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Appendix 1 Omitted algorithms in this paper

Algorithm 3 Multi-objective sorting mechanism [33]

Require: Population sizes λ ∈ N. Population Pt ∈ Yλ. Fitness function f .
1: Sort Pt into strict non-dominated fronts F t

0,F t
1, . . . based on f1(x,χ) := f(x) and

f2(x,χ) := χ.
2: for F = F t

0,F t
1, . . . do

3: Sort F such that f1 (F(1)) > f1 (F(2)) > . . ..

4: Pt :=
"
F t

0,F t
1, . . .

#
.

5: return Pt.

Algorithm 4 Strict non-dominated sorting [33]

Require: Population sizes λ ∈ N. Population P ∈ Zλ, where Z is a finite state
space. Objective functions f1, f2, . . . : Z → R (assume to maximise all objective
functions).

1: for each individual P (i) do
2: Set Si := ∅ and ni := 0.

3: for i = 1, . . . ,λ do

4: for j = 1, . . . ,λ do

5: if P (i) ≺ P (j) based on f1, f2, . . . then
6: Si := Si ∪ {P (i)},
7: else if P (j) ≺ P (i) based on f1, f2, . . . then
8: ni := ni + 1,
9: else if fℓ(P (i)) = fℓ(P (j)) where ℓ = 1, 2, . . . then
10: if P (i) /∈ Sj then Si := Si ∪ {P (i)} else ni := ni + 1.

11: if ni = 0 then F0 = F0 ∪ {P (i)}.
12: Set k := 0.
13: while Fk ∕= ∅ do

14: Q := ∅.
15: for each individual P (i) ∈ Fk and P (j) ∈ Si do

16: Set nj := nj − 1.
17: if nj = 0 then Q := Q ∪ {P (j)}.
18: Set k := k + 1, Fk := Q.

19: return F0,F1, . . ..
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Algorithm 5 Multi-objective sorting mechanism (alternative)

Require: Population sizes λ ∈ N. Population Pt ∈ Yλ. Fitness function f .
1: Sort Pt into P 1

t , P
1
t , . . . where P 1

t containing all individuals with the highest fitness
f , P 2

t containing all individuals with the 2nd highest fitness f , . . . .
2: for i = 1, . . . ,λ do

3: Set χ̂ := −∞.
4: for Q = P 1

t , P
1
t , . . . do

5: Find (x′,χ′) which is the element with the highest χ in Q.
6: if Q ∕= ∅ and χ′ > χ̂ then

7: Pt(i) := (x′,χ′) and χ̂ := χ′.
8: Pop (x′,χ′) from Q.
9: Break.
10: return Pt.

Algorithm 6 (µ,λ) selection

Require: Population size λ ∈ N. Parameter µ ∈ [λ]3.
1: It ∼ Unif([µ]).
2: return It.

Algorithm 7 Fitness-first sorting mechanism [7]

Require: Population sizes λ ∈ N. Population Pt ∈ Yλ. Fitness function f .
1: Sort Pt such that Pt(1) ≽ · · · ≽ Pt(λ), according to
2: (x,χ) ≽ (x′,χ′) ⇔ f(x) > f (x′) ∨ (f(x) = f (x′) ∧ χ ≥ χ′).
3: return Pt.

3 For any n ∈ N, we define [n] := {1, . . . , n}
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Appendix 2 Omitted statistical results of experiments

Table 2: Statistical results of experiments on random NK-Landscape problems.
The p-values of each algorithm come from Wilcoxon rank-sum tests between the
algorithm and MOSA-EA.
k Stat. RS cGA UMDA RLS SA-(1,λ)EA (1 + 1)EA FastGA (1 + (λ,λ))GA (µ,λ)EA 3-tour.EA MOSA-EA

5
Median 66.6591 72.9964 74.8631 71.3547 74.8418 76.6613 76.9230 79.2846 78.2089 79.2846 79.2846

p-value 2.1e-22 2.3e-04 0.0213 6.5e-08 0.0226 0.2668 0.4215 0.9299 0.7985 0.8805 -

10
Median 66.4442 69.5499 73.2968 68.3100 71.0248 75.5792 76.1340 77.1520 79.2680 78.7832 82.5270

p-value 2.6e-34 1.5e-26 2.0e-15 2.6e-34 3.5e-34 5.0e-18 1.1e-12 2.2e-09 0.0030 0.0063 -

15
Median 66.2055 66.5517 70.9576 66.4446 67.8968 73.7253 74.2253 74.6407 76.0777 76.9053 80.4417

p-value 2.6e-34 2.6e-34 5.5e-22 2.6e-34 2.6e-34 2.6e-34 1.8e-33 5.2e-33 1.3e-20 1.1e-17 -

20
Median 66.1233 64.4191 69.6786 64.9865 66.0533 72.8025 72.8783 73.0882 74.2580 75.3662 78.5247

p-value 2.6e-34 2.6e-34 7.0e-31 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 4.0e-33 1.2e-31 -

25
Median 66.2207 63.1222 68.5683 64.3685 65.1886 70.8648 71.7564 71.9623 73.4398 74.8115 77.5024

p-value 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 1.4e-33 -
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Fig. 11: The p-values of Wilcoxon rank-sum tests between the algorithms and
the MOSA-EA on 100 random k-Sat instances. The y-axis is log-scaled.
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Fig. 12: The p-value of Wilcoxon rank-sum test between Open-WBO and the
MOSA-EA on 100 random k-Sat instances. The y-axis is log-scaled.


