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Abstract—The accurate prediction of soft sensors is 
essential for development of modern combustion engines 
to achieve better performance, lower emissions, and 
reduced fuel consumption. To precisely predict engine 
performance i.e., indicated thermal efficiency, volumetric 
efficiency, and fuel consumption rate of a hybrid engine, 
this paper proposes a novel data-driven approach of 
statistics-guided accelerated swarm feature selection to 
find the most effective features for engine soft sensors. 
Differing from the existing filter or wrapper feature 
selection approaches, this approach uses external measure 
information to direct velocity updates in the accelerated 
swarm feature selection. Several filter and wrapper 
methods were developed and comprehensively compared. 
The experimental dataset was collected from a BYD 1.5L 
gasoline engine. Validated by bench test, the results 
demonstrate that the proposed approach finds the most 
effective features and optimal network structure for data-
driven performance prediction of the hybrid engine that 
was studied. 

 
Index Terms—accelerated particle swarm optimization; 

deep neural network; engine soft sensors; feature selection. 

 
 

I.  INTRODUCTION 

ITH the rapid development of informatics and an 

increase in customer demands, the complexity of process 

industry is growing fast. For monitoring the operation status of 

systems and realizing the optimal control of products, however, 

their key variables or quality indices must be obtained as fast 

and accurately as possible [1]. Soft sensors, a kind of 

mathematical model with easy-to-measured auxiliary variables 

as input and hard-to-measure variables as output, have been 

widely constructed to estimate or predict important variables 

expediently [2]. 

In auto industry, engine experiment is typically complicated, 

costly, and time-consuming [3], due to detailed and accurate 

mechanism of process or a wealth of experience and knowledge. 

However, the increasing complexity of modern engine 

development makes these preconditions (e.g., emissions) 

difficult to meet [4]. Data-driven modelling has been proven 

beneficial to reduce expertise requirements, time and 

experimental costs [5]. Li et al. propose geometric neuro-fuzzy 

transfer learning for In-cylinder pressure modelling. This 
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approach only utilizes limited experimental data obtained by 

geometric screening to learn a high precise transfer model, 

which performs superior computational and experimental 

efficiency [6]. Besides, Quan et al. research a transferable 

representation modelling routine, where two artificial 

intelligence technologies of deep neural network [7] and 

Gaussian process regression [8] are developed to cooperate 

with an adaptive neuro-fuzzy inference system for knowledge 

transfer of the energy management controller. For membership 

function design, statistical methods e.g., corresponding analysis 

can be used to measure sensitivity of lift surfaces in air-fuel 

ratio control [9]. Tosun et al. predicted injection duration by 

using different types of regression analysis [10], in which an 

artificial neural network (ANN) demonstrated better accuracy 

than other linear and non-linear regression methods. In addition, 

some studies on multi-input modelling by using ANNs have 

also performed well, such as LP-EGR flow [11] and NOx 

emission [12]. However, the complex nature of ANN may lead 

to problems of computational time, energy use, and memory. 

To maximize performance, network topology, deep learning, 

and ANN design are currently attracting attention. 

Selecting the most important variables or input parameters is 

a key factor in the improvement of the prediction capability [13]. 

Feature selection approaches can be generally structured in two 

main paradigms [14], namely filter and wrapper selection 

approaches. Unlike other disciplines such as gene engineering, 

there is the trade-off between feature dimension and the 

required sensor cost in real-world engine development, and the 

accessible signals i.e., feature candidates are usually limited but 

with noises [15]. Filter approaches to feature selection problems 

rely on an external measure calculated from the data that must 

be defined to select a subset of features [13]. Mohammad et al. 

use the least absolute shrinkage and selection operator (Lasso) 

algorithm to select features used for training emission 

models of a diesel engine, in which the 37 variables are reduced 

to 25, 22, 11, and 16 inputs for NOx, CO, HC, and soot emission 

modeling while maintaining the accuracy [16]. Besides, the 

superiority of the Lasso algorithm was confirmed on predicting 

the fuel consumption of ship engines [17], [18]. Koprinska et al. 

applied different filter feature selection methods to a problem 

of short-term electricity load from previous samples [19]. In the 

work of Jurado et al. [20], hybrid methodologies combining 

filters based on entropy measurements are applied to forecast 
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hourly energy consumption in buildings, wherein 20% of 

improvement can be achieved when considering the feature 

selection step. Usually, filter approaches are faster than wrapper 

approaches. However, their main drawback is that they 

completely neglect the effect of the selected feature subset on 

the performance of the classification/regression algorithm 

during the search. 

Differing from filter approaches, wrapper approaches 

conduct a search for a good subset of features using the 

classifier or regressor itself as part of the evaluating function 

[21]. In the work of Ahila et al. [22], power system disturbances 

are classified with a hybrid system including extreme learning 

machines and particle swarm optimization (PSO). In this case, 

the PSO approach was used to select the best features to serve 

as inputs of the classifier, and also the number of hidden nodes 

to enhance the performance of a multi-linear regression 

algorithm. Hu et al. studied a case of mid-term electricity loads 

prediction by using a support vector machine and the firefly 

algorithm for feature selection [23]. Its performance can be 

better than filter approaches but at the cost of additional 

computation. Since the iteration processes of these evolutionary 

algorithms are mainly driven by diverse chaotic maps [24], their 

convergence process, particularly in feature selection problems, 

will become slow and unstable. Recently, hybrid filter-wrapper 

approaches with efficient search have been emerging for 

industrial practice. Ran et al. developed canonical correlation 

analysis to detect fault-relevant variables of diesel engines [25]. 

In the work of Arefnezhad et al., four different filter indexes are 

combined and evaluated for driver drowsiness detection via an 

adaptive neuro-fuzzy inference system, where Pearson 

correlation has the most contribution in feature selection of 

steering wheel data [26]. Here, advantages and disadvantages 

of the selected state of the art in industrial feature selection 

applications are summarized in Table I. 

It is clear from the literature study above, that the 

development of prediction systems for emerging hybrid engines 

needs to overcome the following research gaps: 1) there is a 

lack of dedicated machine learning approaches for their 

performance prediction; 2) existing filter and wrapper 

approaches to complex feature selection problems i.e., for the 

hybrid engine are hampered by a compromise between 

convergence and computing efficiency; and 3) no proper 

regressor structure and features used for hybrid engine 

performance prediction are identified in the literature. To 

systematically address the identified technical challenges, this 

paper proposes a data-driven approach of statistics-guided 

accelerated swarm feature selection (SGAS-FS) to find the 

most effective features for hybrid engine soft sensors. Differing 

the existing filter or wrapper feature selection approaches, this 

approach utilizes external measure information to direct 

velocity updates in the accelerated swarm feature selection 

optimization. The investigation’s three main contributions are: 

1) A dedicated machine learning approach i.e., SGAS-FS 

is proposed with fast convergence to find the most 

effective features in deep learning of the performance 

prediction system. 

2) A statistics-guided attraction assignment policy is 

created that uses external measure information to direct 

velocity updates in the proposed approach. 

3) To explore the superior optimization performance, four 

external measure methods are developed and compared 

within the proposed approach. 

The paper outline is as follows. Section II details the 

experimental set up carried out in the laboratory showing the 

features of the measurement equipment. Section III analyzes 

four types of basis external measures. In Section IV, the 

proposed solution of SGAS-FS is described, which comprises 

three main parts of accelerated swarm feature selection, 

statistics-guided attraction assignment, and network training. 

Section V carries out a comparative study of the proposed 

approach. Finally, conclusions are drawn in Section VI. 

II.  EXPERIMENTAL SETUP 

As shown in Fig. 1, experiments were conducted with an in 

line 4-cylinder, 1.5 L gasoline engine. The engine specification 

is shown in Table II. The engine was run under steady state 

conditions at different operating points that covered the whole 

engine torque and speed range. To assess the soft sensors in real 

engine conditions, exhaust gas recirculation (EGR) was 

performed depending on the engine load at the various running 

points. 

TABLE I 
SUMMARY OF THE SELECTED STATE OF THE ART IN INDUSTRIAL FEATURE SELECTION APPLICATIONS 

FSP type Predictor + FS algorithm Advantages  Disadvantages 

Expertise 

ANN [5] [11], GNFTL [6], DDPG/ANFIS [7], 
ANFIS/GPR [8], RA/ANN [10], 
MLP/MOACO [12] 

1. Physics-explainable model 

2. Ease to implement 

3. Less computational effort 

1. Heavily rely on expertise 

2. Limitations on parameter sensitivity 

3. Low accuracy 

Filter 

SVM/FFNN + LASSO [16][17][18], NN + AC 

[19], FIR + Entropy-based FSP [20], SVR + 

PCA [23], EEMD + CFS [24] 

1. Parameter sensitivity analysis 

2. No expertise requirement 

3. Acceptable computational effort 

1. Inefficient removal of redundant features 

2. Diversity of features selected among 

filter methods 

Wrapper 
ELM + CRO-SL [15], ELM+PSO [22], MSVR 

+ MA [25] 

1. High accuracy 

2. No expertise requirement 

1. Tradeoff between optimality and 

computational effort 

Hybrid 

EGA-CCA [26], SVM+ Pearson Correlation 
+PSO [27] 

1. High accuracy 
2. Efficient search 

3. Parameter sensitivity analysis 

4. No expertise requirement 

1. Shortcomings in generalization 

Notes: AC: autocorrelation; ANFIS: adaptive neuro-fuzzy inference system; ANN: artificial neural network; CCA: canonical correlation analysis; CRO-SL: coral reefs optimization with substrate layer algorithm; 

DDPG: deep deterministic policy gradient; EGA: the elitist genetic algorithm; ELM: extreme learning machines; FFNN: feedforward neural network; FIR: fuzzy inductive reasoning; FSP: Feature selection 

process; GNFTL: Geometric neuro-fuzzy transfer learning; GPR: Gaussian process regression; LASSO: least absolute shrinkage and selection operator; MA: Memetic Algorithm; MLP: multilayer perceptron; 

MOACO: multi-objective ant colony optimization; MSVR: Multi-output Support Vector Regression; NN: neural network; PSO: particle swarm optimization; RA: regression analysis; SVM: support vector 

machines; SVR: support vector regression. 
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Fig. 1. Dedicated hybrid engine testing bench. 
 

TABLE II 
ENGINE SPECIFICATIONS 

Parameter Value Unit 

Cylinder number 4 − 

Bore × stroke 72*92 mm 

Displacement 1498 cm3 

Compression ratio 15.5 − 

Injection system PFI − 

Maximum power  81/6000 kW/rpm 

Maximum torque  135/4500 Nm/rpm 

Torque at maximum power 129 Nm 

 

Engine speed was measured through an AVL encoder with 

an error of 0.02 Crank Angle Degree (CAD). Engine torque was 

measured by a SCHENK DYNAS3 dynamometer, with an error 

of 0.1%. Temperatures were measured with TCA type K 

thermocouples, with a measurement error of 2%. Gas pressure 

was measured with KISTLER pressure sensors with an error of 

0.3%. Air mass flow rate was measured by means of a Sensycon 

hot wire anemometer, with a measurement error of 1%. 

 
TABLE III 

CONTENDING FEATURES OF THE DEDICATED HYBRID ENGINE 

Parameter Unit Parameter Unit 

1. Speed rpm 10. Throttle position % 
2. Torque Nm 11. Exhaust pressure kpa 

3. Lambda - 12. Intake temperature ℃ 

4. Intake valve timing CAD 13. Relative air volume % 

5. Coolant water ℃ 14. EGR temperature ℃ 

6. MAT ℃ 15. Injection angle Degree 

7. MAP kpa Ind. thermal efficiency % 

8. Spark angle Degree Volumetric efficiency % 

9.EGR position % Fuel consumption rate g/h 

 

Considering the diversity of experiment dataset (e.g., system 

noise and operators), engine experiment is carried out on the 

two testing benches for the same type dedicated hybrid engine 

[27] developed by BYD Auto Ltd. 7829 samples were collected 

at different steady engine load conditions of the operating range 

of the studied engine. The range of the operating points was as 

follows: 1000-6000 rpm for engine speed, 1.5 -135 N m for 

engine torque, and 0–100% for LP EGR positions. Engine 

speed variables at each steady state point were obtained from 

the average of 600 points sampled at 10 Hz. There are 15 groups 

of contending features and 3 groups of soft sensors measured 

by the test bench have been collected and summarized in Table 

III to be used for modelling performance prediction system of 

the hybrid engine. 

III.  BASIC EXTERNAL MEASURES 

An external measure directly calculated from the database is 

widely used to select a subset of features, where its performance 

completely depends on the measure selected for comparing 

subsets. For computational simplicity and performance 

diversity, four types of basis external measures used in this 

study are Spearman rank correlation, principal component 

analysis (PCA), neighborhood component analysis (NCA), 

least absolute shrinkage and selection operator (Lasso). 

A.  Spearman Rank Correlation 

The correlation indictor reflects the linear correlation 

between the observed feature and soft sensors of the hybrid 

engine. this article uses the spearman correlation coefficient 

method to define the correlation indicator as 

𝜌𝑖𝑗 =
6 ∑ 𝑑𝑥𝑖𝑗(𝑘)

2𝐾𝑖
𝑘=1

𝐾𝑖(𝐾𝑖
2 − 1)

                                 (1) 

where 𝑥𝑖𝑗(𝑘)  is the 𝑘 th value of the 𝑗 th variable in the ith 

aeroengine sample; and 𝑑𝑥𝑖𝑗(𝑘)
2  is the difference between ranks 

for each 𝑥𝑖𝑗(𝑘)  and 𝑘(𝑘 =  1, 2, 3, . . . , 𝐾𝑖). The range of the 

correlation indicator is between −1 and 1. A positive value 

means the feature is positively correlated with the soft sensors; 

otherwise, the feature is negatively correlated with the 

performance indicator. 

B.  Principal Component Analysis 

PCA is a popular and well-known transformation method, 

and its transformation result is not directly related to a sole 

feature component of the original sample. The main procedures 

to perform feature ranking are devised as follows: 

By calculating the covariance matrix of PCA using the 

original training samples, all the eigenvectors and eigenvalues 

can be obtained. Then the eigenvectors corresponding to the 

first m largest eigenvalues are selected and denoted by 

𝑉1, 𝑉2, … , 𝑉𝑚. The contribution, to the feature extraction result, 

of the 𝑗th feature component can be calculated as follows: 

𝑐𝑗 = ∑ |𝑉𝑝𝑗|
𝑚

𝑝=1
                                (2) 

where 𝑉𝑝𝑗  denotes the 𝑗 th entry of 𝑉𝑝 , 𝑗 = 1,2, . . . , 𝑁 , 𝑝 =

1,2, . . . , 𝑚. |𝑉𝑝𝑗| stands for the absolute value of 𝑉𝑝𝑗. Finally, 𝑐𝑗 

is sorted in the descending order and 𝑑𝑗 is used to store the order, 

where 𝑗 = 1,2, . . . , 𝑁. 

C.  Neighborhood Component Analysis 

NCA is a simple and efficient nonlinear decision rule that 

uses the gradient ascent technique to maximize the expected 

leave-one-out classification/regression accuracy with a 

regularization term [28]. For feature selection purposes, NCA 

is modified by Yang et al. [29] to learn a Mahalanobis distance 

measure. Given 𝑛 observations: 𝑆 = {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2, … , 𝑛}. 

The probability 𝑃(Ref(𝑥) = 𝑥𝑗|𝑆) that point 𝑥𝑗 is picked 

from 𝑆 as the reference point for 𝑥 is 

𝑃(Ref(𝑥) = 𝑥𝑗|𝑆) =
𝑘 (𝑑𝑤(𝑥, 𝑥𝑗))

∑ 𝑘 (𝑑𝑤(𝑥, 𝑥𝑗))𝑛
𝑗=1

              (3) 
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Considering leave-one-out cross validation, the data in 𝑆−𝑖 is 

used for predicting the response for 𝑥𝑖.Thus, the probability that 

point 𝑥𝑗 is picked as the reference point for 𝑥𝑖 is 

𝑝𝑖𝑗 = 𝑃(Ref(𝑥𝑖) = 𝑥𝑗|𝑆−𝑖) =
𝑘 (𝑑𝑤(𝑥𝑖 , 𝑥𝑗))

∑ 𝑘 (𝑑𝑤(𝑥𝑖 , 𝑥𝑗))𝑛
𝑗=1,𝑗≠𝑖

 (4) 

The loss function is the average value of 𝑙(𝑦𝑖 , 𝑦�̂�)  that 

measures the disagreement between the response value, 𝑦�̂�, and 

the actual response, 𝑦𝑖 , for 𝑥𝑖. 

𝑙𝑖 = 𝐸(𝑙(𝑦𝑖 , 𝑦�̂�)|𝑆−𝑖)  = ∑ 𝑝𝑖𝑗𝑙(𝑦𝑖 , 𝑦𝑗)

𝑛

𝑗=1,𝑗≠𝑖

            (5) 

The objective function with the regularization term for 

minimization is: 

𝑓(𝑤) =
1

𝑛
∑ 𝑙𝑖

𝑛

𝑖=1

+ 𝜆 ∑ 𝑤𝑟
2

𝑃

𝑟=1

                       (6) 

D.  Lasso Regularization 

Tibshirani proposed the least absolute shrinkage and 

selection operator (Lasso) to estimate the parameters and select 

features for regression issues [30]. It combines the advantages 

of ridge regression and subset selection to improve predictive 

performance and model interpretability. The Lasso is based on 

the penalized least squares regression and includes L1-penalty 

function. The optimization factor of LASSO is denoted as 𝛽0. 

The formula of 𝛽0 is presented as: 

𝛽0 = arg min
𝛽

‖𝒚0 − 𝑿0𝛽‖2
2 + 𝜆‖𝛽‖1              (7) 

where the response vector is denoted as 𝒚0 =  [𝒚0
1 , 𝒚0

2, . . . , 𝒚0
𝑛]𝑇, 

the matrix of feature is denoted as 𝑿0 =  [𝑥0
1, 𝑥0

2, . . . , 𝑥0
𝑛]𝑇; 

|| ∙ ||1 means the 𝑙1 norm; || ∙ ||2 means the 𝑙2 norm; 𝛽, 𝛽 ∈ 𝑅, 

𝑅 means the real numbers; and 𝜆 is the trade-off parameter for 

determinations of the relevant fitting goodness and sparseness 

of 𝛽0. The selected features are expressed by the positions of 

the elements of the sparse regression coefficients with non-zero 

values. 

IV.  STATISTICS-GUIDED ACCELERATED SWARM 

FEATURE SELECTION 

In order to precisely predict hybrid engine performance, this 

paper proposes a novel data-driven approach of SGAS-FS to 

find the most effective features for deep learning of the hybrid 

engine performance prediction system. The workflow of the 

SGAS-FS in the deep learning prediction system is illustrated 

in Fig. 2. It consists of three main parts: a) the main task of 

accelerated swarm feature selection; b) the subtask of statistics-

guided attraction assignment; and c) the subtask of multi-layer 

perceptron (MLP) network training. 

A.  Accelerated Swarm Feature Selection 

To efficiently find the key parameters in performance 

prediction system of dedicated hybrid engines, accuracy of 

indicators as the only objective is applied to directly determine 

the input variables of performance prediction system. 

Accelerated swarm feature selection inherits widely-used 

accelerated particle swarm optimization [31] as the main loop 

of feature selection, and its velocity vector is generated by a 

simpler formula as 

𝑣𝑖,𝑗+1
 = 𝑣𝑖,𝑗

 + 𝛼𝛾 + 𝛽(𝑔𝑗
∗ − 𝑥𝑖,𝑗)                   (8) 

where 𝑥𝑖,𝑗
  is the position of 𝑖 th particle at 𝑗 th iteration, 𝑖 ∈

[1,2, … , 𝑂] and 𝑗 ∈ [1,2, … , 𝑃]; 𝑂 = 20 particles and 𝑃 = 150 

iterations are employed in APSO; 𝑔𝑗
∗ denotes the current global 

best; 𝛾  is drawn from the Gaussian distribution, 𝑁(0, 1) . In 

order to increase the convergence even further, the update of 

the location in a single step can be written as 

𝑥𝑖,𝑗+1
 = (1 − 𝛽)𝑥𝑖,𝑗 + 𝛽𝑔𝑗

∗ +  𝛼𝛾                  (9) 

This simpler version will give the same order of convergence. 

It is worth pointing out that the velocity does not appear in Eq. 

8), and thus there is no need to deal with the initialization of 

velocity vectors. Therefore, the APSO is much simpler to 

implement that PSO. Here the randomization term 𝛼𝛾 provides 

the ability for the system to escape any local optimum if 𝛼 is 

chosen to be consistent with the scales of the problem of interest. 

Typically, 𝛼 = 0.1𝐿  to 0.5𝐿  where 𝐿  is the scale of each 

variable, while 𝛽 = 0.2  to 0.7  is sufficient for most 

applications. 

 

 
Fig. 2. Workflow of SGAS-FS in the deep learning prediction system: a) 
the main task of accelerated swarm feature selection; b) the subtask of 
statistics-guided attraction assignment; and c) the subtask of MLP 
network training. 
 

A further improvement to the APSO is to reduce the 

randomness as iterations proceed. This means that a 

monotonically decreasing function can be implemented, which 

is given as 

𝛼𝑗 = 𝛿𝑗                                          (10) 

where 0 < 𝛿 <  1 is an annealing-like parameter whose value 

can be taken as 0.7 to 0.9 for most cases. Here 𝑗 ∈  [0, 𝑗∗] and 

𝑗∗ is the maximum of iterations. 
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B.  Statistics-Guided Attraction Assignment 

Generally, velocity update parameter 𝛽  in APSO and its 

variants use constant or chaos-map-based attraction assignment 

policies. In order to adaptively assign attraction forces in the 

velocity updates, four external measure methods of Spearman 

rank correlation, PCA, NCA, and Lasso are developed for the 

accelerated swarm feature selection optimization. 

To ensure convergence and optimality of APSO in feature 

selection, the external measure information is used to direct the 

velocity updates. Firstly, the feature weights 𝑤 , calculated by 

the above measure methods need to be normalized. 

𝑤𝑠𝑡 =
𝑤 − min(𝑤)

max(𝑤) − min(𝑤)
, 𝑤𝑠𝑡 ∈ [0,1]        (11) 

To determine the features used for the MLP network, the 

current and global positions of the 𝑖th particle are sorted by Eq. 

(12). 

𝑅𝑖,𝑗 = Sort(𝑥𝑖,𝑗
 )

𝑅𝑔∗ = Sort(𝑔𝑗
∗)

}                               (12) 

where, 𝑅𝑖,𝑗  is the rank of the current position 𝑥𝑖,𝑗
  of the 𝑖 th 

particle at the 𝑗th iteration; 𝑅𝑔𝑗
∗ is the rank of the current global 

𝑔𝑗
∗. 

Finally, adaptive weighting is applied to the constriction 

factor. In the velocity update, the global position has different 

attractive forces to the current position. These attractive forces 

are determined and distinguished by the difference of the 

distance obtained by external measure information. 

𝛽𝑖,𝑗 =
𝑤𝑠𝑡(𝑅𝑖,𝑗) − 𝑤𝑠𝑡 (𝑅𝑔𝑗

∗)

2
+

1

2
, 𝛽𝑖 ∈ [0,1]       (13) 

Convergence Analysis: To ensure the convergence of the 

optimization process, convergence analysis is carried out. The 

theory of linear, discrete-time dynamic system provides a 

powerful set of tools and results for assessing the dynamic 

behaviour of a particle [32]. Using a dynamical approach with 

ignoring the randomness term and setting 𝑢 = 𝑔∗ − 𝑥𝑖
𝑡 , a 

system can be simplified as 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + 𝛽𝑢𝑖
𝑡 , 𝑢𝑖

𝑡+1 = (1 − 𝛽)𝑢𝑖
𝑡          (14) 

which can be re-written as  

𝑌𝑡+1 = 𝐴𝑌𝑡 , 𝐴 = [
1 𝛽
0 1 − 𝛽

]               (15) 

Then the characteristic equation is  

𝐴 − 𝜆 ∙ 𝐼 = |[
1 𝛽
0 1 − 𝛽

] − [
𝜆 0
0 𝜆

]| = 0         (16) 

can be further calculated as follows 

𝜆2 + (𝛽 − 2)𝜆 + 1 − 𝛽 = 0                   (17) 

and the two eigenvalues are 

{
𝜆1 = 1

𝜆2 = 1 − 𝛽
                                    (18) 

Different from several conditions when solving for PSO 

eigenvalues, its eigenvalues are simply 1 and 1 − 𝛽 . From 

theory of dynamical systems, the above iterations will always 

converge stably for any 𝛽 >  0 . In fact, the experiment of 

Gandomi et al. also confirm that convergence behavior of this 

paradigm observed is fast and stable [33]. 

C.  MLP Network and Cost Function 

The last subtask in Fig. 2(c) is MLP network training. In this 

study, the widely used MLP network is adopted for predictive 

modeling of the hybrid engine soft sensors. As one of the 

popular deep learning structures, it is useful for solving 

problems stochastically, which often allows approximate 

solutions for extremely complex problems like fitness 

approximation. 

Commonly, a learning algorithm owns a single objective 

(approximation error minimization) that is often achieved by 

minimizing the mean-squared error (MSE) on the learning data. 

MSE =
1

𝑁
∑(𝑑𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

                        (19) 

where 𝑑  and 𝑦  are the desired and the model’s outputs, 

respectively, and 𝑁 is the number of data pairs in the training 

set. The original experimental dataset is categorized into 80% 

of training data and 20% of testing data via uniformly random 

sampling. 

For preventing overestimation of the network fitness, the cost 

function is designed with a weighting factor 𝜌 = 0.2 to balance 

MSE  weights for training and testing data. To reduce the 

influence caused by network training bias, each training task 

will be repeated 𝑄 = 5 times, and its mean value will be fed 

back to the main task of accelerated swarm feature selection as 

the value of cost function. Commonly, the repeatability work 

can be reduced as dimension of candidate features further 

increased in different cases. So far, the cost function can be 

expressed as follows. 

min(MSE∗) =
1

𝑄
∑(𝜌MSEi,train + (1 − 𝜌)MSEi,test)

𝑄

𝑖=1

 (20) 

In this paper, the selection of the best phenotype in a single 

objective training was solely based on a comparison of the 

MSEs. Once the terminal condition is reached, iterations will 

cease. The final hyperparameters of an MLP network will be 

fixed for function validation and testing at the end. 

V.  RESULTS AND DISCUSSION 

Henceforward, a comprehensive comparative study is carried 

out from the four aspects of 1) attraction assignment policies; 2) 

feature selection approaches; 3) network structure and system 

complexity; and 4) adaptability of the proposed approach to 

other engine soft sensors. 

A.  Evaluation on Attraction Assignment Policies 

Attraction assignment policy is expectedly used to update 

the particle velocity which directly affects the convergence 

speed and final fitness of accelerated swarm feature selection 

optimization. For a fair comparison, all eight attraction 

assignment policies are embedded in the accelerated swarm 

feature selection with the same parameter setting. In addition, 

the MLP network used here has two hidden layers (in which 

each layer has 30 neurons using hyperbolic tangent activation 

functions) and is fully connected. 

Fig. 3 shows the iteration process of using different 

attraction assignment policies under 150-episode observation. 

For each case, 20 repetitive experiments were performed, and 

the median value of MSE and the corresponding feature rank 

were recorded. Overall, three statistics-guided policies exhibit 

superior performance on both convergence and final fitness 
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compared to constant or map inspired policies. Lasso-guided 

policy performs worse convergence contrasted to other 

statistics-guided them. The effect of each chaotic map is quite 

distinct from the constant one. The authors think the reason 

behind this is that chaotic maps are derived from a random 

number, with no guidance from other measures. In terms of 

proposed statistics-guided policies, the rapid convergence 

results in a fitness gap (i.e., MSE) with other non-statistics-

guided policies at the 25th iteration. Furthermore, the policy 

inspired by NCA continues to show better fitness after the 25th 

iteration up to the 70th iteration. 

 

 
Fig. 3. Iteration process comparison of using different attraction 
assignment policies. 
 

TABLE IV 
FEATURE RANK AND REGRESSION PERFORMANCE OF USING SEVEN 

ATTRACTION ASSIGNMENT POLICIES 

Attraction assignment  Feature  Evaluation metrics 

policy rank MSE R2 

Constant [34] [1 2 3 13 12] 2.0267 0.9213 

Singer map [35] [14 9 1 8 13] 2.3284 0.8945 

Sinusoidal map [36] [8 3 1 13 14] 1.7860 0.9330 

Logistic map [37] [10 3 2 8 12] 2.0809 0.9113 

Spearman-guided [12 11 8 3 2] 1.8217 0.9277 

PCA-guided [1 3 15 13 2] 1.5728 0.9322 

NCA-guided [3 8 12 1 11] 1.2292 0.9520 

Lasso-guided [4,1,8,6,9] 1.5944 0.9382 

 

Table IV organizes the feature top five rank and regression 

performance obtained by the studied seven attraction 

assignment policies. Compared to averaged MSE (2.07) 

obtained by map-guided policies, the averaged MSE (1.55) 

obtained by statistics-guided policies has a significant reduction 

of 25.1%. Moreover, the coefficient of determination 𝑅2 can be 

improved by 2.46%. To quantitatively evaluate the contribution 

of each feature on regression performance, an index of the 

contribution score is designed and expressed as follows: 

Score𝑖 = ∑
𝑅𝑖,𝑗

MSE𝑗

𝐽

𝑗=1

                             (21) 

where 𝑅𝑖,𝑗  is the rank score of 𝑖 th feature in 𝑗 th attraction 

assignment policy, in which the first place gets 5 scores, the 

fifth place gets 1 score; MSE𝑗  is the mean-squared error 

obtained by using 𝑗th attraction assignment policy. 

Fig. 4 illustrates the results of contribution scores calculated 

by Eq. (17). Features 5 (Coolant water) and 7 (MAP) have no 

contribution to the regression task of the MLP network. 

Features 4 (Intake valve timing), 6 (MAT), and 15 (Injection 

angle) are adopted only by one policy. The top five features that 

contribute the most to the studied regression task are Feature 1, 

2, 3, 8, and 12. They are Speed, Torque, Lambda, Spark angle, 

and intake temperature, where features Speed, Lambda, and 

Spark angle are selected by five policies at the same time, 

whereas the feature Lambda has the highest contribution score 

of the studied fifteen contending features. 

 

 
Fig. 4. Contribution scores of the studied fifteen contending features 

B.  Comparison of Feature Selection Approaches 

This section further examines the NCA-guided accelerated 

swarm feature selection approach elected from the last section 

with other feature selection approaches. Filter approaches with 

four types of external measures (Spearman, PCA, NCA, and 

Lasso) and wrapper approaches with three optimization 

algorithms (SA, PSO, and ACO) were used to compare with the 

NCA-guided accelerated swarm feature selection approach. 

Differing from external measures used in the attraction 

assignment policy as discussed in the last section, here, they are 

used to solely select the features before MLP network training. 

Table V summarizes the feature rank and regression 

performance of using seven feature selection approaches under 

EGR on/off conditions. For each case, 20 repetitive 

experiments were performed, and the median value of MSE and 

the corresponding indexes were recorded. From a view of 

feature selection approaches, the proposed hybrid feature 

selection approach i.e., NCA-guided accelerated particle swarm 

optimization algorithm achieves much better regression 

performance in training MLP networks than the filter or 

wrapper approaches i.e., other six algorithms. For both EGR 

on/off conditions, MSE can be decreased at least by 54.3% 

(from PSO) and R2 can be increased at least by 2.26% (from 

SA). Compared with the filter approaches, the performance of 

the wrapper approaches is closer to the performance of the 

proposed hybrid approaches. This is due to the interactive 

mechanism of heuristic exploration and real-time evaluation, 

rather than the segmented mechanism of independent statistical 

analysis and evaluation. Since the feature rank defined by 

Spearman correlation has a higher degree of coincidence to that 

defined by the proposed one, its MSE is significantly lower than 

those of using the other filter algorithms. From a view of the 
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EGR on/off condition, the EGR-off condition would restrict 

engine dynamic characteristics so that contrasted to the EGR-

on condition, the difficulty of indicated thermal efficiency 

model approximation is relatively low. Overall, averaged MSE 

and R2 in all studied regression tasks of the MLP network can 

be separately decreased by 45.4% and increased by 7.09% when 

EGR is off.  
TABLE VI 

REPEATABILITY INDEX OF FEATURE RANKS UNDER THREE EGR CONDITIONS 

Execution Repeatability index 

algorithm EGR on EGR off EGR on/off 

SA 12/20 16/20 13/20 

PSO 15/20 15/20 14/20 
ACO 16/20 17/20 16/20 

Proposed 16/20 20/20 18/20 

 

In order to analyze stability of the feature ranks obtained by 

the wrapper and hybrid approaches, a new index i.e., 

repeatability is introduced which describes the number of times 

when feature ranks match the one with the lowest MSE in 20 

repetitive experiments. As shown in Table VI, the repeatability 

index calculated based on the proposed SGAS-FS approach 

takes the first place in other three wrapper approaches in all 

EGR conditions. Because the guidance of the particles by the 

filter reduces their own randomness, the results of feature ranks 

become stabler. 

 

 
Fig. 5. Indicated thermal efficiency prediction performance comparison 
under EGR on/off conditions by using the proposed SGAS-FS approach: 
a) prediction performance under EGR-on condition; b) prediction 
performance under EGR-off condition; c) error distribution; and d) 
regression performance. 

Fig. 5 displays the indicated thermal efficiency prediction 

performance when using the MLP network trained by the 

proposed hybrid feature selection approach. Fig. 5(a) and (b) 

present the prediction performance segment for sample indexes 

[2100,2500]  under both EGR-on/off conditions. From the 

results, the maximum error of the EGR-on condition is greater 

than that of the EGR-off condition. The same conclusion can be 

found in Fig. 5(c), where the error distribution of the EGR-off 

condition is narrower than that of the EGR-on condition. In 

conjunction with Fig. 5(d), more samples are found in the outer 

of ±5% error lines under the EGR-on condition. In addition to 

the uncertainty caused by EGR opening, the authors believe that 

the relatively concentrated distribution [30,50]  of EGR-on 

condition samples may also be the reason for increasing the 

difficulty of network regression. 

C.  Network Structure and Computational Complexity 

In order to implement the indicated thermal efficiency 

prediction system optimized by the proposed approach in 

practice, system complexity and computational effectiveness 

must be carefully considered. selected feature number is the 

main factor to reflect the indicated thermal efficiency prediction 

system complexity and applicability. Furthermore, 

computational effectiveness of the indicated thermal efficiency 

modelling is also limited by its network structure, e.g., the 

number of the hidden layers. Thus, this section investigates the 

impact of both feature and hidden layer numbers on prediction 

accuracy as well as the whole calculation time. For fair 

comparison, the total number of neurons used for hidden layers 

is fixed to 60. The neurons used for each hidden layer are equal 

and those are determined based on the number of hidden layers. 

For instant, the network structure with three hidden layers has 

20 neurons for each. 

The computational complexity of the proposed approach's 

improvements mainly depends on three aspects: 1) random 

initialization; 2) particle velocity and position updating; and 3) 

neural network implementation. The first two parts can all be 

expressed as 𝑂(𝑛1 × 𝑛2 × 𝑛3)  by the Big O notation as 

analyzed in [38], in that, 𝑛1 is the population, 𝑛2 is the problem 

dimensions, and 𝑛3 is the main iterations. The last part includes 

forward propagation and backpropagation which can all be 

expressed as 𝑂(𝑛4
3 × 𝑛5 × 𝑛6)  by the Big O notation as 

analyzed in [39], in that, 𝑛4
3 is an asymptotic run-time of naive 

matrix multiplication, 𝑛5 is the number of neurons, and 𝑛6 is 

the gradient iterations. In this paper, the neural network 

implementation and APSO algorithm’s initialization process 

have not been changed, so we only compare the time 

complexity from particle velocity and position updating. 

TABLE V 
FEATURE RANK AND REGRESSION PERFORMANCE OF USING SEVEN FEATURE SELECTION APPROACHES 

FS Execution Feature rank EGR on EGR off EGR on/off 

approach algorithm EGR on EGR off MSE R2 MSE R2 MSE R2 

 Spearman [15 3 14 1 11] [3 8 2 4 1] 3.0516 0.8867 0.5172 0.9894 1.7844 0.9381 

Filter PCA [3 4 6 5 9] [4 6 3 5 10] 4.4358 0.8416 5.5248 0.8762 4.9803 0.8589 

 NCA [9 10 8 15 1] [4 3 6 12 11] 4.0743 0.8973 4.5361 0.8914 4.3052 0.8944 

 Lasso [4,1,8,6,9] [4,3,9,5,13] 4.6610 0.8205 5.9122 0.8491 5.2424 0.8307 

 SA [13 2 1 7 3] [1 12 2 3 7] 2.7327 0.9155 0.3373 0.9921 1.5350 0.9538 

Wrapper PSO [15 9 1 8 12] [3 12 8 9 1] 3.4963 0.8827 0.2887 0.9954 1.8925 0.9391 

 ACO [13 1 8 3 12] [13 3 1 8 2] 2.6184 0.9113 0.434 0.9902 1.5262 0.9508 

Hybrid Proposed [3 8 12 1 11] [6 12 1 2 3] 1.2292 0.9520 0.1664 0.9987 0.6978 0.9754 

Overall Overall [3 1 8 13 15] [12 3 1 6 2] 3.0912 0.8982 1.6864 0.9619 2.3888 0.9300 
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Compared with APSO-based feature selection, the additional 

time complexity that should be considered is from constriction 

factor adaptive weighting in particle velocity and position 

updating. In fact, this action has not changed the loop body of 

APSO algorithm, and its time complexity is still 𝑂(𝑛1 × 𝑛2 ×
𝑛3). Overall, the complexity of APSO-based feature selection 

and its improved one is not increased by orders of magnitude. 

 
TABLE VII 

NETWORK FITNESS (MSE) PERFORMANCE OF USING A VARIOUS NUMBER OF 

FEATURES AND HIDDEN LAYERS 

Number Number of hidden layers 

of features 1 2 3 4 5 6 

1 11.80 11.02 8.56 8.64 8.72 8.79 

2 7.48 6.83 5.00 5.95 5.23 7.30 
3 4.65 4.64 3.04 3.05 3.12 3.14 

4 2.33 2.05 1.98 2.56 2.53 3.67 

5 1.78 1.23 1.66 2.00 2.40 1.92 
6 1.49 1.37 1.46 1.69 2.14 1.90 

7 1.45 1.47 1.46 1.55 1.80 1.30 

8 1.43 1.47 1.41 1.48 1.42 1.60 

 

Table VII and VIII organize the feature selection result (i.e., 

MSE and real calculation time) of MLP networks with varying 

numbers of features and hidden layers. For each case, 20 

repetitive experiments were performed, and the minimum value 

of MSE and the corresponding feature selection time were 

recorded. Generally, the value of MSE decreases with the 

increase of feature numbers or hidden layer numbers. In the 

studied scale, the decrease of MSE value within the top 4 

features and the top 3 layers were significant compared to those 

within the outer range. The lowest value of MSE (1.23) occurs 

when using the network structure with 5 features and 2 hidden 

layers (each layer has 30 neurons). With the increase of hidden 

layer numbers, the feature selection time has increased sharply 

(2 hidden layers) and then dropped fast (3 hidden layers) and 

eventually stabilized. When the number of hidden layers is set 

to 1, the feature number if ≤ 4 has no effect on feature selection 

time. It should be noted that when the number of hidden layers 

is 2, the computational effectiveness is the lowest (wherein 

feature selection time is 13130 s to select only one feature) than 

those of the other numbers of hidden layers. 

 
TABLE VIII 

FEATURE SELECTION TIME (103 S) OF USING A VARIOUS NUMBER OF 

FEATURES AND HIDDEN LAYERS 

Number Number of hidden layers 

of features 1 2 3 4 5 6 

1 0.582 13.130 2.561 2.558 2.009 2.174 

2 0.582 5.471 2.589 2.295 1.926 1.787 

3 0.582 3.371 2.626 2.159 1.901 1.715 
4 0.584 4.247 3.029 2.286 2.025 1.814 

5 0.878 4.455 3.132 2.468 2.017 1.752 

6 0.874 5.035 3.320 2.536 2.023 1.944 
7 0.995 6.620 3.606 2.857 2.133 1.838 

8 1.126 8.776 3.818 2.799 2.143 2.383 

 

With rapid development of informatics, real-time modelling, 

where data capture and modelling of a physical plant can 

execute at the same time, becomes a promising production 

solution to build surrogate models with timeliness for better 

real-world performance [40]. Under this condition, the number 

of interactions with a physical plant as defined in [41] is a key 

factor to reflect experimental cost. The higher the number of 

interactions with the physical plant, the higher the experiment 

cost that might be caused by operation, labor, and ageing of the 

physical plant. 

Fig. 6 evaluates the energy-saving potential of the proposed 

SGAS-FS approach under the real-time modelling condition. 

As an increase in the number of features selected, the number 

of calls of all studied sensors for both brute-force search and the 

proposed approaches is all recorded. In order to find key 

features for each number of the features selected, the total 

number of times studied sensors was called via brute-force 

search is 245760 (full permutation), while that via the proposed 

approach is only 60600. By using the proposed approach, the 

number of times sensors was called is showing slow linear 

growth. Relatively, the number of times sensors was called by 

using the brute-force search over the selected feature number 

follows a normal distribution. The total number of times studied 

sensors was called reaches the top (51480) when the selected 

feature number is 8. Therefore, the proposed SGAS-FS 

approach has a great energy-saving potential in real production 

process, which only has 25% of physical interactions by brute-

force search that could save the experiment cost caused by 

operation, labor, and ageing of the physical plant. 

 

 
Fig. 6. The number of calls of all studied sensors in real-time modelling 

D.  Adaptability to Other Engine Soft Sensors 

This section discusses the adaptability of the proposed 

SGAS-FS approach to other engine soft sensors. In addition to 

indicated thermal efficiency, volumetric efficiency, and fuel 

consumption rate are comprehensively examined in terms of 

regression performance, feature contribution, and error 

distribution. For each case, 20 repetitive experiments were 

performed, and the median value of MSE and the corresponding 

feature rank were recorded. 

 
TABLE IX 

REGRESSION PERFORMANCE OF USING THE PROPOSED APPROACH FOR 

DIFFERENT ENGINE SOFT SENSORS 

FS Performance Feature Evaluation metrics 

approach indicator rank MSE R2 

 ITE [3 8 12 1 11] 0.6978 0.9754 

Proposed VE [14 9 1 8 13] 1.3284 0.8945 

 FB rate [8 3 1 13 14] 0.7860 0.9530 

 

Table IX organizes the feature top five rank and regression 

performance for three studied engine soft sensors. Generally, 

the proposed approach performs excellent regression 

performance (with up to MSE:1.3284) on these soft sensors. 
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Compared to the features selected for modelling fuel 

consumption rate, the features selected for modelling 

volumetric efficiency are more similar with ones selected for 

modelling indicated thermal efficiency. This could be caused 

by the strong correlation between indicated thermal efficiency 

and fuel consumption rate. 

Fig. 7 illustrates the results of contribution scores calculated 

by Eq. (21). Features 2 (Torque), 4 (Intake valve timing), 5 

(Coolant water), 6 (MAT),7 (MAP), 10 (Throttle position), and 

15 (Injection angle) have no contribution to the regression task 

of the MLP network. The top three features that contribute the 

most to the studied regression task are Features 1, 3, and 8, 

where they are Speed, Lambda, and Spark angle, whereas the 

feature Spark angle has the highest contribution score of the 

studied fifteen contending features. 

 

 
Fig. 7. Feature contribution in modelling of indicated thermal efficiency, 
volumetric efficiency, and fuel consumption rate 
 

To further investigate error distribution of the deep learning 

prediction system established by only using the identified three 

key features i.e., Speed, Lambda, and Spark angle, the averaged 

relative error of deep learning prediction systems designed for 

three soft sensors are summarized in Table X. Generally, the 

proposed SGAS-FS approach has good adaptability to other 

engine where the averaged relative error is still at a lower level, 

3.17%. From a view of engine torque, the averaged relative 

error in the low torque area (0-50 Nm) is larger than the error 

in the higher torque areas (>50 Nm). The authors believe the 

reason is that the studied three soft sensors are greatly affected 

by the speed in the low torque area which increases regression 

difficulty of the proposed approach. 

 
TABLE X 

ERROR DISTRIBUTION OF USING THE PROPOSED APPROACH 

Speed Torque 

 0-50 50-75 75-100 100-135 Overall 

0-2000 8.55% 1.58% 5.33% 0.90% 4.55% 

2000-3000 2.90% 0.87% 0.80% 0.75% 1.17% 
3000-4000 9.56% 1.52% 1.00% 0.79% 2.92% 

4000-5000 10.68% 2.52% 0.90% 1.42% 3.32% 

5000-6000 7.85% 4.39% 3.72% 1.87% 4.41% 

Overall 7.93% 1.99% 2.22% 1.12% 3.17% 

VI.  CONCLUSIONS 

This paper proposes the novel data-driven approach of 

SGAS-FS for hybrid engine soft sensors that has an ability to 

find the most effective features for engine soft sensors. 

Validated by bench experiment, the proposed approach has 

been comprehensively evaluated in four aspects of: 1) attraction 

assignment policies; 2) feature selection approaches; 3) 

network structure and system complexity; and 4) adaptability to 

other engine soft sensors. The conclusions drawn from the 

investigation are as follows: 

1) Compared to averaged MSE (2.07) obtained by the map-

guided approach, the averaged MSE (1.54) obtained by 

statistics-guided policies has a significant reduction of 

25.6%, in which the NCA-guided method is the biggest 

contributor. 

2) When EGR is off, the averaged MSE and R2 in all studied 

regression tasks of the MLP network can be separately 

decreased by 45.4% and increased by 7.09%. 

3) The optimal network structure with the lowest value of 

MSE (1.23) for indicated thermal efficiency modelling of 

the studied hybrid engine has been detected which has 5 

features and 2 hidden layers (each layer has 30 neurons). 

4) The proposed SGAS-FS approach has a great energy-

saving potential in real production process, which only has 

25% of physical interactions by brute-force search under 

the real-time modelling condition. 

5) The proposed approach has good adaptability to the studied 

engine soft sensors i.e., indicated thermal efficiency, 

volumetric efficiency, and fuel consumption rate, where 

the three key features of Speed, Lambda, and Spark angle 

are identified which results in the averaged relative error 

by 3.17%. 

VII.  LIMITATION AND FUTURE WORK 

The work presents a holistic solution to efficiently find the 

key parameters for hybrid engine soft sensors. However, it is 

only a first step and neglects some aspects of a complete 

solution, and these will be the subject of future work. In terms 

of the generalization ability of the proposed approach, it shows 

great potential to be applied to other engine parameters, 

different engine configurations, and biofuels with various 

physicochemical characteristics. But those need to be further 

investigated. Besides, reducing experimental cost of map 

calibration by using transient data is an alternative way to 

collaboratively improve the experimental efficiency of this 

approach. These all are worthy to be studied in the future work. 
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