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CYCLICAL TRENDS IN
CONTINUOUS TIME MODELS

JOANNE S. ERCOLANI
University of Birmingham

It is undoubtedly desirable that econometric models capture the dynamic behavior,
like trends and cycles, observed in many economic processes. Building models with
such capabilities has been an important objective in the continuous time economet-
rics literature, for instance, the cyclical growth models of Bergstrom (1966); the
economy-wide macroeconometric models of, for example, Bergstrom and Wymer
(1976); unobserved stochastic trends of Harvey and Stock (1988 and 1993) and
Bergstrom (1997); and differential-difference equations of Chambers and McGarry
(2002). This paper considers continuous time cyclical trends, which complement the
trend-plus-cycle models in the unobserved components literature but could also be
incorporated into Bergstrom type systems of differential equations, as were stochas-
tic trends in Bergstrom (1997).

1. INTRODUCTION

One aim of Rex Bergstrom’s research was to model the relationships between eco-
nomic variables using continuous time dynamic systems. His models were speci-
fied as linear systems of stochastic differential equations making intensive use of
economic theory to provide a parsimonious parameterization. Economic cycles
are therefore an integral part of these systems and are revealed via the steady state
solution of the model. Thus, the stability of growth and evidence of cycles are ob-
served through examination of the eigenvalues of the structural parameter matrix,
and sensitivity analysis provides, among other things, policy directions for reduc-
ing instability or cycle amplitudes. Examples include the early trade cycle model
of Bergstrom (1966), which revealed stable growth and a damped eight-year cy-
cle, then later, Bergstrom and Wymer (1976) became the prototype for many con-
tinuous time macro-models. With a further development to include second-order
derivatives, Bergstrom, Nowman, and Wymer (1992) also revealed stable growth
and damped cycles.

The forecasting performance of these models, however, was affected by the
presence of deterministic time trends for factors like technical progress. With the
advent of influential work on unobserved stochastic trends, as in Harvey and Stock

The author would like to thank the editor, co-editor, and three anonymous referees for their crucial and compre-
hensive comments, and also Marcus Chambers and Ralph Bailey for their suggestions. Any errors remain my own.
Address correspondence to: Joanne S. Ercolani, Department of Economics, University of Birmingham, Edgbaston,
Birmingham, B15 2TT U.K.; email: J.S.Ercolani@bham.ac.uk.

1112 c© 2009 Cambridge University Press 0266-4666/09 $15.00



CYCLICAL TRENDS IN CONTINUOUS TIME MODELS 1113

(1988), Bergstrom (1997) incorporated such trends within a system of differential
equations. To illustrate, the system could be expressed as dx(t) = Ax(t)dt+ζ(dt),
where the vector x(t) contains the levels and derivatives of observable economic
variables as well as μ(t), an unobservable trend component given by dμ(t) =
λdt + η(dt) for λ a constant drift parameter (ζ(dt) and η(dt) are random mea-
sures). Hence, the trends are embedded within, and thus help to drive, the struc-
ture of the model that generates the economic process. The empirical results in
Bergstrom and Nowman (2007), where three such trends account for the growth
of productivity, labor supply, and the use of plastic money, show that the model
forecasts well and produces plausible long-run behavior with cycles of length
9 and 40 years.

The cyclical trends presented in this paper could ultimately be used to extend
the system in Bergstrom (1997) because factors like technical progress and labor
supply may also be cyclical, influenced perhaps by whether the economy is in a
period of boom or slump. Hence, Bergstrom’s models may be further developed
by explicitly modeling this cyclical behavior with a combination of unobserved
stochastic trend and cycle. As a further example, Bergstrom’s models feature in-
ventories that are also cyclical as firms try to smooth their production by dipping
into and then replenishing their inventory levels and, as they are difficult to mea-
sure, may be effectively treated with an unobserved stochastic cycle. While cycli-
cal behavior is integral to Bergstrom’s models, it is not treated as an unobserved
component as would be required if one wanted to model effects like those just
outlined. Therefore, one could envisage extensions to Bergstrom (1997) in which
vector x(t) also includes a cyclical component φ(t) as given in, say, equation (3)
below. This could be added to a stochastic trend for a trend-plus-cycle specifica-
tion, or it could be incorporated as a cyclical trend as in (1) below (or akin with
the Bergstrom constant drift specification, as dμ(t) = (λ+φ(t))dt +η(dt)). The
cyclical properties of these factors would also be realizable and potentially impor-
tant from a policy perspective. How practitioners combine the cycles and trends
will be important, as the trend-plus-cycle specification may not allow sufficient in-
teraction between the components. The cyclical trend proposed here (as far as the
author is aware, this is the first investigation of cyclical trends in continuous time)
provides a greater dependence by placing the cycle in the trend equation, allowing
for periodicity in growth rates. Indeed, if one believes that technical progress is
affected by the business cycle, then a cyclical trend may be able to account for
this more naturally than a trend-plus-cycle.

The incorporation of combinations of unobserved stochastic trends and cycles
into systems of differential equations would provide a synthesis of two fairly
distinct modeling procedures: the Bergstrom approach and the unobserved com-
ponents (UC) framework. The former uses economic theory to specify the re-
lationships between variables, but the latter specifically models the time series
features observed in real data, with little use of economic theory. Examples of
additive UC models, where an economic process y(t) is decomposed as y(t) =
μ(t) + φ(t) with a trend and cyclical component, respectively, can be found in
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Harvey and Stock (1993), where the cycle is specified as a stochastic differential
equation (SDE) as in (3) below, and Chambers and McGarry (2002), where it is a
differential-difference equation (DDE) as in (4) below. A cyclical trend may also
be preferable to a trend-plus-cycle in such a framework. There is limited empir-
ical evidence in discrete time UC models to suggest which is more suitable for
economic variables or if other specifications are appropriate, e.g., higher-order
stochastic cycles.1 Harvey (1985), though, does find evidence of a discrete time
cyclical trend in four out of five U.S. macro time series.

The models proposed in this paper therefore have a dual purpose. Firstly, they
complement Harvey and Stock (1993) and Chambers and McGarry (2002) by
broadening the range of models available in the continuous time UC framework.
Secondly, the cyclical trend could be incorporated into Bergstrom type systems
of equations as described above with the potential to bring further improvements
to the forecasting ability of Bergstrom’s models. However, the cyclical trend is
introduced here in the simplest of environments to illustrate its potential in future
research.

2. THE CYCLICAL TREND MODELS

The cyclical trend component μ(t) to be considered here includes a stochastic
drift term β(t) as well as the cyclical term φ(t), such that

dμ(t) = (β(t)+φ(t))dt+η(dt) (1)

dβ(t) = ζ(dt), (2)

and here, φ(t) can be specified either as an SDE (as in Harvey and Stock, 1993),
i.e.,

d

[
φ(t)
φ∗(t)

]
=
[

lnρ ω
−ω lnρ

][
φ(t)
φ∗(t)

]
dt+
[

κ(dt)
κ∗(dt)

]
(3)

or alternatively as a DDE (as in Chambers and McGarry, 2002), i.e.,

dφ(t) = (a0φ(t)+a1φ(t − l))dt+κ(dt). (4)

For example, in the UC framework one might specify a continuous time economic
process y(t) as a cyclical trend, i.e., y(t) = μ(t). The random measures η(dt) and
ζ(dt) have zero mean, respective variances σ 2

η dt and σ 2
ζ dt, and are serially and

mutually uncorrelated. The trend term has a stochastic drift element, becoming
a constant drift if σ 2

ζ = 0. Harvey and Jaeger (1993) argue in favor of the local
linear trend for UC models because the possibility of a zero variance in the level
produces a smoother trend, which suits some economic time series. Bergstrom
and Nowman (2007), however, are satisfied that a constant drift is appropriate for
their purposes; otherwise, technical progress would almost certainly exceed any
bound at some future point in time.
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2.1. The SDE cycle: In (3), ρ is a damping parameter and ω represents the
angular frequency of the cycle, where ρ > 0 and 0 ≤ ω < π for identification
purposes and for a stationary cycle ρ < 1. The random measures κ(dt) and κ∗(dt)
have zero mean, common variance σ 2

κ dt, and are serially and mutually uncorre-
lated. The exact discrete time components model would be yt = μt + εt , where

μt = μt−1 +βt−1 +
∫ 1

0
ρs cos(ωs)dsφt−1 +

∫ 1

0
ρs sin(ωs)dsφ∗

t−1 +ηt , (5)

the irregular term2 εt has variance σ 2
ε , and the remaining equations are as in an

additive model, i.e., βt = βt−1 +ζt , φt = ρ cosωφt−1 +ρ sinωφ∗
t−1 +κt , and φ∗

t =
−ρ sinωφt−1 + ρ cosωφ∗

t−1 + κ∗
t , where stock variables are given, for example,

by μt = μ(t) and flows by μt = ∫ t
t−1 μ(r)dr.3 The unknown parameters are 
 =

{ρ,ω} and σ 2
η ,σ 2

ζ ,σ 2
κ , and σ 2

ε .

2.2. The DDE cycle: In (4), the cycle duration is calculated indirectly from
a complicated function of the parameters a0,a1, and the lag parameter l. The
random measure κ(dt) again has zero mean and variance σ 2

κ dt. The estimable
parameters are � = {a0,a1, l} and the variances. At present, no convenient way
has been found to express exactly the process generated by a DDE in discrete time,
i.e., a model analogous to (5). To overcome this, the frequency domain methods
of Ercolani and Chambers (2006) are used.

It has been assumed that there is no correlation between the different compo-
nent disturbances. This is a common feature of models of this kind and is imposed
for identification purposes, but it can be quite restrictive. Bergstrom and Nowman
(1999), for example, consider a model in which interest rates are a function of
two unobservable variables for short and long-term economic news, which are
modeled as a bivariate system of differential equations with correlated innova-
tions. The discrete time model for interest rates is an ARMA(2,1), and there are
too few autocorrelations of this moving average error to identify the continuous-
time innovation variances unless the correlation parameter is fixed. Bergstrom and
Nowman set this parameter to zero, and hence estimation requires the restrictive
assumption that the news streams are uncorrelated processes. Similar problems
occur with the models presented here. If one models a single economic process
as a cyclical trend, i.e., y(t) = μ(t) with (1), (2), and (3) above, the discrete
time model yt = μt + εt can be expressed as an ARIMA(2,2,4). Thus, correla-
tion between the innovations in the trend and cyclical components, i.e., σηκ and
σζκ , causes an identification problem for the variance parameters unless σηκ and
σζκ are fixed. We consequently follow Bergstrom and Nowman (1999) and set
these parameters to zero. This is not too restrictive, since there is always depen-
dence between the trend and cycle (given (1)), but in a trend-plus-cycle model,
such restrictions imply independent components, which may be inappropriate for
some processes. Identification problems in continuous time models can arise from
other sources. The aliasing phenomenon permeates most relevant continuous time
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econometric models. It is most problematic in the presence of complex eigenval-
ues and hence may occur in models of cyclical behavior. Therefore it is acknowl-
edged by the author that some identifiability issues may exist in the models above
and that the simulation results that follow must be interpreted in light of this.

Two alternative cyclical specifications have been provided in equations (3) and
(4) above, and it is appropriate to give some comparative discussion. The SDE is
certainly the more intuitive, as its parameters relate directly to the cycle proper-
ties of frequency and damping, and it benefits from the ease with which forecasts
can be made and cyclical and trend behavior extracted. However, in his moti-
vation for the use of continuous time models, Gandolfo (1981) states that the
treatment of dynamic economic processes would be better handled with DDEs,
which are essentially generalizations of SDEs. The adjustment mechanism of
some processes requires the presence of lagged variables, maybe lagged deriva-
tives, and hence, Bergstrom type differential equation systems are not appropri-
ate. For example, DDEs arise in the time-to-build literature where the gestation
period of investment projects plays a major role in generating cyclical behavior
and is incorporated using a lag. Unfortunately, the current absence of an
exact discrete time model limits the econometric usefulness of DDEs. Identifi-
cation problems may be a feature, but a proper investigation of how this mani-
fests itself is limited without an exact discrete time model. It also makes signal
extraction problematic and it is not obvious how to execute such activities with-
out the use of an approximate discretization. The data generated in the simula-
tions below are from an ARMA approximation of the DDE, observed at short
sub-intervals of the unit time interval, which may provide a partial resolution to
the problem of extracting components. Specifically, the data are generated using
φ(t)−φ(t −h) = [a0φ(t −h)−a1φ(t −l −h)]h +σκ

√
hκ(t) for κ(t) ∼ N (0,σ 2

κ )
and h the length of the sub-interval, where stocks are constructed by taking every
1/hth observation and flows are an average over every 1/h observations. The finer
the sub-interval, the closer one would be to generating a continuous time series
and the better the approximation.

A more comprehensive simulation study is desirable but would require an ex-
act discrete model for the DDE as well as a resolution to the identification prob-
lems that may pervade these models. Hence, the results, while suggestive, must
be treated as preliminary. Subject to these caveats, the exercise attempts to as-
sess the effects of cycle specification, sample size T , cycle duration, cycle damp-
ing, and sampling scheme. The free parameters are those that determine cycle
durations, i.e., a0,a1, l, and ω, and are chosen to give similar spectral peaks
between SDE and DDE specifications for cycles of length 5, 10, and 40 (the
latter two matching those found in Bergstrom and Nowman, 2007). For exam-
ple, high peak spectra (prominent cycles) of length 10 are produced by � =
{1,−1.1722,0.675} and � = {0.9,π/5} and low peaks by � = {0.5,−0.7423,1}
and � = {0.85,π/5}. Damping values of 0.9 and 0.85 seem appropriate empir-
ically, and although numerically close, the spectral difference is quite marked.
Each experiment generates 10,000 replications of data, and T = 64,128,256,
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and 512. The results in Table 1 are mean squared errors (MSEs) multiplied by
10,000.

As is expected, the results improve uniformly with sample size, and the large
sample results are very good. With the SDE, the MSE in many cases reduces
quite dramatically with sample size, particularly for low damping (high peak),

TABLE 1. Simulation results

High peak Low peak

Cycle Sampling
length scheme T = 64 128 256 512 T = 64 128 256 512

a. Parameter ω in the SDE Model
5 Stocks 1,324 31 13 6 3,140 1,767 31 15

Flows 1,119 31 13 6 6,824 591 32 15
10 Stocks 621 63 15 7 7,391 2,705 40 19

Flows 1,083 38 15 7 3,946 1,084 39 19
40 Stocks 4,974 382 33 17 5,205 4,715 47 15

Flows 128 57 33 17 2,407 89 47 16

b. Parameters a0,a1, and l in the DDE Model
5 Stocks

a0 2,332 1,021 349 18 3,637 1,557 365 4
a1 1,158 507 168 11 1,646 467 133 19
l 410 179 63 4 1,216 624 154 11

Flows
a0 2,274 1,037 353 16 3,397 1,463 356 5
a1 1,107 511 169 9 1,662 442 131 20
l 423 189 66 4 1,194 596 149 12

10 Stocks
a0 1,886 920 209 2 1,322 605 123 6
a1 1,429 740 173 2 705 348 84 8
l 1,275 466 98 3 3,584 1,546 278 5

Flows
a0 1,838 887 197 2 1,290 593 114 6
a1 1,363 707 161 3 666 338 80 7
l 1,332 474 96 3 3,755 1,580 269 5

40 Stocks
a0 842 411 140 8 14,567 1,281 266 39
a1 721 372 128 7 15,551 1,272 403 26
l 2,498 936 282 14 2,090 633 17 1

Flows
a0 839 415 136 8 11,394 1,361 268 40
a1 716 376 125 8 14,042 1,226 251 27
l 2,577 970 289 14 2,568 468 10 1

Note: The entries are mean squared errors multiplied by 104.
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where very accurate results are obtained at T = 128. For the DDE cycle, there
appears to be very little difference between stocks and flows, whereas the SDE
cycle does display sampling scheme differences for small sample sizes but with
no discernible pattern. The cycle damping effect is evident for low T in the SDE
model, reflecting that it may be more difficult to estimate less prominent cycles.
Combined with a long cycle length, damping has a similar effect for the DDE, but
at shorter cycle lengths the low peak combinations appear to produce lower MSEs
for the a0 and a1 parameters. One would expect difficulties in estimating long-
length cycles with few observations, given that very few cycles will be completed
within the time interval. However, in some cases this is not observed in the results.
For the DDE, the lag parameter certainly has a lower MSE for cycle 5 than 40,
but the reverse is true for a0 and a1, and estimating ω with flow variables in the
SDE seems to improve with cycle length.

The results show that estimating cycles consistent with those found in
Bergstrom and Nowman (2007) will require fairly large samples, and there
appear to be advantages in using the SDE cycle specification to do this if the
cycles are prominent, with damping factors of about 0.9 or higher. With 30 years
of quarterly data, fairly accurate estimates should be obtained in the presence of a
cycle of 2–3 years or about 10 years (length 10 and 40, respectively), irrespective
of whether the data are stocks or flows, although the prominence of the cycles
may have an effect.

3. CONCLUDING COMMENTS

This paper has introduced continuous time cyclical trends with the purpose not
only of widening the choice of model available in the UC framework, but also
as a potential alternative to modeling the unobserved stochastic components that
feature in Bergstrom and Nowman (2007). If it is believed that technical progress,
etc., are cyclical, as well as trending processes, then one way to capture this is
to follow Bergstrom (1997) and treat them as unobserved components in an eco-
nomic system of differential equations. The extra generality afforded by incorpo-
rating cyclical trends may further improve the forecasting ability of Bergstrom’s
macroeconomic models. Of course, it remains for future research to derive the
exact discrete model of such a system, analogous to Bergstrom (1997), but this
paper has at least introduced the specification, albeit in a simple setting, and dis-
cussed the many issues involved. These are serious issues that must be treated
in future research and must be borne in mind when interpreting the simulation
results. Inherent small sample problems will occur with cyclical models, as both
long duration and heavy damping may result in cyclical parameters that are hard
to estimate, although the simulations here provide mixed results in this respect.
Without a discrete time equivalent, the DDE cycle is not as flexible a specification
as the SDE, and when reading the simulation results, one has to bear in mind that
the DDE data are generated from an approximation. Identification problems may
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exist in some form, as in many continuous time models, and this remains one of
the greatest problems in continuous time econometrics.

NOTES

1. In Harvey and Trimbur (2003) and Trimbur (2006), the cyclical components have periodic
innovations.

2. See Chambers and McGarry (2002) for an explanation of why this is appropriate.
3. Chambers and McGarry (2002) show how to derive the error variance and autocovariance

matrices.
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