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Abstract 

Aim: Determine the ability of different irrigation solutions to biomechanically remove 

Enterococcus faecalis biofilm from a novel artificial root canal model during 

chemomechanical preparation. 

Methods: High resolution micro-computer-tomography scans of a mandibular molar’s 

mesial root were used to produce 50 identical 3D-printed resin root canal models. 

These were cultured with E.faecalis over seven days to generate biofilm and subjected 

to chemomechanical preparation using: saline; 17% ethylenediaminetetraacetic acid 

(EDTA) or 2% sodium hypochlorite (NaOCl) alongside positive/negative controls 

(n=10). Canals were prepared to 40/.06 taper, with 1mL irrigation between 

instruments, followed by 5mL penultimate rinse, 30s ultrasonic activation and 5mL final 

rinse. Residual biofilm volume (pixels) was determined following immunofluorescent 

staining and confocal-laser-scanning-microscopy imaging. Statistical comparisons 

were made using Kruskal-Wallis with post-hoc Dunn’s tests (α<0.05). 

Results: In all canal thirds, the greatest biofilm removal was observed with NaOCl, 

followed by EDTA and saline. The latter had significantly higher E.faecalis counts than 

NaOCl and EDTA (P<0.01). However, no statistical differences were found between 

EDTA and NaOCl or saline and positive controls (P>0.05). 

Conclusions: Within limitations of this model, 17% EDTA was found to be as effective 

as 2% NaOCl at eradicating E.faecalis biofilm following chemomechanical 

preparation. Further investigations with multi-species biofilms are encouraged. 
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Introduction 

Putative endodontic microbial communities, and their by-products, are the causative 

agents of pulp and periapical diseases (1, 2). Current therapeutic strategies therefore 

aim to disrupt these biofilms and disinfect root canals so that the bacterial load is below 

the critical threshold required for periradicular healing (3). This is typically achieved by 

using a combination of hand or rotary instruments alongside constant irrigation with 

antibacterial solutions. Greater emphasis is placed on cleaning the canal as opposed 

to shaping it due to the inherently complex nature of the endodontic anatomy (4). For 

these reasons, irrigant selection plays a critical role in determining the success of root 

canal treatment. 

Currently, the most commonly used endodontic irrigants are sodium hypochlorite 

(NaOCl) and ethylenediaminetetraacetic acid (EDTA; 5, 6). Whilst the former 

possesses potent antimicrobial and tissue dissolving properties (7), it is also a caustic 

agent that when used incorrectly has the capability to inflict diffuse soft tissue swelling, 

bruising, ulceration and in severe cases, necrosis and neurological damage (8). This 

is compounded by its cytotoxic potential (9), inability to remove infected inorganic 

debris from within the surgical smear layer (7) and detrimental effects to the dentine’s 

flexural strength (10, 11). For these reasons, NaOCl is often administered at 

concentrations less than 3%, with strengths of 2% still being considered an effective 

dose for disinfection (5). Conversely, EDTA, which is widely available at 17% 

concentration and is conventionally used for its chelating action on the smear layer 

(12), overcomes many of these limitations but at present has questionable 

antimicrobial properties. For instance, there are numerous studies that have reported 

this solution as being effective against a broad spectrum of endodontic bacteria (13 – 

18), including Enterococcus faecalis which is known for its invasive, adherent and pH 
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resistant properties (19). However, almost an equal number of studies have observed 

limited or no antimicrobial effect despite using similar analytical methodologies (20 – 

27). The results of these studies must also be interpreted with caution as they were 

conducted using relatively simple in vitro experimental model systems in addition to 

planktonic forms of bacteria rather than biofilms (28). Such investigations do not reflect 

in vivo conditions well.  

In recent years, technological advancements have allowed for the development of 

resin-based materials that facilitate growth of microbial biofilms. These have been 

found to possess similar properties to dentine, with respect to bacterial attachment 

(29), and through rapid processing techniques can be manufactured into three-

dimensional (3D) models that accurately mimic the intricate anatomy and unique 

environment of the root canal system (30). These experimental models show promise 

in overcoming many of the limitations of those that have been previously used. They 

also allow for the antimicrobial activity of irrigant solutions to be evaluated throughout 

the course of both chemical and mechanical preparation of root canals, a feature which 

is difficult replicate with extracted teeth. At the same time, highly sensitive methods of 

microbial analysis are now available to quantify viable micro-organisms within biofilms 

by way of fluorescent staining and confocal laser scanning microscopy ([CLSM] 23, 

31, 32). These offer more careful morphological observation through higher resolution 

imaging, the possibility of 3D reconstructions and overcoming many of the limitations 

associated with dentine demineralisation and microtome sectioning. As very few 

studies have employed such techniques in relation to EDTA, further and more 

sophisticated investigations into the antimicrobial capabilities of this solution are 

warranted (23). The resulting information could contribute to the development of more 
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biocompatible irrigant regimes and an improved understanding of the potential 

mechanisms in which these solutions interact with microbes.   

The aim of this in vitro experiment was therefore to determine the ability of saline, 17% 

EDTA and 2% NaOCl to biomechanically remove an E. faecalis biofilm from a more 

clinically relevant and novel root canal model during chemomechanical preparation. 

The tested null hypothesis was that there were no significant differences between the 

different irrigant solutions. 

 

Materials and Methods  

Root Canal Model 

Following ethical approval (REC Ref: 14/SW/1148), 20 extracted human mandibular 

molars were randomly selected from the University of Birmingham’s Dentistry 

Research Tissue Bank. Teeth with extensive caries and restorations, root fractures, 

open apices, resorptive defects, previous root fillings and fused roots were excluded. 

A high-resolution micro–computed tomographic scan (µCT; 13.6 µm/pixel; Skyscan 

1172; Chelmsford, UK) was subsequently obtained for each tooth. The resulting image 

slices were uploaded onto ImageJ software (National Institutes of Health, Bethesda, 

USA) and reconstructed into 3D. 

The µCT series of a mandibular molar’s mesial root, which contained two distinct 

unprepared canals and complete isthmus, was selected to generate the model as 

demonstrated in Figure 1 due to its complexity. Initially, the mesial root was segmented 

at the point of furcation and the curvature straightened so the endodontic system could 

be centrally bounded in rectangular geometry and subsequently divided into two equal 

halves. Three-dimensional replicas were then printed from a transparent auto-
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fluorescent resin material (Accura; 3D Alchemy, Shropshire, UK), via 

stereolithographic rapid processing technology at 50 µm/layer resolution and ± 0.2 mm 

surface accuracy (3D Alchemy). A precisely fitting white polypropylene cubic frame 

was also fabricated so the rectangular halves of each model could be firmly 

approximated during chemomechanical preparation to mimic a closed root canal 

system with standardised dimensions. More specifically the canal length, inter-canal 

distance and range of isthmus width in each assembled model were measured as 

being 9.5 mm, 3.6 mm, and 0.08 to 0.31 mm respectively using the calibrated line tool 

on ImageJ software. 

Biofilm Cultivation 

Under aseptic condition in a laminar flow hood, the NCTC 12697 strain of E. faecalis 

(Public health England, Wiltshire, UK) was cultivated on Brain Heart Infusion (BHI) 

agar (Sigma-Aldrich, Gillingham, UK) for 24 h at 37oC in a 5% CO2 incubator. 

Thereafter, a single colony was transferred into 10 mL BHI broth and incubated under 

the same conditions alongside a sterile control. The resulting bacterial suspension was 

diluted 100-fold in fresh BHI broth and adjusted to an optical density of 1 using a flow 

cytometer (BD accuri, California, USA). This standardised the bacterial concentration 

to 1.6 x 106 CFU/mL.  

Prior to inoculation, all blocks and frames were autoclaved for 30 minutes at 121oC. 

The models were then positioned into a 24-well tissue culture plate, so the internal 

canal surface faced towards the plate cover. Two millilitres of bacterial suspension 

were subsequently added into each well, after which plates were cultured for 7 days 

in a 5% CO2 incubator. The BHI growth medium was replenished every 48 h and 

following this period, biofilms were washed with Phosphate Buffered Saline (PBS) and 

fixed for 10 minutes with 2.5% glutaraldehyde (Sigma-Aldrich).   
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Control & Test Groups 

Infected root canal blocks were inserted into the polypropylene cubic frame and then 

randomly distributed into 3 groups (n = 10) according to irrigant solution. These 

included i) Saline (CD Medical, Bolton, UK), ii) 17% EDTA (Cerkamed, Stalowa-Wola, 

Poland) and iii) 2% NaOCl (Cerkamed). To confirm adequate biofilm growth (positive 

control), 10 blocks were contaminated but not chemomechanically prepared and a 

further 10 samples were cultured in sterile BHI broth to determine background staining 

(negative controls). As a power calculation could not be conducted, due to the lack of 

prior data, the sample size was determined using previous studies investigating similar 

hypotheses (20, 21, 23)   

Root Canal Preparation 

Root canal preparation was performed by a single blinded operator (SSV) to a pre-

determined working length (WL) of 9 mm. After assembled blocks were firmly clamped 

to the bench top, a glide path was established using a stainless-steel size 10 K-file 

(Dentsply Sirona, Ballaigues, Switzerland) in a watch winding motion. Root canals 

were then prepared up to a ProTaper Gold F4 (size 40/.06 taper) rotary file at speeds 

and torques recommended by the manufacturer (Dentsply Sirona). Between 

instruments, 1 mL of irrigant was expressed into each canal with the tip of a 27 gauge 

side vented needle positioned 2 mm short of the WL (Monoject, Covidien, Mansfield, 

USA). A 5 mL penultimate rinse was then administered followed by 30 seconds 

passive ultrasonic irrigation, with an ISO size 20 Irrisafe tip (Acteon, Norwich, UK) 

activated half power 1 mm from WL (MiniEndo II; SybronEndo, California, USA). To 

terminate the irrigation sequence, a final 5 mL rinse was performed as above followed 

5 mL sodium thiosulphate or 5 mL saline to arrest NaOCl and EDTA activity 
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respectively. Root canal blocks were then disassembled and washed with PBS prior 

to immunofluorescent staining.  

Biofilm Staining 

To label the residual E. faecalis biofilm, samples were incubated for 24 h at 4oC with 

50 µl of a primary non-conjugated polyclonal antibody (Rabbit anti-Enterococcus 

species; MyBioSource, San Diego, USA). Blocks were then washed in PBS, incubated 

in a dark environment for 24 h at 4oC with 50 µl of a secondary tetramethyl rhodamine-

isothiocyanate (TRITC) conjugated polyclonal antibody (Donkey Anti-Rabbit IgG H&L; 

Abcam, Cambridge, UK) and then washed again in PBS. Both antibodies were diluted 

300-fold with 3% w/v bovine serum albumin.  

Confocal Laser Scanning Microscopy 

Labelled models were mounted onto a customised glass slide and viewed under a 

CLSM at 5 x magnification (Carl Zeiss, Oberkochen, Germany). A plastic seating jig 

standardised the position of each block and a copper grid (TedPella, California, USA) 

with unique patterns allowed images to be captured between samples at reproducible 

positions (Figure 2). Multi-track lasers, set at 488 nm and 555 nm, were used to reduce 

cross talk between the green auto-fluorescence inherently emitted by the Accura resin 

material and the red fluorescence emitted by the TRITC labelled biofilm. Sixteen 

images (seven coronal, six middle and three apical) were captured per model at 

optimal focus and fixed resolution (512 x 512 pixels) with the same objective and laser 

settings (Table 1). All images were saved in .tiff format, coded and then analysed in 

ImageJ software by a blinded assessor (SSV).  

A semi-automated method was used to quantify the remaining biofilm (29). For each 

image, the four central squares were isolated (“clear outside”) to standardise the area 
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of analysis and split into individual colour channels (“split channel”). The resulting 

green and red grey-scale images represented the Accura material and residual biofilm 

respectively, the latter of which was used in subsequent analyses. Background 

fluorescence was removed (“subtract background”) and an “auto-threshold” applied to 

allow the residual biofilm to be quantified via a calibrated “voxel counter” tool.  

Statistical Analysis 

Statistical tests were performed using SPSS software (V.25; IBM, New York, USA). 

The Shapiro-Wilk test revealed data to be non-normally distributed and therefore, 

comparisons between groups were made using Kruskal-Wallis and post-hoc Dunn’s 

tests with the initial alpha values set at 0.05. Additionally, 10 randomly selected images 

from each group were analysed one month apart to determine intra-rater reliability via 

the intra-class correlation coefficient (ICC). Data was presented as medians and 

means alongside the interquartile range and standard deviation respectively. 

 

Results 

The volume of residual biofilm for each group is summarised in Table 2 and Figure 3 

with representative CLSM images displayed in Figure 4. The ICC demonstrated intra-

rater agreement at greater 0.95.  

In all canal thirds, the greatest biomechanical removal of biofilm following 

chemomechanical preparation was found in the 2% NaOCl group, followed by 17% 

EDTA and then saline. However, no solutions were able to eradicate the entirety of 

the biofilm. Nevertheless, when compared to the positive control group, the greatest 

percentage reductions for any given regime were observed in a coronal to apical 
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direction. The positive controls presented the largest E. faecalis counts whereas 

negative controls showed zero E. faecalis presence.  

Highly significant differences were identified between irrigant solutions in all canal 

thirds (P < 0.001). Root canals prepared with 17% EDTA and 2% NaOCl resulted in 

significantly less residual E. faecalis biofilm than saline (P < 0.01). However, no 

statistical differences were found between 17% EDTA and 2% NaOCl or between 

saline and positive control groups (P > 0.05). 

 

Discussion 

The current study used a novel model for testing the antimicrobial efficacy of several 

commonly used irrigants throughout chemomechanical preparation of artificial root 

canals. Under these parameters, 17% EDTA was found to be comparable to 2% 

NaOCl at biomechanically removing E. faecalis biofilms in all canal thirds. However, 

saline was significantly less effective and so the null hypothesis was rejected.  

Endodontic disinfection involves both chemical and mechanical debridement within a 

closed root canal system. However, previous investigations into the antimicrobial 

efficacy of EDTA have seldom been conducted under such conditions. More than 

often, test solutions have been administered onto infected agar plates (14, 17, 22), 

cover slips (24), cell suspensions (15, 20) and dentine disks (23). Whilst extracted 

teeth were used in more recent experiments (25, 26), the root canals in these samples 

were inoculated only after instrumentation, where they then underwent a distinct 

chemical disinfection protocol. The resin model employed in the present study 

however overcame these limitations by allowing solutions to be delivered into an 

infected and closed endodontic system prior to and throughout the entire 
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chemomechanical debridement process. This is more akin to how root canal treatment 

is performed clinically and at present is difficult to test with an ex vivo or intratubular 

infection approach. The precise manufacturing process employed in this study also 

offered a degree of anatomical replication that far surpassed prior synthetic models 

(33 – 35), giving way for more representative irrigant flow dynamics and 

methodological standardisation that cannot be achieved with extracted teeth (36). 

Additionally, the model could be longitudinally split on demand without disturbing the 

residual biofilm, which would allow continued analysis following chemomechanical 

debridement. This feature would be particularly useful for investigating bacteria that 

have in vitro demonstrated a potential for regrowth, such as E.faecalis, after NaOCl 

administration (37). Furthermore, the use of the copper ring depicted in Figure 2 to 

select specific regions of the canal to image and the semi-automated quantitative 

method of analysis offers a more reproducible and accurate approach to investigating 

endodontic biofilm removal than many preceding studies. 

The most apparent limitations of this study however arise from the model’s material 

composition and structure, in that there is no peri-, intra- and inter-tubular dentine or 

tubules for micro-organisms to penetrate into. This non-biological substrate could alter 

the inherent mechanisms of bacterial surface adherence thus, affecting subsequent 

biofilm formation. There would also be more freely available chlorine ions for NaOCl 

disinfection due to the absence of collagen, fluid and necrotic debris (38). Additionally, 

single-species biofilms exhibit less biomass and resistance to endodontic irrigants 

than their more representative multi-species counterparts and those made of 

E.faecalis in particular have demonstrated the potential to re-establish themselves 

following exposure to common endodontic irrigants (37, 39, 40). Collectively, these 

limitations could overestimate the antimicrobial efficacy of the tested irrigant solutions; 
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however, attempts were made to reduce the impact of these confounding variables. 

For instance, Accura resin was selected as E. faecalis attached to its surface at a force 

comparable to that of dentine, which precluded the need for any prior collagen coating 

(29). Similarly, this species was used as the test micro-organism due to its ability to 

rapidly form biofilms on resin materials and remain within root canals even after 

thorough chemomechanical disinfection protocols (18). Furthermore, lower NaOCl 

concentrations were administered to compensate for the lack of organic matter and 

biofilms were cultured until they reached peak biomass at seven days, which is 

significantly longer than other simulated root canal studies (33 – 35). The disinfection 

challenge these measures created was further potentiated by the complicated 

endodontic anatomy of the model, as evidenced by high treatment failure rates 

associated with the tooth it was based on (41). However, despite these endeavours, 

some caution must still be taken when extrapolating the present results into the clinical 

setting and further investigations using multi-species biofilm models are encouraged 

to reinforce these findings. 

In the present study, 17% EDTA and 2% NaOCl were found to be equally as effective 

at eradicating E. faecalis biofilm from within artificial root canals. These findings 

contrast previous studies that reported the antimicrobial efficacy of the former to be 

absent, limited or vastly inferior to NaOCl even after prolonged periods of exposure 

(20 – 27). This discrepancy could be attributed to methodological heterogeneity, 

varying irrigation protocols and the differing mechanisms in which these solutions 

interact with micro-organisms. For instance, NaOCl disassociates into its bactericidal 

hydroxyl and chlorine ion derivatives and then rapidly eliminates microbes by 

disrupting enzymatic processes essential to their physiology (42). Conversely, EDTA 

only destabilises gram-negative bacteria by chelating cations from within their outer 



15 
 

cell membranes (43). Whilst this effect alone may not always induce cell death, it could 

potentially be sufficiently enhanced enough to do so when combined with mechanical 

instrumentation, a feature which has only been tested in the current study. This 

chelating action has also shown to promote cellular detachment and weaken the 

macrostructures of established biofilms, which can then be more easily flushed from 

root canals via the mechanical shearing forces created by conventional irrigant flow 

dynamics and agitation techniques (24). Furthermore, higher EDTA concentrations 

and exposure times, as used in this experiment, have demonstrated greater 

disinfection capabilities (15, 16). Collectively, these mechanisms could potentially 

equate to the antimicrobial activity of 2% NaOCl and would explain why 17% EDTA 

was found to be comparable to this solution post root canal preparation but 

significantly more effective than saline, the latter of which possesses no antibacterial 

properties and was also used to provide additional validation of the experimental 

model.  

Whilst 2% chlorhexidine has previously been considered an alternative endodontic 

irrigant to NaOCl, evidence highlighting its negative association with periradicular 

healing and increased incidents of anaphylaxis has recently emerged (44, 45). 

Consequently, this has deterred its use as demonstrated by a recent national survey 

which found 15 of the 18 undergraduate dental schools across the UK & Ireland 

abstaining from teaching its use during root canal treatment (5). For these reasons, it 

was not included as an additional test group. 

 

Conclusion 
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Based on the results of this study, which were derived from a novel biofilm model, it 

can be proposed that 17% EDTA is as effective as 2% NaOCl at biomechanically 

removing E. faecalis biofilm following chemomechanical preparation of a complex root 

canal system. Further investigations however with a multi-species biofilm model are 

encouraged to reinforce the promising results observed within the present study.  
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Figure Legend 

Figure 1 - The stages involved in developing the 3D printed root canal model: (A) 3D 

image of a segmented mesial root of a mandibular molar, (B) root curvature 

straightened, (C) the root canal divided into two equal rectangular halves, (D) 3D 

image of the cubic frame, (E) model parts following 3D printing, (F) an assembled 

model before root canal preparation, (G) Field emission scanning electron 

micrographs of E. faecalis biofilms grown on Accura resin after seven days incubation 

(magnification x 1200, scale bars represent 10 µm). 

Figure 2: A schematic diagram illustrating the positions of images acquired for the first 

(red) and second half (green) of the root canal model when disassembled and 

positioned in the jig. The number of images per canal segment were distributed in 

relation to the percentage volume of each canal third. The unique patterns of the 

superimposed copper grid facilitated reproducible positioning of images between 

samples. 

Figure 3 – Volume of residual E. faecalis biofilm following root canal preparation with 

different irrigant solutions. Data presented as medians alongside upper and lower 

interquartile ranges, minimum and maximum values, and outliers. Statistically 

significant comparisons (P < 0.01; Dunn’s test) between groups are presented as 

superscripts (* vs. control and saline groups). 

Figure 4 – Representative confocal laser scanning microscopy images of residual E. 

faecalis biofilm following root canal preparation with different irrigant solutions. The 

green fluorescence represents the transparent auto-fluorescent resin Accura material 

(i.e. eradicated biofilm) and the red fluorescence represents the residual TRITC 

labelled biofilm (scale bars represents 50 µm). 
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Figure 1 - The stages involved in developing the 3D printed root canal model: (A) 3D 

image of a segmented mesial root of a mandibular molar, (B) root curvature 

straightened, (C) the root canal divided into two equal rectangular halves, (D) 3D 

image of the cubic frame, (E) model parts following 3D printing, (F) an assembled 

model before root canal preparation, (G) Field emission scanning electron 

micrographs of E. faecalis biofilms grown on Accura resin after seven days incubation 
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Figure 2: A schematic diagram illustrating the positions of images acquired for the first 

(red) and second half (green) of the root canal model when disassembled and 

positioned in the jig. The number of images per canal segment were distributed in 

relation to the percentage volume of each canal third. The unique patterns of the 

superimposed copper grid facilitated reproducible positioning of images between 

samples. 
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Figure 3 – Volume of residual E. faecalis biofilm following root canal preparation with 

different irrigant solutions. Data presented as box and whisker plots where the central 

bar represents the median alongside upper and lower interquartile ranges at the edge 

of boxes, minimum and maximum values for the whiskers, and outliers shown as open 

circles. Statistically significant comparisons (P < 0.01; Dunn’s test) between groups 

are presented as superscripts (* vs. control and saline groups). 
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Figure 4 – Representative confocal laser scanning microscopy images of residual E. faecalis 

biofilm following root canal preparation with different irrigant solutions. The green fluorescence 

represents the transparent auto-fluorescent resin Accura material (i.e. eradicated biofilm) and 

the red fluorescence represents the residual TRITC labelled biofilm (scale bars represents 50 

µm). 

 

 

 

 

 

 

 



27 
 

Tables 

 

Table 1 – Laser settings used during confocal laser scanning microscopy imaging. 
 
 Scanning 

speed 
Range 
(Frame) 

Pin hole 
size 

Gain 
master 

Digital 
offset 

Colour Wavelength 
(nm) 

Track 1  3 2 54.2 732 0 Green (AF) 488 

Track 2  3 2 54.2 732 0 Red (TRITC) 555 

AF: Alexa fluor 488; TRTIC:  Tetramethyl rhodamine-isothiocyanate 

 

 

 

Table 2 –  Residual volume of E. faecalis biofilm following chemomechanical preparation of root canals 

with different irrigant solutions.  

 Volume of residual E. faecalis biofilm (pixels) 

Group Total Coronal Middle Apical 

Control Median ± IQR 280 109 ± 40 972 111 364 ± 45 868 97 956 ± 48 872 78 273 ± 40 101 

Mean ± SD 277 626 ± 73 590 110 323 ± 23 575 102 076 ± 37 211 65 227 ± 27 220 

Saline Median ± IQR 244 572 ± 96 201 [13%] 89 124 ± 43 171 [20%] 84 519 ± 31 410 [14%] 57 625 ± 28 682 [26%] 

Mean ± SD 250 670 ± 53 865 [10%] 93 827 ± 25 333 [15%] 94 203 ± 24 443 [8%] 62 640 ± 17 922 [4%] 

17% 
EDTA* 

Median ± IQR 87 063 ± 85 255 [69%] 28 856 ± 20 159 [74%] 37 170 ± 36 316 [62%] 26 212 ± 22 165 [67%] 

Mean ± SD 114 412 ± 65 344 [59%] 40 285 ± 28 606 [63%] 47 813 ± 26 382 [53%] 26 315 ± 13 348 [60%] 

2% NaOCl* Median ± IQR 83 590 ± 39 465 [70%] 23 686 ± 16 606 [79%] 35 056 ± 17 593 [64%] 29 185 ± 14 131 [63%] 

Mean ± SD 99 194 ± 37 669 [64%] 24 785 ± 9 189 [78%] 42 336 ± 17 207 [59%] 32 073 ± 14 766 [52%] 

EDTA: ethylenediaminetetraacetic acid; IQR; interquartile range; NaOCl: sodium hypochlorite; SD: standard deviation; [%]: percentage change in 

point median or mean value with respect to control group. 

* vs. control and saline group (P < 0.01) [Kruskal-Wallis & post-hoc Dunn’s test] 


