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1. Introduction

Suppose G is a connected reductive algebraic group over an algebraically closed field K of characteristic 
p > 0, and let g be its Lie algebra. Each simple module over g can be assigned a p-character, a linear map 
χ : g → K controlling how a certain central subalgebra of the universal enveloping algebra U(g) acts on 
the module. We define the reduced enveloping algebra as Uχ(g) = U(g)/〈xp − x[p] − χ(x)p | x ∈ g〉, where 
x �→ x[p] is the p-th power map on g which equips it with a restricted Lie algebra structure. Every simple 
g-module is a simple Uχ(g)-module for some χ ∈ g∗, and thus understanding the representation theory of 
reduced enveloping algebras is critical to understand the representation theory of modular Lie algebras.

For suitable λ ∈ h∗, where h is the Lie algebra of a maximal torus T of G, we may define (so long as we 
make certain reasonable assumptions on χ) a Uχ(g)-module Zχ(λ), which we call a baby Verma module. 
The key quality possessed by baby Verma modules is that every irreducible Uχ(g)-module is a quotient 
of some Zχ(λ). In general, a baby Verma module may have more than one irreducible quotient, and an 
irreducible module may be a quotient of more than one baby Verma module. However, these complications 
can be removed in certain cases. If we assume χ is in so-called standard Levi form, each Zχ(λ) has a unique 
irreducible quotient. We also find in this case that if an irreducible module is a quotient of two baby Verma 
modules then these baby Verma modules are isomorphic.

There is a bijection between the set of χ ∈ g∗ in standard Levi form and the set of subsets I of simple 
roots of g. If χ ∈ g∗ corresponds to I, we may equip Uχ(g) with an X/ZI-grading, where X := X(T ) is 
the character group of T , and we may consider X/ZI-graded Uχ(g)-modules. For technical reasons it is 
convenient not to work with the whole category of such modules, but instead a certain subcategory C , 
copies of which the wider category is a direct sum. This category has been extensively studied in [9] (see 
also [10,11]).

The most well-known example of χ ∈ g∗ in standard Levi form is χ = 0. In this case, I is empty and 
the category C becomes precisely the category of G1T -modules (G1 being the first Frobenius kernel of G). 
Andersen, Jantzen and Soergel, in their seminal work [3], study when χ = 0 a category they call CA (they 
also study the analogous category for quantum groups). Here, A is a commutative Noetherian S(h)-algebra 
and the objects of CA are U0 ⊗ A-modules with an X-grading satisfying some conditions, where U0 is a 
certain quotient of U(g) lying between U(g) and U0(g). When A = K, made into an S(h) algebra via the 
counit, one recovers precisely Jantzen’s category C for χ = 0.

The motivation for Andersen, Jantzen and Soergel’s study of this category was their interest in proving 
Lusztig’s conjecture [16], which they were able to do for p � 0. Lusztig’s conjecture, the reader will recall, 
gives a prediction for the characters of certain simple G-modules in terms of combinatorial properties of the 
affine Weyl group; one can also understand it as predicting composition multiplicities of simple G-modules 
in Weyl modules. It is a positive characteristic analogue of the famous Kazhdan-Lusztig conjecture [14]
(independently proved by Beilinson-Bernstein [4] and by Brylinski-Kashiwara [6]), a fundamental result in 
the characteristic zero theory.
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In the last few years, there have been several major developments in our understanding of Lusztig’s 
conjecture. Williamson [20] has shown that Lusztig’s conjecture cannot hold under the expected assumptions; 
however Riche and Williamson showed in [18] that it would be possible to prove a modification of Lusztig’s 
conjecture (using so-called p-Kazhdan-Lusztig polynomials) if one could find a nice action of the Hecke 
category on a certain category of G-modules. Recent preprints by Bezrukavnikov and Riche [5] and by 
Ciappara [7] are able to find such an action.

Work of Abe [1,2] also investigates actions of the Hecke category and, in particular, defines such an 
action on the category of X-graded U0(g)-modules (i.e. G1T -modules). As observed above, the category of 
G1T -modules is a special case of the category C studied by Jantzen, and so a natural question is whether 
one can construct a similar categorical action on the category C for any χ in standard Levi form. Lusztig 
conjectured in [15] a variation of his conjecture for such χ; finding such a categorical action could plausibly 
enable us to prove a variation of this conjecture, just as Riche-Williamson [18] were able to do for the 
classical version.

Abe’s construction [1] of the Hecke action requires an in-depth understanding of a number of categories 
and functors introduced by Andersen, Jantzen and Soergel in [3]. To generalise this to work for non-zero 
χ in standard Levi form, one must first generalise the Anderson-Jantzen-Soergel categories and functors, 
particularly the category CA discussed above, to work for such χ. Jantzen discusses this situation briefly in 
[9], but doesn’t give an full treatment. We do so here. In subsequent work, we hope to be able to use these 
categories and functors to generalise Abe’s description of the category of G1T -modules, and thus find an 
appropriate categorial action.

In this paper, we study a category which we, similar to [3], denote by CA (since we generally fix χ in 
standard Levi form throughout this paper, we do not incorporate χ into the notation). Its objects are certain 
Uχ ⊗ A-modules which have an X/ZI-grading and which satisfy several other conditions. The algebra Uχ

here is defined similarly to the algebra U0, and indeed the notations are compatible.
This category turns out to have a number of nice properties, many of which are similar to those explored 

for χ = 0 in [3] and for A = K in [9] (under assumptions on G and p similar to those required in the 
latter). There are a number of induction functors which interact nicely with the category. This allows us, 
for example, to define baby Verma modules ZA,χ(λ), for λ ∈ X, in CA. Note that in graded settings we 
use the character group X instead of h∗ to define baby Verma modules. When A = F is a field, these baby 
Verma modules have unique irreducible quotients, denoted LF,χ(λ) (see Proposition 6.1) and, under certain 
conditions, we may characterise when two baby Verma modules are isomorphic (see Corollary 8.3).

The key distinction from the χ = 0 case is that there are a few other categories of interest at play here. 
We write gI for the standard Levi subalgebra of g obtained from the set of simple roots I corresponding to 
χ. One may then look at the category C I

A which is obtained from gI in the same way that CA is obtained 
from g. Since χ|gI

is regular nilpotent (i.e. I contains all the simple roots for this Lie algebra) the category 
C I
A has a lot of nice structure which doesn’t usually exist. We may then define induction functors which get 

us from C I
A to CA.

The fundamental benefit of this is that it allows us, subject to some reasonable conditions on A, to define 
objects QI

A,χ(λ), λ ∈ X, obtained by inducing to CA certain projective objects QA,I,χ(λ) ∈ C I
A (which will 

be projective covers if A is a field). These objects are central to understanding CA - indeed their versions 
over K play a critical role in understanding C in [9] and [11].

One important application of the QI
A,χ(λ) is that they allow us to prove the existence, when A is a local 

ring with residue field F , of projective objects QA,χ(λ), λ ∈ X, such that QA,χ(λ) ⊗AF equals the projective 
cover of LF,χ(λ) in CF . This is the content of Theorems 8.28 and 8.29, which generalise Proposition 4.18 
and Theorem 4.19 in [3].

We begin the paper by defining the category CA that we work with. We define the algebras necessary 
to construct the category, the category itself, and certain variations of the category over subalgebras in 
Section 3. In Section 4, we see how the categories are interrelated using induction functors, and define baby 
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Verma modules in this context. We also see the extra categories and induction functors we get when χ is 
non-zero. We survey some miscellaneous results about the category CA and its objects in Section 5, which 
will be useful for what follows. In Section 6 we discuss some properties of baby Verma modules in this 
context. Finally, Sections 7 and 8 contain the most substantive results in the paper. We explore in detail 
the projective objects in the category CA, working with regular nilpotent χ in Section 7 and more general 
χ in Section 8. In Section 8, we also introduce the objects QI

A,χ(λ) and we conclude by showing, when A is 
local with residue field F , the connection between projective objects in the categories CA and CF .

The author was supported during this research by EPSRC grant EP/R018952/1. He would like to thank 
Simon Goodwin for many useful discussions about this subject and for his opinions on an earlier version of 
this paper, as well as the referee for their comments. The author has no competing interests to declare.

2. Notation

Let G be a connected reductive algebraic group over an algebraically closed field K of characteristic 
p > 0. We fix a maximal torus T ≤ G of rank d, and a Borel subgroup B containing T . We denote by 
X the character group X(T ) = Hom(T, Gm), where Gm is the multiplicative group of the ground field K. 
For the Lie algebras, we write g = Lie(G), h = Lie(T ) and b = Lie(B). We then write R ⊂ X for the set 
of roots of g (i.e. the weights of g under the adjoint action of T ), and we set R+ to be the set of positive 
roots and Π to be the set of simple roots corresponding to our choice of B. We write Π = {α1, . . . , αn} and 
R+ = {β1, . . . , βr} with βi = αi for 1 ≤ i ≤ n. We also write Y (T ) = Hom(Gm, T ) for the cocharacters of 
T , and we write 〈·, ·〉 : X(T ) × Y (T ) → Z for the natural pairing. Given α ∈ R, we denote by α∨ ∈ Y (T )
the coroot associated to α.

We associate to g a basis {eα, hi | α ∈ R, 1 ≤ i ≤ d} of g, where eα ∈ gα, the root space of α ∈ R, and 
h1, . . . , hd is a basis of h with the property that h[p]

i = hi for each 1 ≤ i ≤ d. Here, x �→ x[p] is the p-th power 
map on g. We write hα := [eα, e−α] for each α ∈ R, and we set n+ =

⊕
α∈R+ gα and n− =

⊕
α∈R+ g−α. 

Given χ ∈ g∗, we write Uχ(g) for the reduced enveloping algebra of g, whose definition we shall explain in 
more detail in the body of the article. Note that Uχ(g) ∼= Ug·χ(g) for each g ∈ G (where g · χ denotes the 
image of χ under the coadjoint action of G).

We shall make Jantzen’s standard assumptions as in Section 6.3 of [11]. In other words, we assume (1) 
that G has simply-connected derived subgroup, (2) that p is good for G, and (3) that there exists a non-
degenerate G-invariant bilinear form on g. Recall here that a prime p being good for G means that it is not
bad for any irreducible component of R, i.e. p > 2 if R has a component of type Bn, Cn, or Dn, p > 3 if R
has a component of type E6, E7, F4, or G2, and p > 5 if R has a component of type E8. Under Jantzen’s 
assumptions, we may assume in studying the representation theory of Uχ(g) that χ is nilpotent; in fact, 
that χ(b) = 0. However, we will go further and assume throughout this paper that χ is in standard Levi 
form, i.e., that χ(b) = 0 and that there exists a subset I ⊆ Π such that for α ∈ R+ the map χ is defined by

χ(e−α) =
{

1 if α ∈ I,

0 if α /∈ I.

In this case, ZI is a subgroup of the character group X, and the quotient group X/ZI can be equipped 
with a partial ordering such that:

λ + ZI ≥ μ + ZI if and only if λ− μ + ZI =
n∑

miαi + ZI for some m1, . . . ,mn ≥ 0.

i=1
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3. The category CA

3.1. Definition of algebras

Since g is a Lie algebra over K, we may of course define the universal enveloping algebra U(g) as

U(g) = T (g)
〈x⊗ y − y ⊗ x− [x, y] |x, y ∈ g〉 ,

where T (g) is the tensor algebra of g. Given χ ∈ g∗, the reduced enveloping algebra of g is defined as

Uχ(g) = U(g)
〈xp − x[p] − χ(x)p |x ∈ g〉 .

When working over the field K, the reduced enveloping algebras are key objects of study in the representation 
theory of g. When working instead with a general commutative algebra A, however, we will need to also 
consider an algebra lying between U(g) and Uχ(g), which we will call Uχ. This is defined as

Uχ := U(g)/〈epα − χ(eα)p |α ∈ R〉.

In particular, Uχ has a K-basis consisting of elements of the form

ear

−βr
· · · ea1

−β1
hb1

1 · · ·hbd
d ec1β1

· · · ecrβr

with 0 ≤ ai, ci < p and bi ≥ 0. We also need notation for certain subalgebras of Uχ. Specifically, we set

U+ := Uχ(n+) = U0(n+) ⊆ Uχ,

U− := Uχ(n−) ⊆ Uχ,

and

U0 := U(h) ⊆ Uχ.

Recalling that χ is in standard Levi form with associated subset I of simple roots, we furthermore define 
U I to be the subalgebra of Uχ generated by h and the root vectors eα for α ∈ R ∩ ZI. Going forward, we 
will sometimes write RI := R∩ZI and R+

I = R+ ∩ZI. If we write gI for the Lie subalgebra of g generated 
by these elements, then we may also describe U I as

U I = U(gI)
〈epα − χ(eα)p |α ∈ RI〉

.

If we now write u+ for the Lie subalgebra of g generated by the root vectors eα for α ∈ R+ \ZI, and u− for 
the analogous Lie subalgebra for the negative roots, we get that g = u−⊕gI ⊕u+. We may then additionally 
define the subalgebras

U+
I := Uχ(u+) = U0(u+) ⊆ Uχ

and

U−
I := Uχ(u−) = U0(u−) ⊆ Uχ.
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Observe that, as K-vector spaces,

Uχ = U− ⊗ U0 ⊗ U+ = U−
I ⊗ U I ⊗ U+

I .

Now, it is straightforward to see that Uχ may be equipped with an X/ZI-grading in the following way, 
where we write (Uχ)λ+ZI for the λ + ZI-graded part of Uχ:

eα ∈ (Uχ)α+ZI for all α ∈ R; and h ⊆ (Uχ)0+ZI .

The commutative Lie algebra h then acts on each (Uχ)λ+ZI , which means that each (Uχ)λ+ZI decomposes 
into weight spaces for this action. In particular, we have a decomposition into K-subspaces

(Uχ)λ+ZI =
⊕

dμ∈h
∗

μ∈λ+ZI+pX

(Uχ)dμλ+ZI ,

where h ∈ h acts on (Uχ)dμλ+ZI as multiplication by dμ(h). We then have the following lemma (cf. Lemma 
1.4 in [3]).

Lemma 3.1. There exists a group homomorphism X → AutK−alg(U0), μ �→ μ̃, with the property that

su = uμ̃(s)

for all s ∈ U0, λ ∈ X, μ ∈ λ + ZI + pX, and u ∈ (Uχ)dμλ+ZI .

Proof. This follows as in Lemma 1.4 in [3]. Namely, for μ ∈ X we define μ̃ : U0 → U0 by setting μ̃(h) =
h + dμ(h) for each h ∈ h, and extending in the natural way.

3.2. Definition of the category CA

Let A be a commutative Noetherian algebra over U0 with structure map π : U0 → A. For example, we 
could take A = K with π(h) = 0 for all h ∈ h.

We define the category CA in the following way. The objects of CA are Uχ ⊗ A-modules M which, as 
K-vector spaces, decompose as

M =
⊕

λ+ZI∈X/ZI

Mλ+ZI

for some subspaces Mλ+ZI , subject to some additional properties. In general, we treat a Uχ ⊗A-module as 
being a left Uχ-module and a right A-module, so that (u ⊗ a)m = uma for u ∈ Uχ, m ∈ M and a ∈ A. The 
defining conditions which objects of CA must satisfy are the following:

(A) The A-action preserves the X/ZI-grading, i.e. Mλ+ZIA ⊆ Mλ+ZI for all λ + ZI ∈ X/ZI.
(B) There are only finitely many λ + ZI ∈ X/ZI with Mλ+ZI �= 0, and each Mλ+ZI is finitely-generated 

as an A-module.
(C) For any σ + ZI, λ + ZI ∈ X/ZI, we have (Uχ)σ+ZIMλ+ZI ⊆ Mσ+λ+ZI .
(D) For each λ + ZI ∈ X/ZI there is a decomposition

Mλ+ZI =
⊕

dμ∈h
∗

Mdμ
λ+ZI
μ∈λ+ZI+pX
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with the property that

sm = mπ(μ̃(s))

for each s ∈ U0, μ ∈ λ + ZI + pX, and m ∈ Mdμ
λ+ZI . Furthermore, if α ∈ R and m ∈ Mdμ

λ+ZI then 

eαm ∈ M
d(μ+α)
λ+α+ZI , and ma ∈ Mdμ

λ+ZI for all a ∈ A.

A morphism M → N in CA is then a homomorphism of Uχ ⊗A-modules which sends Mdμ
λ+ZI to Ndμ

λ+ZI for 
each λ + ZI ∈ X/ZI and μ ∈ λ + ZI + pX.

Let us make a couple of observations about condition (D). First, we note that, by construction, μ̃(s) =
μ̃ + pτ(s) for any μ, τ ∈ X and s ∈ U0, and so we indeed only care about dμ rather than μ itself in the 
direct sum. Second, the assumption that eαMdμ

λ+ZI ⊆ M
d(μ+α)
λ+α+ZI , for each α ∈ R, λ + ZI ∈ X/ZI and 

μ ∈ λ + ZI + pX, is not strictly necessary, as it will follow from the other conditions once we observe that

Mdμ
λ+ZI = {m ∈ Mλ+ZI |hm = mπ(μ̃(h)) for all h ∈ h}.

For this latter equality to hold, it is key to note that, for μ, σ ∈ λ + ZI + pX and h ∈ h, we have 
μ̃(h) − σ̃(h) = h + dμ(h) − h − dσ(h) = d(μ − σ)(h) ∈ K. Finally, as a notational matter, we shall call the 
decomposition in condition (D) a (D)-decomposition when it helps make things clearer.

At times, it will be useful to think about CA in a different way. We observe that Uχ is X/pZI-graded, 
with (Uχ)λ+pZI = (Uχ)dλλ+ZI for each λ + pZI ∈ X/pZI. That this is indeed a grading can be checked 
directly, but also may be seen using a similar argument to that used in the proof of Lemma 3.2. We may 
then define C̃A to be the category whose objects are Uχ ⊗A-modules M with K-decompositions

M =
⊕

λ+pZI∈X/pZI

Mλ+pZI

for some K-subspaces Mλ+pZI , subject to the following properties (where, as above, we treat a Uχ⊗A-action 
as both a left Uχ-action and a right A-action):

(A′) The A-action preserves the X/pZI-grading, i.e. Mλ+pZIA ⊆ Mλ+pZI for each λ + pZI ∈ X/pZI.
(B′) There are only finitely many λ +pZI ∈ X/pZI with Mλ+pZI �= 0, and each Mλ+pZI is finitely-generated 

as an A-module.
(C′) For any σ + pZI, λ + pZI ∈ X/pZI, we have (Uχ)σ+pZIMλ+pZI ⊆ Mσ+λ+pZI .
(D′) We have that

sm = mπ(μ̃(s))

for each s ∈ U0, μ ∈ λ + pZI, and m ∈ Mμ+pZI .

In this category, morphisms are Uχ ⊗A-morphisms which preserve the grading.

Lemma 3.2. There is an equivalence of categories between CA and C̃A.

Proof. Let Φ : CA → C̃A be the identity map on objects (as Uχ ⊗ A-modules), and let M ∈ CA. We want 
to equip Φ(M) with an X/pZI-grading.

Let λ +ZI ∈ X/ZI and μ ∈ λ +ZI +pX. Then there exists τ ∈ X and σ ∈ ZI such that μ = λ +σ+pτ . 
Therefore λ +ZI = μ − pτ +ZI and d(μ − pτ) = dμ, and thus Mdμ

λ+ZI = M
d(μ−pτ)
μ−pτ+ZI . This means that each 

Mdμ can be written as Mdγ for some γ ∈ X. Furthermore, if γ + ZI = γ′ + ZI and dγ = d(γ′), then 
λ+ZI γ+ZI
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γ − γ′ ∈ ZI ∩ pX. Since we make Jantzen’s assumptions on g and p, we have ZI ∩ pX = pZI (see Section 
11.2 in [11]).

We may hence equip Φ(M) with an X/pZI-grading by setting Φ(M)λ+pZI = Mdλ
λ+ZI . We have Φ(M) =⊕

λ+pZI Φ(M)λ+pZI since

M =
⊕

λ+ZI∈X/ZI

⊕
dμ∈h

∗

μ∈λ+ZI+pX

Mdμ
λ+ZI .

This makes Φ(M) into an X/pZI graded Uχ-module using conditions (C) and (D). The object Φ(M) satisfies 
condition (A′) because of the last clause of condition (D), satisfies condition (B′) because pZI has finite 
index in ZI and because A is Noetherian (so A-submodules of Mλ+ZI are finitely generated), and satisfies 
condition (D′) by construction. So Φ(M) ∈ C̃A. It is then easy to see that Φ sends morphisms to morphisms, 
and so defines a functor CA → C̃A.

On the other hand, let Ψ : C̃A → CA be the identity map on objects (as Uχ ⊗ A-modules), and let 
N ∈ C̃A. We wish to define the A-submodules Ψ(N)λ+ZI and Ψ(N)dμλ+ZI .

Set Ψ(N)λ+ZI =
⊕

τ+pZI⊂λ+ZI Nτ+pZI . This clearly gives Ψ(N) an X/ZI-grading as a Uχ-module, so 
Ψ(N) satisfies condition (C). It clearly also satisfies condition (A) by condition (A′) and condition (B) by 
condition (B′). For condition (D′), let λ +ZI ∈ X/ZI and μ ∈ λ +ZI + pX, and set Ψ(N)dμλ+ZI := Nγ+pZI , 
where γ + pZI is the unique element of X/pZI with γ + ZI = λ + ZI and γ + pX = μ + pX. This exists 
by above. It is clear that

Ψ(N)λ+ZI =
⊕

dμ∈h
∗

μ∈λ+ZI+pX

Ψ(N)dμλ+ZI

since, if μ +pZI ⊂ λ +ZI, we have Nμ+pZI = Ψ(N)dμμ+ZI and if μ ∈ λ +ZI+pX we have Ψ(N)dμλ+ZI = Mγ+pZI

for some γ + pZI ∈ X/pZI with γ + pZI ⊆ λ +ZI. The remaining parts of condition (D) follow easily from 
conditions (D′) and (A′). Clearly Ψ sends morphisms to morphisms, and thus defines a functor C̃A → CA.

All that remains is to see that Ψ and Φ are inverse equivalences of categories. This follows since 
Φ(Ψ(N))λ+pZI = Ψ(N)dλλ+ZI = Nλ+pZI and Ψ(Φ(M))dμλ+ZI = Φ(M)γ+pZI = Mdγ

γ+ZI for γ + pZI ∈ X/pZI

such that γ + ZI = λ + ZI and dγ = dμ.

Lemma 3.3. The category CA has kernels, cokernels and images.

Proof. This is easy to see in C̃A, using the fact that A is Noetherian.

It is clear from the definition of C̃A that if I = ∅ (i.e. if χ = 0) then C̃A is precisely the category called 
CA in [3]. The same observation can be made with a tiny bit more work for the category we call CA.

From now on, while we principally work in the category CA, we occasionally shift to the category C̃A

without comment. In particular, the equivalence of these categories means that instead of defining, say, 
Mdμ

λ+ZI for each λ +ZI ∈ X/ZI and μ ∈ λ +ZI+pX, it suffices to define Mλ+pZI for each λ +pZI ∈ X/pZI.

3.3. Categories defined over subalgebras

Let us write C ′
A for the category with the same definition as CA but where the objects are U0U+ ⊗ A-

modules rather that Uχ ⊗ A-modules. Objects in this category are X/ZI-graded by definition. However, 
since χ(b) = 0, the algebra U0U+ is also X-graded. These gradings are related by

(U0U+)λ+ZI =
⊕

(U0U+)μ.

μ∈λ+ZI
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We may hence define by Ĉ ′
A the category of X-graded U0U+ ⊗A-modules M which satisfy the following:

(Â) The A-action preserves the X-grading, i.e. MλA ⊆ Mλ for each λ ∈ X.
(B̂) There are only finitely many λ ∈ X with Mλ �= 0, and each Mλ is finitely-generated as an A-module.
(Ĉ) For any σ, λ ∈ X, we have (U0U+)σMλ ⊆ Mσ+λ.
(D̂) For each μ ∈ X, m ∈ Mμ, and s ∈ U0, we have sm = mπ(μ̃(s)). Here, μ̃ is as in Lemma 3.1.

Morphisms are homomorphisms of U0U+⊗A-modules which preserve the grading. In particular, the category 
Ĉ ′
A is precisely the category which is called C ′

A in [3].

Proposition 3.4. There exists a functor ΥA : Ĉ ′
A → C ′

A.

Proof. We define ΥA : Ĉ ′
A → C ′

A as follows. Given M ∈ Ĉ ′
A, we set ΥA(M) = M as a U0U+ ⊗ A-module. 

We need to equip ΥA(M) with an X/ZI-grading, and define the subspaces ΥA(M)dμλ+ZI for λ +ZI ∈ X/ZI

and μ ∈ λ + ZI + pX. We do that as follows:

ΥA(M)λ+ZI :=
⊕

σ∈λ+ZI

Mσ.

ΥA(M)dμλ+ZI :=
⊕

σ∈λ+ZI
dσ=dμ

Mσ.

In order to check that ΥA(M) ∈ C ′
A, we need to check conditions (A), (B), (C) and (D).

Condition (A): For λ + ZI ∈ X/ZI, we have

ΥA(M)λ+ZIA =
( ⊕

σ∈λ+ZI

Mσ

)
A ⊆

⊕
σ∈λ+ZI

(MσA) ⊆
⊕

σ∈λ+ZI

Mσ = ΥA(M)λ+ZI .

Condition (B): The set of λ +ZI ∈ X/ZI such that ΥA(M)λ+ZI �= 0 is the set of λ +ZI such that there 
exists σ ∈ λ + ZI with Mσ �= 0. Since there are only finitely many such σ, this set is finite. Furthermore, 
since each Mσ is finitely-generated over A and there are only finitely many σ ∈ λ + ZI with Mσ �= 0, we 
see that ΥA(M) is finitely-generated over A.

Condition (C): Since (U0U+)λ+ZI =
⊕

ν∈λ+ZI(U0U+)ν we have

(U0U+)σ+ZIΥA(M)λ+ZI ⊆
∑

ε∈σ+ZI
ν∈λ+ZI

(U0U+)εMν ⊆
∑

ε∈σ+ZI
ν∈λ+ZI

Mε+ν ⊆
∑

τ∈σ+λ+ZI

Mτ = ΥA(M)σ+λ+ZI .

The last inclusion follows because if ε ∈ σ + ZI and ν ∈ λ + ZI then ε + ν ∈ σ + λ + ZI.
Condition (D): First, we need to see that for λ + ZI ∈ X/ZI we have,

ΥA(M)λ+ZI =
⊕

dμ∈h
∗

μ∈λ+ZI+pX

ΥA(M)dμλ+ZI .

The left-hand side is equal to

ΥA(M)λ+ZI =
⊕

μ∈λ+ZI

Mμ,

while the right-hand side is equal to
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⊕
dμ∈h

∗

μ∈λ+ZI+pX

ΥA(M)dμλ+ZI =
⊕

dμ∈h
∗

μ∈λ+ZI+pX

⊕
σ∈λ+ZI
dσ=dμ

Mσ.

Equality will follow once we note that

λ + ZI = {σ ∈ λ + ZI | dσ = dμ for someμ ∈ λ + ZI + pX},

which is easy to see. Furthermore, the right-hand side is indeed a direct sum since we index the summands 
by elements of h∗, not of X.

Now, for λ + ZI ∈ X/ZI and μ ∈ λ + ZI + pX, suppose m ∈ ΥA(M)dμλ+ZI and so

m =
∑

σ∈λ+ZI
dσ=dμ

mσ

for mσ ∈ Mσ. Let s ∈ U0. Then we have

sm =
∑

σ∈λ+ZI
dσ=dμ

smσ =
∑

σ∈λ+ZI
dσ=dμ

(mσπ(σ̃(s))).

Note that σ̃ = μ̃, since μ̃(h) = h + dμ(h) = h + dσ(h) = σ̃(h) for all h ∈ h. Hence, we get that

sm =
∑

σ∈λ+ZI
dσ=dμ

(mσπ(μ̃(s))) =

⎛⎜⎜⎝ ∑
μ∈λ+ZI
dσ=dμ

mσ

⎞⎟⎟⎠π(μ̃(s)) = mπ(μ̃(s)).

We furthermore have that, for α ∈ R,

eαm =
∑

σ∈λ+ZI
dσ=dμ

eαmσ ∈
⊕

σ∈λ+ZI
dσ=dμ

Mσ+α =
⊕

τ∈λ+α+ZI
dτ=d(μ+α)

Mτ = ΥA(M)d(μ+α)
λ+α+ZI .

Finally, it is easy to see that ma ∈ ΥA(M)dμλ+ZI for all a ∈ A. Hence, condition (D) holds.
In conclusion, we indeed have that ΥA(M) ∈ C ′

A. Furthermore, it is clear from the construction that ΥA

sends homomorphisms to homomorphisms.

We may similarly define C ′′
A to be the category of U0 ⊗A-modules with an X/ZI-grading, which satisfy 

conditions appropriately analogous to conditions (A), (B), (C) and (D), and also define Ĉ ′′
A to be the 

corresponding category with X-gradings instead (so that Ĉ ′′
A is the category that was called C ′′

A in [3]). 
Once again, there is a well-defined functor ΥA : Ĉ ′′

A → C ′′
A defined in the same way as above.

Proposition 3.5. There is an equivalence of categories between C ′′
A and the category of finitely-generated 

X/pZI-graded A-modules.

Proof. We saw in Lemma 3.2 that CA and C̃A are equivalent categories. A similar argument shows that 
C ′′
A and C̃ ′′

A, where the latter is defined analogously to C̃A for U0 ⊗ A-modules, are equivalent. That the 

forgetful functor from C̃ ′′
A to the category of finitely-generated X/pZI-graded A-modules is an equivalence 

of categories then follows from a similar argument to that of Lemma 2.5 in [3].

Corollary 3.6. Modules in C ′′
A are projective if and only if they are projective as A-modules. Hence, C ′′

A has 
enough projectives.



M. Westaway / Journal of Pure and Applied Algebra 226 (2022) 107033 11
4. Induction

4.1. Induction along U0

Induction is one of the key tools in representation theory. Since we have defined a number of categories 
at this point, let us use induction to see how they all fit together.

For each M ∈ C ′′
A, we define

Φ′
A(M) := U0U+ ⊗U0 M.

We let u ∈ U0U+ act on the first factor via left multiplication, while a ∈ A acts on the right as it does on 
M . We then want to show that Φ′

A(M) lies in C ′
A. For λ + ZI ∈ X/ZI we define

(U0U+ ⊗U0 M)λ+ZI =
⊕

ν+ZI∈X/ZI

(U0U+)ν+ZI ⊗U0 Mλ−ν+ZI ,

and we define, for μ ∈ λ + ZI + pX,

(U0U+ ⊗U0 M)dμλ+ZI =
⊕

ν+ZI∈X/ZI

⊕
dσ∈h

∗

σ∈ν+ZI+pX

(U0U+)dσν+ZI ⊗U0 M
d(μ−σ)
λ−ν+ZI .

Since U0 preserves each Mdμ
λ+ZI and (U0U+)dσν+ZI , the tensor products are well-defined. Furthermore, σ ∈

ν + ZI + pX implies λ − σ ∈ λ − ν + ZI + pX, so the right-hand side of the tensor product in the second 
decomposition makes sense. The distributivity of direct sums over tensor products shows that we indeed 
have direct sum decompositions of the relevant spaces. It is easy to see that conditions (A), (B) and (C) hold 
for Φ′

A(M). For condition (D), we let s ∈ U0, u ∈ (U0U+)dμλ+ZI , and m ∈ Mdσ
ν+ZI (where μ ∈ λ + ZI + pX

and σ ∈ ν + ZI + pX). Then

s(u⊗m) = (su) ⊗m = (uμ̃(s)) ⊗m = u⊗ (μ̃(s)m) = u⊗ (mπ(σ̃μ̃(s))) = (u⊗m)π( ˜(μ + σ)(s)).

Checking easily that Φ′
A is compatible with morphisms, we hence have obtained a functor Φ′

A : C ′′
A → C ′

A. 
We may similarly define a functor

ΦA : C ′′
A → CA, ΦA(M) = Uχ ⊗U0 M.

Lemma 4.1. The functors ΦA and Φ′
A are exact and are left adjoint to the corresponding forgetful functors. 

Therefore, ΦA and Φ′
A both map projective modules to projective modules.

Proof. This can easily be adapted from the proof of Lemma 2.7 in [3], since U0U+ is free over U0.

Lemma 4.2. The categories CA and C ′
A have enough projectives.

Proof. We have already seen in Lemma 3.6 that C ′′
A has enough projectives. The proof then works as in 

Lemma 2.7 in [3].

4.2. Baby Verma modules

There is another type of induction functor in this area which is key in the modular representation theory 
of Lie algebras and which we need in order to define baby Verma modules. We aim to define the induction 
functor ZA,χ : C ′

A → CA by sending M ∈ C ′
A to
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ZA,χ(M) := Uχ ⊗U0U+ M.

Observe, as in Section 2.10 of [3], that we have as K-vector spaces that

ZA,χ(M) ∼= U− ⊗K M.

We therefore define, for λ + ZI ∈ X/ZI,

ZA,χ(M)λ+ZI =
⊕

ν+ZI∈X/ZI

(U−)ν+ZI ⊗Mλ−ν+ZI

and, for μ ∈ λ + ZI + pX,

ZA,χ(M)dμλ+ZI =
⊕

ν+ZI∈X/ZI

⊕
dσ∈h

∗

σ∈ν+ZI+pX

(U−)dσν+ZI ⊗M
d(μ−σ)
λ−ν+ZI .

Since the U0U+-action on M is compatible with the grading, by conditions (C) and (D), the natural 
surjection U ⊗M → U ⊗U0U+ M induces a surjection⊕

ν+ZI∈X/ZI

(Uχ)ν+ZI ⊗Mλ−ν+ZI � ZA,χ(M)λ+ZI

and a surjection ⊕
ν+ZI∈X/ZI

⊕
dσ∈h

∗

σ∈ν+ZI+pX

(Uχ)dσν+ZI ⊗M
d(μ−σ)
λ−ν+ZI � ZA,χ(M)dμλ+ZI .

This implies that conditions (C) and (D) are satisfied for ZA,χ(M), and so we indeed have ZA,χ(M) ∈ CA. 
It is clear that this process sends morphisms to morphisms, and thus we have a functor C ′

A → CA. The 
following lemma can be proved in the standard way.

Lemma 4.3. Let M ∈ C ′
A and N ∈ CA. Then

HomCA
(ZA,χ(M), N) ∼= HomC ′

A
(M,N).

The functor ZA,χ goes from C ′
A to CA, but as in the usual representation theory of Uχ(g) we shall be 

mostly interested in applying it to modules most naturally thought of as lying in C ′′
A. We fix this incongruity 

by constructing a more-or-less trivial functor C ′′
A → C ′

A in the following way.
There is a natural algebra surjection U0U+ � U0, and so we may view a U0⊗A-module M as a U0U+⊗A-

module via this surjection. We want to show that this procedure sends modules in C ′′
A to modules in C ′

A. 
If M ∈ C ′′

A then, as a K-module, M is clearly still X/ZI-graded when viewed as a U0U+ ⊗A-module, and 
conditions (A) and (B) follow from those conditions in C ′′

A. Furthermore, if μ + ZI �= 0, then (U0U+)μ+ZI

is in the kernel of the surjection U0U+ � U0, so condition (C) is satisfied. Condition (D) follows easily, 
and so, in sum, we have the following:

Proposition 4.4. There exists a fully-faithful functor C ′′
A → C ′

A sending M to M .

For each λ ∈ X, we define an object Aλ ∈ C ′′
A as follows: As a right A-module, it is just the algebra A

with the usual right multiplication. We set (Aλ)σ+ZI to be A if λ ∈ σ + ZI and zero otherwise, and we set 
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(Aλ)dτλ+ZI to be A if dτ = dλ and zero otherwise. We then define sa = aπ(μ̃(s)) for a ∈ Aλ and s ∈ U0. 
Hence, Aλ ∈ C ′′

A and so we may define the baby Verma module

ZA,χ(λ) := ZA,χ(Aλ) ∈ CA.

Similarly, we define ΦA(λ) := ΦA(Aλ) and Φ′
A(λ) := Φ′

A(Aλ). Baby Verma modules have the particular 
strength that it is relatively easy to see when there exists a map from a baby Verma module to another 
module, as we now see.

Let M ∈ CA. As in Lemma 4.3, for λ ∈ X we have

HomCA
(ZA,χ(λ),M) ∼= HomC ′

A
(Aλ,M).

It is easy to see that

HomC ′
A
(Aλ,M) ∼= (Mdλ

λ+ZI)n
+
,

where

(Mdλ
λ+ZI)n

+
:= {m ∈ Mdλ

λ+ZI | eαm = 0 for all α ∈ R+}.

In other words, there exists a non-zero homomorphism ZA,χ(λ) → M in CA if and only if there exists a 
non-zero m ∈ Mdλ

λ+ZI with eαm = 0 for all α ∈ R+.

Proposition 4.5. Let M ∈ CA. Then there exists λ ∈ X such that there is a homomorphism ZA,χ(λ) → M

in CA.

Proof. Let m ∈ M with eαm = 0 for all α ∈ R+. Then m can be written m =
∑

τ+pZI∈X/pZI m
dτ
τ+ZI with 

mdτ
τ+ZI ∈ Mdτ

τ+ZI . So, 0 = eαm =
∑

τ+pZI∈X/pZI eαm
dτ
τ+ZI with eαmdτ

τ+ZI ∈ M
d(τ+α)
τ+α+ZI for all τ + pZI ∈

X/ZI. Since τ + α + pZI = σ + α + pZI implies τ + pZI = σ + pZI, we get that eαm = 0 implies that 
eαm

dτ
τ+ZI = 0 for all τ +pZI. So to get the result, it suffices to show that there exists m ∈ M with eαm = 0

for all α ∈ R+. This fact follows from an inductive argument as in [10, B.3].

4.3. Z-filtrations

Let us say that M ∈ CA has a Z-filtration if it has a filtration of submodules

0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mr−1 ⊂ Mr = M

such that each Mi/Mi−1 ∼= ZA,χ(λi) for some λi ∈ X. In order to show that certain modules have Z-
filtrations, it will be useful to see how our induction functors interact with the functor ΥA defined in 
Proposition 3.4. To do this, recall the functor which we will call Φ̂′

A but was denoted Φ′
A in [3], which is a 

functor Ĉ ′′
A → Ĉ ′

A (using our notation for the categories) defined analogously to our functor Φ′
A : C ′′

A → C ′
A.

Proposition 4.6. The following diagram commutes:

Ĉ ′′
A

ΥA

Φ̂′
A

C ′′
A

Φ′
A

Ĉ ′
A

ΥA

C ′
A.
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Proof. The diagram clearly commutes as a diagram of ungraded modules (since the maps on the left and 
the right are the same, and the horizontal arrows are identities, for ungraded modules). So all that must 
be shown is that the decompositions correspond. In other words, we must show for M ∈ Ĉ ′′

A, and for each 
λ + ZI ∈ X/ZI and μ ∈ λ + ZI + pX, that

Φ′
A(ΥA(M))λ+ZI = ΥA(Φ̂′

A(M))λ+ZI

and

Φ′
A(ΥA(M))dμλ+ZI = ΥA(Φ̂′

A(M))dμλ+ZI .

We may see that

Φ′
A(ΥA(M))λ+ZI =

⊕
ν+ZI∈X/ZI

⊕
σ∈ν+ZI

γ∈λ−ν+ZI

(U0U+)σ ⊗U0 Mγ

and

ΥA(Φ̂′
A(M))λ+ZI =

⊕
τ∈λ+ZI

⊕
ν∈X

(U0U+)ν ⊗U0 Mτ−ν .

Then we must show that

{(σ, γ) ∈ (ν + ZI) × (λ− ν + ZI) for some ν + ZI ∈ X/ZI} = {(ν, τ − ν) ∈ X ×X for some τ ∈ λ + ZI}.

If (ν, τ − ν) is in the right-hand side, so ν ∈ X and τ ∈ λ +ZI, then (ν, τ − ν) ∈ (ν +ZI) × (λ − ν +ZI), 
and so (ν, τ − ν) also lies in the left-hand side. Conversely, if (σ, γ) is in the left-hand side, so σ ∈ ν + ZI

and γ ∈ λ − ν + ZI for some ν + ZI ∈ X/ZI, then (σ, γ) = (σ, (γ + σ) − σ) where γ + σ ∈ λ + ZI. Hence, 
(σ, γ) lies in the right-hand side, and we have equality.

We may also see that

Φ′
A(ΥA(M))dμλ+ZI =

⊕
ν+ZI∈X/ZI

⊕
dσ∈h

∗

σ∈ν+ZI+pX

⊕
τ∈ν+ZI
dτ=dσ

⊕
ε∈λ−ν+ZI
dε=d(μ−σ)

(U0U+)τ ⊗U0 Mε

and

ΥA(Φ̂′
A(M))dμλ+ZI =

⊕
σ∈λ+ZI
dσ=dμ

⊕
τ∈X

(U0U+)τ ⊗U0 Mσ−τ .

Now, set

A1 =
{

(τ, ε) ∈ X ×X

∣∣∣∣∣ ∃ν + ZI ∈ X/ZI and dσ ∈ h∗ with σ ∈ ν + ZI + pX

such that τ ∈ ν + ZI, dτ = dσ, ε ∈ λ− ν + ZI, dε = d(μ− σ)

}

and

A2 = {(τ, σ − τ) ∈ X ×X | σ ∈ λ + ZI and dσ = dμ} .

Then we must show that A1 = A2. If (τ, ε) ∈ A1 then (τ, ε) ∈ A2 since ε = (ε +τ) −τ , where ε +τ ∈ λ +ZI

and d(ε + τ) = dμ. Conversely, if (τ, σ − τ) ∈ A2, so σ ∈ λ + ZI and dσ = dμ, then (τ, σ − τ) ∈ A2 since 
τ ∈ τ + ZI, dτ = dτ , σ − τ ∈ λ − τ + ZI and d(σ − τ) = d(λ − τ). Thus, A1 = A2 as required.
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Corollary 4.7. Let M ∈ Ĉ ′
A such that Mσ is free over A for each σ ∈ X. Then ΥA(M) has a filtration with 

factors Aλ for λ ∈ X. Furthermore, ZA,χ(ΥA(M)) has a Z-filtration.

Proof. We know that each M ∈ Ĉ ′
A with the given property has a filtration with sections Aλ for λ ∈ X

(see Lemma 2.12 in [3]). It is clear that ΥA(Aλ) = Aλ (abusing notation to denote by Aλ the analogous 
object in each category), and it is straightforward to see that ΥA is exact. Hence, ΥA(M) has the desired 
filtration. Since ZA,χ is also exact, ZA,χ(ΥA(M)) has a Z-filtration.

Corollary 4.8. Let M ∈ Ĉ ′′
A such that Mλ is free over A for each λ ∈ X. Then ΦA(ΥA(M)) has a Z-filtration. 

In particular, ΦA(λ) has a Z-filtration for each λ ∈ X.

Proof. This follows from the fact that ΦA(ΥA(M)) ∼= ZA,χ(Φ′
A(ΥA(M))) = ZA,χ(ΥA(Φ̂′

A(M))), using 
Proposition 4.6 for the last equality.

Corollary 4.9. Let λ ∈ X. There exists a projective module Q ∈ CA which surjects onto ZA,χ(λ), and has a 
Z-filtration. Specifically, Q = ΦA(λ).

Proof. There is, in Ĉ ′
A, a surjection Φ̂′

A(λ) → Aλ. This induces a surjection ΥA(Φ̂′
A(λ)) → ΥA(Aλ), i.e., a 

surjection Φ′
A(λ) → Aλ. This, in turn, induces a surjection ΦA(λ) = ZA,χ(Φ′

A(λ)) → ZA,χ(λ). The object 
ΦA(λ) has a Z-filtration by Corollary 4.8. Furthermore, ΦA(λ) is projective since ΦA maps projectives to 
projectives by Lemma 4.1 and Aλ is projective in C ′′

A by Corollary 3.6.

This in fact holds more generally:

Theorem 4.10. Let M ∈ CA. There exists a projective module Q ∈ CA which surjects onto M , and which 
has a Z-filtration.

Proof. We may restrict M to an element of C ′′
A. Since C ′′

A has enough projectives, we can find a projective 
P ∈ C ′′

A with P � M . Since being projective in C ′′
A is equivalent to each P dμ

λ+ZI being projective as an 

A-module, we may assume that each P dμ
λ+ZI is free over A (so P is free over A).

If P = ΥA(P̂ ) for some P̂ ∈ Ĉ ′′
A with each P̂λ free over A, then by Corollary 4.9 we have that ΦA(P ) has 

a Z-filtration. Since

HomCA
(ΦA(P ),M) ∼= HomC ′′

A
(P,M)

we would then get a map ΦA(P ) → M in CA, which would be surjective. Furthermore, as ΦA sends 
projectives to projectives, we may take Q = ΦA(P ) to get the result.

All that remains, therefore, is to find P̂ . The following lemma tells us that we can do this.

Lemma 4.11. Let M ∈ C ′′
A. Then there exists M̂ ∈ Ĉ ′′

A with ΥA(M̂) = M . Furthermore, if each Mdμ
λ+ZI is 

free over A then M̂ may be chosen with each M̂τ free over A.

Proof. We have already observed in Proposition 3.5 that C ′′
A is equivalent (via the forgetful functor) to 

the category G of finitely-generated X/pZI-graded A-modules, and Lemma 2.5 in [3] shows that Ĉ ′′
A is 

equivalent (also via the forgetful functor) to the category Ĝ of finitely-generated X-graded A-modules.
There is a natural morphism ΥA,G : Ĝ → G such that ΥA,G (M) = M as A-modules and such that 

ΥA,G (M)λ+pZI =
⊕

σ∈λ+pZI Mσ for each λ + pZI ∈ X/pZI. It is straightforward to see that ΥA and ΥA,G

are compatible with the equivalences of categories induced by the forgetful functors. Therefore, it is enough 
to show that, for each M ∈ G , there exists M̂ ∈ Ĝ with ΥA,G (M̂) = M .
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Define a map f : X/pZI → X which, for each λ + pZI ∈ X/pZI, picks a representative λ ∈ λ + pZI

(using the axiom of choice). Then, define M̂ ∈ Ĝ to be equal to M as an A-module, and to have X-grading

M̂σ =
{

Mσ+pZI if σ ∈ f(X/pZI),
0 if otherwise.

This clearly lies in Ĝ , and it is straightforward to see that ΥA,G (M̂) = M .
Finally, it is clear from the construction that if each Mλ+pZI is free over A then each M̂σ is free over A.

4.4. Induction from parabolic subcategories

The induction functors discussed so far are all analogous to functors defined in [3]. For χ non-zero, 
however, we may also define some new functors (which coincide with the previously discussed functors when 
I = ∅). In order to do this, we start by defining categories from which we can induce.

Write C I
A for the category corresponding to CA for the Lie algebra gI with χI = χ|gI

(i.e. the category 
of U I ⊗ A-modules with an X/ZI-grading and the relevant conditions). Similarly, we write C I,+

A for the 
category corresponding to CA for p = gI⊕u+ (i.e. the category of U IU+

I ⊗A-modules with an X/ZI-grading 
and the relevant conditions). Note that C I

A has enough projectives by the same argument as for CA.
Let M ∈ C I,+

A and define ΓA,χ : C I,+
A → CA by

ΓA,χ(M) = Uχ ⊗UIU+
I
M.

This is a Uχ-module via left multiplication and a right A-module via the A-action on M . We now want to 
see that ΓA,χ(M) lies in CA. For the X/ZI-grading, we note that as K-vector spaces, we have

Uχ
∼= U−

I ⊗ U IU+
I

and so

ΓA,χ(M) ∼= U−
I ⊗M.

We then define, for λ + ZI ∈ X/ZI,

ΓA,χ(M)λ+ZI =
⊕

ν+ZI∈X/ZI

(U−
I )ν+ZI ⊗Mλ−ν+ZI

and, for μ ∈ λ + ZI + pX, we set

ΓA,χ(M)dμλ+ZI =
⊕

ν+ZI∈X/ZI

⊕
dσ∈h

∗

σ∈ν+ZI+pX

(U−
I )dσν+ZI ⊗M

d(λ−σ)
λ−ν+ZI .

We can show that this indeed defines an object in CA by using an almost identical argument to the 
argument that ZA,χ send C ′

A to CA used in Subsection 4.2. Since ΓA,χ clearly sends morphisms to morphisms, 
it is a functor ΓA,χ : C I,+

A → CA.
For baby Verma modules, we saw that each M ∈ C ′′

A may be viewed as an object in C ′
A via the surjection 

U0U+ � U0. A similar argument shows that each M ∈ C I
A may be viewed as an object in C I,+

A , using 
the surjection U IU+

I � U I . This does indeed give an object of C I,+
A : conditions (A), (B) and (D) are 

obvious, and condition (C) follows from the fact that each (U IU+
I )λ+ZI with λ /∈ ZI lies in the kernel of 

the surjection.
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We may also define the functor ΦI,+
A : C I

A → C I,+
A by

ΦI,+
A (M) = U IU+

I ⊗UI M.

Similar to the above, one can show that ΦI,+
A (M) ∈ C I,+

A . Note that, unless I = ∅, we do not have that 
U I ⊆ (Uχ)d00+ZI . Therefore, the proof that ΦI,+

A is well-defined, and the definition of the gradings and 
(D)-decompositions, more closely resemble the analogous proofs and definitions for ΓA,χ than for Φ′

A.
Finally, we define the functor:

ΦI
A := ΓA,χ ◦ ΦI,+

A : C I
A → CA, M �→ Uχ ⊗UI M.

We may easily check the following:

Proposition 4.12. Let L ∈ C I
A, M ∈ C I,+

A and N ∈ CA. Then

HomCA
(ΓA,χ(M), N) ∼= HomC I,+

A
(M,N),

HomC I,+
A

(ΦI,+
A (L),M) ∼= HomC I

A
(L,M)

and

HomCA
(ΦI

A(L), N) ∼= HomC I
A
(L,N).

Corollary 4.13. The functors ΓA,χ, ΦI,+
A and ΦI

A are exact and map projectives to projectives. In particular, 
C I,+
A has enough projectives.

Given λ ∈ X, let us write ZA,I,χ(λ) ∈ C I
A for the baby Verma module in C I

A corresponding to λ. It is 
then easy to check that, viewing ZA,I,χ(λ) as an object of C I,+

A ,

ΓA,χ(ZA,I,χ(λ)) ∼= ZA,χ(λ) ∈ CA.

Furthermore, for any M ∈ C I
A with Mλ+ZI = M , one may straightforwardly check that

ΦI,+
A (M)λ+ZI

∼= M ∈ C I
A

and similarly, for any M ∈ C I,+
A with Mλ+ZI = M , we have

ΓA,χ(M)λ+ZI
∼= M ∈ C I,+

A .

The following lemma is a direct analogue of Proposition 2.9 in [3].

Lemma 4.14. Let M be a module in C I,+
A that is projective in C I

A. Then M has a projective resolution P•
in C I,+

A such that, for each N ∈ C I,+
A , there exists an integer r ≥ 0 with

HomC I,+
A

(Pi, N) = 0 for all i > r.

Proof. The proof of this lemma works in much the same way as the proof of Proposition 2.9 in [3]. We 
briefly summarise the key differences. We use a group homomorphism h : X/ZI → Z with h(α+ZI) > 0 for 
all α ∈ R+ \ZI. One needs to employ the functor ΦI,+

A instead of the functor denoted Φ′
A in [3]. Finally, one 
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has to use the fact that, regarded as a K-vector space, ΦI,+
A (M) is the direct sum of all (U+

I )μ+ZI ⊗Mλ+ZI , 
the fact that (U+

I )0+ZI = K and the fact that h(ν + ZI) > 0 for all other ν + ZI with (U+
I )ν+ZI �= 0.

To conclude this section, note that we may also define, analogously to C I,+
A , the category C I,−

A , which is 
the category of U−

I U I ⊗A-modules with an X/ZI-grading and the relevant conditions (which corresponds 
to p′ = u− ⊕ gI). We may then similarly define functors

Γ′
A,χ : C I,−

A → CA, M �→ Uχ ⊗U−
I UI M,

and

ΦI,−
A : C I

A → C I,−
A , M �→ U−

I U I ⊗UI M.

In particular, we also have ΦI
A = Γ′

A,χ ◦ ΦI,−
A . These also satisfy the Frobenius reciprocities discussed in 

Proposition 4.12. Furthermore, any M ∈ C I
A may be viewed as a module in C I,−

A by letting u− act trivially. 
This is permissible since χ(u−) = 0.

For most of this paper, we focus our attention on the category C I,+
A and the related functors defined 

earlier, rather than on C I,−
A and the functors just defined. Nonetheless, it will occasionally be useful to have 

this other category and these other functors as well. Everything we say going forward about the category 
C I,+
A and its associated functors will also apply for C I,−

A (suitably adjusted).

5. Miscellaneous

5.1. The category C I
A

We have been talking here about the category C I
A a fair amount, so let us understand it a little more. 

We observe that (U I)0+ZI = U I and (U I)λ+ZI = 0 if λ + ZI �= 0 + ZI.
Let M ∈ C I

A. Then, by definition, M =
⊕

λ+ZI∈X/ZI Mλ+ZI as A-modules. The observation about 
the graded structure of U I then clearly shows that each Mλ+ZI lies in C I

A, so the decomposition M =⊕
λ+ZI∈X/ZI Mλ+ZI is a decomposition in C I

A.
If we write C I

A(λ +ZI) for the full subcategory of objects M in C I
A with Mλ+ZI = M , then this observation 

can be rewritten as

C I
A =

⊕
λ+ZI

C I
A(λ + ZI).

Now, suppose that λ ∈ X and M is a U I ⊗A-module with a decomposition

M =
⊕

dμ∈h
∗

μ∈λ+ZI+pX

Mdμ

such that

sm = mπ(μ̃(s))

for each s ∈ U0, μ ∈ λ + ZI + pX and m ∈ Mdμ. Then M can be made into an object in C I
A(λ + ZI)

by placing it entirely in grade λ + ZI and setting Mdμ
λ+ZI = Mdμ. This works, in particular, for the baby 

Verma modules ZA,I,χ(dλ). (Note that we write ZA,I,χ(dλ) instead of ZA,I,χ(λ) here, since the ungraded 
U I ⊗A-module depends only on the derivative). Furthermore, since
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Mdμ = {m ∈ M |hm = mπ(μ̃(h)) for allh ∈ h},

any U I ⊗ A-module homomorphism M → N sends each Mdμ to Ndμ. Thus, we also get a morphism in 
C I
A(λ + ZI).
Conversely, if M ∈ CA(λ +ZI) then M is clearly a U I⊗A-module with a decomposition as above, setting 

Mdμ = Mdμ
λ+ZI . Furthermore, each morphism in C I

A(λ +ZI) clearly induces a U I⊗A-module homomorphism. 
The category C I

A(λ +ZI) is then precisely the category of U I ⊗A-modules with a decomposition as above.

5.2. Truncations

The following section should be compared with Chapter 3 of [3].
For each ν + ZI ∈ X/ZI, we define CA(≤ ν + ZI) to be the full subcategory of CA consisting of all 

M ∈ CA with the property that Mλ+ZI �= 0 only if λ +ZI ≤ ν +ZI. It is easy to see that CA(≤ ν +ZI) is 
closed under submodules, quotients, and extensions, and that it contains ZA,χ(λ) for each λ + ZI ∈ X/ZI

with λ + ZI ≤ ν + ZI.
Applying a similar argument to the one in Section 3.6 in [3], one can show that M/ 

⋂
j∈J Mj ∈ CA(≤

λ + ZI) for any collection of Mj ∈ CA with the property that M/Mj ∈ CA(≤ λ + ZI). We may therefore 
define, for each M ∈ CA, the submodule Oλ+ZIM to be the intersection of all submodules M ′ of M with 
the property that M/M ′ ∈ CA(≤ λ + ZI). Then M/Oλ+ZIM ∈ CA(≤ λ + ZI), and we will denote this 
object by Tλ+ZIM .

Suppose now that M ∈ CA, N ∈ CA(≤ λ + ZI) and that f : M → N is a morphism in CA. It follows 
that M/ ker(f) ∈ CA(≤ λ + ZI) and thus that Oλ+ZIM ⊆ ker(f). This implies that the map

Tλ+ZI : CA → CA(≤ λ + ZI)

is a functor, with the property that for all M ∈ CA and N ∈ CA(≤ λ + ZI) there is an isomorphism

HomCA(≤λ+ZI)(Tλ+ZIM,N) ∼= HomCA
(M,N).

In other words, Tλ+ZI is left adjoint to the (exact) inclusion functor CA(≤ λ +ZI) → CA. This proves the 
following lemma:

Lemma 5.1. Let M ∈ CA and λ + ZI ∈ X/ZI. If M is projective in CA then Tλ+ZIM is projective in 
CA(≤ λ + ZI).

We now want to talk about Z-filtrations. We will need the following lemma (cf. Lemma 2.14(a) in [3]):

Lemma 5.2. Let λ ∈ X. If Ext(ZA,χ(λ), M) �= 0 then λ + ZI ≤ μ + ZI for some μ + ZI ∈ X/ZI with 
Mdμ

μ+ZI �= 0.

Proof. Suppose λ + ZI � μ + ZI for all μ + ZI ∈ X/ZI with Mμ+ZI �= 0. Let

0 → M → N → ZA,χ(λ) → 0

be an extension of ZA,χ(λ) by M . Write vλ for the standard generator of ZA,χ(λ) and pick an element 
wλ ∈ N which maps to vλ. In particular, we may assume wλ ∈ Ndλ

λ+ZI .
For each α ∈ R+, eαwλ ∈ N

d(λ+α)
λ+α+ZI . If M

d(λ+α)
λ+α+ZI �= 0 then λ + ZI � λ + α + ZI, which clearly cannot 

happen (although, unlike the χ = 0 case, it can happen that λ + ZI = λ + α + ZI). Hence Md(λ+α) = 0. 
λ+α+ZI
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But, eαwλ is in the kernel of the map N → ZA,χ(λ) (as eαvλ = 0), which is precisely M . In particular, 
eαwλ ∈ M

d(λ+α)
λ+α+ZI = 0 and so eαwλ = 0.

There therefore exists wλ ∈ Ndλ
λ+ZI with eαw = 0 for all α ∈ R and wλ �→ vλ. Hence, the extension is 

split, so Ext(ZA,χ(λ), M) = 0.

Corollary 5.3. Let λ, μ ∈ X. If Ext(ZA,χ(λ), ZA,χ(μ)) �= 0 then λ + ZI ≤ μ + ZI.

This corollary in particular gives us the power to reorder somewhat the terms of a Z-filtration, as we 
now see. Suppose M ∈ CA has a Z-filtration

0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ · · ·Mn = M

with sections Mi/Mi−1 ∼= ZA,χ(λi) for λi ∈ X. Let us assume that there exist j < i with λi +ZI � λj +ZI. 
In particular, there exists k with λk+1 + ZI � λk + ZI. We then have a short exact sequence

0 → Mk

Mk−1
→ Mk+1

Mk−1
→ Mk+1

Mk
→ 0.

By the above lemma, we see that Ext(ZA,χ(λk+1), ZA,χ(λk)) = 0, and so the extension splits. We may 
therefore swap the order in which ZA,χ(λk) and ZA,χ(λk+1) appear in the filtration.

We obtain the following results, comparable to Lemma 2.14(c) and Lemma 3.7(b) in [3].

Proposition 5.4. Let M ∈ CA have a Z-filtration, with notation as above. Then M has a Z filtration with 
the property that j < i implies λj + ZI ≤ λi + ZI.

Proposition 5.5. Let M ∈ CA have a Z-filtration, with notation as above. Let λ +ZI ∈ X/ZI. Then M has a 
Z filtration with the property that there exists k such that λi+ZI � λ +ZI for all i ≤ k and λi+ZI ≤ λ +ZI

for all i > k.

Proposition 5.6. Let M ∈ CA have a Z-filtration. Then Tλ+ZIM has a Z-filtration.

Proof. We may assume, as in Proposition 5.5, that M has a Z-filtration with the property that there exists 
k such that λi + ZI � λ + ZI for all i ≤ k and λi + ZI ≤ λ + ZI for all i > k.

Under this assumption, we clearly have that M/Mk ∈ CA(≤ λ +ZI), so Oλ+ZIM ⊆ Mk. Conversely, for 
each N ∈ CA(≤ λ +ZI) and each μ +ZI ∈ X/ZI we get μ +ZI � λ +ZI only if HomCA

(ZA,χ(μ), N) = 0, 
since the standard generator of ZA,χ(μ) must map to an element of Ndμ

μ+ZI = 0. This particularly means 
that HomCA

(Mk, M/Oλ+ZIM) = 0 and so Mk ⊆ Oλ+ZIM .
Hence Mk = Oλ+ZIM . This easily shows that Tλ+ZIM = M/Oλ+ZIM = M/Mk has a Z-filtration.

5.3. Extension of scalars

Maintaining our usual notation for A, let A′ be an A-algebra. Clearly A′ is also a U0-algebra via the 
structure map π : U0 → A → A′. It will be important for us to understand how the categories CA and CA′

can be compared, which we do in this subsection. Much of this works the same way as in Section 3.1 of [3]. 
Similar to [3], we define the category GCA to be defined in the same way as the category CA, but where we 
replace condition (B) with condition (F):

(F) The set of all μ + ZI ∈ X/ZI with Mμ+ZI �= 0 is finite.
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In other words, we drop the requirement that each Mλ+ZI is finitely-generated over A.
We would like to define a restriction functor CA′ → CA. However, if A′ is not finitely-generated over 

A then restriction would clearly not preserve the finite-generation of the Mλ+ZI . Thus, in general, the 
restriction functor is a map G CA′ → G CA. However, if we assume A′ is finitely-generated over A then we 
indeed have a restriction map CA → CA′ .

Going in the other direction, we need an extension of scalars. Given M ∈ G CA we define M⊗AA′ ∈ G CA′

in the obvious way as a Uχ⊗A′-module, which we equip with grading given by (M⊗AA
′)λ+ZI = Mλ+ZI⊗AA

′

and (D)-decomposition given by (M ⊗A A′)dμλ+ZI = Mdμ
λ+ZI ⊗A A′. It is straightforward to check that these 

objects lie in G CA′ , and furthermore to check that M ⊗A A′ ∈ CA′ whenever M ∈ CA. So we may also 
discuss the extension of scalars functor CA → CA′ .

If M, N ∈ G CA then there exists an isomorphism

HomG CA
(M,N) ∼−→ HomG CA′ (M ⊗A A′, N).

So extension of scalars is left adjoint to the restriction functor. We may of course define similar maps for 
C ′
A, C ′′

A, C I
A and C I,+

A , with similar adjointness properties.
Given M ∈ C I

A, we see that there exists a canonical isomorphism

ΦI
A(M) ⊗A A′ = (Uχ ⊗UI M) ⊗A A′ = Uχ ⊗UI (M ⊗A A′) = ΦI

A′(M ⊗A A′).

Similarly, given M ∈ C ′
A,

ZA,χ(M) ⊗A A′ = (Uχ ⊗U0U+ M) ⊗A A′ = Uχ ⊗U0U+ (M ⊗A A′) = ZA′,χ(M ⊗A A′).

We may also derive analogous results for ΦA, Φ′
A, ΦI,+

A and ΓA,χ.

Lemma 5.7. Let M ∈ CA. If M is projective in CA then M ⊗A A′ is projective in CA′ .

Proof. A similar argument to that of Remark 2.7 in [3] shows that if M projective in CA, then M projective 
in G CA. Now, we argue as in Lemma 3.1 in [3]: M being projective in CA implies M being projective in 
G CA. The adjointness property then tells us that M⊗AA′ is projective in G CA′ . It is then clearly projective 
in CA′ .

Lemma 5.8. Let M ∈ CA have a Z-filtration. Then M ⊗A A′ has a Z-filtration.

Proof. Since M has a Z-filtration it is free over A. Therefore, any short exact sequence where all of the 
terms have a Z-filtration splits over A. Since ZA,χ(μ) ⊗A A′ = ZA′,χ(μ), the result follows.

Corollary 5.9. Let M ∈ CA have a Z-filtration, and let A′ be an A-algebra. Then there is an equality 
Tλ+ZI(M ⊗A A′) = Tλ+ZI(M) ⊗A A′.

5.4. Duality

Let A be a commutative Noetherian U0-algebra with structure map π : U0 → A. If M is a module in 
CA, the A-module HomA(M, A) may be equipped with a U−χ⊗A-module structure as follows. Given x ∈ g, 
f ∈ HomA(M, A) and m ∈ M , we define

(x · f)(m) = f(−x ·m).
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It is straightforward to check that x · f ∈ HomA(M, A) and that this defines a U−χ-module structure on 
HomA(M, A) which clearly commutes with the A-module structure.

Furthermore, we may equip HomA(M, A) with an X/ZI-grading such that

HomA(M,A)λ+ZI = {f ∈ HomA(M,A) | f(Mσ+ZI) = 0 for all σ + ZI �= −λ + ZI}

for each λ + ZI ∈ X/ZI. It is straightforward to see that

HomA(M,A) =
⊕

λ+ZI∈X/ZI

HomA(M,A)λ+ZI .

Similarly, given λ + ZI ∈ X/ZI and μ ∈ λ + ZI + pX, we may define

HomA(M,A)dμλ+ZI = {f ∈ HomA(M,A)λ+ZI | f(Mdω
σ+ZI) = 0 for all σ + ZI �= −λ + ZI and dω �= −dμ},

so that

HomA(M,A)λ+ZI =
⊕

dμ∈h
∗

μ∈λ+ZI+pX

HomA(M,A)dμλ+ZI .

In order to describe in which category the object HomA(M, A) lies, we must introduce some notation. 
Since we use the notation CA to denote a category of Uχ⊗A-modules, we shall denote by CA the analogous 
category of U−χ⊗A-modules. Note that, although −χ is not in standard Levi form as it has been described 
in this paper, since it still has the quality that it is only non-zero on a set of negative simple roots all the 
results in this paper work equally well for CA as they do for CA. We also denote by A the U0-algebra which 
is equal to A as a K-algebra, but whose structure map π : U0 → A is defined by extending the assignment 
π(h) = −π(h) for all h ∈ h.

Proposition 5.10. Let M ∈ CA. Then HomA(M, A) lies in CA.

Proof. We need to check conditions (A), (B), (C) and (D) in CA. Condition (A) is easy to see, and condition 
(B) is straightforward once one observes that HomA(M, A) = HomA(Mλ+ZI , A) as an A-module. One may 
check condition (C) by direct computation, so all that remains is to check condition (D). It is obvious that the 
(D)-decomposition summands should be the ones described above, so we check that U0 acts appropriately 
on them. Let h ∈ h, λ + ZI ∈ X/ZI, μ ∈ λ + ZI + pX, f ∈ HomA(M, A)dμλ+ZI and m ∈ M . Then

m =
∑

σ+ZI∈X/ZI

∑
dω∈h

∗

ω∈σ+ZI+pX

mdω
σ+ZI

and so we have

(h · f)(m) =
∑

σ+ZI∈X/ZI

∑
dω∈h

∗

ω∈σ+ZI+pX

f(−h ·mdω
σ+ZI)

=
∑

σ+ZI∈X/ZI

∑
dω∈h

∗

ω∈σ+ZI+pX

f(mdω
σ+ZI) · (−π(ω̃(h)))

= f(m−dμ
−λ+ZI) · (−π(−̃μ(h)))

= f(m)π(μ̃(h))
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as required, noting that −π(−̃μ(h)) = −π(h − dμ(h)) = −π(h) + dμ(h) = π(μ̃(h)). This is then enough to 
conclude the result.

This in particular gives us a contravariant functor CA → CA. Furthermore, if M is free over A we have

HomA(HomA(M,A), A) ∼= M

in CA (noting easily that C
A

= CA).

Corollary 5.11. Let A = F be a field, and let M, N ∈ CF . Then

HomCF
(M,N) ∼= HomCF

(HomF (N,F ),HomF (M,F )).

Another construction will be necessary in order to understand duality in the category CA. As in [12], the 
Lie algebra g and the algebraic group G may be equipped with compatible automorphisms, both of which 
we shall call τ . The map τ preserves h and T , induces χ ◦ τ−1 = −χ and induces −wI on X, where wI is the 
longest element in WI , the Weyl group corresponding to RI (this will be explained a little more in Subsection 
2). This therefore induces an isomorphism τ : Uχ → U−χ, and so an isomorphism τ−1 : U−χ → Uχ, which 
sends U0 to U0 (and h to h).

We denote by τA the commutative Noetherian U0-algebra which is equal to A as a K-algebra but which 
has structure map τπ : U0 → τA extended from τπ(h) = π(τ−1(h)) for all h ∈ h. We then define, for each 
M ∈ CA, the U−χ ⊗A-module τM which has the same A-module structure as M but with the U−χ action 
given by x ·m = τ−1(x)m for x ∈ U−χ and m ∈ M .

Proposition 5.12. If M ∈ CA then τM ∈ C τA.

Proof. We give τM an X/ZI-grading by setting

( τM)λ+ZI = M−λ+ZI

for λ + ZI ∈ X/ZI and we define the summands of the (D)-decomposition by

( τM)dμλ+ZI = M
d(τ−1(μ))
−λ+ZI

for μ ∈ λ +ZI + pX. Let us ensure that the right-hand-side makes sense, i.e. that τ−1(μ) ∈ −λ +ZI + pX

for μ ∈ λ + ZI + pX. Suppose μ = λ + κ + pδ. Then

τ−1(μ) = τ−1(λ) + τ−1(κ) + τ−1(pδ)

= −wIλ− wIκ + pτ−1(δ)

= −λ + (λ− wIλ) − κ− (wIκ− κ) − pτ−1(δ) ∈ −λ + ZI + pX

since wIλ − λ ∈ ZI. The same argument shows that τ(μ) ∈ −λ + ZI + pX for μ ∈ λ + ZI + pX (since τ
and τ−1 induce the same maps on X). Hence, μ �→ τ−1(μ) is a permutation of −λ +ZI + pX, and we have

( τM)λ+ZI =
⊕

dμ∈h
∗

μ∈λ+ZI+pX

( τM)dμλ+ZI

as required.
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It is clear that τM satisfies conditions (A) and (B). For condition (C), we must show that 
(Uχ)σ+ZI( τM)λ+ZI ⊆ ( τM)σ+λ+ZI for all σ + ZI, λ + ZI ∈ X/ZI. This will be clear from the de-
scription of the action and the grading once we observe that τ−1((Uχ)σ+ZI) ⊆ (Uχ)−σ+ZI . This holds since 
if x ∈ h then τ−1(x) ∈ h and if x ∈ gα then τ−1(x) ∈ g−wIα (by [12]). Noting that α − wIα ∈ ZI, we see 
that −wIα + ZI = −α + ZI, and so τ−1(x) ∈ g−α+ZI .

All that remains is therefore to check that U0 acts the right way on each ( τM)dμλ+ZI . Let λ +ZI ∈ X/ZI, 
μ ∈ λ + ZI + pX, m ∈ ( τM)dμλ+ZI = M

d(τ−1(μ))
−λ+ZI , and h ∈ h. Then

h ·m = τ−1(h)m = mπ(τ̃−1(μ)(τ−1(h)).

What is π(τ̃−1(μ)(τ−1(h))? Recall that μ̃(h) = μ + dμ(h) for any h ∈ h. So

π(τ̃−1(μ)(τ−1(h)) = π ◦ τ−1(h) + d(τ−1(μ))(τ−1(h)).

But d(τ−1(μ))(τ−1(h)) = dμ(τ ◦ τ−1(h)) = dμ(h). Furthermore, recall that π ◦ τ−1(h) = τπ(h). Hence, we 
conclude that

π(τ̃−1(μ)(τ−1(h)) = τπ(h) + dμ(h) = τπ(μ̃(h)).

The result follows.

Therefore, M �→ τM is a covariant functor CA → C τA. Let write DA for the U0-algebra with the same 
K-algebra structure as A but with structure map Dπ = τ (π) : U0 → A extended from h �→ −π(τ−1(h)) for 
h ∈ h. Combining the two functors just discussed, we hence get a functor

D : CA → CDA.

Similarly, we write DA for the U0-algebra with the same K-algebra structure as A but with structure map 
Dπ : U0 → A extended from h �→ −π(τ(h)) for h ∈ h. Then a similar argument to the above shows that 
there is a functor

D : CA → CDA, M �→ HomA( τ−1
M,A),

where τ−1
M denotes the U−χ ⊗ A-module with x ∈ U−χ acting on τ−1

M as τ(x) ∈ Uχ acts on M . It is 
clear that DDA = A = DDA. When A = F is a field, we also have that DD(M) ∼= M ∼= DD(M) in CF . 
(This is in fact an application of the result that DD(M) ∼= M ∼= DD(M) in CA for any M ∈ CA which is 
free over A). Thus we get the following result (cf. [11, 11.16]).

Proposition 5.13. If A = F is a field, the functor D : CA → CDA is an anti-equivalence of categories.

6. Properties of baby Verma modules

We have already seen how baby Verma modules ZA,χ(λ) can be constructed in the category CA. As these 
are such important modules, we would like to understand a little bit more about their structure in CA. We 
do so in this section.
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6.1. Irreducibility

Of particular importance in this area of study is the case when A = F is a field. If F = K, the usual 
results of [9,11] apply, but even when F is not necessarily algebraically closed we can derive some of the 
same results. One result which is of central importance in the study of CK is the fact that each baby Verma 
module has a unique irreducible quotient. We see the same here.

Proposition 6.1. Let λ ∈ X. Then the baby Verma module ZF,χ(λ) has a unique irreducible quotient.

Proof. One way to prove this, which we will follow, is to show that there is a proper Uχ ⊗ F -submodule 
of ZF,χ(λ) in which every submodule of ZF,χ(λ) in CF lies. This will further follow if there is a proper 
U−⊗F -submodule of ZF,χ(λ) in which every U−⊗F -submodule (and hence every Uχ⊗F -submodule) lies.

As a U− ⊗ F -module, it is clear that ZF,χ(λ) is isomorphic to U− ⊗ F . If U− ⊗ F has a unique simple 
quotient as a U− ⊗ F -module, then the result will hold. In particular, this will hold if there is a unique 
irreducible U− ⊗ F -module such that U− ⊗ F is the projective cover of that module. Observing that 
U− = Uχ(n−) and Uχ(n−) ⊗ F = Uχ(n− ⊗ F ), this then follows from the same argument in Section 3 and 
Theorem 10.2 in [11], except applied for fields which are not necessarily algebraically closed.

Let us write RadZF,χ(λ) for the radical of ZF,χ(λ) in CF . Then we define the simple object

LF,χ(λ) = ZF,χ(λ)
RadZF,χ(λ) ∈ CF .

Proposition 4.5 then shows that all the simple modules in CF are of the form LF,χ(λ) for some λ ∈ X.
We know that the category CF has enough projectives and that all modules have finite length (as they are 

finite-dimensional as F -vector spaces). This in particular means that there is a one-to-one correspondence 
between simple modules and projective indecomposable modules in CF . Thus, for λ ∈ X, we denote by 
QF,χ(λ) ∈ CF the unique (up to isomorphism) projective indecomposable module in CF with

QF,χ(λ)
Rad(QF,χ(λ))

∼= LF,χ(λ).

6.2. Isomorphisms of baby Verma modules

We would now like to briefly discuss when baby Verma modules are isomorphic. In order to do this, we 
first must recall some definitions relating to the Weyl group. Firstly, given α ∈ R, we define sα : X → X as 
the reflection sending λ ∈ X to λ − 〈λ, α∨〉α, where α∨ is the coroot associated to α. Furthermore, given 
m ∈ Z, we define sα,m : X → X to be the map λ �→ λ − 〈λ, α∨〉α+mα. Then the Weyl group W is defined 
to be the subgroup of AutZ(X) generated by the elements sα for α ∈ R, and the affine Weyl group Wp is 
defined to be the subgroup of AutZ(X) generated by the elements sα,mp for α ∈ R and m ∈ Z. Note also 
that, if α ∈ R and m ∈ Z and we define tm,α : X → X by λ �→ λ + mα, then sα,m = tα,m ◦ sα, and so Wp

is also the subgroup generated by W and tα,mp for all α ∈ R and m ∈ Z.
Furthermore, we define the following parabolic subgroups: WI is defined to be the subgroup of W gen-

erated by the elements sα for α ∈ RI (so, as above, it is the Weyl group corresponding to RI), and WI,p is 
defined to be the subgroup of Wp generated by the elements sα,mp for α ∈ RI and m ∈ Z. By definition, 
the groups W , Wp, WI and WI,p act on X. We also need another action, the dot-action, which is defined by 
w · λ = w(λ + ρ) − ρ. Here ρ ∈ X is the half sum of positive roots. Note further that these groups similarly 
act on h∗, both through the usual action and through the dot-action.

When A = K, we know (from Proposition 11.9 in [11]) that ZK,χ(λ) ∼= ZK,χ(μ) if and only if λ ∈ WI,p ·μ. 
How does this work for other A?
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Proposition 6.2. Suppose that A is a commutative, Noetherian U0-algebra, with structure map π : U0 → A. 
Suppose that π(hα) = 0 for all α ∈ R ∩ ZI. Then ZA,χ(λ) ∼= ZA,χ(μ) if λ ∈ WI,p · μ.

Proof. Let λ ∈ X and let us fix α ∈ I. It is enough to show that ZA,χ(λ) ∼= ZA,χ(λ + pα) and ZA,χ(λ) ∼=
ZA,χ(sα · λ).

For the former, write v0 ∈ ZA,χ(λ) and w0 ∈ ZA,χ(λ + pα) for the standard generators, so that v0 ∈
ZA,χ(λ)dλλ+ZI and w0 ∈ ZA,χ(λ + pα)d(λ+pα)

λ+pα+ZI = ZA,χ(λ + pα)dλλ+ZI . Then, since eβv0 = 0 = eβw0 for all 
β ∈ R+, there are inverse homomorphisms ZA,χ(λ) ↔ ZA,χ(λ + pα) with v0 ↔ w0. Thus, ZA,χ(λ) ∼=
ZA,χ(λ + pα).

For the latter, suppose 〈λ, α∨〉 = mp + a for m ∈ Z and 0 ≤ a < p, so that we have sα · λ = λ −
(a + 1)α + mpα. We therefore want to define an isomorphism f : ZA,χ(λ − (a + 1)α) → ZA,χ(λ) (since, 
combined with the former observation, this gives an isomorphism ZA,χ(sα · λ) → ZA,χ(λ)). Let us write 
w0 for the standard generator of ZA,χ(λ − (a + 1)α) and v0 for the standard generator of ZA,χ(λ). Let us 
define f : ZA,χ(λ − (a +1)α) → ZA,χ(λ) to be the map sending w0 to ea+1

−α v0. We need to ensure this is well 
defined.

Firstly, we know that w0 ∈ ZA,χ(λ − (a + 1)α)d(λ−(a+1)α)
λ−(a+1)α+ZI . Furthermore, from conditions (C) and (D) 

of the definition of CA we have that ea+1
−α v0 ∈ ZA,χ(λ)d(λ−(a+1)α)

λ−(a+1)α+ZI .
Next, suppose β �= α for β ∈ R+. Then, since α is simple, it is easy to see that eβea+1

−α v0 = 0.
Finally, we want to look at eαea+1

−α v0. We may calculate that

eαe
a+1
−α v0 = ea−αv0(π(λ̃(hα)) + π( ˜(λ− α)(hα)) + · · · + π( ˜(λ− aα)(hα)).

Note that π( ˜(λ− iα)(hα)) = π(hα) + d(λ − iα)(hα). Thus,

eαe
a+1
−α v0 = ea−αv0(π((a + 1)hα) + dλ(hα) + d(λ− α)(hα) + · · · + d(λ− aα)(hα))

= ea−αv0(π((a + 1)hα)) + ea−αv0(〈λ, α∨〉 + 〈λ− α, α∨〉 + · · · + 〈λ− aα, α∨〉)
= ea−αv0(π((a + 1)hα)) + ea−αv0((a + 1)a− (1 + 2 + · · · + a)〈α, α∨〉)

= ea−αv0(π((a + 1)hα)) + ea−αv0

(
(a + 1)a− 2

(
a(a + 1)

2

))
= (a + 1)ea−αv0(π(hα)).

Here, we use the fact that dλ(hα) = 〈λ, α∨〉. Since we assume that π(hα) = 0, we get that eαea+1
−α v0 = 0.

Hence, there is a well-defined homomorphism f : ZA,χ(λ −(a +1)α) → ZA,χ(λ) in CA. We need to show it 
is an isomorphism. Note that ep−a−1

−α w0 maps to v0, so v0 lies in the image of f . In particular, f is surjective.
Furthermore, ZA,χ(λ − (a + 1)α) is a free A-module with the following A-basis: As usual, we write 

{β1, . . . , βr} for the positive roots in R, although we now assume β1 = α. The A-basis consists of the 
elements

ekr

−βr
· · · ek2

−β2
ek1
−β1

w0

for 0 ≤ ki < p. Similarly, ZA,χ(λ) is a free A-module with basis consisting of elements

ekr

−βr
· · · ek2

−β2
ek1
−β1

v0

for 0 ≤ ki < p.
From the above, we see that

f(ekr · · · ek2 ek1 w0) = ekr · · · ek2 el−β v0
−βr −β2 −β1 −βr −β2 1
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where k1 + a + 1 = mp + l for m ∈ Z and 0 ≤ l < p. In particular, f sends an A-basis to an A-basis, and so 
is an isomorphism.

We therefore conclude that

ZA,χ(λ− (a + 1)α) ∼= ZA,χ(λ),

and hence that, if μ ∈ WI,p · λ, we have

ZA,χ(λ) ∼= ZA,χ(μ).

Remark 1. We shall soon develop a more general argument that will easily imply the result just proved. 
Nonetheless, we include the more explicit proof of this result to highlight where the requirement that 
π(hα) = 0 for all α ∈ R ∩ ZI has relevance.

7. Regular nilpotent p-characters

Let A be a commutative, Noetherian U0-algebra with structure map π : U0 → A. As usual, we write CA

for the category obtained from this A and π. The algebraically-closed field K is a commutative Noetherian 
U0-algebra with structure map π◦ : U0 → K sending each h ∈ h to zero. This extends to a map π◦ : U0 →
K ↪→ A, since A is a K-algebra. We then write C ◦

A for the category obtained from this A and π◦.
We shall make the assumption throughout this section that π(hα) = 0 for all α ∈ R.

7.1. An equivalence of categories

Notwithstanding the title of this section, we do not yet assume that χ is regular nilpotent (i.e. we do 
not assume I = Π), although our standing assumption in this section will be most meaningful when that 
is so. The key power of the assumption is that it gives us an equivalence of categories as in the following 
proposition.

Proposition 7.1. If π(hα) = 0 for all α ∈ R, there is an equivalence of categories ΘA between C ◦
A and CA.

Proof. Let us first define ΘA : C ◦
A → CA. For each M ∈ CA, we define ΘA(M) to be equal to M as an 

A-module. We equip ΘA(M) with an X/ZI-grading by setting

ΘA(M)λ+ZI = Mλ+ZI

and we define the (D)-decomposition summands by

ΘA(M)dμλ+ZI = Mdμ
λ+ZI

for λ + ZI ∈ X/ZI and μ ∈ λ + ZI + pX. What remains is to define the Uχ-module structure on ΘA(M). 
We do this in the following way: for m ∈ ΘA(M) and α ∈ R we define

eα ·m = eαm,

i.e. each eα acts on ΘA(M) as it does on M . For s ∈ U0 and m ∈ ΘA(M)dμλ+ZI , we define

s ·m = mπ(μ̃(s)),

which we extend to an action on all of M through the (D)-decomposition and the grading.
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We need to check that this defines a Uχ-module structure on ΘA(M). For this, it suffices to check that 
it gives a g-module structure such that each epα acts as scalar multiplication by χ(eα)p. This latter point is 
clear, and checking that ΘA(M) is a g-module is mostly a straightforward case of checking that commutators 
of Chevalley basis vectors act in the right way. The only complication in the calculation is in ensuring that

eα · (e−α ·m) − e−α · (eα ·m) = hα ·m

for all α ∈ R and m ∈ ΘA(M). It is enough to check this for m ∈ Mdμ
λ+ZI . It is straightforward to see that 

the left-hand side of this equation is then

mπ◦(μ̃(hα))

while the right-hand side is

mπ(μ̃(hα)).

We note now that

μ̃(hα) = hα + dμ(hα)

and so

π(μ̃(hα)) = π(hα) + dμ(hα)

and

π◦(μ̃(hα)) = π◦(hα) + dμ(hα).

Since, by assumption, π(hα) = 0 = π◦(hα), we indeed have equality.
Hence, ΘA(M) is a Uχ⊗A-module with an X/ZI-grading and a (D)-decomposition. That ΘA(M) satisfies 

conditions (A), (B), (C), and (D) is easy to check. Therefore, we indeed have ΘA(M) ∈ CA.
It is also straightforward to see that any homomorphism f : M → N in C ◦

A induces a homomorphism 
ΘA(f) : ΘA(M) → ΘA(N) such that ΘA(f)(m) = f(m) for all m ∈ M . Hence,

ΘA : C ◦
A → CA

is a well-defined functor.
Similarly, we define Θ−1

A : CA → C ◦
A by setting Θ−1

A (M) to have the same A-module structure, X/ZI-
grading, (D)-decomposition, and eα-action (α ∈ R) as M does, and by defining the U0 action such that

sm = mπ◦(μ̃(s))

for s ∈ U0 and m ∈ Θ−1
A (M)dμλ+ZI = Mdμ

λ+ZI . That this indeed gives an object of C ◦
A can be checked in much 

the same way that we saw that ΘA(M) was in CA. It is also a functor in the same way.
All that remains is to see that ΘA ◦Θ−1

A = Id = Θ−1
A ◦ΘA. This is obvious, with condition (D) ensuring 

that the U0-actions coincide.

Proposition 7.2. Let A′ be an A-algebra, and suppose π(hα) = 0 for all α ∈ R. For each M ∈ C ◦
A, we have

ΘA(M) ⊗A A′ = ΘA′(M ⊗A A′).
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Proof. It is easy to see that ΘA(M) ⊗A A′ and ΘA′(M ⊗A A′) are equal as A′-modules (as both are equal 
to M ⊗A A′), that

(ΘA(M) ⊗A A′)λ+ZI = ΘA′(M ⊗A A′)λ+ZI

for all λ + ZI ∈ X/ZI, and that

(ΘA(M) ⊗A A′)dμλ+ZI = ΘA′(M ⊗A A′)dμλ+ZI

for all μ ∈ λ + ZI + pX. It is also easy to see that each eα for α ∈ R acts the same on ΘA(M) ⊗A A′ and 
ΘA′(M ⊗A A′). Finally, let m ⊗ a lie in the K-vector space (M ⊗A′ A)dμλ+ZI and let s ∈ U0. Let us write 
π : U0 → A for the structure map of A and π̂ : U0 → A′ for the induced structure map of A′. If we view 
m ⊗ a as an element of (ΘA(M) ⊗A A′)dμλ+ZI = ΘA(M)dμλ+ZI ⊗A A′ then we have

s(m⊗ a) = (sm) ⊗ a = (mπ(μ̃(s))) ⊗ a = m⊗ (aπ̂(μ̃(s))).

On the other hand, if we view m ⊗ a ∈ ΘA′(M ⊗A A′)dμλ+ZI then we have

s(m⊗ a) = (m⊗ a)π̂(μ̃(s)) = m⊗ (aπ̂(μ̃(s)))

as required.

Given λ ∈ X, we may easily see that ZK,χ(λ) ⊗K A ∈ C ◦
A. Since π(hα) = 0 = π◦(hα) for all α ∈ R, one 

can show that

ΘA(ZK,χ(λ) ⊗K A) = ZA,χ(λ).

Hence, we conclude that, for λ, μ ∈ X,

HomCA
(ZA,χ(λ), ZA,χ(μ)) ∼= HomC◦

A
(ZK,χ(λ) ⊗K A,ZK,χ(μ) ⊗K A)

as A-modules, and, more generally,

ExtiCA
(ZA,χ(λ), ZA,χ(μ)) ∼= ExtiC◦

A
(ZK,χ(λ) ⊗K A,ZK,χ(μ) ⊗K A)

for all i ≥ 0.
The proof of Lemma 3.2 in [3] works exactly the same way here, and so, since A is flat over K, we get 

that

ExtiC◦
A
(ZK,χ(λ) ⊗K A,ZK,χ(μ) ⊗K A) ∼= ExtiCK

(ZK,χ(λ), ZK,χ(μ)) ⊗K A

for all i ≥ 0. So we have

ExtiCA
(ZA,χ(λ), ZA,χ(μ)) ∼= ExtiCK

(ZK,χ(λ), ZK,χ(μ)) ⊗K A

for all i ≥ 0 and all λ, μ ∈ X.
If A is a local algebra, with residue field F , then we similarly obtain

ExtiC (ZF,χ(λ), ZF,χ(μ)) ∼= ExtiC◦ (ZK,χ(λ), ZK,χ(μ)) ⊗K F

F F
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for all i ≥ 0 and all λ, μ ∈ X. Hence there is an F -isomorphism

ExtiCF
(ZF,χ(λ), ZF,χ(μ)) ∼= ExtiCA

(ZA,χ(λ), ZA,χ(μ)) ⊗A F

for all i ≥ 0.
This means, in particular, that if ExtiCF

(ZF,χ(λ), ZF,χ(μ)) = 0 then

ExtiCA
(ZA,χ(λ), ZA,χ(μ)) = ExtiCA

(ZA,χ(λ), ZA,χ(μ))m

where m is the unique maximal ideal of A. If ExtiCA
(ZA,χ(λ), ZA,χ(μ)) is finitely-generated over A then 

by Nakayama’s lemma this implies that ExtiCA
(ZA,χ(λ), ZA,χ(μ)) = 0. Since each Ext is a quotient of a 

submodule of a finitely-generated A-module, and A is a Noetherian ring, we indeed have A-finite-generation 
of ExtiCA

(ZA,χ(λ), ZA,χ(μ)).
In conclusion, we have the following theorem.

Theorem 7.3. Let A be a commutative, Noetherian, local U0-algebra with structure map π : U0 → A, and 
let F be the residue field of A. Suppose that π(hα) = 0 for all α ∈ R. Then λ, μ ∈ X lie in the same block 
over A if and only if they lie in the same block over F .

Another result we can get from this equivalence of categories is the following.

Proposition 7.4. Suppose that A be a commutative Noetherian U0-algebra, with structure map π : U0 → A

such that π(hα) = 0 for all α ∈ R. Then ZA,χ(λ) ∼= ZA,χ(μ) implies λ ∈ Wp · μ.

Proof. Since ZA,χ(λ) ∼= ZA,χ(μ) in CA, we may use the equivalence of categories ΘA to conclude that

ZK,χ(λ) ⊗K A ∼= ZK,χ(μ) ⊗K A

in C ◦
A. Now, observing as in [11, Theorem 9.3] (referencing [13]) that U(g)G ∼= U(h)W• , we write cendλ :

U(g)G → K for the algebra homomorphism sending u to u(dλ), where we view u ∈ U(g)G ∼= U(h)W• as 
a polynomial function on h∗. Then we have uz = cendλ(u)z for all u ∈ U(g)G and z ∈ ZK,χ(λ), and so 
uz = cendλ(u)z for all u ∈ U(g)G and z ∈ ZK,χ(λ) ⊗KA. Since ZK,χ(λ) ⊗KA ∼= ZK,χ(μ) ⊗KA, we therefore 
conclude that cendλ(u) = cendμ(u) for all u ∈ U(g)G. Thus, cendλ = cendμ and so dλ ∈ W · dμ by Corollary 
9.4 in [11] (see also [13]).

We therefore conclude that λ ∈ W · μ + pX, and we know that λ + ZI = μ + ZI (as both are maximal 
in the partial order among those elements of X/ZI with the property that, say, ZA,χ(λ)σ+ZI �= 0). As in 
[11, Prop 11.9], we pick w ∈ W such that λ − w · μ ∈ pX. Then μ − w · μ ∈ ZI since w ∈ W . Hence, 
λ −w · μ = λ −μ + μ −w · μ ∈ ZI. Therefore, λ −w · μ ∈ ZI ∩ pX, which is equal to pZI as in Section 11.2 
in [11] (which relies upon Jantzen’s standard assumptions). Hence, λ ∈ Wp · μ, as required.

7.2. Projective covers

In this subsection, we do now assume that χ is regular nilpotent, which we recall means that I = Π.
Suppose for the moment that A = F is a field, and let λ ∈ X. Then we have already observed that 

ΘF (ZK,χ(λ) ⊗K F ) = ZF,χ(λ), so we can derive the following.

Proposition 7.5. Let λ ∈ X, and suppose χ is regular nilpotent (i.e. I = Π). Let F be a field which is a 
U0-algebra via π : U0 → F , with the property that π(hα) = 0 for all α ∈ R. Then ZK,χ(λ) ⊗KF is irreducible 
in C ◦

F and ZF,χ(λ) is irreducible in CF .
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Proof. As just mentioned, ZF,χ(λ) = ΘF (ZK,χ(λ) ⊗K F ). Since ΘF is an equivalence of categories, it 
is enough to show that ZK,χ(λ) ⊗K F is irreducible in C ◦

F . Furthermore, as any proper submodule of 
ZK,χ(λ) ⊗K F in C ◦

F is also a proper submodule of ZK,χ(λ) ⊗K F as a Uχ(g) ⊗ F -module, it is enough 
to prove that ZK,χ(λ) ⊗K F is irreducible as a Uχ(g) ⊗ F -module. (Note here that in C ◦

F all modules are 
Uχ(g) ⊗ F -modules, not just Uχ ⊗ F -modules).

Since χ is regular nilpotent, we know that ZK,χ(λ) is an irreducible Uχ(g)-module [8, Theorem 4.2]. So 
the result will follow if ZK,χ(λ) is an absolutely irreducible Uχ(g)-module (recalling that a Uχ(g)-module M
is called absolutely irreducible if M ⊗F is an irreducible Uχ(g) ⊗F -module for all field extensions K ⊆ F ). 
Because ZK,χ(λ) is finite-dimensional, it follows from Proposition 9.2.5 in [19] that ZK,χ(λ) is absolutely 
irreducible if EndUχ(g)(ZK,χ(λ)) = K. This follows since K is algebraically closed.

As in Section 6.1, let us write QK,χ(λ) for the projective cover of ZK,χ(λ) in CK, write QF,χ(λ) for the 
projective cover of ZF,χ(λ) in CF , and write QF◦,χ(λ) for the projective cover of ZK,χ(λ) ⊗K F in C ◦

F .

Lemma 7.6. Let λ ∈ X, and suppose π(hα) = 0 for all α ∈ R. Then QF◦,χ(λ) ∼= QK,χ(λ) ⊗K F in C ◦
F .

Proof. We observed in Section 5.1 that

C ◦
F =

⊕
λ+ZI∈X/ZI

C ◦
F (λ + ZI)

where C ◦
F (λ + ZI) may be identified as the category of F -finite-dimensional Uχ(g) ⊗ F -modules M which 

have an F -vector space decomposition

M =
⊕

dμ∈h
∗

μ∈λ+ZI+pX

Mdμ

such that

hm = mdμ(h)

for all m ∈ Mdμ and h ∈ h. Note here that we may consider Uχ(g) ⊗F -modules rather than Uχ⊗F -modules 
because the U0-algebra structure on F is extended from K.

Let us write X for the category of F -finite-dimensional Uχ(g) ⊗F -modules M which have a decomposition

M =
⊕
σ∈Λ0

Mσ

where

Λ0 = {σ : h → K |σ(h)p = σ(h[p]) for allh ∈ h}

and where

hm = mσ(h)

for all m ∈ Mσ and h ∈ h. Morphisms in this category are Uχ(g) ⊗ F -module homomorphisms which 
preserve the decomposition. It is then straightforward to see that X is the direct sum of C ◦

F (κ + ZI) over 
all κ + ZI ∈ X/ZI. In other words, X is an equivalent category to C ◦

F .
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Now, it is clear that QF◦,χ(λ) is the projective cover of ZF◦,χ(λ) ∈ X and that QK,χ(λ) ⊗KF is projective 
in X , since all of these objects lie in C ◦

F (λ + ZI).
Let us now write MF for the category of all F -finite-dimensional Uχ(g) ⊗ F -modules, and MK for the 

category of all K-finite-dimensional Uχ(g)-modules. One can check without any difficulty that X is a full 
subcategory of MF .

Let us write Q̃F◦,χ(λ) for the projective cover of ZF◦,χ(λ) in MF . Since QK,χ(λ) is a Uχ(g)-module, 
QK,χ(λ) ⊗K F ∈ MF . Furthermore, one can show (using an easier version of Lemma 3.1(a) in [3]) that 
QK,χ(λ) ⊗K F is projective in MF .

Since this is so, and since Q̃F◦,χ(λ) is the projective cover of ZF◦,χ(λ) in MF , there exists a surjection 
in MF from QK,χ(λ) ⊗K F onto Q̃F◦,χ(λ). Now, Proposition 11.18 in [11] shows that

dimF (QK,χ(λ) ⊗K F ) = pdim n
+ |W · dλ| .

Furthermore, the proof of Lemma 10.9 in [11] works just as well for Uχ(g) ⊗ F = Uχ(g ⊗ F )-modules (for 
example, that Uχ(g) ⊗ F is symmetric follows from the fact that Uχ(g) is). In other words, we have

dimF (Q̃F◦,χ(λ)) = pdim n
+ ∑

μ∈Λ0

[ZF◦,χ(dλ) : ZF◦,χ(dμ)].

Clearly [ZF◦,χ(dλ) : ZF◦,χ(dμ)] equals 1 if ZF◦,χ(dλ) ∼= ZF◦,χ(dμ) and 0 otherwise. Observing that

HomMK
(ZK,χ(dλ), ZK,χ(dμ)) ⊗K F ∼= HomMF

(ZF◦,χ(dλ), ZF◦,χ(dμ))

we get that ZF◦,χ(dλ) ∼= ZF◦,χ(dμ) if and only if ZK,χ(dλ) ∼= ZK,χ(dμ). Hence [ZF◦,χ(dλ) : ZF◦,χ(dμ)] = 1
if and only if dλ ∈ W · dμ, and is zero if and only if not. Hence,

dimF (Q̃F◦,χ(λ)) = pdim n
+ |W · dλ| = dimF (QK,χ(λ) ⊗K F ).

Therefore, we have

Q̃F◦,χ(λ) ∼= QK,χ(λ) ⊗K F.

Hence, QK,χ(λ) ⊗K F is the projective cover of ZF◦,χ(λ) in MF . Since QK,χ(λ) ⊗K F in fact lies in X , 
it is also the projective cover of ZF◦,χ(λ) in X . Therefore, QK,χ(λ) ⊗K F ∼= QF◦,χ(λ) in X , and so

QK,χ(λ) ⊗K F ∼= QF◦,χ(λ)

in C ◦
F .

Corollary 7.7. Let λ ∈ X and suppose π(hα) = 0 for all α ∈ R. Suppose also that A is local with residue 
field F . Then there exists a projective module QA,χ(λ) ∈ CA with QA,χ(λ) ⊗A F ∼= QF,χ(λ).

Proof. Define QA,χ(λ) = ΘA(QK,χ(λ) ⊗K A). This is projective since QK,χ(λ) ⊗K A is projective in C ◦
A by 

Lemma 5.7 and ΘA is an equivalence of categories. We then have

QA,χ(λ) ⊗A F = ΘA(QK,χ(λ) ⊗K A) ⊗A F = ΘF (QK,χ(λ) ⊗K A⊗A F )
∼= ΘF (QK,χ(λ) ⊗K F ) ∼= ΘF (QF◦,χ(λ)) = QF,χ(λ).

Here, the second equality comes from Proposition 7.2, the fourth equality comes from Proposition 7.6, 
and the fifth equality comes from the fact that an equivalence of categories must map projective covers to 
projective covers.
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It is important to observe that when A is not local we may still define

QA,χ(λ) := ΘA(QK,χ(λ) ⊗K A),

which will still be a projective module in CA.
Note that QA,χ(λ) lies in CA(λ +ZI) since QK,χ(λ) ∈ CK(λ +ZI). Furthermore, from this construction 

it is clear that, as QK,χ(λ) has a Z-filtration in which the only module appearing is ZK,χ(λ), which appears 
|W · dλ| times [11, Prop. 11.18], the module QA,χ(λ) also has a Z-filtration in which the only module 
appearing is ZA,χ(λ), similarly appearing exactly |W · dλ| times. In particular, each QA,χ(λ) is free over A
with rank pdim n

+ |W · dλ|.
Furthermore, if ZA,χ(μ) is a factor in any Z-filtration of QA,χ(λ), then there must exist a non-zero homo-

morphism ZA,χ(μ) → ZA,χ(λ), using the just discussed Z-filtration. Since we have HomCA
(ZA,χ(μ), ZA,χ(λ))

∼= HomCK
(ZK,χ(μ), ZK,χ(λ)) ⊗K A, we are able to conclude that HomCK

(ZK,χ(μ), ZK,χ(λ)) �= 0 and so 
ZK,χ(μ) ∼= ZK,χ(λ), which implies ZA,χ(μ) ∼= ZA,χ(λ).

Proposition 7.8. Let λ, μ ∈ X and suppose π(hα) = 0 for all α ∈ R. Then QA,χ(λ) ∼= QA,χ(μ) if and only 
if λ ∈ Wp · μ.

Proof. For the forward implication, we have that

HomCA
(QA,χ(λ), QA,χ(μ)) ∼= HomCK

(QK,χ(λ), QK,χ(μ)) ⊗K A

as in the previous subsection. Hence, HomCK
(QK,χ(λ), QK,χ(μ)) �= 0. Since QK,χ(λ) has a filtration all of 

whose sections are isomorphic to ZK,χ(λ), and QK,χ(μ) has similarly, we conclude that

HomCK
(ZK,χ(λ), ZK,χ(μ)) �= 0,

implying (as these baby Verma modules are irreducible) that ZK,χ(λ) ∼= ZK,χ(μ) and so λ ∈ Wp · μ.
Conversely, λ ∈ Wp · μ implies ZK,χ(λ) ∼= ZK,χ(μ), and so QK,χ(λ) ∼= QK,χ(μ). This then easily implies 

that QA,χ(λ) ∼= QA,χ(μ).

Let us therefore write Λ for the set of Wp-dot-orbits on X, so that elements of Λ enumerate the 
pairwise non-isomorphic QA,χ(λ) and also, by pairing Proposition 6.2 with Proposition 7.4, the pairwise 
non-isomorphic baby Verma modules ZA,χ(λ) (recalling that throughout this subsection χ is regular nilpo-
tent). We shall also use the notation Λ for a fundamental domain of the Wp-dot-action on X, so that we 
may view elements of Λ as being in X.

We may now observe that these projective QA,χ(λ) are ubiquitous in CA.

Lemma 7.9. Let M ∈ CA and suppose π(hα) = 0 for all α ∈ R. Then there exists Q ∈ CA with Q � M and 
such that

Q =
⊕
μ∈Λ

QA,χ(μ)mμ

for some mμ ≥ 0.

Proof. Let P ∈ C ′′
K. This means that P is an X/pZI-graded finite-dimensional K-module. Then P ⊗K A ∈

(C ◦
A)′′ is free as an A-module (where (C ◦

A)′′ is the category analogous to C ′′
A for A with the structure map 

U0 → K ↪→ A). Conversely, suppose Q ∈ (C ◦
A)′′, so that Q is an X/pZI-graded finitely-generated A-

module, and suppose that Q is free (of finite rank) over A. Let x1, . . . , xn be a free basis of A (where each xi
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is homogeneous). Then 
⊕n

i=1 xiK is an X/pZI-graded finite-dimensional K-module, with (
⊕n

i=1 xiK) ⊗K

A ∼= Q. In other words, every Q ∈ (C ◦
A)′′ which is free over A is isomorphic to an object of the form 

N ⊗K A ∈ (C ◦
A)′′ for some N ∈ C ′′

K.
Now, let M ∈ CA. When we view M as an element in C ′′

A, there exists a projective module Q ∈ C ′′
A

with Q � M (since C ′′
A has enough projectives). We may assume Q is free over A (since Q ∈ C ′′

A projective 
implies that each Qdμ

λ+ZI is projective over A so is a direct summand of a free module). Hence, there exists 
P ∈ C ′′

K with P ⊗K A ∼= Q. It is then straightforward to check that

ΦA(Q) ∼= ΘA(ΦK(P ) ⊗K A).

Since P is projective in C ′′
K, ΦK(P ) is projective in CK. Hence,

ΦK(P ) =
⊕
μ∈Λ

QK,χ(μ)mμ

for some mμ ≥ 0. Therefore

ΦK(P ) ⊗K A =
⊕
μ∈Λ

(QF,χ(μ) ⊗K A)mμ

and so

ΦA(Q) ∼=
⊕
μ∈Λ

QA,χ(μ)mμ .

Since Q � M in C ′′
A, we have ΦA(Q) � M in CA. We therefore get the result.

In the following proposition we consider the extent to which such a decomposition of Q is unique.

Proposition 7.10. Suppose that A is local with residue field F , and that π(hα) = 0 for all α ∈ R. Let Q ∈ CA

with

Q ∼= QA,χ(λ1) ⊕ · · · ⊕QA,χ(λr) ∼= QA,χ(μ1) ⊕ · · · ⊕QA,χ(μs).

Then r = s and there exists σ ∈ Sr such that

QA,χ(λi) ∼= QA,χ(μσ(i))

in CA for all 1 ≤ i ≤ r.

Proof. Since QA,χ(λ) ⊗A F ∼= QF,χ(λ) by Corollary 7.7, we have that

QF,χ(λ1) ⊕ · · · ⊕QF,χ(λr) ∼= QF,χ(μ1) ⊕ · · · ⊕QF,χ(μs).

Since in CF the QF,χ(λ) are the projective covers of the irreducible modules ZF,χ(λ) and since all objects 
in CF have finite length, we may apply the Krull-Schmidt theorem. Hence, r = s and there exists σ ∈ Sr

such that

QF,χ(λi) ∼= QF,χ(μσ(i))

in CF for all 1 ≤ i ≤ r.
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Now, QF,χ(λi) is (isomorphic to) a direct summand of QF,χ(μσ(i)), and we know QA,χ(λi) ⊗A F ∼=
QF,χ(λi) and QA,χ(μσ(i)) ⊗A F ∼= QF,χ(μσ(i)). Hence, by a similar argument to that of Remark 4.18 in [3], 
we get that QA,χ(λi) is (isomorphic to) a direct summand of QA,χ(μσ(i)).

Thus, there exists M ∈ CA with

QA,χ(μσ(i)) ∼= QA,χ(λi) ⊕M,

and so

QF,χ(μσ(i)) ∼= QF,χ(λi) ⊕ (M ⊗A F ),

implying that M ⊗A F = 0. But M ∈ CA is projective, as it is a direct summand of a projective module, 
and so M is projective over A. (This follows by a similar argument to the proof of Lemma 2.7(c) in [3], 
using our ΦA in place of the functor denoted ΦA in [3]). Since M is finitely-generated projective over A (as 
A is Noetherian) and A is local, it is free over A, and so M ⊗A F = 0 implies M = 0. Therefore,

QA,χ(μσ(i)) ∼= QA,χ(λi),

as required.

Lemma 7.11. Suppose A is local with residue field F , and suppose that π(hα) = 0 for all α ∈ R. Let 
λ1, . . . , λr ∈ Λ and P, N ∈ CA with

QA,χ(λ1) ⊕ · · · ⊕QA,χ(λr) = P ⊕N

in CA. Then N and P each decompose into direct sums of QA,χ(λi)’s.

Proof. Since we know, in CA, that

QA,χ(λ1) ⊕ · · · ⊕QA,χ(λr) ∼= P ⊕N

we see that, in CF , we have

QF,χ(λ1) ⊕ · · · ⊕QF,χ(λr) ∼= (P ⊗A F ) ⊕ (N ⊗A F ).

Clearly P ⊗A F and N ⊗A F are projective in CF , and since the QF,χ(λi) are the projective covers of the 
irreducible modules in CF , each projective module in CF is a direct sum of some QF,χ(λ)’s. Hence, there 
exist μ1, . . . , μs ∈ Λ and τ1, . . . , τt ∈ Λ such that

P ⊗A F ∼= QF,χ(μ1) ⊕ · · · ⊕QF,χ(μs)

and

N ⊗A F ∼= QF,χ(τ1) ⊕ · · · ⊕QF,χ(τt).

Therefore, we have

QF,χ(λ1) ⊕ · · · ⊕QF,χ(λr) ∼= QF,χ(μ1) ⊕ · · · ⊕QF,χ(μs) ⊕QF,χ(τ1) ⊕ · · · ⊕QF,χ(τt).

Now, by Proposition 7.10 we may assume (permuting the terms if necessary) that s + t = r and that 
λ1 = μ1, λ2 = μ2, . . . , λs = μs, λs+1 = τ1, . . . , λr−1 = τt−1 and λr = τt.
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Let us define the map f1 : QA,χ(λ1) ⊕ · · · ⊕QA,χ(λs) → P as the following composition

QA,χ(λ1) ⊕ · · · ⊕QA,χ(λs) ↪→ QA,χ(λ1) ⊕ · · · ⊕QA,χ(λr)
∼−→ P ⊕N � P.

The above discussion then shows that f1 ⊗ 1 : QF,χ(λ1) ⊕ · · · ⊕ QF,χ(λs) → P ⊗A F is an isomorphism 
in CF . By Nakayama’s lemma, we hence have that f1 is surjective (as an A-module homomorphism, and 
so in CA). We define f2 : QA,χ(λs+1) ⊕ · · · ⊕ QA,χ(λr) → N analogously, and it is surjective by the same 
argument. We then define the map

f : QA,χ(λ1) ⊕ · · · ⊕QA,χ(λr) → P ⊕N, f = (f1, f2).

It is surjective since f1 and f2 are. Furthermore, both QA,χ(λ1) ⊕ · · · ⊕ QA,χ(λr) and P ⊕ N are free A-
modules with the same finite rank (since each QA,χ(λi) is and since the two modules are isomorphic by 
assumption). Any surjection between free A-modules of the same finite rank is an isomorphism, so f is an 
isomorphism. Hence, f1 and f2 are isomorphisms, and we get the result.

8. Arbitrary standard Levi form

In this section, let A be a commutative, Noetherian U0-algebra with structure map π : U0 → A. As 
usual, we write CA for the category obtained from this A and π. We assume χ is in standard Levi form, 
with associated subset I of simple roots.

We shall make the assumption throughout this section that π(hα) = 0 for all α ∈ RI = R ∩ ZI.

8.1. The module QI
A,χ(λ)

As an initial matter, under this assumption, we can characterise the irreducible modules in C I
A and C I,+

A

when A = F is a field.

Proposition 8.1. Let A = F , a field with the property that π(hα) = 0 for all α ∈ RI . Let λ ∈ X. Then 
ZF,I,χ(λ) is irreducible in both C I

F and C I,+
F (being viewed as an element in the latter by trivial extension). 

Furthermore, every irreducible object in C I
F and in C I,+

F is of the form ZF,I,χ(μ) for some μ ∈ X.

Proof. We already know that each ZF,I,χ(λ) is irreducible in C I
F by Proposition 7.5. Since any submodule 

of ZF,I,χ(λ) in C I,+
F would also be a submodule in C I

F , it follows that it is also irreducible in C I,+
F . That 

each irreducible object in C I
F is of this form follows from Proposition 4.5. What remains is hence to show 

that the irreducible objects of C I,+
F are all of the form ZF,I,χ(μ) for μ ∈ X.

Let M be irreducible in C I,+
F . We may view M as an element of C I

F , where it necessarily has a composition 
series of ZF,χ,I(μ)’s. As discussed in Section 5.1, M has a decomposition M =

⊕
λ+ZI Mλ+ZI in C I

F . Let 
λ +ZI ∈ X/ZI such that Mλ+ZI �= 0 and such that Mμ+ZI �= 0 implies μ +ZI � λ +ZI. This in particular 
means that eαm = 0 for all α ∈ R+ \RI and m ∈ Mλ+ZI . This further means that Mλ+ZI ∈ C I,+

F , and so 
since M is irreducible in C I,+

F we have M = Mλ+ZI .
In C I

F there exists ν ∈ X such that ZF,I,χ(ν) embeds in M = Mλ+ZI , since all simple objects in C I
F

are of this form. Let f : ZF,I,χ(ν) → M be this inclusion. For α ∈ R+ \ RI , we observe that f(eαv) ∈
f(ZF,I,χ(ν)ν+α+ZI) = 0 and eαf(v) ∈ Mν+α+ZI = 0 for all v ∈ ZF,I,χ(ν) (observing that ν + ZI = λ + ZI

by necessity, and that ZF,χ,I(ν) ∈ C I
F (λ +ZI)). Since f is a morphism in C I

F with this property, it is in fact 
a morphism in C I,+

F . Therefore, since M and ZF,χ,I(ν) are simple in C I,+
F , we conclude that M ∼= ZF,χ,I(ν). 

This concludes the proof.
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Returning to the case of arbitrary A, we note in particular that C I
A satisfies the assumptions of the 

previous section. There is thus an equivalence of categories

ΘI
A : (C I

A)◦ ∼−→ C I
A

(where we write (C I
A)◦ for what we called C ◦

A in Subsection 7.1). For λ ∈ X, we may therefore define the 
module QA,I,χ(λ) ∈ C I

A as in Corollary 7.7, namely,

QA,I,χ(λ) := ΘI
A(QK,I,χ(λ) ⊗K A) ∈ C I

A

where QK,I,χ(λ) ∈ C I
K is the projective cover of ZK,I,χ(λ) in C I

K.
If A is a local ring with residue field F , we once again have the property that QA,I,χ(λ) ⊗AF ∼= QF,I,χ(λ) ∈

C I
F , where QF,I,χ(λ) is the projective cover of the simple baby Verma module ZF,I,χ(λ) in C I

F .
For any A and λ ∈ X, we hence define the object QI

A,χ(λ) in CA as

QI
A,χ(λ) := ΓA,χ(QA,I,χ(λ)),

recalling the definition of ΓA,χ from Section 4.4, and viewing QA,I,χ as a module in C I,+
A via the surjection 

U IU+
I � U I . If A is local with residue field F , it is clear that

QI
A,χ(λ) ⊗A F ∼= QI

F,χ(λ),

but in what follows we don’t assume A is local unless explicitly mentioned.

Proposition 8.2. Suppose that π(hα) = 0 for all α ∈ RI . If ZA,χ(λ) ∼= ZA,χ(μ) then λ ∈ WI,p · μ.

Proof. That ZA,χ(λ) and ZA,χ(μ) are isomorphic in CA implies that λ +ZI = μ +ZI and so ZA,χ(λ)λ+ZI

is isomorphic to ZA,χ(μ)μ+ZI in C I
A. We know, as in Section 4.4, that ZA,χ(λ)λ+ZI

∼= ZA,I,χ(λ) in C I
A. 

Therefore, we have that ZA,I,χ(λ) ∼= ZA,I,χ(μ) in C I
A. By Proposition 7.4, we therefore have that λ ∈ WI,p ·μ

Remark 2. We already saw the converse to this proposition in Proposition 6.2. That result now follows 
easily since λ ∈ WI,p · μ implies ZK,I,χ(λ) ∼= ZK,I,χ(μ), and so implies ZK,I,χ(λ) ⊗K A ∼= ZK,I,χ(μ) ⊗K A, 
and so implies ZA,I,χ(λ) = ΘI

A(ZK,I,χ(λ) ⊗K A) ∼= ΘI
A(ZK,I,χ(μ) ⊗K A) = ZA,I,χ(μ), which finally implies 

ZA,χ(λ) ∼= ΓA,χ(ZA,I,χ(λ)) ∼= ΓA,χ(ZA,I,χ(μ)) ∼= ZA,χ(μ).

Corollary 8.3. Let λ, μ ∈ X and suppose that π(hα) = 0 for all α ∈ RI . Then ZA,χ(λ) ∼= ZA,χ(μ) if and 
only if λ ∈ WI,p · μ.

Proposition 8.4. Let λ, μ ∈ X and suppose that π(hα) = 0 for all α ∈ RI . Then QI
A,χ(λ) ∼= QI

A,χ(μ) if and 
only if λ ∈ WI,p · μ.

Proof. If QI
A,χ(λ) ∼= QI

A,χ(μ) then we have λ + ZI = μ + ZI as the maximal element of X/ZI appearing 
non-trivially in the grading. Then QA,I,χ(λ) ∼= QI

A,χ(λ)λ+ZI
∼= QI

A,χ(μ)μ+ZI
∼= QA,I,χ(μ), which implies 

λ ∈ WI,p · μ by Proposition 7.8.
Conversely, if λ ∈ WI,p · μ then QA,I,χ(λ) ∼= QA,I,χ(μ) in C I

A, which obviously implies that QI
A,χ(λ) ∼=

QI
A,χ(μ).

We write ΛI for the set of WI,p-dot-orbits on X, so that elements of Λ index the pairwise non-isomorphic 
QI

A,χ(λ) and also the pairwise non-isomorphic baby Verma modules ZA,χ(λ). As for the set Λ in the previous 
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section, we also use the notation ΛI for a fundamental domain of the WI,p-dot-action on X, allowing us to 
view elements of ΛI as being in X. Note, of course, that if λ and μ in X lie in the same WI,p-dot-orbit then 
λ + ZI = μ + ZI, so we may talk about λ + ZI for λ ∈ ΛI without any ambiguity.

Proposition 8.5. Let λ ∈ X and suppose that π(hα) = 0 for all α ∈ RI . Then QI
A,χ(λ) has a Z-filtration.

Proof. First, we show QA,I,χ(λ) has a Z-filtration in C I
A. Since QA,I,χ(λ) = ΘI

A(QK,I,χ(λ) ⊗K A) and 
ΘI

A(ZK,χ(μ) ⊗KA) = ZA,χ(μ) for all μ ∈ X, it is enough to show that QK,I,χ(λ) ⊗K A ∈ C ◦
A has a filtration 

with sections of the form ZK,χ(μ) ⊗K A for μ ∈ X. Since − ⊗K A is an exact functor CK → C ◦
A, this follows 

from the fact that QK,I,χ(λ) has a Z-filtration in CK as in [11, Prop. 11.18].
Now, viewing QA,I,χ(λ) as an element of C I,+

A via trivial extension, it has a filtration in C I,+
A with sections 

of the form ZA,I,χ(μ) ∈ C I,+
A for μ ∈ X. The induction functor ΓA,χ is an exact functor C I,+

A → CA, so 
QI

A,χ(λ) = ΓA,χ(QA,I,χ(λ)) has a filtration with sections of the form ΓA,χ(ZA,I,χ(μ)) ∈ CA for μ ∈ X. Since 
ΓA,χ(ZA,χ(μ)) is equal to ZA,χ(μ) in CA, the result follows.

Remark 3. The proof of Proposition 8.5 demonstrates the structure of a Z-filtration of QI
A,χ(λ). Namely, 

since the Z-filtration of QK,I,χ(λ) ∈ C I
K consists of |WI · dλ| factors each isomorphic to ZK,I,χ(λ), the 

Z-filtration of QI
A,χ(λ) consists of |WI · dλ| factors each isomorphic to ZA,χ(λ). Furthermore, if ZA,χ(μ)

is a factor of any Z-filtration of QI
A,χ(λ) then the above discussion shows that μ + ZI ≤ λ + ZI, while 

consideration of the ranks of QI
A,χ(λ) and QI

A,χ(λ)λ+ZI as A-modules guarantees that μ + ZI ≥ λ + ZI. 
This then implies that ZA,I,χ(μ) appears in a Z-filtration of QA,I,χ(λ), proving that ZA,I,χ(μ) ∼= ZA,I,χ(λ)
and ZA,χ(μ) ∼= ZA,χ(λ).

Definition 1. Let M ∈ CA. We say that M has a Q-filtration if it has a filtration in CA whose sections are 
all of the form QI

A,χ(λ) for λ ∈ X.

Remark 4. Proposition 8.5 clearly implies that if M ∈ CA has a Q-filtration then it has a Z-filtration.

Proposition 8.6. Let M be a module in CA with a Q-filtration, and suppose that π(hα) = 0 for all α ∈ RI . 
Then M has a projective resolution P• in CA such that, for each N ∈ CA, there exists an integer r ≥ 0 with

HomCA
(Pi, N) = 0 for all i ≥ r.

Proof. We first prove this result for M = QI
A,χ(λ) with λ ∈ X. Since QA,I,χ(λ) is projective in C I

A, 
when we extend it to a module in C I,+

A it satisfies the assumptions of Lemma 4.14. Hence, there exists a 
resolution P̃• in C I,+

A with the property given in that lemma. Applying the functor ΓA,χ to this resolution, 
we get a projective resolution P• = ΓA,χ(P̃ )• of ΓA,χ(QA,I,χ(λ)) which, by Frobenius reciprocity (see 
Proposition 4.12), satisfies the requirements of this lemma.

As in [3] Lemma 2.15, this then implies the result for all M ∈ CA with a Q-filtration using induction and 
the algebraic mapping cone.

The following proposition is just Proposition 3.4 in [3] adapted to our setting.

Proposition 8.7. Let M ∈ CA have a Q-filtration, and let N be a module in CA which is projective as an 
A-module. Suppose that π(hα) = 0 for all α ∈ RI , and suppose further that for all maximal ideals m of A
and all i > 0

ExtiCA/m
(M ⊗A A/m, N ⊗A A/m) = 0.

Then the following results hold.
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1. The homomorphism space HomCA
(M, N) is projective as an A-module.

2. For all A-algebras A′,

ExtiCA′ (M ⊗A A′, N ⊗A A′) = 0 for all i > 0.

3. For all A-algebras A′,

HomCA
(M,N) ⊗A A′ ∼= HomCA′ (M ⊗A A′, N ⊗A A′).

Proof. By Proposition 8.6, there exists a projective resolution P• of M in CA and an integer r ≥ 0 such 
that HomCA

(Pi, N) = 0 for all i ≥ r. Since M has a Q-filtration it has a Z-filtration, and so is free over A. 
Furthermore, all the Pi are projective over A since they are projective in CA (recall this argument from the 
proof of Proposition 7.10).

The proof then works exactly the same way as the proof of [3] Proposition 3.4, once we observe that [3]
Proposition 3.3 generalises to our setting precisely.

Now is a good time to note that as well as the equivalence of categories

ΘI
A : (C I

A)◦ ∼−→ C I
A

there is also an equivalence of categories

ΘI,+
A : (C I,+

A )◦ ∼−→ C I,+
A

defined in the same way. This works since we don’t need the actions of eαe−α − e−αeα and hα to coincide 
here for α /∈ RI .

Lemma 8.8. Let M ∈ C I
K be projective, and suppose that π(hα) = 0 for all α ∈ RI . Then ΘI

A(ΦI,+
K (M) ⊗A) ∈

C I
A is a direct sum of modules of the form QA,χ,I(μ) for μ ∈ ΛI .

Proof. Since M ∈ C I
K is projective, F (M) is a projective U I -module, where F is the forgetful functor. We 

have that F (M) is a projective Uχ(gI)-module, since all modules in C I
K are in fact Uχ(gI)-modules. Recall 

that we write p for the parabolic p = gI ⊕ u+.
We have F (ΦI,+

K (M)) = Φ̃I,+
K (F (M)), where

Φ̃I,+
K : Mod(Uχ(gI)) → Mod(Uχ(p)), M �→ Uχ(p) ⊗Uχ(gI) M = U IU+

I ⊗UI M,

is the induction functor. It is easy to check Frobenius reciprocity, i.e. that for L a Uχ(gI)-module and N a 
Uχ(p)-module, we have

HomUχ(p)(Φ̃I,+
K (L), N) = HomUχ(gI)(L,N).

Hence, Φ̃I,+
K : Mod(Uχ(gI)) → Mod(Uχ(p)) sends projectives to projectives, and so Φ̃I,+

K (F (M)) is a 
projective Uχ(p)-module.

Since Uχ(p) is free over Uχ(gI), we conclude that Φ̃I,+
K (F (M)) is a projective Uχ(gI)-module. Since 

F (ΦI,+
K (M)) = Φ̃I,+

K (F (M)), we conclude that ΦI,+
K (M) is projective in C I

K.
In particular, this means that

ΦI,+
K (M) =

⊕
QK,I,χ(μ)mμ
μ∈ΛI
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for some mμ ≥ 0. This further means that

ΦI,+
K (M) ⊗K A =

⊕
μ∈ΛI

QK,I,χ(μ)mμ ⊗K A

and so

ΘI,+
A (ΦI,+

K (M) ⊗K A) =
⊕
μ∈ΛI

QA,I,χ(μ)mμ .

It is straightforward to check that

ΘI,+
A (ΦI,+

K (M) ⊗K A) = ΦI,+
A (ΘI

A(M ⊗K A))

as elements of C I
A. Hence, we conclude that

ΦI,+
A (ΘI

A(M ⊗K A)) =
⊕
μ∈ΛI

QA,I,χ(μ)mμ .

Lemma 8.9. Suppose that π(hα) = 0 for all α ∈ RI . Let M ∈ C I,+
A (resp. in C I

A) which has a filtration with 
sections of the form QA,I,χ(λ) for λ ∈ X. Then ΓA,χ(M) (resp. ΦI

A(M)) has a Q-filtration.

Proof. If M ∈ C I,+
A has a filtration with sections of the form QA,I,χ(λ), then ΓA,χ(M) has a Q-filtration 

since ΓA,χ is exact and ΓA,χ(QA,I,χ(λ)) = QI
A,χ(λ).

If M ∈ C I
A has a filtration with sections of the form QA,I,χ(λ), then we would like to show the same 

for ΦI,+
A (M). Firstly, we observe that since each QA,I,χ(λ) is projective in C I

A, we in fact have that M is a 
direct sum of modules of the form QA,I,χ(λ). So we may assume M = QA,I,χ(λ).

We may then apply Lemma 8.8 to conclude that, in C I
A,

ΦI,+
A (QA,I,χ(λ)) ∼=

⊕
μ∈ΛI

QA,I,χ(μ)mμ

for some mμ ≥ 0. Note that each QA,I,χ(μ)mμ lies entirely in grade μ + ZI and that ΦI,+
A (QA,I,χ(λ)) is in 

C I,+
A . Let μ0 +ZI be maximal with the property that ΦI,+

A (QA,I,χ(λ))μ+ZI �= 0. Then each QA,I,χ(μ)mμ in 
the decomposition with μ + ZI = μ0 + ZI is a submodule of ΦI,+

A (QA,I,χ(λ)) in C I,+
A . We may hence put 

these at the bottom of a filtration, take the quotient, and iterate the process. At the end of this process, we 
have a filtration of ΦI,+

A (QA,I,χ(λ)) in C I,+
A whose sections are all of the form QA,I,χ(μ) (viewed as elements 

of C I,+
A ). We may then apply the first part of the result to conclude that ΦI

A(M) has a Q-filtration.

Proposition 8.10. Let M ∈ CA and suppose that π(hα) = 0 for all α ∈ RI . There exists a projective module 
P ∈ CA with a Q-filtration such that M is a homomorphic image of P .

Proof. If we view M as lying in C I
A, then Lemma 7.9 shows that there exists Q ∈ C I

A with

Q =
⊕
μ∈ΛI

QA,I,χ(μ)mμ

for some mμ ≥ 0 with Q � M in C I
A. Lemma 8.9 then implies that P := ΦI

A(Q) has a Q-filtration, and it is 
projective since Q is projective in C I

A and ΦI
A sends projectives to projectives. Furthermore, since Q � M

in C I
A, we get that P = ΦI

A(Q) surjects onto M in CA.
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Corollary 8.11. Suppose that π(hα) = 0 for all α ∈ RI . Let M ∈ CA have a Q-filtration. Then M is 
projective in CA if and only if M ⊗A A/m is projective for all maximal ideals m of A.

Proof. The proof works the same way as that of Corollary 3.5 in [3], using our Proposition 5.7, Proposi-
tion 8.7, and Proposition 8.10 where relevant.

Let us consider what P is (or could be) in Proposition 8.10 when M = QI
A,χ(λ). There is a natural 

surjection ΦI,+
A (QA,I,χ(λ)) � QA,I,χ(λ) in C I,+

A . Hence P = ΦI
A(QA,I,χ(λ)) = ΓA,χ(ΦI,+

A (QA,I,χ(λ)))
surjects onto QI

A,χ(λ) = ΓA,χ(QA,I,χ(λ)), and it is projective and has a Q-filtration by Lemma 8.9.
For each λ ∈ X, let us therefore define

ΞI
A,χ(λ) = ΦI

A(QA,I,χ(λ)) ∈ CA.

We note now that ΦI,+
A (QA,I,χ(λ))λ+ZI = QA,I,χ(λ) ∈ C I

A (as in Section 4.4, since QA,I,χ(λ)λ+ZI =
QA,I,χ(λ)) and ΦI,+

A (QA,I,χ(λ))μ+ZI �= 0 implies μ + ZI ≥ λ + ZI. By the proof of Lemma 8.9, 
ΦI,+

A (QA,I,χ(λ)) has a filtration with factors of the form QA,I,χ(μ). By the previous discussion, we must 
have μ + ZI > λ + ZI for each such μ which is not λ, and QA,I,χ(λ) appears exactly once (at the top). 
Hence, applying ΓA,χ, we conclude that ΞI

A,χ(λ) has a Q-filtration with QI
A,χ(λ) appearing exactly once (at 

the top) and with each other factor being of the form QI
A,χ(μ) for μ ∈ X with μ + ZI > λ + ZI.

8.2. Projective covers

We would now like to prove a result similar to Corollary 7.7 when χ is not necessarily regular nilpotent, 
i.e., to find, when A is a local algebra with residue field F , a projective module QA,χ(λ) ∈ CA with 
QA,χ(λ) ⊗A F ∼= QF,χ(λ) in CF . To do this, we need to establish some preliminary results.

Proposition 8.12. Suppose that π(hα) = 0 for all α ∈ RI . Let λ ∈ X and let N ∈ CA with λ +ZI ≮ μ +ZI

for all μ + ZI ∈ X/ZI with Nμ+ZI �= 0. Then

Ext1CA
(QI

A,χ(λ), N) = 0.

Proof. Let

0 → N
i−→ M

p−→ QI
A,χ(λ) → 0

be an exact sequence in CA. Then

0 → Nλ+ZI
iλ+ZI−−−−→ Mλ+ZI

pλ+ZI−−−−→ QI
A,χ(λ)λ+ZI → 0

is an exact sequence in C I
A. Since QI

A,χ(λ)λ+ZI
∼= QA,I,χ(λ) in C I

A, the exact sequence in C I
A is

0 → Nλ+ZI
iλ+ZI−−−−→ Mλ+ZI

pλ+ZI−−−−→ QA,I,χ(λ) → 0,

which splits since QA,I,χ(λ) is projective in C I
A. Hence there exists a map

f : QA,I,χ(λ) → Mλ+ZI ⊆ M

in C I
A with pλ+ZI ◦ f = Id. Since Nσ+ZI = QI

A,χ(λ)σ+ZI = 0 for all σ +ZI ∈ X/ZI with σ +ZI > λ +ZI, 
we must have that Mσ+ZI = 0 for all σ+ZI ∈ X/ZI with σ+ZI > λ +ZI. Hence, f is in fact a morphism 
in C I,+

A .
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By Frobenius reciprocity, we get a morphism

f̃ : QI
A,χ(λ) = ΓA,χ(QA,I,χ(λ)) → M

extending f . Given u ⊗m ∈ QI
A,χ(λ), we then get

p ◦ f̃(u⊗m) = p(uf(m)) = u(pf(m)) = u⊗m.

Hence, our original exact sequence splits.

Corollary 8.13. Suppose that π(hα) = 0 for all α ∈ RI . Let λ, μ ∈ X with λ + ZI ≮ μ + ZI. Then

Ext1CA
(QI

A,χ(λ), QI
A,χ(μ)) = 0.

Corollary 8.14. Let M ∈ CA have a Q-filtration, and suppose that π(hα) = 0 for all α ∈ RI . Then M has a 
(possibly different) Q-filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mr = M

with sections Mi/Mi−1 ∼= QA,χ(λi) for λi ∈ X such that λi + ZI > λj + ZI implies i < j.

Lemma 8.15. Suppose that π(hα) = 0 for all α ∈ RI . Let M ∈ CA have a Q-filtration, and suppose 
λ +ZI ∈ X/ZI has the property that Mλ+ZI �= 0 and Mσ+ZI = 0 for all σ+ZI ∈ X/ZI with σ+ZI > λ +ZI. 
Then M has a (possibly different) Q-filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mr = M

with sections Mi/Mi−1 ∼= QA,χ(λi) for λi ∈ X with the property that there exists 1 ≤ k ≤ r such that

λi + ZI = λ + ZI, for all i ≤ k

and

λi + ZI �= λ + ZI implies i > k.

Proof. Suppose not. By the assumptions on λ + ZI, there must exist 1 ≤ l ≤ r with λl + ZI = λ + ZI. 
Then there exists 1 ≤ i < j ≤ r such that λi +ZI �= λ +ZI, and λj +ZI = λ +ZI. Therefore, there exists 
1 ≤ i < r such that λi + ZI �= λ + ZI and λi+1 + ZI = λ + ZI. There is then a short exact sequence

0 → Mi

Mi−1
→ Mi+1

Mi−1
→ Mi+1

Mi
→ 0

which we may of course write as

0 → QI
A,χ(λi) →

Mi+1

Mi−1
→ QI

A,χ(λi+1) → 0.

If ExtiCA
(QI

A,χ(λi+1), QI
A,χ(λi)) �= 0, then by Corollary 8.13, we have

λi + ZI > λi+1 + ZI = λ + ZI.
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However, Mλi+ZI �= 0 since QI
A,χ(λi) is a section of a Q-filtration of M and QI

A,χ(λi)λi+ZI �= 0. This 
contradicts our assumption on λ + ZI, and so we must have that ExtiCA

(QI
A,χ(λi+1), QI

A,χ(λi)) = 0. In 
particular, the short exact sequence above splits, and so we may swap QI

A,χ(λi) and QI
A,χ(λi+1) in the 

Q-filtration. Iterating this argument, we obtain the result.

Remark 5. The proof of the previous lemma shows that, if M has a Q-filtration, then M also has a Q-
filtration with the given property and with the same QI

A,χ(λ) appearing the same number of times in the 
new filtration as in the original one.

For the remainder of the subsection, we assume that A is a local ring with residue field F .

Proposition 8.16. Suppose that π(hα) = 0 for all α ∈ RI . Suppose further that A is local with residue field 
F , and let M ∈ CA have a Q-filtration. Let

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mr = M

and

0 = N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Ns = N

be two Q-filtrations of M , with sections Mi/Mi−1 ∼= QA,χ(λi) and Nj/Nj−1 ∼= QA,χ(μj) for λi, μj ∈ X. 
Then r = s and there exists σ ∈ Sr such that

QI
A,χ(λi) ∼= QI

A,χ(μσ(i))

for all 1 ≤ i ≤ r.

Proof. Let us apply induction on r + s. If r = s = 1, it is clear. Let λ +ZI ∈ X/ZI have the property that 
Mλ+ZI �= 0 and Mκ+ZI = 0 for all κ +ZI ∈ X/ZI with κ +ZI > λ +ZI. By Lemma 8.15, we may assume 
that there exists 1 ≤ k1 ≤ r and 1 ≤ k2 ≤ s such that λi + ZI = λ + ZI for all i ≤ k1, λi + ZI �= λ + ZI

for all i > k1, μj + ZI = λ + ZI for all j ≤ k2 and μj + ZI �= λ + ZI for all j > k2. As in the previous 
remark, we see that making this assumption doesn’t change which QI

A,χ(μ) appear or how many times, so 
this assumption is permissible.

This implies, in particular, that Mλ+ZI = (Mk1)λ+ZI = (Mk2)λ+ZI . Since, if λi +ZI = λ +ZI, we have 
that QI

A,χ(λi)λ+ZI = QA,I,χ(λi) ∈ C I
A, and each QA,I,χ(λi) is projective in CA, we get in C I

A that

Mλ+ZI
∼= QA,I,χ(λ1) ⊕ · · · ⊕QA,I,χ(λk1)
∼= QA,I,χ(μ1) ⊕ · · · ⊕QA,I,χ(μk2).

Proposition 7.10 then says that k1 = k2 and that there exists ω ∈ Sk1 such that

QA,I,χ(λi) ∼= QA,I,χ(μω(i))

for all 1 ≤ i ≤ k1, and so

QI
A,χ(λi) ∼= QI

A,χ(μω(i))

for all 1 ≤ i ≤ k1.
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We now want to show that Mk1 = Nk2 . Let us write L for the submodule UχMλ+ZI of M (i.e. the 
minimal submodule of M containing Mλ+ZI). Note that (UχMλ+ZI)ν+ZI = (Uχ)ν−λ+ZIMλ+ZI = Mν+ZI ∩
UχMλ+ZI , and

(UχMλ+ZI)dμν+ZI =
∑
dε∈h

∗

ε∈λ+ZI+pX

(Uχ)d(μ−ε)
ν−λ+ZIM

dε
λ+ZI = Mdμ

ν+ZI ∩ UχMλ+ZI ,

so L is indeed a submodule of M in CA. Since Mk1 and Nk2 are submodules of M , and we have Mλ+ZI ⊆
Mk1 ∩Nk2 , we clearly have L ⊆ Mk1 and L ⊆ Nk2 .

Conversely, we have that M1 ∼= QI
A,χ(λ1) lies inside Uχ ·(M1)λ+ZI , that M2 lies inside M1+Uχ ·(M2)λ+ZI

and so forth. In particular, we get that Mk1 lies inside Uχ · (Mk1)λ+ZI = UχMλ+ZI , so Mk1 = L. By the 
same argument, Nk2 = L, and so Mk1 = Nk2 .

Now, M/L has two Q filtrations, one with r − k1 factors and one with s − k2 factors. The result follows 
by induction, since k1, k2 ≥ 1.

Proposition 8.17. Suppose that A is a local ring with residue field F , and that π(hα) = 0 for all α ∈ RI . Let 
M ∈ CA have a Q-filtration, and suppose M = N ⊕ P in CA. Then N and P have Q-filtrations.

Proof. Let λ + ZI ∈ X/ZI be such that Mλ+ZI �= 0 and Mσ+ZI = 0 for all σ + ZI ∈ X/ZI with 
σ + ZI > λ + ZI. By Lemma 8.15, we may assume that the Q-filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mr = M,

with sections Mi/Mi−1 ∼= QA,χ(λi) for λi ∈ X, has the property that there exists 1 ≤ k ≤ r such that

λi + ZI = λ + ZI, for all i ≤ k

and

λi + ZI �= λ + ZI implies i > k.

We have that Mλ+ZI = Nλ+ZI ⊕ Pλ+ZI . In C I
A, we observe that

Mλ+ZI = QA,I,χ(λ1) ⊕ · · · ⊕QA,I,χ(λk)

since all of the QA,I,χ(λi) are projective. By Lemma 7.11, both Pλ+ZI and Nλ+ZI decompose into QA,I,χ(μ)’s 
in C I

A. More specifically, one may see from the proof of Lemma 7.11 that (M1)λ+ZI = QA,I,χ(λ1) embeds 
into, say, Nλ+ZI . Since N is a submodule of M in CA, and QA,I,χ(λ) generates QI

A,χ(λ) in CA, we conclude 
that M1 ⊆ N , and so M/M1 = (N/M1) ⊕P . The result follows by induction on the length of the Q-filtration.

Corollary 8.18. Suppose that A is a local ring with residue field F and that π(hα) = 0 for all α ∈ RI . Any 
M ∈ CA which is projective in CA has a Q-filtration.

Proof. By Proposition 8.10, there exists a projective module P ∈ CA with a Q-filtration such that P surjects 
onto M in CA. Since M is projective in CA, the surjection splits and M is a direct summand of P . The 
result then follows from Proposition 8.17.

We would like to know how many times a given QI
A,χ(λ) appears in a Q-filtration of certain projective 

modules. In order to determine this, let us briefly discuss how the functor D discussed earlier interacts with 
our standing assumptions in this section.
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Proposition 8.19. Let A be a commutative Noetherian U0-algebra with structure map π : U0 → A. Suppose 
π(hα) = 0 for all α ∈ RI . Then π(hα) = τπ(hα) = Dπ(hα) = Dπ(hα) = 0 for all α ∈ RI .

Proof. This is clear for π, and the result for Dπ will follow from the result for τπ. The result for Dπ will 
be similar, so we only prove τπ(hα) = 0 for all α ∈ RI . We have

τ−1(hα) = τ−1([eα, e−α]) = [τ−1(eα), τ−1(e−α)] = k[e−wIα, ewIα] = khwIα

for some k ∈ K∗ since τ−1(gα) = g−wIα by [12]. Since α ∈ RI , wIα ∈ RI , and so π(hwIα) = 0. Thus 
τπ(hα) = π(τ−1(hα)) = 0.

In particular, once we assume π(hα) = 0 for all α ∈ RI , all the results which need this assumption will 
also hold in categories over the modified U0-algebras. We will use this without comment going forward. 
Furthermore, we note from the calculations in [12] that τ sends U I to U I , U+

I to U−
I , and vice versa. So 

the automorphism τ : gI → gI which we use to define the functor D : C I
A → C I

DA is just the restriction of 
the automorphism τ : g → g that we have been using throughout.

Proposition 8.20. Suppose π(hα) = 0 for all α ∈ RI . The following diagram commutes:

(C I
A)◦

ΘI
A

D

C I
A

D

(C I
DA)◦

ΘI
DA

C I
DA.

Proof. It is not difficult to check that, for λ + ZI ∈ X/ZI, μ ∈ λ + ZI + pX and M ∈ C I
A, we have 

D(M)dμλ+ZI
∼= D(M−d(τ−1(μ))

λ+ZI ) as U0 ⊗ A-modules. With this in mind, the computation is straightforward, 
noting that τ−1(gα) ⊆ g−wIα for all α ∈ RI .

Note that DA = A if π(h) = 0 for all h ∈ h, and so, if A = F is a field and this holds, D is a duality on 
C I
F .

Proposition 8.21. The following diagram commutes:

C I
K

−⊗KA

D

(C I
A)◦

D

C I
K

−⊗KA
(C I

A)◦.

Proof. This is straightforward once we observe that HomA(M ⊗KA, A) and HomK(M, K) ⊗KA are isomor-
phic as Uχ ⊗A-modules.

The following proposition tells us that the functor D “fixes” irreducible objects in CF .

Proposition 8.22. Suppose that A = F is a field and that π(hα) = 0 for all α ∈ RI . Then D(LF,χ(λ)) ∼=
LDF,χ(λ) for all λ ∈ X.

Proof. Let λ ∈ X. Then one may easily check that D(LF,χ(λ))λ+ZI is isomorphic to D(LF,χ(λ)λ+ZI) in C I
F , 

since τ preserves U I . We know that LF,χ(λ)λ+ZI
∼= ZF,I,χ(λ) in CF , since the irreducible ZF,χ(λ)λ+ZI =



46 M. Westaway / Journal of Pure and Applied Algebra 226 (2022) 107033
ZF,I,χ(λ) surjects onto the non-trivial LF,χ(λ)λ+ZI . Then D(ZF,I,χ(λ)) = D(ZK,I,χ(λ)) ⊗K F from Propo-
sitions 8.20 and 8.21. By [11], we have D(ZK,I,χ(λ)) ∼= ZK,I,χ(λ) in C I

K, and so D(ZF,I,χ(λ)) ∼= ZDF,I,χ(λ). 
We therefore have D(LF,χ(λ))λ+ZI

∼= ZDF,I,χ(λ). Since D(LF,χ(λ)) is an irreducible object in CDF from 
the anti-equivalence of Proposition 5.13, we have D(LF,χ(λ)) ∼= LDF,χ(μ) for some μ ∈ X. Then we have 
ZDF,I,χ(λ) ∼= ZDF,I,χ(μ) and so λ ∈ WI,p · μ by Proposition 8.2. Thus, LDF,χ(μ) ∼= LDF,χ(λ), and so 
D(LF,χ(λ)) ∼= LDF,χ(λ).

We aim to generalise Corollary 7.7 to the current setting. This involves an approach similar to the proof 
of Proposition 4.18 in [3]. Let ν + ZI ∈ X/ZI. Recall that QF,χ(λ) ∈ CF is the projective cover of the 
irreducible module LF,χ(λ) ∈ CF . Let us write Qν+ZI

F,χ (λ) for the object T ν+ZI(QF,χ(λ)) ∈ CF (≤ ν + ZI). 
In order to understand the structure of the projective covers QF,χ(λ) and Qν+ZI

F,χ (λ), we need the following 
proposition. Its proof, and that of the theorem following it, uses techniques similar to those of Nakano in 
[17].

Proposition 8.23. Suppose π(hα) = 0 for all α ∈ RI . The module QI
F,χ(λ) is the projective cover of ZF,I,χ(λ)

in C I,−
F .

Proof. Recall that QI
F,χ(λ) = ΓF,χ(QF,I,χ(λ)), where QF,I,χ(λ) is the projective cover of ZF,I,χ(λ) in C I

F . 
By Frobenius reciprocity, we have

HomC I
F
(QF,I,χ(λ),ΓF,χ(QF,I,χ(λ))) ∼= HomC I,−

F
(ΦI,−

F (QF,I,χ(λ)),ΓF,χ(QF,I,χ(λ)).

The morphism m �→ 1 ⊗m in C I
F thus extends to a morphism

ΦI,−
F (QF,I,χ(λ)) → ΓF,χ(QF,I,χ(λ))

in C I,−
F , which is surjective since 1 ⊗QF,I,χ(λ) generates ΓF,χ(QF,I,χ(λ)) in C I,−

F . It is easy to see that

dimF (ΦI,−
F (QF,I,χ(λ))) = pdim u

−
dimF (QF,I,χ(λ)) = dimF (ΓF,χ(QF,I,χ(λ)))

and so they are isomorphic in C I,−
F .

Now, ΦI,−
F (QF,I,χ(λ)) is projective in C I,−

F , and we have

HomC I,−
F

(ΦI,−
F (QF,I,χ(λ)), ZF,I,χ(μ)) ∼= HomC I

F
(QF,I,χ(λ), ZF,I,χ(μ))

and

HomC I
F
(QF,I,χ(λ), ZF,I,χ(μ)) =

{
F if ZF,I,χ(λ) ∼= ZF,I,χ(μ),
0 if otherwise.

This implies that QI
F,χ(λ) ∼= ΦI,−

F (QF,I,χ(λ)) is a projective indecomposable module with unique irre-
ducible head ZF,I,χ(λ) in C I,−

F . The result follows.

Since QF,χ(λ) is projective in CF , it has a Q-filtration by Proposition 8.18. Restricting to C I,−
F , the 

QI
F,χ(μ) are projective, and so we have

QF,χ(λ) =
⊕
μ∈ΛI

QI
F,χ(μ)mμ

where each
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mμ = (QF,χ(λ) : QI
F,χ(μ)),

the number of appearances of QI
F,χ(μ) in the Q-filtration of QF,χ(λ). This number is well-defined by Propo-

sition 8.16.

Theorem 8.24. Suppose π(hα) = 0 for all α ∈ RI , and let λ, μ ∈ X. Then (QF,χ(λ) : QI
F,χ(μ)) =

[ZDF,χ(μ), LDF,χ(λ)].

Proof. We have the following chain of equalities, denoting the functor HomF (−, F ) as ∗.

(QF,χ(λ) : QI
F,χ(μ)) = dimF HomC I,−

F
(QF,χ(λ), ZF,I,χ(μ))

= dimF Hom
C I,−

F

(ZF,I,χ(μ)∗, QF,χ(λ)∗)

= dimF HomCF
(Γ′

F,−χ
(ZF,I,χ(μ)∗), QF,χ(λ)∗)

= dimF HomCF
(QF,χ(λ),Γ′

F,−χ
(ZF,I,χ(μ)∗)∗)

= [Γ′
F,−χ

(ZF,I,χ(μ)∗)∗ : LF,χ(λ)]

= [Γ′
F,−χ

(ZF,I,χ(μ)∗) : LF,χ(λ)∗]

= [ τΓ′
F,−χ

(ZF,I,χ(μ)∗) : LDF,χ(λ)]

= [ΓDF,χ(D(ZF,I,χ(μ))) : LDF,χ(λ)]

= [ZDF,χ(μ) : LDF,χ(λ)].

Let us explain where these equalities come from. The first equality comes from the fact that

HomC I,−
F

(QI
F,χ(λ), ZF,I,χ(μ)) =

{
F if λ ∈ WI,p · μ,
0 if not.

The second equality comes from an analogue of Corollary 5.11 for the category C I,−
F (nothing in its proof 

depending upon the objects being Uχ ⊗ F -modules rather than U−
I U I ⊗ F -modules). The third equality 

comes from Frobenius reciprocity, which works just as well for U−χ ⊗ F -modules as for Uχ ⊗ F -modules. 
The fourth equality also follows from Corollary 5.11. The fifth equality is a general fact about projective 
covers. The sixth equality comes from applying HomF (−, F ), noting that the simplicity of LF,χ(λ) in CF

implies the simplicity of LF,χ(λ)∗ in CF . The seventh equality comes from applying the functor CF → CDF , 
M �→ τM , and using Proposition 8.22. The eighth equality will be addressed momentarily. Finally, the 
ninth equality comes from Proposition 8.22, since that implies D(ZF,I,χ(μ)) ∼= ZDF,I,χ(μ) in C I

F .
For the eighth equality, suppose M ∈ C I

F
with M = M−λ+ZI . We want to show that

τΓ′
F,−χ

(M) ∼= ΓDF,χ( τM)

in CDF . By Frobenius reciprocity, we have

HomC I,+
DF

( τM, τΓ′
F,−χ

(M)) ∼= HomCDF
(ΓDF,χ( τM), τΓ′

F,−χ
(M)),

noting that τ means the same thing in all appearances here, since we observed above that the τ used in 
C I
DF is just a restriction of the τ used in CDF . Here, τM is viewed as lying in C I,+

DF by trivial extension. 
There is a morphism in C I,+

DF from τM to τΓ′
F,−χ

(M) which sends m ∈ τM to 1 ⊗m ∈ τΓ′
F,−χ

(M). This 
is a morphism in C I,+ since, if u ∈ (U+

I )σ+ZI for σ + ZI > 0 + ZI, and z ∈ ( τΓ′ (M))λ+ZI , we have 
DF F,−χ
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u · z ∈ Γ′
F,−χ

(M)−λ−σ+ZI (using here that τ−1(u+) = u− as in [12]). But Γ′
F,−χ

(M)−λ−σ+ZI = 0 whenever 
σ + ZI > 0 + ZI, by construction, so we indeed have a morphism in C I,+

DF .
This therefore induces a morphism ΓDF,χ( τM) → τΓ′

F,−χ
(M) in CDF . It is clear that 1 ⊗M generates 

τΓ′
F,−χ

(M) in CDF . Hence, there is a surjective morphism in CDF :

ΓDF,χ( τM) → τΓ′
F,−χ

(M).

Since the F -dimensions coincide, this must be an isomorphism, as required.

Corollary 8.25. Suppose π(hα) = 0 for all α ∈ RI , and let λ, μ ∈ X. Then (QF,χ(λ) : QI
F,χ(λ)) = 1 and 

(QF,χ(λ) : QI
F,χ(μ)) is non-zero only if μ + ZI ≥ λ + ZI.

Proof. It is clear that [ZDF,χ(μ) : LDF,χ(λ)] �= 0 only if μ +ZI ≥ λ +ZI. Furthermore, since LDF,χ(λ)λ+ZI =
ZDF,χ(λ)λ+ZI , the simple module LDF,χ(λ) can only appear once in a composition series of ZF,χ(λ) (it clearly 
must appear at least once).

Corollary 8.26. Suppose π(hα) = 0 for all α ∈ RI , let λ, μ ∈ X, and let ν+ZI ∈ X/ZI with λ +ZI ≤ ν+ZI. 
Then (Qν+ZI

F,χ (λ) : QI
F,χ(λ)) = 1 and (Qν+ZI

F,χ (λ) : QI
F,χ(μ)) is non-zero only if μ + ZI ≥ λ + ZI and 

μ + ZI ≤ ν + ZI.

Corollary 8.27. Suppose π(hα) = 0 for all α ∈ RI , and let λ ∈ X. Then QI
F,χ(λ) is projective if and only if 

ZDF,χ(λ) is irreducible.

We are now ready to prove the main result of this section, which should be compared with Proposition 
4.18 in [3].

Theorem 8.28. Suppose that π(hα) = 0 for all α ∈ RI . For all λ ∈ X with λ + ZI ≤ μ + ZI, there exists a 
projective module Qν+ZI

A,χ (λ) ∈ CA(≤ ν + ZI) with Qν+ZI
A,χ (λ) ⊗A F ∼= Qν+ZI

F,χ (λ).

Proof. Recall the definition of ΞI
A,χ(λ) from the end of Subsection 8.1. We know that ΞI

A,χ(λ) ∈ CA is 
projective and has a Q-filtration where QI

A,χ(λ) appears once (at the top) and all other factors are of the 
form QI

A,χ(μ) for μ ∈ X with μ + ZI > λ + ZI. Set Q = T ν+ZI(ΞI
A,χ(λ)) ∈ CA(≤ ν + ZI). This is a 

projective module in CA(≤ ν + ZI) by Lemma 5.1. It has a Q-filtration by Corollary 8.18 and there exists 
a surjection Q � QI

A,χ(λ).
Then Q ⊗AF is projective in CF (≤ ν+ZI) by a similar argument to that of Lemma 5.7. Since the simple 

objects in CF (≤ ν +ZI) are precisely the objects LF,χ(μ) for μ ∈ ΛI with μ +ZI ≤ ν +ZI, and since each 
Qν+ZI

F,χ (μ) is the projective cover of such LF,χ(μ) in CF (≤ ν +ZI), every projective object in CF (≤ ν +ZI)
is a direct sum of some Qν+ZI

F,χ (μ) with μ ∈ ΛI with μ + ZI ≤ ν + ZI. Hence, Q ⊗A F is a direct sum of 
some copies of Qν+ZI

F,χ (μ) with μ ∈ ΛI , μ + ZI ≤ ν + ZI.
If Qν+ZI

F,χ (μ) appears in the direct sum decomposition then, by Corollary 8.26, QI
F,χ(μ) appears in the 

Q-filtration of Q ⊗AF . Therefore, from what we know about the Q-filtration, we must have μ +ZI ≥ λ +ZI. 
Furthermore, there can be at most one Qν+ZI

F,χ (μ) appearing in the filtration with μ + ZI = λ + ZI. Since 

both Q ⊗A F and Qν+ZI
F,χ (λ) surject onto LF,χ(λ), and since Qν+ZI

F,χ (λ) is the projective cover of LF,χ(λ) in 

CF (≤ λ + ZI), the module Qν+ZI
F,χ (λ) must appear at least once in the decomposition. We therefore have

Q⊗A F ∼= Qν+ZI
F,χ (λ) ⊕

⊕
λ+ZI<μ+ZI≤ν+ZI

Qν+ZI
F,χ (μ)m(μ)

for some m(μ) ≥ 0.
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If λ + ZI = ν + ZI, we may therefore take Qν+ZI
A,χ (λ) = Q. The remainder of the proof works in exactly 

the same way as Proposition 4.18 does in [3], using an analogue of Proposition 3.3 in [3] where necessary.

Theorem 8.29. Suppose that π(hα) = 0 for all α ∈ RI . For all λ ∈ X, there exists a projective module 
QA,χ(λ) ∈ CA with QA,χ(λ) ⊗A F ∼= QF,χ(λ). This module is uniquely determined up to isomorphism. 
Furthermore, any projective module in CA can be expressed as a direct sum of some QA,χ(λ).

Proof. One may easily check that ΞI
A,χ(λ) ∈ CA lies inside CA(≤ 2(p − 1)ρ +ZI). Choosing then ν +ZI ∈

X/ZI with ν +ZI ≥ 2(p − 1)ρ +ZI, we get that ΞI
A,χ(λ) = T ν+ZIΞI

A,χ(λ), which is the object Q from the 

previous proof. Then Q and Qν+ZI
A,χ (λ) are projective in CA, and we have Qν+ZI

A,χ (λ) ⊗AF = Qν+ZI
F,χ (λ). Since 

there is a surjection ΞI
F,χ(λ) � QI

F,χ(λ) � ZF,χ(λ) � LF,χ(λ), and since QF,χ(λ) is the projective cover of 
LF,χ(λ) in CF , there is a surjection ΞI

F,χ(λ) � QF,χ(λ). In particular, QF,χ(λ) ∈ CF (≤ 2(p − 1)ρ +ZI) and 

so Qν+ZI
F,χ (λ) = QF,χ(λ). Therefore, we may take QA,χ(λ) = Qν+ZI

A,χ (λ).
Suppose QA,χ(λ) and Q̃A,χ(λ) are both projective modules in CA such that QA,χ(λ) ⊗A F ∼= Q̃A,χ(λ) ⊗A

F ∼= QF,χ(λ). By Remark 4.18 in [3] (adapted to this case), there exists M ∈ CA such that QA,χ(λ) ∼=
Q̃A,χ(λ) ⊕ M . We must then have M ⊗A F = 0. But M is projective in CA, so has a Q-filtration by 
Corollary 8.18, and so is free over A. This implies M = 0. A similar argument proves the final claim.

9. Index of notation

In this section we give a list of the notation used in this paper. We omit notation which is only used in 
individual proofs.

Section 2. Notation
K: Algebraically closed field of characteristic p > 0.
G: Connected reductive algebraic group over K.
T : Maximal torus of G of rank d.
B: Borel subgroup of G containing T .
X: Character group X = X(T ).
g, h, b: Lie algebras of G, T , B respectively.
R: Root system of g with respect to T .
R+ = {β1, . . . , βr}: Positive roots in R corresponding to B.
Π = {α1, . . . , αn}: Simple roots in R+.
Y (T ): Cocharacter group of T .
〈·, ·〉: Natural pairing X(T ) × Y (T ) → Z.
α∨: The coroot corresponding to α ∈ R.
x �→ x[p]: p-th power map on g, b, h.
{eα, hi | α ∈ R, 1 ≤ i ≤ d}: Chosen basis of g, with eα ∈ gα for α ∈ R, and h[p]

i = hi for 1 ≤ i ≤ d.
hα := [eα, e−α].
n+ :=

⊕
α∈R+ gα.

n− :=
⊕

α∈R+ g−α.
I: Subset of Π.
χ: Linear form on g in standard Levi form corresponding to I ⊆ Π.
≥: Partial ordering on X/ZI.

Section 3. The category CA

Subsection 3.1. Definition of algebras
U(g): Universal enveloping algebra of g.
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Uχ(g): Reduced enveloping algebra of g.
Uχ := U(g)/〈epα − χ(eα)p | α ∈ R〉.
U+ := Uχ(n+) = U0(n+) ⊆ Uχ.
U− := Uχ(n−) ⊆ Uχ.
U0 := U(h) ⊆ Uχ.
U I : Subalgebra of Uχ generated by h and {eα | α ∈ R ∩ ZI}.
RI := R ∩ ZI.
R+

I := R+ ∩ ZI.
gI : Lie subalgebra of g generated by h and {eα | α ∈ RI}.
u+: Lie subalgebra of g generated by {eα | α ∈ R+ \ ZI}.
u−: Lie subalgebra of g generated by {eα | α ∈ R− \ ZI}.
U+
I := Uχ(u+) = U0(u+) ⊆ Uχ.

U−
I := Uχ(u−) = U0(u−) ⊆ Uχ.

Uχ =
⊕

λ+ZI∈X/ZI(Uχ)λ+ZI : Standard X/ZI-grading on Uχ.
(Uχ)λ+ZI =

⊕
dμ∈h∗, μ∈λ+ZI+pX(Uχ)dμλ+ZI : Weight space decomposition of (Uχ)λ+ZI .

μ �→ μ̃: Group homomorphism X → AutK−alg(U0) from Lemma 3.1.
Subsection 3.2. Definition of the category CA

π : U0 → A: Commutative Noetherian algebra over U0.
CA: Category of X/ZI-graded Uχ ⊗A-modules satisfying Conditions (A), (B), (C) and (D).
Mλ+ZI : λ + ZI-graded part of M .
Mdμ

λ+ZI : (D)-decomposition summand of Mλ+ZI corresponding to dμ ∈ h∗, μ ∈ λ + ZI + pX.
C̃A: Category of X/pZI-graded Uχ ⊗A-modules satisfying conditions (A’), (B’), (C’) and (D’).
Subsection 3.3. Categories defined over subalgebras
C ′
A: Category of X/ZI-graded U0U+ ⊗A-modules satisfying Conditions (A), (B), (C) and (D).

Ĉ ′
A: Category of X-graded U0U+ ⊗A-modules satisfying Conditions (Â), (B̂), (Ĉ) and (D̂).

ΥA: Functor Ĉ ′
A → C ′

A (or Ĉ ′′
A → C ′′

A) from Proposition 3.4.
Mσ: σ-graded part of X-graded module M .
C ′′
A: Category of X/ZI-graded U0 ⊗A-modules satisfying Conditions (A), (B), (C) and (D).

Ĉ ′′
A: Category of X-graded U0 ⊗A-modules satisfying Conditions (Â), (B̂), (Ĉ) and (D̂).

Section 4. Induction
Subsection 4.1. Induction along U0

Φ′
A: Induction functor C ′′

A → C ′
A.

ΦA: Induction functor C ′′
A → CA.

Subsection 4.2. Baby Verma modules
ZA,χ: Induction functor C ′

A → CA.
Aλ: Object in C ′′

A as defined in this subsection, corresponding to λ ∈ X.
ZA,χ(λ) := ZA,χ(Aλ) with Aλ viewed as an object of C ′

A by inflation, for λ ∈ X.
Subsection 4.3. Z-Filtrations
Φ̂′

A: Functor Ĉ ′′
A → Ĉ ′

A defined analogously to Φ′
A.

Subsection 4.4. Induction from parabolic subalgebras
C I
A: Category of X/ZI-graded U I ⊗A modules satisfying Conditions (A), (B), (C) and (D).

p: Parabolic subalgebra gI ⊕ u+ of g.
C I,+
A : Category of X/ZI-graded U IU+

I ⊗A modules satisfying Conditions (A), (B), (C) and (D).
ΓA,χ: Induction functor C I,+

A → CA.
ΦI,+

A : Induction functor C I
A → C I,+

A .
ΦI

A: Induction functor C I
A → CA.

ZA,I,χ(λ): Baby Verma module in C I
A corresponding to λ ∈ X.
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p′: Parabolic subalgebra u− ⊕ gI of g.
C I,−
A : Category of X/ZI-graded U−

I U I ⊗A modules satisfying Conditions (A), (B), (C) and (D).
Γ′
A,χ: Induction functor C I,−

A → CA.
ΦI,−

A : Induction functor C I
A → C I,−

A .

Section 5. Miscellaneous
Subsection 5.1. The category C I

A

C I
A(λ + ZI): The full subcategory of objects M in C I

A with Mλ+ZI = M .
Subsection 5.2. Truncations
CA(≤ ν + ZI): The full subcategory M ∈ CA with Mλ+ZI �= 0 only if λ + ZI ≤ ν + ZI.
Tλ+ZI : Truncation functor CA → CA(≤ λ + ZI).
Subsection 5.3. Extension of scalars
G CA: The category of X/ZI-graded Uχ ⊗A-modules satisfying conditions (A), (F), (C) and (D).
π : U0 → A ↪→ A′: Commutative A-algebra.
Subsection 5.4. Duality
CA: The category analogous to CA for U−χ ⊗A-modules.
π : U0 → A: U0-algebra defined by π(h) = −π(h) for h ∈ h.
τ : Automorphism of G (and of g) defined in [12].
WI : Weyl group corresponding to RI .
wI : Longest element in WI .
τπ : U0 → τA: U0-algebra defined by τπ(h) = π(τ−1(h)) for h ∈ h.
τM : The U−χ ⊗ A-module with the same A-module structure as M and with the U−χ action given by 
x ·m = τ−1(x)m for x ∈ U−χ and m ∈ M .
Dπ : U0 → DA: U0-algebra defined by Dπ = τ (π).
D: Duality functor CA → CDA.
Dπ : U0 → DA: U0-algebra defined by Dπ(h) = −π(τ(h)) for h ∈ h.
D: “Inverse” duality functor CA → CDA.

Section 6. Properties of baby Verma modules
Subsection 6.1. Irreducibility
π : U0 → F : Commutative Noetherian U0-algebra which is a field.
LF,χ(λ): Unique irreducible quotient of ZF,χ(λ), for λ ∈ X.
QF,χ(λ): Projective cover of LF,χ(λ) in CF , for λ ∈ X.
Subsection 6.2. Isomorphisms of baby Verma modules
sα: Reflection X → X sending λ ∈ X to λ − 〈λ, α∨〉α.
sα,m: Reflection X → X sending λ ∈ X to λ − 〈λ, α∨〉α + mα.
W : Weyl group of R.
tm,α: Translation X → X sending λ ∈ X to λ + mα.
Wp: p-affine Weyl group of R, subgroup of AutZ(X) generated by W and tα,m for α ∈ R, m ∈ Z.
WI : Weyl group of RI .
WI,p: p-affine Weyl group of RI , subgroup of AutZ(X) generated by W and tα,m for α ∈ RI , m ∈ Z.
ρ: Half-sum of positive roots in X.

Section 7. Regular nilpotent p-characters
Recall that in this section χ is regular nilpotent, and π(hα) = 0 for all α ∈ R.
π◦ : U0 → A: U0-algebra defined by π◦(h) = 0 for h ∈ h.
Subsection 7.1. An equivalence of categories
C ◦
A: Category defined analogously to CA for U0-algebra π◦ : U0 → A.
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ΘA: Equivalence of categories C ◦
A → CA defined in Proposition 7.1.

Subsection 7.2. Projective covers
QK,χ(λ): Projective cover of ZK,χ(λ) in CK, for λ ∈ X.
QF,χ(λ): Projective cover of ZF,χ(λ) in CF , for λ ∈ X.
QF◦,χ(λ): Projective cover of ZF◦,χ(λ) in C ◦

F , for λ ∈ X.
QA,χ(λ) := ΘA(QK,χ(λ) ⊗K A) for λ ∈ X.
Λ: Set of Wp-dot-orbits on X, also fundamental domain for Wp-dot-action on X.

Section 8. Arbitrary standard Levi form
Recall that in this section χ is in standard Levi form corresponding to I ⊆ Π, and π(hα) = 0 for all α ∈ RI .
Subsection 8.1. The module QI

A,χ(λ)
(C I

A)◦: Category defined analogously to C I
A for U0-algebra π◦ : U0 → A.

ΘI
A: Equivalence of categories (C I

A)◦ ∼−→ C I
A defined in this Subsection.

QK,I,χ(λ): Projective cover of ZK,I,χ(λ) in C I
K, for λ ∈ X.

QA,I,χ(λ) := ΘI
A(QK,I,χ(λ)) for λ ∈ X.

QI
A,χ(λ) := ΓA,χ(QA,I,χ(λ)) for λ ∈ X.

ΛI : Set of WI,p-orbits on X, also fundamental domain for WI,p-action on X.
ΘI,+

A : Equivalence of categories (C I,+
A )◦ ∼−→ C I,+

A .
ΞI
A,χ(λ) := ΦI

A(QA,I,χ(λ)) ∈ CA for λ ∈ X.
Subsection 8.2. Projective covers
Qν+ZI

F,χ (λ) := T ν+ZI(QF,χ(λ)) ∈ CA(≤ ν + ZI) for λ ∈ X.
Qν+ZI

A,χ (λ): Projective module in CA(≤ ν + ZI) with Qν+ZI
A,χ (λ) ⊗A F ∼= Qν+ZI

F,χ (λ) when A is a local ring 
with residue field F , for λ ∈ X.
QA,χ(λ): Projective module in CA with QA,χ(λ) ⊗A F ∼= QF,χ(λ) when A is a local ring with residue field 
F , for λ ∈ X.
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