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To the Editor - As of June 2022, a wide range of artificial intelligence (AI) as a Medical Device 

(AIaMDs) have received regulatory clearance internationally, with at least 343  devices cleared 

by the United Stated (US) Food and Drug Administration (FDA).1 Despite the enormous 

potential of AIaMDs, their rapid growth in healthcare has been accompanied by concerns that AI 

models may learn biases engrained in medical practice and exacerbate health inequalities. This 

has been exemplified through a number of AI systems which have shown the ability of 

algorithms to systematically misrepresent and exacerbate health problems in minoritised 

groups.2,3 This raises concerns that, without appropriate safeguarding, AI models may 

perpetuate existing health inequality and mistrust.  

 

Tackling bias in AI requires a multifaceted approach. A recent report by the US National Institute 

of Standards and Technology on bias in AI emphasised that algorithmic development does not 

occur through engineering decisions alone, but embeds a myriad of values and behaviours 

within the data and the humans who interact with them. The report calls for a sociotechnical 

approach that considers how different biases interact and the social contexts within which AI 

systems are built and used.4 Although there is an expanding field of research dedicated to 

fairness in machine learning, many AIaMD receiving regulatory clearance have not 

appropriately accounted for biases that disadvantage certain populations. There are also ethical 

challenges around algorithmic fairness methods (computational techniques seeking to ensure 

outputs are not unjustifiably influenced by bias), given that these methods are aimed at making 

predictions fair, rather than enabling fair treatment of individuals.5 Furthermore, current 

approaches to satisfying regulatory requirements are focused on aggregate-level performance, 

which can mask stratification across subpopulations. 

  

One major source of bias is the data underpinning AI systems. It is often necessary to train 

models with large quantities of data, which means datasets are often sourced to prioritise 

sample size. There are concerns that many health datasets do not adequately represent 

minoritised groups, however the extent of this problem is unknown because many datasets do 

not provide demographic information, for example on ethnicity and race. Publicly available 



 
datasets for skin cancer and eye imaging have shown inconsistent and incomplete demographic 

reporting, and are disproportionately collected from a small number of high income countries.6,7 

For skin cancer datasets, reporting of key demographic information, even when clinically 

relevant (such as ethnicity and skin tone), was only present in 2% of datasets.7 

 

Under-representation in datasets can impact the fairness of AI systems through two principal 

means. During AI development, under-representation within training datasets can negatively 

impact model performance for under-represented groups.3 A lack of diversity within the training 

data risks poor generalisability of model performance post-deployment. During evaluation, 

under-representation within test datasets increases the uncertainty of performance in that group 

due to small sample sizes, which reduces the likelihood of detecting underperformance. 

Therefore, under-representation not only creates models that under-perform within minoritised 

populations, but also hampers the ability to detect this bias. Furthermore, under-representation 

in datasets may result in exclusion of populations from the intended use altogether, thereby 

creating AI systems licensed for only certain groups within society. Even when datasets are 

inclusive, additional issues can compound bias. Structural inequities can manifest in datasets 

through the actions of clinical and data curation teams, who are responsible for recording, 

selecting, labelling and aggregating data, based on assumptions that reflect hegemonic social 

attitudes. Addressing the consequences of structural biases requires a wider consideration of 

the dataset: how and why it was created; the setting in which data was collected and by whom; 

the extent to which the data reflects broader structural biases and axes of injustice; the 

inclusion/exclusion criteria; and how measurements, observations and labels were constructed. 

These concerns have motivated calls for better documentation practices and the creation of 

tools like Datasheets for Datasets and Healthsheets.8,9  

  

 

The aforementioned problems are becoming increasingly recognised by medical device 

regulators. In October 2021, The US FDA, Health Canada, and the UK Medicines and 

Healthcare products Regulatory Agency (MHRA) jointly published 10 guiding principles for Good 

Machine Learning Practice. This specifically states that data should be representative of the 

intended population in order to ‘manage bias, promote appropriate and generalizable 

performance across the intended patient population, assess usability and identify circumstances 

where the model may underperform’.10 Commitment to identify and mitigate bias by medical 

regulators is a significant step in the right direction, however, to date, there is a lack of evidence 

that these principles are adopted by AI device manufacturers. Without specific consensus on 



 
how to assess the appropriateness of datasets, it is unclear what constitutes best practice 

regarding the use of health data in AI to promote fairness and equity.  

 

 

To tackle this problem, we are announcing an initiative to develop Standards for Data Diversity, 

Inclusivity and Generalisability (STANDING Together). STANDING Together is an international, 

consensus-based initiative that aims to develop recommendations for the composition (who is 

represented) and reporting (how they are represented) of datasets underpinning medical AI 

systems. We will engage patients and the public, clinicians, academic researchers across 

biomedical, computational and social sciences, industry experts, regulators and policy-makers. 

The standards will represent the culmination of a multiphase evidence generation process, 

which consists of: dataset mapping reviews to assess limitations in health datasets across 

different diseases with regard to diversity and inclusivity; interviews with dataset curators to 

explore the barriers and challenges to ensuring diversity and inclusivity within health datasets; a 

modified Delphi consensus study to finalise the content that will feature in these 

recommendations and; an extensive multi-stakeholder piloting phase. The resulting standards 

will support informed decision-making for those who strive to engineer and implement fair and 

safe AI systems in healthcare. STANDING Together will be the first in a line of work through 

which stakeholders can determine what demographic data is collected and how it is represented 

in datasets. The findings will motivate curators of health datasets to prioritise diversity and 

inclusiveness as we seek to build and invest in health datasets of the future. We hope this 

initiative will enable the availability of more inclusive data to promote responsible AI in 

healthcare, and in the long-term, better health outcomes for all. 

 

We anticipate that the modified Delphi consensus study will begin in late 2022 and the final 

standards published in 2023. We welcome those with expertise in AI, health data science and 

health inequalities to participate and encourage expressions of interest through 

https://www.datadiversity.org/involvement/participate-in-our-delphi-study or by contacting 

contact@datadiversity.org.  
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