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Risks of misinterpretation in the evaluation of
Distant Supervision Relation Extraction.

Riesgos de interpretación errónea en la evaluación de la
Extracción de Relaciones con Supervisión Distante

Abstract: Distant Supervision is frequently used for addressing Relation Extrac-
tion. The evaluation of Distant Supervision in Relation Extraction has been at-
tempted through Precision-Recall curves and/or calculation of Precision at N ele-
ments. However, such evaluation is challenging because the labeling of the instances
is the result of an automatic process. Consequently, the labels are not necessarily
correct, affecting not only the learning process but also the interpretation of the eval-
uation results. This research aims to show that, should the correct labels be used
during the evaluation, the algorithmic performance measured with the mentioned
evaluation strategies varies significantly, thus questioning the current interpretation.
To this end, we manually labeled a subset of a well-known data set and evaluated
the performance of 6 traditional distant supervision approaches. We demonstrate
quantitative differences in the evaluation scores when considering manually versus
automatically labeled subsets. Consequently, the order of performance among dis-
tant supervision algorithms is different.
Keywords: relation extraction, distant supervision evaluation, Precision-Recall
curves

Resumen: La Supervisión Distante se utiliza con frecuencia para abordar la ex-
tracción de relaciones. La evaluación de la Supervisión Distante en la Extracción
de Relaciones se ha realizado mediante curvas de Precisión-Recuerdo y/o el cálculo
de la Precisión en N elementos. Sin embargo, dicha evaluación es un desaf́ıo porque
el etiquetado de las instancias es el resultado de un proceso automático. En conse-
cuencia, las etiquetas no son necesariamente correctas, afectando no solo el proceso
de aprendizaje sino también la interpretación de los resultados de la evaluación. El
objetivo de esta investigación es mostrar que, si se utilizan las etiquetas correctas
durante la evaluación, el desempeño algoŕıtmico medido con las estrategias de eval-
uación mencionadas vaŕıa de manera significativa, cuestionando aśı la interpretación
actual de los resultados que se obtienen. Con este fin, etiquetamos manualmente
un subconjunto de un conjunto de datos y evaluamos el desempeño de 6 enfoques
tradicionales de Supervisión Distante. Demostramos diferencias cuantitativas en los
puntajes de evaluación al considerar subconjuntos etiquetados manualmente versus
automáticamente. En consecuencia, el orden de desempeño entre los algoritmos de
supervisión distante es diferente.
Palabras clave: extracción de relaciones, evaluación de la supervisión distante,
curvas de Precisión-Recuerdo



1 Introduction

Relation Extraction (RE) is concerned with
detecting and classifying predefined relations
between entities identified in text (Piskorski
and Yangarber, 2013). The traditional RE
approach uses a supervised method to create
the classifier(s) necessary to identify relations
between named entities pairs (Hearst, 1992;
Agichtein and Gravano, 2000; Bunescu and
Mooney, 2005). However, this process is slow
and expensive; hence an alternative is the use
of Distant Supervision (DS).

DS consists of automatically labeling the
relations between each named entities pair
in a text using some pre-existing Knowledge
Base (KB) (Mintz et al., 2009). It is assumed
that in the analyzed text, when two named
entities appear observed in the KB, it is as-
sumed that they are associated through the
relation existing in the KB. For the automatic
annotation of the data set with labeled rela-
tions, Mintz et al. (Mintz et al., 2009) as-
sumed that given two entities that partici-
pate in a relation, all sentences in the data
set that includes these two entities express
that relation. However, it is not uncommon
that a pair of entities in a sentence does not
necessarily express a relation or may express
several relations (see Fig 1). Hence, Mintz
strong assumption often introduces false pos-
itives (noise in the labels) in the training and
test sets. Later, Riedel et al. (Riedel, Yao,
and McCallum, 2010) relaxed this assump-
tion, instead of assuming that “if two enti-
ties participate in a relation, at least one sen-
tence that mentions these two entities might
express that relation”. This relaxation alle-
viates the problem of false positives in the
automatically generated labels, but it does
not fully fix it.

Unfortunately, the evaluation of these
methods is complicated because there is no
set correctly labeled to check their perfor-
mance. This is why alternative evaluation
methods have been proposed, such as the
Precision-Recall (PR) curves or Precision at
N (P@N) elements. However, these measures
are calculated using data labeled with the
same automatic process; that is, the labels
are not necessarily correct, impairing the cal-
culation of the evaluation results.

This paper aims to analyze the use of these
evaluation measures showing that when the
methods are evaluated using a correctly la-
beled set, the performance of the algorithms

for SD reported so far varies substantially,
thus questioning the current interpretation of
the evaluation methods. We assessed the per-
formance of 6 DS algorithms with PR curves
and P@N analysis, with a correctly labeled
set and with automatically generated labels,
and compared the outcomes.

Our contributions can be summarized as
follows:

• PR curves and Precision@N performance
measures are critically revisited under
competing scenarios of manual and auto-
matic labelling.

• The test partition of the New York Times
(NYT2010)1 data set proposed by (Riedel,
Yao, and McCallum, 2010) was crowd-
labelled using MTurk2. We argued that
this afford better guarantees over the per-
formance assessment in this task.

• We show that under current practice, per-
formance measures for DS in RE may be
misinterpreted when evaluation is carried
out over automatic potentially noisy la-
belling.

2 Related Work

The state-of-the-art in DS includes several
solutions using different Deep Learning ar-
chitectures. One of the first networks was
the Piecewise Convolutional Neural Networks
(PCNN) proposed by Zeng et al. (Zeng et
al., 2015) based on Convolutional Neural Net-
works (CNN) (Zeng et al., 2014). This net-
work incorporates bags of sentences to han-
dle noise on the labels. A bag of sentences
contains sentences that have the same enti-
ties pair. Also, it contains a piecewise max
pooling layer “to capture structural informa-
tion between two entities”. Later, different
attention mechanisms were incorporated into
these architectures. In (Lin et al., 2016; Ji
et al., 2017) an attention mechanism at sen-
tences level (CNN ATT and PCNN ATT) in
multiple instances was proposed to use the
information of all sentences in the bag. Also,
in (Ji et al., 2017) information about enti-
ties was included. Zhou et al. (Zhou et al.,
2018) select from the bag several instances
related to the label to predict the relations
and use a word-level attention mechanism to
dynamically highlight important parts of the
sentence. Besides, in (Jat, Khandelwal, and

1http://iesl.cs.umass.edu/riedel/ecml/
2Mechanical Turk, MTurk, is a human annotation

service provided by Amazon.



Figure 1: In this example, two sentences with the same pair of entities are automatically labeled
with the same relation. Considering the founders relation, the first one will be correctly labeled
while the second will not (Zeng et al., 2015).

Talukdar, 2018), the Bidirectional Gated Re-
current Unit architecture was proposed with
an attention mechanism over words to iden-
tify which key phrases are used (BGWA). Ye
and Ling (Ye and Ling, 2019) used intra-bag
and inter-bag attention mechanisms while in
(Lin et al., 2016; Ji et al., 2017) it is only
performed intra-bag, which ignores when all
sentences in the bag are false positives. More-
over, Vashishth et al. (Vashishth et al.,
2018) (RESIDE) used knowledge base infor-
mation such as the entity type and relations
alias to predict the correct relation. In ad-
dition, Convolutional Graph Networks (Def-
ferrard, Bresson, and Vandergheynst, 2016)
are used over dependency tree for modeling
the syntactic information and capturing long-
range dependencies. This information to-
gether with the words and positions embed-
dings is used to encode the entire sentence.
On the other hand, Bastos et al. (Bastos et
al., 2020) proposed a method using an aggre-
gator that obtains a homogeneous represen-
tation with a Graph Neural Network. This
representation merges information from sen-
tence, relation and the two entities (consid-
ering attributes like entity label, entity alias,
entity description and entity type). Many of
these methods have been evaluated with the
test partition of NYT2010 data set. This par-
tition was automatically labeled under some
(imperfect) heuristics and consequently some
instances have been associated to an incor-
rect label. Given the absence of an adequate
gold standard, precision, recall, and F1 mea-
surements have not been used for the evalu-
ation of these methods. Mintz et al. (Mintz
et al., 2009) used, for the first time, the PR
Curves and P@N measures in an attempt to
evaluate the DS task. These authors stated
that PR curves “gives a rough measure of

precision without requiring expensive human
evaluation, making it useful for parameter
setting”. But ”rough” is not an exact state-
ment; and therefore performance measured
with PR curves is dependent on the amount
and distribution of noise in the labels. These
curves constructed from automatic labels are
a simple approximation of the performance
of DS methods. Despite this problem, sev-
eral authors (Surdeanu et al., 2012; Zeng et
al., 2015; Lin et al., 2016; Jat, Khandelwal,
and Talukdar, 2018; Vashishth et al., 2018;
Wu, Fan, and Zhang, 2019; Xu and Barbosa,
2019; Ye and Ling, 2019) continued to use
PR curves to evaluate and compare the per-
formance of the proposed DS methods, prob-
ably leading to misinterpretations. On the
other hand, P@N has been used in DS with
100, 200, 300 and 500 as the value of N. In
P@N, the first N elements represent the most
reliable answers of the classifier based on the
ranking score. Lin et al. (Lin et al., 2016)
and Liu et al. (Liu et al., 2017) reported
P@100, P@200 and P@300 by randomly ex-
tracting one sentence for each pair of entities,
two sentences or using them all. This eval-
uation, like in (Mintz et al., 2009), must be
done manually on each execution because of
the noise inherent to the automatic labels.
Unfortunately, many works (Lin et al., 2016;
Liu et al., 2017; Wu, Fan, and Zhang, 2019;
Vashishth et al., 2018; Ye and Ling, 2019) did
not explicitly report whether and how the re-
view was done manually.

Because of the noise that automatic label-
ing introduces, several efforts have been made
to build a gold standard to evaluate the DS
task. First, Mintz et al., (Mintz et al., 2009)
used Amazon’s Mechanical Turk service for
manual evaluation of P@N. For this, the first
100 instances of each of the top 10 relations



were sent to Mechanical Turk. Hoffmann et
al. (Hoffmann et al., 2011) manually labeled
1000 sentences from NYT2010 data set to
report the results of their method. These
authors stated that “These results provide
a good approximation to the true precision
but can overestimate the actual recall, since
we did not manually check the much larger
set of sentences where no approach predicted
extractions”. Later, based on these 1000 an-
notated instances, in (Ren et al., 2017) 395
were used as test partition. However, in these
instances there is no more than one sentence
per entity pair (Jia et al., 2019). A disadvan-
tage of these data sets is that they do not
include the entire NYT2010 test partition.
Furthermore, in these papers the measures
of the DS task (i.e. PR curves and P@N)
were not studied, statistical validations were
not carried out, nor was it expressed in which
way the selection of the instances was carried
out. Finally, with the exception of Hoffmann
et al. (Hoffmann et al., 2011), precision, re-
call and F1 measurements were not reported.

3 Background

3.1 Precision-Recall curves

PR curves are frequently used in binary clas-
sification (Davis and Goadrich, 2006) and,
within this generic problem, in Information
Retrieval (IR) (Manning, Raghavan, and
Schütze, 2008). PR curves plot precision ver-
sus recall for a varying decision threshold pa-
rameter in binary classification (Keilwagen,
Grosse, and Grau, 2014). These curves are
calculated from the (assumed) true label and
a score given by the classifier. This analy-
sis is closely related to the Receiver-Operator
Curve (ROC) analysis (Davis and Goadrich,
2006) widely used in statistics. But conve-
niently for IR purposes, the PR curves can
be built without the true negatives TN. To
get a scalar score, the area under PR curves
(AUC) can be calculated by using the com-
posite trapezoidal method (Davis and Goad-
rich, 2006).

Let Γ a threshold set defined over classifier
scores and Ψ a vector of descending ordered
scores given by a classifier. The precision and
recall for a threshold γ ∈ Γ are calculate by
the equations 1 and 2 respectively ∀ψ ∈ Ψ |
ψ > γ.

Pγ =
TPγ

TPγ + FPγ
γ ∈ Γ (1)

Rγ =
TPγ

TPγ + FNγ
γ ∈ Γ (2)

where TP are positive examples correctly la-
beled as positives, FP are negative examples
mislabelled as positives and FN are positive
examples incorrectly labeled as negative.

To obtain the set of pairs (Rγ , Pγ) in the
PR curve, we iterate over Γ as per Equa-
tion 3:

PR Curve(γ) = {(Rγ , Pγ) : γ ∈ Γ} (3)

3.2 Precision at N

The P@N in Equation 4 measures the number
of correct elements in a window ofN elements
(Manning, Raghavan, and Schütze, 2008).

P@N =
|TP ∩RN |

N
(4)

The TP (positive examples correctly labeled
as positives) is calculated by manual evalu-
ation. The P@N is frequently used in IR to
measure the precision in a subset of retrieved
elements RN , with N the cardinality of the
set. According to (Manning, Raghavan, and
Schütze, 2008), it has the advantage of not
requiring any estimate of the size of the set
of relevant elements. While P@N has been
used in DS by multiple authors (Zeng et al.,
2015; Lin et al., 2016; Ji et al., 2017; He et
al., 2018; Wang et al., 2018; Wu, Fan, and
Zhang, 2019; Ye and Ling, 2019), but in all
these cases, this has been on the automati-
cally labeled data set (with noisy labels).

4 Methodology

4.1 Dataset preparation

In order to establish whether there are risks
of misinterpreting the assessment measures,
we compared the performance of 6 DS algo-
rithms assessed over manually-generated la-
bels and automatically-generated labels. We
depart from the NYT2010 data set for DS
task. This data set includes 53 relations
types, including NA, when there is no rela-
tion. Originally, this data set was labeled au-
tomatically. The train partition has 522611
instances (sentence that may or may not con-
tain a relation), 279226 unique entity pairs
and 136379 instances with a relation other
than NA. In turn, the test partition has
172448 instances, 96678 unique entity pairs
and 6444 instances with a relation other than
NA. From this last partition, in this work,



two test partitions with manual labels were
built.

In the first test partition, 430 instances
were selected for manual revision. The in-
stances selection to be reviewed was made
by choosing one instance from each relation
at random during 20 iterations. During the
manual revision, 88 duplicate instances were
found, and 18 that did have unclear relations
were detected. Thus, 324 instances were re-
vised manually and constitute our first test
partition (named test 1 ). Of the 324 in-
stances of the test 1 partition, 158 changed
their automatic label after review, i.e. they
were considered by a human to hold incorrect
labels.

In the second test partition, the complete
6444 instances different from the relationNA
were selected for manual revision. First, we
curated the 6444 instances by removing in-
valid instances. An invalid instance is consid-
ered when the defined entities are not found
in the sentence. A total of 6431 were found
valid. Then, from the 6431 valid instances
we further eliminated 579 instances that con-
tained the same sentence, entity pair, and re-
lation. The rest, 5852, we publish them on
the MTurk for review by three reviewers. Fi-
nally, we consider an instance as noisy if at
least two of the three judges decided that the
relations was not expressed. 4801 instances
did not vary their automatic label but 1051
did (17.9%). This partition we named test 2.

4.2 Selection of DS methods for
comparison

The following DS methods were compared in
their performance:
• PCNN (Zeng et al., 2015) and CNN:
The authors used both, PR curves and
P@N for evaluation, and labeling was done
manually. This was one of the first archi-
tectures to be used in DS.

• PCNN ATT (Lin et al., 2016) and
CNN ATT: The authors incorporated an
attention mechanism over instances. They
used PR curves to determine the perfor-
mance of the attention mechanism com-
pared to other methods. Finally, P@N
was calculated on automatically generated
automatic labels.

• BGWA (Jat, Khandelwal, and Talukdar,
2018): It incorporates an attention mech-
anism over words and entities. In the orig-
inal work, only the PR curves were used

as the measure of performance.
• RESIDE (Vashishth et al., 2018): It com-
bines syntactic information with entity
types and relations aliases. In the origi-
nal work, it obtained a higher PR curve
than previous methods. Like (Lin et al.,
2016), P@N was calculated automatically
on automatic labels.
The main selection criterion for these

methods was that they use three different
architectures. On the one hand, CNN and
PCNN use a convolutional architecture to
which an attention mechanism is then incor-
porated (CNN ATT and PCNN ATT). On
the other hand, RESIDE uses Graph Con-
volution Networks and Bidirectional Gated
Recurrent Unit and incorporates information
on entities and relations. The execution of
these methods was done in the same way as
defined in Github3 without using the gradi-
ent descent optimizer.

They were trained with the NYT2010
train partition proposed by (Riedel, Yao, and
McCallum, 2010). The evaluation was car-
ried out for the test 1 and test 2 with the
automatic and manual labels (see Figure 2).

4.3 Experimental design

In order to evaluate performance fairly, repli-
cations are necessary to ensure that chance
does not play a role in our results. The num-
ber of replications (sample size) was deter-
mined using power analysis. Power analy-
sis refers to the estimation of the probability
of correctly rejecting a false null hypothesis
when a particular alternative hypothesis is
true (Howell, 2012). The analysis depends
on four factors: statistical significance, effect
size, sample size and the statistical power it-
self. Fixing any three, yields the fourth for
a given hypothesis model. The power anal-
ysis was estimated using ANOVA One Way
test for a desired significance level of 0.05,
statistical power of β = 0.95 and assuming
an effect size of Cohen’s d = 0.4. As a re-
sult, 42 repetitions per treatment (i.e. algo-
rithm to be compared) was obtained as the
required sample size. The number of samples
here represents the number of executions for
each of the methods, that is, the replications
required to detect an effect of the assumed
size in the experiment.

From the replications results, the Fried-
man test was used to determine if there

3https://github.com/malllabiisc/RESIDE
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Figure 2: Methodological diagram of this research. The top box illustrates the experiment
design. The bottom box summarizes the statistical hypothesis testing.

were differences in the methods ranking us-
ing automatic labels with respect to man-
ual labels. The Friedman test is used for
one-way repeated measures analysis of vari-
ance by ranks (Friedman, 1940). Then, the
ANOVA One Way test is applied on auto-
matic and manual labels to know if there
are significant differences between the results
achieved by the methods. The ANOVA One
Way test is used to test for differences among
at least three groups, with the two-group
case covered by the simpler t-test (Student,
1908; Howell, 2012). Finally, if there were
significant differences, pairwise comparisons
were made to observe which pair of methods
showed differences. The two-by-two compar-
isons were made with t-test and Holm Cor-
rection (Holm, 1979). Significance threshold
was set at p < 0.05.

5 Experiments

5.1 Precision-Recall curves

Performance on test 1 partition
The Table 1 summarizes the AUC of the

tested algorithms PR curves with automatic
and manual labels on test 1 respectively4.
All methods increased their AUC with the
manual labels with regards to their perfor-
mances using the automatic ones, pointing
to a systematic overall underestimation. Fur-
ther, and more critically here, the order of the
methods in terms of their performance var-
ied significantly (Friedman: χ2(2) = 373.46,
p < 2.2e−16), i.e. they are all underesti-

4Source available at removed for blind evaluation

mated but not in the same extent. This sug-
gests that using PR curves with automatic
labels might not conferring the direct mes-
sage one would expect otherwise in the DS
evaluation task, and that for this scenario,
such bias has to be considered during in-
terpretation. Further, significant differences
were found with either automatics (ANOVA:
F (5, 246) = 746.9, p < 2e−16) and manual la-
bels (ANOVA: F (5, 246) = 520.8, p < 2e−16).

The Figures 3a and 3b show the PR curves
of the methods BGWA, RESIDE, PCNN,
PCNN ATT, CNN and CNN ATT in one
of the executions made with automatic and
manual labels respectively on test 1. It can
be appreciated that the ordering of the al-
gorithms according to their performance in
terms of the area under curve (AUC) varies
when using the manual labels with respect
to the automatic ones (previously validated
with Friedman test and multiples execu-
tions).

Performance on test 2 partition

As with the test 1 partition, the AUC val-
ues of the PR curves with automatic and
manual labels on test 2 were obtained (see
Table 2). In these tables, similar values
are observed with both labels. However,
as in test 1, the order of the methods var-
ied significantly (Friedman: χ2(2) = 785.37,
p < 2.2e−16. Similarly, significant differences
were found with automatics labels (ANOVA:
F (5, 246) = 2097, p < 2e−16). Analogously,
significant differences were found (ANOVA:
F (5, 246) = 1553, p < 2e−16) on manual la-
bels.



Table 1: AUC of the PR curves after 42 replications with automatic and manual labels on test 1.

Automatic labels Manual labels
Model AUC Model AUC
BGWA 0.412± 0.026a BGWA 0.440± 0.023a

CNN ATT 0.194± 0.022b CNN ATT 0.239± 0.031b

CNN 0.193± 0.027b CNN 0.235± 0.027c

RESIDE 0.191± 0.013b PCNN 0.209± 0.028d

PCNN 0.158± 0.023c RESIDE 0.199± 0.020d

PCNN ATT 0.151± 0.025d PCNN ATT 0.197± 0.029d

adifferences with rest of methods***. adifferences with rest of methods***.
bdifferences with BGWA***, PCNN*** and PCNN ATT***. bdifferences with rest of methods*** except CNN.
cdifferences with rest of methods*** except PCNN ATT.) cdifferences with rest of methods*** except CNN ATT.
ddifferences with rest of methods*** except PCNN.) ddifferences with BGWA***, CNN*** and CNN ATT***.
*, **, *** to indicate p < 0.05, p < 0.01 and p < 0.001 respectively.

Table 2: AUC of the PR curves after 42 replications with automatic and manual labels on test 2.

Automatic labels Manual labels
Model AUC Model AUC
BGWA 0.339± 0.016a BGWA 0.345± 0.021a

PCNN ATT 0.112± 0.015b PCNN ATT 0.118± 0.017b

CNN ATT 0.105± 0.017c PCNN 0.109± 0.020c

PCNN 0.105± 0.018c CNN ATT 0.106± 0.018d

CNN 0.098± 0.016d CNN 0.098± 0.017e

RESIDE 0.021± 0.006c RESIDE 0.028± 0.011f

adifferences with rest of methods***. adifferences with rest of methods***.
bdifferences with BGWA*** and CNN***. bdifferences with CNN*** and CNN ATT*.
cdifferences with BGWA***. cdifferences with BGWA*** and CNN*.
ddifferences with BGWA*** and PCNN ATT***. ddifferences with BGWA*** and PCNN ATT***.

edifferences with BGWA***, PCNN ATT*** and PCNN*.
fdifferences with BGWA***

*, **, *** to indicate p < 0.05, p < 0.01 and p < 0.001 respectively.

The Figures 4a and 4b show the PR curves
in one of the executions made with automatic
and manual labels respectively on test 2.

5.2 Precision at N

Performance on test 1 partition

The P@25 and P@50 subsets from the
test 1 partition were established, in addition
to all the instances (P@All). Table 3 shows
that the order of the models remains the same
for the first three models by increasing the
N, unlike the last three positions. The same
happens with Table 4, in this case, the first
two models are kept. The order of the mod-
els, as with the AUC, varied significantly for
the automatic and manual labels on P@All
(Friedman: χ2(2) = 382.28, p < 2.2e−16).
Similarly, there are significant differences in
the performance of methods with automatic
(ANOVA: F (5, 246) = 210.8, p < 2e−16) and
manual (ANOVA: F (5, 246) = 255.6, p <
2e−16) labels. Then, two-by-two comparisons
with Holm Correction (Holm, 1979) show
significant differences with automatic labels

between the BGWA and RESIDE models
and the rest. Similarly, two-by-two compar-
isons show significant differences with man-
ual labels between the BGWA model and the
rest. In addition, PCNN ATT has signifi-
cant differences with the other models ex-
cept for PCNN (in reverse order it also hap-
pens). In this case, RESIDE only shows sig-
nificant differences with BGWA, PCNN and
PCNN ATT.
Performance on test 2 partition

In the same way as with test 1, the subsets
P@25 and P@50 were established together
with P@All, which includes the entire set.
With both labeled, only two methods did not
vary their order in the three subsets, BGWA
and RESIDE (see Tables 5 and 6). On the
other hand, the order of the methods using
the P@All results varied significantly with re-
spect to the automatic and manual labels
(Friedman: χ2(2) = 369.55, p < 2.2e−16)5.

5It should be noted that in all cases the Friedman
test is used on the ranking of each execution, not only
on the final results.



Table 3: P@25, P@50 and P@All after 42 replications with automatic labels on test 1.

Model P@25 Model P@50 Model P@All
BGWA 0.819±0.062 BGWA 0.730±0.041 BGWA 0.558±0.029
CNN 0.587±0.087 CNN 0.489±0.062 CNN 0.386±0.036
CNN ATT 0.580±0.089 CNN ATT 0.486±0.064 CNN ATT 0.375±0.045
PCNN 0.554±0.087 PCNN ATT 0.461±0.055 PCNN 0.362±0.037
RESIDE 0.552±0.074 PCNN 0.459±0.060 PCNN ATT 0.351±0.040
PCNN ATT 0.550±0.079 RESIDE 0.433±0.054 RESIDE 0.325±0.035

Table 4: P@25, P@50 and P@All after 42 replications with manual labels on test 1.

Model P@25 Model P@50 Model P@All
BGWA 0.715±0.079 BGWA 0.677±0.044 BGWA 0.585±0.033
RESIDE 0.555±0.075 RESIDE 0.489±0.043 RESIDE 0.376±0.037
CNN 0.551±0.089 CNN ATT 0.465±0.061 CNN 0.370±0.035
CNN ATT 0.544±0.089 CNN 0.459±0.059 CNN ATT 0.370±0.044
PCNN 0.486±0.093 PCNN 0.401±0.062 PCNN 0.328±0.044
PCNN ATT 0.458±0.096 PCNN ATT 0.399±0.066 PCNN ATT 0.325±0.041

Similarly, significant differences were found
in the performance of the methods with au-
tomatic (ANOVA: F (5, 246) = 1610, p <
2e−16) and manual (ANOVA: F (5, 246) =
1265, p < 2e−16) labels. Then, in two-by-two
comparisons with Holm Correction (Holm,
1979) there are no significant differences only
between the CNN and CNN ATT and PCNN
and PCNN ATT methods with both labeled.

6 Discussion

Our results indicate that the order of the
algorithms, in terms of AUC of the PR
curves on test 1 and test 2 partition, dif-
fer depending on the labeling. This justi-
fies our claim that the interpretation of the
PR curves, when used for evaluating DS al-
gorithms, must be reconsidered. PR curves
using automatic labels as a reference is not
an optimal way to compare methods perfor-
mance in DS, because it breaks a premise of
the PR curves construction; that true labels
are available. Several authors (Riedel, Yao,
and McCallum, 2010; Hoffmann et al., 2011;
Surdeanu et al., 2012; Zeng et al., 2015; Lin
et al., 2016; Jiang et al., 2016; Liu et al.,
2017; Vashishth et al., 2018; Ru et al., 2018;
Zhou et al., 2018; Wang et al., 2018; Jat,
Khandelwal, and Talukdar, 2018; Wu, Fan,
and Zhang, 2019; Xu and Barbosa, 2019; Ye
and Ling, 2019) have based the comparison
of their method on the PR curves on these
labels. The classical interpretation does not
provide guarantees as to which method is per-
forming better or which one is more tolerant

to noise in the labels.

On the other hand, the Section 5.2 has
also confirmed that P@N is not being inter-
preted correctly in DS either. This is criti-
cal for the task at hand considering the un-
balance in the data sets, variability among
the relations, selection criteria, among oth-
ers. There is not a clear criterion or criteria
that guarantee to choose the same instances
for the evaluation of each of the methods. In
other words, it is not guaranteed that the first
instances chosen to evaluate one method are
the same for another method. If the selec-
tion is based on the score of the classifier, it
varies from one to another execution. The
same happens if the selection is random. For
example, it may happen that for a method
the first N instances are of the same rela-
tion. This indicates how good this method
is for that relation, however, for the rest, its
performance is not known. Also, sometimes,
the P@N is calculated over automatic labels
whereas some works do it over manual la-
bels. This is the case of the 6 methods used in
this work. This further confuses interpreta-
tion. Furthermore, dispersion values are not
reported in the aforementioned works which
mathematically renders those works uninfor-
mative.

What was expressed above shows that PR
curves and P@N measures are not currently
being interpreted properly in DS due to the
presence of noisy labels. Currently, we be-
lieve there are no reliable statistics regard-
ing the actual performance of the DS meth-



Table 5: P@25, P@50 and P@All after 42 replications with automatic labels on test 2.

Model P@25 Model P@50 Model P@All
BGWA 0.804± 0.082 BGWA 0.762± 0.064 BGWA 0.019± 0.000
CNNATT 0.360± 0.112 CNN 0.357± 0.084 CNN 0.015± 0.000
CNN 0.346± 0.111 CNNATT 0.341± 0.087 CNNATT 0.015± 0.000
PCNNATT 0.273± 0.089 PCNNATT 0.268± 0.067 PCNN 0.014± 0.000
PCNN 0.252± 0.106 PCNN 0.233± 0.070 PCNNATT 0.014± 0.000
RESIDE 0.115± 0.095 RESIDE 0.129± 0.076 RESIDE 0.010± 0.000

Table 6: P@25, P@50 and P@All after 42 replications with manual labels on test 2.

Model P@25 Model P@50 Model P@All
BGWA 0.017± 0.000 BGWA 0.795± 0.083 BGWA 0.0168± 0.000
CNN 0.014± 0.000 CNNATT 0.343± 0.120 CNN 0.0137± 0.000
CNNATT 0.014± 0.000 CNN 0.320± 0.117 CNNATT 0.0135± 0.000
PCNN 0.013± 0.000 PCNNATT 0.255± 0.104 PCNN 0.0130± 0.000
PCNNATT 0.013± 0.000 PCNN 0.230± 0.099 PCNNATT 0.0129± 0.000
RESIDE 0.010± 0.000 RESIDE 0.150± 0.094 RESIDE 0.0103± 0.000

ods. While the community agrees on a math-
ematically correct interpretation in this con-
text, or new statistics are proposed for eval-
uating the performance of DS methods, a
possible strategy to circumvent the dead-
lock is what was done here. That is, se-
lecting multiple instances of the evaluation
data set while maintaining its distribution
(test 1 partition). Then, perform a man-
ual review of these instances using multiple
raters. The main limitations of test 1 parti-
tion are the instances number selected. This
is why the test 2 partition was labeled with
multiple raters using MTurk. The advantage
of this partition with respect to test 1 and
those proposed by (Hoffmann et al., 2011)
and (Ren et al., 2017) is that it is made up
of all the instances of the NYT2010 data set
test partition (only those different from NA
were labeled with MTurk). From the test 2
partition, the methods can be compared with
precision, recall and F1 using the traditional
interpretation.

Gasta un par de frase o 1 párrafo en vali-
dación nomológica. Limitaciones?

7 Conclusions

Significant differences were found in the or-
dering of the methods regarding their perfor-
mances, when the performance is established
according to the AUC of the PR curves be-
tween the evaluation using the automatic la-
bels and the same data set with the manual
labels. The largest AUCs were obtained us-
ing manual labels which speaks well of the

capacity of the DS methods to handle noisy
data as it is their core intention.

Our results suggest that PR curves are
currently not being interpreted correctly in
DS and, on the other hand, manual evalua-
tion of the first N instances does not cover
the entire data set. The existing selection
criteria for the instances to be manually re-
viewed are not deterministic, suggesting mul-
tiple executions of the method and the dis-
persion report. Besides, these measures, as
they are being used, are inconclusive as to
the performance of those methods. Estamos
repitiendo los resultados. Las conclusiones
deben ir más allá y explorar las implicaciones.
Finally, a partition was provided that allows
you to evaluate this task using labels man-
ually reviewed by multiple raters. This par-
tition also allows the use of precision, recall
and F1 measurements. Trabajo futuro?
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