomly
selected for scanning (with no overlap) and scanned at a 300 dpi tiff. format. The insect
herbivory was visually quantified as the proportion of the leaf area missing (H) from
the scanned images using a six-class leaf area loss system for calibration [42] (Figure 2).
Additionally, Digimizer v.5.4.7 ® (MedCalc Software Ltd., Ostend, Belgium, 2020) was used
to measure the individual leaf area for all leaves collected only in 2019 (N = 435 leaves).
Skeletonizing, leaf mining and leaf rolling were negligible for the leaf tissue lost in the
leaves sampled by this study and therefore were not included in the analysis. All the
material collected in each trap was then dried at 60 ◦C for 24 h and weighed.
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Figure 2. Exemplar images for the visual quantification of herbivory and subsequent categorization
of samples into six leaf area loss classes [42].

2.3. Leaf nutrients and Production

Oak leaves were collected from the top of the canopy in each month from 2017–2019
and stored immediately at −25 ◦C. Two upper canopy leaves from one tree per plot were
selected for elemental analyses. Dried leaves were ground and analyzed for total C and N
using an elemental analyzer interfaced with an isotope ratio mass spectrometer (Sercon
Ltd., Cheshire, UK; [43]).

2.4. Calculations of Herbivore-Mediated Nutrient Fluxes

To estimate the canopy biomass production per plot, all oak leaves collected within
the litter traps from our sampling years of 2017–2019 were dried at 60 ◦C for 2–3 days until
constant mass and weighed. We calculated the mean oak basal area (BA, m2) across all six
plots; then, we divided the individual plot BA by the mean BA. This value (the fraction of
individual plot BA: mean plot BA) was then multiplied by the individual plot oak raw dry
litterfall mass per unit ground area (Lraw, g m−2 year−1) to derive the abundance-corrected
dry litterfall mass (Lcorr g m−2 year−1). The total peak oak live dry foliage mass per unit
ground area (Q, g m−2) was calculated as Q = Lcorr + (Lcorr × H). The herbivore-mediated
transfer of C and N fluxes per unit ground area from oak (Fx, g m−2 year−1) at the study
site was then calculated following the basic approach in [44], as follows:

Fx = Q × H × Nx (1)



Forests 2022, 13, 998 5 of 10

where subscript x is substituted with C or N for reference Fx and for leaf C and N content
expressed as a proportion of dry biomass (Nx).

2.5. Statistical Analysis

The response variable of the leaf-level insect herbivory was evaluated using repeated
measured MANOVA with fixed effects of the eCO2 treatment and tree species. All statistical
analyses were performed using R Statistical Software 1.1442 [45,46]. Before analysis, data
normality was checked and the data were transformed where necessary, with a Box Cox
transformation of the suggested 0.501 lambda. The values are reported as the mean ± SE
or the percentage (%).

3. Results
3.1. Leaf-Level Insect Herbivory

Overall, the leaf-level herbivory showed no significant response to the eCO2 treat-
ment across sampling years and tree species (Table 1), though there were some apparent
effects within species and years (Table 1, Figure 3). Specifically, there was no significant
difference in herbivory between the eCO2 treatment and control plots across all years for
oak, while hawthorn and hazel experienced a significant reduction in leaf-level herbivory
under eCO2 compared to the control in 2019 and 2018, respectively (Table 1, Figure 3).
Sycamore experienced a significant increase in leaf-level herbivory for both treatments in
2019 (Figure 3).

Table 1. F Ratio for MANOVA Wilk’s Lambda test of insect herbivory responses across different
dominant tree species (oak, sycamore, hawthorn, hazel) and between eCO2 and controlled treatments
measured over 2017, 2018 and 2019. Significant main effects and interactions are indicated with
asterisks: *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001.

Parameter Wilk’s Lambda p-Value DF

All Between 4.35 *** 0.0009 7
All Within 2.71 ** 0.0022 14

Year 12.5 *** <0.0001 2
Treatment 0.11 0.7385 1

Species 8.4 *** 0.0001 3
Treatment × Species 1.3 0.2924 3

Year × Treatment 0.09 0.9129 2
Year × Species 3.31 ** 0.0053 6

Year × Treatment × Species 2.2 * 0.0500 6

Forests 2022, 13, x FOR PEER REVIEW 5 of 10 
 

 

2.5. Statistical Analysis 
The response variable of the leaf-level insect herbivory was evaluated using repeated 

measured MANOVA with fixed effects of the eCO2 treatment and tree species. All statis-
tical analyses were performed using R Statistical Software 1.1442 [45,46]. Before analysis, 
data normality was checked and the data were transformed where necessary, with a Box 
Cox transformation of the suggested 0.501 lambda. The values are reported as the mean ± 
SE or the percentage (%). 

3. Results 
3.1. Leaf-Level Insect Herbivory 

Overall, the leaf-level herbivory showed no significant response to the eCO2 treat-
ment across sampling years and tree species (Table 1), though there were some apparent 
effects within species and years (Table 1, Figure 3). Specifically, there was no significant 
difference in herbivory between the eCO2 treatment and control plots across all years for 
oak, while hawthorn and hazel experienced a significant reduction in leaf-level herbivory 
under eCO2 compared to the control in 2019 and 2018, respectively (Table 1, Figure 3). 
Sycamore experienced a significant increase in leaf-level herbivory for both treatments in 
2019 (Figure 3). 

Table 1. F Ratio for MANOVA Wilk’s Lambda test of insect herbivory responses across different 
dominant tree species (oak, sycamore, hawthorn, hazel) and between eCO2 and controlled treat-
ments measured over 2017, 2018 and 2019. Significant main effects and interactions are indicated 
with asterisks: *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. 

Parameter Wilk’s Lambda p-Value DF 
All Between 4.35 *** 0.0009 7 
All Within 2.71 ** 0.0022 14 

Year 12.5 *** <0.0001 2 
Treatment 0.11 0.7385 1 

Species 8.4 *** 0.0001 3 
Treatment × Species 1.3 0.2924 3 

Year × Treatment 0.09 0.9129 2 
Year × Species 3.31 ** 0.0053 6 

Year × Treatment × Species 2.2 * 0.0500 6 

 
Figure 3. The mean ± S.E. leaf area lost by insect herbivory per leaf for three years on hawthorn, 
hazel, oak and sycamore tree leaves. n = 3. Significant main effects and interactions (p ≤ 0.05) are 
indicated with letters between species, years and treatments (ABC, abc). For the 2019 control haw-
thorn, there was only one litter trap of material, and, thus, no S.E could be calculated. 

Figure 3. The mean ± S.E. leaf area lost by insect herbivory per leaf for three years on hawthorn,
hazel, oak and sycamore tree leaves. n = 3. Significant main effects and interactions (p ≤ 0.05)
are indicated with letters between species, years and treatments (ABC, abc). For the 2019 control
hawthorn, there was only one litter trap of material, and, thus, no S.E could be calculated.
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3.2. Estimated Carbon and Nitrogen Fluxes from Insect Herbivory

Herbivore-induced C and N fluxes from oak to the ground were the net product of
the leaf-level herbivory rate, the litterfall rate and the leaf carbon and nitrogen contents,
all of which were influenced in different ways by the CO2 treatment. Across all scaled-
up years, eCO2 was associated with a slight decrease in leaf-level insect herbivory and
slightly increased foliar C and N but substantially increased tree abundance-corrected
litter fall (Figure 4). Thus, even though leaf-level insect herbivory on oak was apparently
slightly suppressed by eCO2, the estimated C and N nutrient fluxes from the canopy to the
ground via herbivory were ~60–70% greater on the eCO2 treatment compared to those on
the control.
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Figure 4. Percent change from control treatment compared to that from eCO2 for total N content, C
content, Specific Leaf Area and Total Litterfall Mass and Insect Herbivory for oak leaves over three
sampling years (2017–2019). Bars represent mean total % change on the eCO2 plots relative to the
control ± standard error, n = 3. Primary estimates are defined as parameters that were all directly
measured in the field/lab; secondary estimates are parameters calculated from primary parameters.
Significant percent change from control treatment compared to that from eCO2 are indicated with an
asterisks *, p ≤ 0.05.

4. Discussion
4.1. Leaf-Level Insect Herbivory

The current study has shown that the total leaf level herbivory at the BIFoR FACE
has not changed significantly over the first 3 years of eCO2 treatment (2017–2019) when
assessed across all dominant tree species combined (Table 1; Figure 3). This agrees with the
results from the EucFACE experiment in Australia, where the leaf-level herbivory observed
on living leaves in the upper canopy was not affected by CO2 enrichment for the first two
years since the initiation of the experiment [29]. There were, however, significant increases
in herbivory noted in our study for hazel and sycamore in 2019, suggesting a potential rise
in herbivory for certain tree species under eCO2. The overall weak herbivory response to
eCO2 at the BIFoR may be due to the limited biochemical response of dominant and more
mature oak trees, with no significant change in the foliar N of oak from 2015–2019 [43].
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While our own calculations indicate an increase in the oak foliar N concentrations within
eCO2 plots between 2017–2019 (Figure 4), no significant change in oak herbivory was noted
for any year.

4.2. Plant Nutrients and Insect Herbivory

Field studies on the plant-mediated effects of eCO2 on insects are rare, but the conse-
quences are potentially substantial at both an individual and ecosystem level [47]. Negative
consequences on plant chemistry, such as reduced N and increased defensive compounds,
e.g., tannins, can affect overall herbivore development [48] and potentially impact herbivore
abundance and biodiversity. It is worth noting, however, that no significant changes in
insect community composition were recorded between 2017 and 2019 at the BIFoR [38].
In line with our findings, varying plant species responses to eCO2 are common [47]. The
current study reinforces the need to investigate biochemical changes in multiple tree species,
as well as the impacts on several different insect herbivores. For example, studying the
effects of leaf miners provides a localized perspective on the exposure to eCO2 or controlled
conditions, as they typically spend their life on a single leaf from egg to adulthood. A
detailed study of several leaf miner species has been undertaken at the BIFoR on both
oak and hazel, which indicate differing responses across different tree and miner species
combinations [38]. Our study observed a decrease in insect herbivory for oak, a canopy
dominating species under eCO2 conditions [49].

4.3. Ecosystem Responses to Insect Herbivory

Beyond just understanding the direct interactions between herbivores and plants, it is
also important to quantify whole ecosystem responses to insect herbivory, particularly the
herbivore-mediated transfer of carbon and nutrients to the soil [50]. Inferring the ecosystem
impacts of insect herbivory from leaf-level observations is not straightforward [51,52]
because the leaf-level impacts are filtered through a range of other factors which are
also affected by the environment such as the light intensity, nutrient availability and leaf
composition [53]. For example, in our study, while there is lower leaf-level herbivory under
elevated CO2, this is offset by the large increase in litterfall [54] on the eCO2 plots compared
to the control, even after correcting for pre-existing plot differences in oak abundance and
size. Increased litterfall from our diverse temperate species system tends to follow the
deceleration model in response to herbivory [54] by inducing defenses, decreasing litter
quality and increasing the C/N ratio [36,55]. In other words, herbivores on the eCO2 plots
are able to maintain roughly similar levels of leaf-level damage despite a ~60% increase in
foliar resources, indicating that the activity and/or abundance of the herbivore population
is in fact higher on the eCO2 plots despite the lack of any strong leaf-level herbivory
treatment difference. This result cautions against concluding much from either the presence
or absence of leaf-level herbivory responses to any environmental effect, because their
actual ecosystem effects are filtered through so many (usually unmeasured) factors.

5. Conclusions

We present a three-year study from a mature temperate forest, experimentally measur-
ing the effects of eCO2 on insect herbivory rates and the stand-level herbivore-mediated
transfer of C and N from the canopy to the ground. We found no overall effect of eCO2 on
leaf-level herbivory within the first 3 years of the BIFoR FACE experiment, though some
significant effects among individual tree species and measurement years were found, along
with potential trajectories of increasing herbivory on some species in 2019. We showed
that the herbivore-mediated transfer of C and N fluxes from the dominant tree species
oak was 60%–70% higher under eCO2 even though the leaf level consumption was lower.
This was because the total oak foliage mass was ~50% higher in the eCO2 treatments, even
after correcting for the pre-existing plot variation in oak abundance. As such, our findings
suggest that herbivores’ activity and/or abundance in eCO2 plots was enhanced.
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