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Abstract
Many hormones in the body oscillate with different frequencies
and amplitudes, creating a dynamic environment that is
essential to maintain health. In humans, disruptions to these
rhythms are strongly associated with increased morbidity and
mortality. While mathematical models can help us understand
rhythm misalignment, translating this insight into personalised
healthcare technologies requires solving additional challenges.
Here, we discuss how combining minimally invasive, high-
frequency biosampling technologies with wearable devices
can assist the development of hormonal surrogates. We review
bespoke algorithms that can help analyse multidimensional,
noisy, time series data and identify wearable signals that could
constitute clinical proxies of endocrine rhythms. These tech-
niques can support the development of computational bio-
markers to support the diagnosis and management of
endocrine and metabolic conditions.
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Introduction
The coordination of hormonal rhythms plays a key role
in sustaining health. Combining experimental physi-
ology with mathematical and computational techniques
contributes to our understanding of the mechanisms

underpinning rhythmic hormonal secretion, how
rhythms are decoded by target tissues, and their re-
sponses to perturbations [1]. This allows us to under-
stand how regulatory mechanisms ensure that hormone
fluctuations achieve dynamic equilibration, and how
disruptions of these mechanisms lead to rhythm
misalignment and disease [2,3]. Phenomenologically,
these techniques allow more precise descriptions of the
endocrine systems over time, and are foundational to the
development of digital health tools, as in diagnostic and
screening algorithms [4].

Although mathematical models can provide mecha-
nistic insight [1,5], translating this understanding into
clinical solutions remains a significant challenge. A key
step for advancing personalised medicine is to charac-
terise the intra-individual and inter-individual vari-
ability over relevant time scales [4]. It is important to
accurately match a person’s hormonal rhythms to their
chronotype (diurnal propensity toward sleep and
certain behaviours, as in early birds vs. night owls) [6]
and glucotype (distinct patterns of glycemic responses
over time, as in “gluconormal mean but moderate vari-

ability”) [7], and to assess the impact of disruptions
such as chronic stress, shift work, and social jet lag [8]
on successful clinical interventions. The scarcity of
high-frequency data about hormone fluctuations in
physio-pathological scenarios makes it difficult to
properly quantify variability. This is mainly because
high-frequency measurement of analytes is expensive,
time consuming, and burdensome for patients and re-
searchers. For example, simultaneous high frequency
measurement of analytes such as cortisol, melatonin
and glucose has been mainly limited to serum samplings
rrent Opinion in Endocrine and Metabolic Research 2022, 25:100380
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Box 1. Example 1: Subcutaneous ambulatory biosampling.

Widespread adoption of continuous glucose monitoring systems,
which reveal dynamic changes in glucose, has improved the treat-
ment of type 1 diabetes. Continuous glucose monitors have helped
improve glycemia [31] and reduce psychosocial stress [32] when
used in concert with insulin pumps to form artificial pancreas sys-
tems [33]. Other endocrine systems are beginning to benefit from
similar approaches. Cortisol, which is secreted with both circadian
and ultradian rhythmicity [2], is typically measured at single time
points, making clinical interpretation difficult. Further, in conditions of
chronic cortisol deficiency (e.g., autoimmune adrenal insufficiency)
standard replacement is at best a crude representation of normal
physiology. As a result, patients suffer poorer quality of life and
remain at increased risk of health complications and premature
death [34]. The development of at-home wearable technology for
high-frequency measurement of cortisol [11] promises to revolu-
tionise the management of glucocorticoid disease. The ULTRADIAN
trial (in progress, NCT02934399) aims to prove the technology by
describing the normal variation of cortisol and many other adrenal
steroids in comparison with endocrine diseases in >300 healthy
volunteers and patients. Data from 24-h profiles will be interpreted
using mathematical approaches that integrate multiple features in
the time series (i.e., classical statistical approaches, as in mixed
effects models, or more modern approaches, as in machine
learning), correlated with events such as sleep and meals times,
providing novel insights and an offer of a more personalised diag-
nosis and treatment plan.

2 Mathematical Modelling of Endocrine Systems
[9,10]. Additionally, collected samples may require
specific analysis methods that are not widely available,
or non-ambulatory biosampling technologies, limiting

the scope of research studies to lab or hospital settings.

Minimally invasive ambulatory biosampling is making
high-frequency measurements more accessible,
including subcutaneous microdialysis [11] (Box 1),
continuous glucose monitoring systems (CGMs)
[12], and epidermal sensors [13,14]. Additionally,
small, cheap, non-invasive wearable technologies now
integrate highly-sensitive, low-latency sensors, with
improved memory and battery, attracting the interest
of the biomedical research community [15,16]. The

hope is that the multi-dimensional streams of data
provided by these devices can translate into clinically
actionable insights about a patient’s physiological dy-
namics (Figure 1). With these developments comes
the need to map features of hormonal dynamics onto
signals from non-invasive sensors, as well as quanti-
fying the variability in such relationships. The adop-
tion of novel technologies within endocrine and
metabolic research will need to get past “black boxes”
to ensure a broad usability across populations. Wear-
ables are increasingly used across biomedical applica-

tions [4,17,18], but the physiology underlying the
wearable data often remains cryptic. Here, we focus on
the challenges associated with identifying correlates of
hormonal dynamics through minimally invasive and
non-invasive wearable technologies.
Current Opinion in Endocrine and Metabolic Research 2022, 25:100380
Identifying clinical proxies of hormonal
dynamics using wearables
Studies in healthy populations and patient cohorts have
established correlations between hormonal dynamics
and physiological variables measured through wearables
(Table 1). Using algorithmic processing, combinations
of certain wearable signals may reflect clinically-
relevant dynamic features of hormonal regulation.
However, such algorithms often fail to generalize across
heterogeneous populations, limiting real-world appli-
cability outside of specific cohorts and study condi-
tions. Additionally, hormonal dynamics are complex,
containing multiple rhythmic frequencies (e.g., circa-

dian and ultradian), rapid responses to perturbations
followed by dynamic equilibration (homeostasis), and
slow adaptations to physio-pathological states (allo-
stasis), all of which also differ across individuals. The
wide adoption of wearables across diverse populations
provides an opportunity to investigate the variability in
endocrine dynamics, which will hopefully enable
development of precision algorithms for specific co-
horts or conditions.

Finding associations between hormonal and digital

phenotypes is particularly challenging because endo-
crine systems are entangled (e.g., temperature rhythms
reflect the combined output of several endocrine axes).
In fact, recent mathematical and computational ap-
proaches account for how the coupling mechanisms
among endocrine systems can influence their dynamics
[29]. Thus, added modalities (i.e., multiple recorded
channels/dimensions) and high-frequency sampling
(i.e., continuity) provide an information advantage.
Multimodality and continuity has already revealed
useful patterns (e.g., chronotypes, glucotypes, preg-

nancy detection), and more modalities are expected to
enhance this further, leading to increased precision
based on physiotypes. Finally, multimodality also allows for
error correction based on comparisons across sensors
[30], and for inferring oscillation phase. This is espe-
cially relevant as we map high-frequency signals, where
uncertainty is high.
Computational techniques to improve
interpretation of endocrine and wearable
data
The methods chosen to assess rhythmicity in wearable
and endocrine data can greatly influence the conclu-
sions of a study. This choice can mean the difference
between detecting or failing to detect rhythmicity,
and can impact assessment of frequency composition

and coupling among signals. Here, we provide a
concise overview of common methods for biological
signal analysis, their benefits and drawbacks, examples
of appropriate use, and published tools that aid in
application (for an introduction, see the study by
www.sciencedirect.com
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Figure 1

Endocrine and metabolic rhythms have been widely observed, and are key to sustain healthy states. Left: Misalignment of rhythms in signalling molecules
(e.g., melatonin, cortisol, and glucose) is strongly associated to physio-pathological changes such as dietary changes, pregnancy, shift work, social jet
lag, systemic inflammation and chronic disease. Top right: Wearable device signals (e.g., heart rate (HR), body temperature, and accelerometer-derived
actigraphy) may act as continuous surrogates of endocrine rhythms specific to an individual’s internal time (e.g., chronotype, glucotype). Bottom right:
Endocrine and wearable signals are commonly described using metrics such as dim light melatonin onset (DLMO), cortisol awakening response (CAR),
heart rate variability (HRV) and area under the curve (AUC). Mathematical and computational techniques, including machine learning, can help identify
these metrics as clinical proxies (e.g., computational biomarkers) to support early diagnosis and management of disease.

Table 1

Selected recent studies linking wearable device outputs with a) behavioural parameters, and b) with simultaneous measurement of
hormonal and metabolic analytes.

Type Reference Measured endocrine parameters and wearable signals

a) on behavior [19] Activity, heart rate, and sleep timing.
[20] Peripheral skin temperature and circadian sleep/wake cycles.
[21] Actigraphy for sleep-wake classification.
[22] Temperature changes at sleep onset across menstrual and circadian

phases.
b) on hormones [23] Heart rate variability (HRV) biomarkers to estimate circadian melatonin

levels and body temperature.
[24] Ultradian HRV and temperature anticipate the luteinizing hormone surge.
[25] Combining chronotype questionnaires, body temperature, dim light

melatonin onset (DLMO) and actigraphy to estimate circadian phase.
[26] HRV and salivary cortisol for identifying the stress response based on

adverse childhood experience.
[27] Detection of hypoglycemic events from electrocardiograms (ECGs).
[28] Multisensor device integrating actigraphy, galvanic skin response, skin

temperature, ECG paired with CGMs to estimate glucose levels.

Wearable signals as proxies of endocrine rhythms Grant et al. 3
Forger et al. [35]). Below, we outline: 1) pulse
detection algorithms, 2) wavelets and wavelet coher-
ence, and 3) ensemble empirical mode decomposi-
tion (EEMD).
www.sciencedirect.com Cu
Pulse detection algorithms
These algorithms (series of predetermined steps and
equations) take a time series as an input, and output
locations of pulses and inter-pulse-intervals (IPIs).
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4 Mathematical Modelling of Endocrine Systems
While a “pulse” can be defined simply as a local-
maximum, it is often difficult to algorithmically distin-
guish peaks that are biologically-driven from peaks
arising from noise, or oscillations not driven by the
oscillator of interest. Criteria for pulse detection include
pulse amplitude and frequency, but baselines may
themselves change based on context, as in underlying
inflammation or phase of a longer oscillation (e.g.,

ovulatory cycles). Historically applied pulse detector
algorithms in neuroendocrinology include Cluster,
Santen and Bardin, Regional Dual Threshold, Pulsar,
Cycle Detector, Ultra, and AutoDecon [36].

AutoDecon is an example of a fully automated algorithm
based on mathematical models of real endocrine events;
given a time series, it solves for the number of hormonal
pulses apparent given an optimal fit of the model (for
full details, see the study by Vesco et al. [32]), as well as
initial parameter estimates. It does this while simulta-

neously performing deconvolution [36]. The deconvo-
lution uses a mathematical model accounting for
hormonal secretion and elimination processes, fits it to
experimentally observed time series data, and performs
rigorous statistical tests to automatically find the
optimal number of secretion events. AutoDecon in-
cludes a triage module to automatically remove secre-
tion events deemed to be statistically non-significant.
Other pulse detection algorithms (e.g., Cluster) work by
similar statistical principles: finding a statistically sig-
nificant increase in a group of values, followed by a

statistically significant decrease in the subsequent
cluster. Improvements to pulse detection algorithms
continue to be published, incorporating criteria for pulse
shape, a-priori period estimation (if available), and the
combination of global and context-dependent criteria
for determining sufficient pulse amplitude [37].

Advantages and drawbacks
Advantages of these programs include ease of use; and a
degree of standardization among researchers when pa-
rameters, sampling frequency, and sampling duration are
reported. However, different algorithms yield different
curves of pulse frequency estimation vs. sampling in-
terval, likely due to different methods of modelling

variance and different false positive and false negative
rates [36].

The continuous/analytic wavelet transform (CWT/
AWT)
Wavelet analysis is widely used in chronobiology, and
provides advantages over older techniques (e.g., Pulse
detection algorithms, Fourier transformations) [38,39]
for analysis of signals with time-varying rhythmic
composition and/or non-sinusoidal structure. Below, we
focus on continuous wavelet transforms (CWTs) using
the Morse wavelet, commonly applied to analysis of
circadian and ultradian rhythms. For toolboxes on
Current Opinion in Endocrine and Metabolic Research 2022, 25:100380
getting started with wavelet analysis see the studies by
Leise et al., Lilly et al., Lee et al. [39e41], and the
MATLAB Wavelet Toolbox (mathworks.com/
products/wavelet).

A wavelet is a waveform with amplitude diminishing to
0 in both directions from centre, thereby possessing
frequency, central amplitude, and position. By compar-

ison, classic frequency analysis done with Fourier
Transforms rely on infinite sine waves, which reduces
flexibility in terms of precise shape, and lack a centre,
making them ideal for confidence in the composition of
stationary signals. Fast-Fourier Transforms trade preci-
sion for limited localization, but cannot achieve the
same level of localization as CWTs, and therefore cannot
as precisely locate changes in non-stationary signals (i.e.,
signals where frequency changes with time). CWTs
correlate a time series of interest with scaled wavelet
functions centred at each subsequent moment in time,

detecting time-varying power-spectrum density profiles.
At each moment, periodicity of the signal of interest is
estimated by finding the scale(s) that maximize the
correlation between the time series and a scaled
wavelet. The absolute value of this “wavelet ridge” is an
instantaneous frequency and amplitude estimation of
the signal at each point [38,42]. Moreover, wavelets can
take on an infinite number of forms based on the waves
superimposed to create the wavelet (e.g., Mexican hat,
square wave, Morse). This enables the experimenter to
match the structure of the time series of interest to a

similar wavelet [43,44]. Wavelet outputs can be
compared to identify “wavelet coherence,” which re-
flects synchrony and phase-relationship of two analyzed
signals [45,46].

Advantages and drawbacks
Wavelet analysis is useful for time series that are variable
in time frequency composition, include many repeti-
tions of the rhythms of interest, and are relatively free of
data gaps. By averaging/linearizing bands of the wavelet
matrix representing frequencies of interest, one can
create a time series of “rhythmic power” which itself
can be analysed as a signal, or at discrete points in time
relative to events of interest. Wavelet analysis is not

without drawbacks. Generating a wavelet matrix, espe-
cially on long, high-frequency time series, is computa-
tionally intensive. Wavelets also exhibit edge effects,
meaning that data within an oscillatory period of a data
gap, at the beginning or end of a time series, or at arti-
ficial data junctions, is corrupted.

Ensemble empirical mode decomposition
EEMD is an unbiased method of separating meaningful
oscillations from noise that can subsequently be com-
bined with other methods of frequency analysis. This
method results in the extraction of intrinsic mode
functions (IMFs) that compose the parent signal.
www.sciencedirect.com
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Box 2. Example 2: Interfacing neuroendocrinology
and neurology.

Many people with epilepsy report their seizures being triggered by
stressful stimuli and menstruation [51], and this appears linked to
fluctuations in related hormonal systems. For example, fluctuations
in the level of salivary cortisol are associated with the rates of
epileptiform discharges in several human participants [52]. This
observation builds on work that has shown that cortisol rapidly and
reversibly alters the excitability of neurons [53] and that high doses
of corticosterone increase the number of spike-wave discharges in a
rodent model of absence seizures [54]. Further, seizures are the
main cause of death in pregnant women with epilepsy [55]. Alter-
ations in the cycling levels of oestrogen and progesterone can
disrupt the balance of neuronal excitability and this is associated
with increased occurrence of seizures [56]. As wearable technolo-
gies mature, algorithms which reveal proxies of fluctuating hormone
levels from non-invasive measurements offer significant potential to
advance research into a causal role for hormonal fluctuations as
generative mechanisms of seizures. Understanding these dynamic
mechanisms opens the door for novel diagnostic and treatment
options not currently possible.

Wearable signals as proxies of endocrine rhythms Grant et al. 5
EEMD is not dependent on any specific underlying
waveform, and the resultant IMFs may vary in rhythmic
features like amplitude or frequency [47,48]. Briefly,
local extrema are identified, and local maxima and
minima are interpolated by cubic splines to create an
upper and lower envelope. The mean of the upper and
lower envelopes is then subtracted from the initial data,
creating a first IMF. These steps are repeated recur-

sively, with each derived IMF acting as the initial data
for the generation of the next. To overcome issues
arising from cases in which timescales within a signal are
mutually influential (as occurs when phase, amplitude,
and waveform of ultradian rhythms are impacted by time
of day), an additional practice is added. The “ensemble”
in EEMD refers to adding noise to an average set of
IMFs across repetitions of the process described above
(see noise-assisted data analysis [47]). White noise is
added separately to each iteration, and as the mean of
each “ensemble” is treated as the true result, the signal

itself persists while the effects of noise are cancelled
out. Hilbert spectral analysis [49] (or other signal
processing methods) can then be used to calculate the
instantaneous frequency of each of the IMFs over time,
resulting in a periodicityetime plot of signal amplitude
over time (the Hilbert spectrum).

Advantages and drawbacks
The advantage of EEMD is in its objective decomposi-
tion and denoising of the signal of interest. Rather than
filtering out or ignoring frequencies outside prede-
termined bands of interest, the IMFs generated by this
process contain an unbiased representation of the
composition of the signal. With EEMD specifically,

mutually influential frequencies within a signal can be
separated [47,50]. As with wavelet analysis, IMFs are
subject to edge effects.
Future directions
As continuous data becomes easier to attain through
advances in sensor technology and the growth of the
wearable market, broader adoption of signal processing
techniques will ensure more efficient information
extraction from wearable datasets. Continuous data
composed of oscillating signals are not amenable to
linear statistical comparisons (e.g., mean, standard de-
viation), which rest on assumptions that variance is
random, not dependent or structured in time. Detecting
endocrine changes through proxies extracted from
wearables can inform research on human populations.

Such research can be informed by related work using
wearables to improve precision in the detection of
illness involving changes to endocrine dynamics (Box 2)
[57]. Systematic comparison of different techniques
(those described here, and others as they emerge) could
provide a reference to help researchers select appro-
priate analyses for specific data sets.
www.sciencedirect.com Cu
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