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program: Evidence from the cerrado biome of the Brazilian Legal Amazon 
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A B S T R A C T   

The creation of a satellite rapid alert programme (DETER-A) in 2004 was a cornerstone of the Brazilian gov-
ernment’s strategy to reduce deforestation. This programme allowed authorities to detect and respond rapidly to 
periods of deforestation. Due to the fact that the policy instrument was based on multispectral remote radar, 
weather-related obstacles posed a continuous impediment to the study of deforestation. This paper investigates 
to what extent cloud cover has reduced the effectiveness of the DETER-A program to detect deforestation. To test 
this hypothesis, survival model analysis is undertaken on satellite data derived measures of local deforestation. 
The emphasis is on the state of Maranhão, which is separated into two areas by an arbitrary line of demarcation 
(Legal Amazon delimitation) where the forest on one side is covered by the satellite monitoring program while 
the other is not. The results suggest that following the implementation of the satellite monitoring program, there 
was more deforestation in those years with more cloud persistence in the area covered by the program. Coun-
terfactual simulations indicate that the absence of clouds would have prevented deforestation equivalent to 
almost 7% of the study region, which is equivalent to 73 million tonnes of CO2 with a value of US$ 366 million. If 
the current monitoring system was replaced with the experimental policy instrument DETER-C/DETER 
INTENSO, cloud cover would be less of an impediment to deforestation detection.   

1. Introduction 

The clear-cutting of forests plays a central role in many of the envi-
ronmental threats of our time, including global climate change, habitat 
degradation, and species extinction. Although a global problem, no-
where are these issues more clearly on display than in the Brazilian 
Amazon that has seen the loss of 19 percent of its forest over the last 50 
years. One bright spot has been the decline in deforestation rates in 
Brazil over the last decade, although there has been a resurgence in 
recent years. It is generally believed that the reduction in deforestation 
rates has been driven by a series of environmental policies that 
encouraged both forest preservation and the enforcement of existing 
regulations (Assunção et al., 2020; Celentano et al., 2017; Lovejoy & 
Nobre, 2018; Nepstad et al., 2014; Rajão et al., 2021; Richards, 2015; 
Richards & VanWey, 2015). 

Arguably, the policy that has received the greatest plaudits is the 
satellite monitoring program that, through the use of remote detection, 
was able to considerably increase the speed by which the Brazilian 
environmental enforcement officers could punish clear-cutting agents. 

More specifically, in 2004, the Brazilian government created the Action 
Plan for the Prevention and Control of Deforestation in the Legal 
Amazon (PPCDAm in Portuguese), the purpose of which was to pay 
closer attention to development planning, land use control, environ-
mental law compliance, and the promotion of sustainable practices. To 
control land use and prevent further deforestation, the PPCDAm 
implemented two complementary satellite-based monitoring programs: 
(i) PRO-DES (Programa de Cálculo do Desflorestamento da Amazônia in 
Portuguese) (INPE, 2020) which records the annual rate of deforestation 
within the policy area using a high (30m) resolution; and (ii) DETER 
(Sistema de Detecção de Desmatamento em Tempo Real in Portuguese), 
which is a system that supports the supervision and control of defores-
tation and forest degradation within the environmental policy area of 
the Legal Amazon throughout the year but at a more moderate (250m) 
resolution. 

The DETER system works by providing alerts when certain areas of 
the Legal Amazon are in the process of being deforested from relatively 
mild degradation to the total deforestation of an area (clear-cut). All 
data gathered by DETER and PRODES are available to the Brazilian 
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government to enforce the PPPCDAm, which includes the issuing of fines 
for agents who clear or damage the forest, embargoes on produce from 
areas that are in the process of being cleared, confiscation of equipment, 
and restrictions on access to subsidised credit (Aubertin, 2015). 

While DETER has certainly allowed for much quicker detection of 
deforestation, a potentially important impediment to its success has 
been the local climate. More specifically, because the satellite used as 
part of DETER is incapable of detecting land cover changes when its 
view of the land surface is obscured by clouds, detection is necessarily 
delayed until the skies are clear again. The existing literature has already 
highlighted concerns regarding cloud cover. For example, Butler and 
Moser (2007) showed that estimates of deforestation and studies that 
use deforestation data from satellite images could potentially be biased 
without the proper corrections for cloud cover. In addition, Hansen and 
Loveland (2012) and Leinenkugel et al. (2014) confirmed that season-
ality and cloud cover reduce the viability of annual land cover updates, 
and, consequently, systematic monitoring. Likewise, Dupuis et al. 
(2020) discusses how new satellite technologies can help with moni-
toring forest degradation in the presence of significant cloud cover. 
Recently, Nicolau et al. (2021) substantiate the discussion by analyzing 
the applicability of Synthetic-aperture radar (SAR) methodology as a 
way of differentiating between modified land uses, which is ideally what 
is needed for early-warning deforestation systems. 

In terms of the Brazilian Amazon, the role played by clouds is 
highlighted by Assunçao et al. (2017) who show that cloud cover is an 
important predictor of the number of fines issued for deforestation 
within a given municipality. This is not surprising since, according to 
Mueller (2016) and Assunçao et al. (2017), Brazil’s institutions are setup 
in such as a way that law enforcement agents can more easily punish 
offenders for illegal forest clearing if they are able to catch the perpe-
trators red-handed. The corollary is that, although in principle previous 
acts of deforestation can be legally punished, it is difficult to implement 
fines ex post because land and property rights are often unclear. The 
geography of the Brazilian Amazon also makes it particularly chal-
lenging for the police to access the highlighted areas since many of the 
illegal roads that provide access to virgin forest are deliberately built in 
such as a way as to hamper enforcement agents (Pfaff et al., 2007). 

Despite the potentially important role played by cloud cover in 
reducing the effectiveness of the DETER detection program launched in 
2004, there is, to date, no study that explicitly examines the extent of 
this problem. To fill this gap in the literature, this study investigate 
whether cloud cover impairs the efficacy of the DETER detection pro-
gramme. This study focuses on the state of Maranhão which has the 
unique property that it is divided by an artificial line of demarcation that 
separates it into two distinct regions: the Legal Maranhão (LM) and the 
Cerrado Maranhão (CM). This division, located at approximately 44◦

west of the meridian, means that the state has two areas that are both 
geographically similar (in terms of topography and forest cover) and are 
subject to the same municipality and state-level institutions and policies. 
The only discernible difference is that the area on one side of the line of 
demarcation is subject to the satellite monitoring system and the other is 
not. This presents a unique empirical setting in which it is possible to 
investigate whether the effect of cloud cover on deforestation differs 
between the two areas either side of this spatial division. More precisely, 
because forests located in the Cerrado Maranhão were not covered by 
the satellite monitoring program, under the hypothesis that cloud cover 
changes the behaviour of illegal loggers, there should be no such role for 
cloud cover in patterns of deforestation other than for climatic reasons 
(which would be the same for both sides of the demarcation line). 

Importantly for this study, the forested areas on both sides of the 
border are fairly homogeneous in terms of biota and climate, with the 
only difference being the monitoring program implemented in the LM 
region. The closer to the border, the more similar the biota. To identify 
local deforestation and cloud cover within the two regions, remote 
sensing sources (MapBiomas Collection 5 and MODIS Land Cover 
Product) are used to construct a time event dataset at the individual 

pixel level (250m × 250m) for the period of 2001–2016. Survival esti-
mation methods are then employed to quantify the role of cloud cover 
on local deforestation events in both regions. Finally, the estimates from 
the survival analysis are used to simulate the effects of the monitoring 
programme and cloud cover under a number of different counterfactual 
scenarios. 

2. Environmental policy: DETER-A monitoring system 

DETER, which was established in 2004, is a support system for the 
inspection and control of deforestation and degradation in the Brazilian 
Legal Amazon and part of the Action Plan for the Prevention and Control 
of Deforestation in the Legal Amazon (PPCDAm) (West & Fearnside, 
2021). The warnings indicate areas that have been completely defor-
ested (clean cut) as well as areas that are experiencing forest degrada-
tion (e.g. logging, mining, and fires). The DETER System development 
plan (Near Real-Time Deforestation Detection) may be divided into 
three phases based on the resolution sensors deployed over time. In the 
first resolution phase (DETER-A) from 2004 until the end of 2017 it was 
used to produce alerts with a minimum mappable area of 25ha utilising 
images from MODIS sensors aboard NASA’s TERRA and WFI satellites, 
as well as the Brazilian CBERS-2B satellite (INPE-DETER, 2018; Souza 
et al., 2019). The second phase started in 2015 (DETER-B) and used data 
from the AWiFS (Advanced Wide Field Sensor) sensor aboard the 
RESOURCESAT 2 satellite, which has a spatial resolution of 56 m and 
therefore allows monitoring with a minimum mapping area of 3 ha 
(Diniz et al., 2015). The third resolution stage (DETER-C or DETER 
INTENSO) combined optical images from the CBERS-4 (WFI and MUX), 
Landsat 8 (OLI), Sentinel 2 (MSI), and Sentinel 1 (C band) satellites with 
images from the Sentinel 1 SAR sensor to detect changes in forest cover 
in specific areas of the Legal Amazon, allowing for the detection of alerts 
larger than 1 ha. As of the date of publishing, the system is still inte-
grating and validating its results, which are intended for inspection 
bodies only, and therefore the data is not yet publicly accessible. 

During the period 2004 to 2016, the monitoring system in place 
(DETER-A) sent deforestation alerts every two weeks for inspection 
assistance and were forwarded to the environmental police (IBAMA) and 
to the environmental agencies of each individual state in the Legal 
Amazon. The DETER-A monitored forest areas in accordance to the 
RADAMBRASIL (1976) project in which included, among others, areas 
of Ecological Tension (forest/cerrado contact), with a predominance of 
physiognomy forestry. The information contained in these alerts 
enabled both groups to plan their field operations to combat illegal 
deforestation. The alerts were also combined into a monthly report that 
was made available to the general public. More precisely, because of 
cloud cover, the public reports were only available on a month by month 
basis for the period between May and October (when cloud cover is at its 
lowest) and quarterly between November to April (when cloud cover is 
at its greatest). Since the satellite system used by DETER-A was inca-
pable of detecting land cover changes in areas covered by clouds, no 
forest clearing activity could be identified during these periods, and thus 
no alerts could be issued to pinpoint the location of degradation activity 
for that place and time (Assunçao et al., 2017). 

In addition, it is possible that the DETER-A instrument followed the 
same nonlinear policy path presented in the PPCDAm. As noted by West 
and Fearnside (2021), between 2004 and 2008, the Amazon experienced 
a significant decline in deforestation rates, which can be attributed to 
the DETER-A program and in part to economic factors such as com-
modity prices and currency exchange rates that affect the profitability of 
agricultural exports. From 2009 until 2011, the PPCDAm focused on the 
promotion of a sustainable development agenda for the Amazon forest, 
such as technical assistance and rural extension and sectoral agree-
ments. Another major shift was the rise in the value of penalties and 
other environmental punishments mandated by Decree No. 6514 of 
2008, as well as the restriction of equipment used to cause environ-
mental harm, allowing for the rapid decapitalization of environmental 
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offenders. In 2012, the new Forest Code was adopted under the argu-
ment that the old regulation was unenforceable. With the new Forest 
Code 58 percent of all unlawful deforestation committed up to July 22, 
2008, was pardoned, with tax assessments for individuals who defor-
ested prior to that date being rejected. This approach significantly 
increased the feeling of impunity, creating an incentive for illegal 
deforestation and despite attempts to rein down deforestation, the trend 
began increasing again (Brancalion et al., 2016; Rajão et al., 2021; West 
& Fearnside, 2021). 

3. Materials and methodology 

3.1. Study area 

The research region covers 34,401 square kilometres and comprises 
21 municipalities. The sample includes only municipalities that are 
crossed by the 1953 line of demarcation at about 44◦ west of the me-
ridian and have some territory on both sides. The line was initially 
established to allow the Brazilian government to plan the economic 
growth of the region, which includes the Maranhão state’s tropical forest 
region. The strategy was intended to guarantee the occupancy of the 
land to the left of the line in order to expand the Amazon region’s 
development potential and contribute to the establishment of a stable 
and progressive society in the Amazon. It is the only state in Brazil with 
this kind of policy border. Importantly, state-level institutions, rules, 
regulations, and policies are the same on both sides and have been 
utilized to delimit the coverage of the DETER-A instrument. The delin-
eation is shown in Fig. 1. 

In the study area, the average percentage of the sky that is covered by 
clouds is subject to extreme seasonal variation. The period when there is 
the least amount of cloud cover in Maranhão is between June and 
October. In July, the sky remains cloudless, almost cloudless, or partly 
overcast for more than 65% of the time and overcast or nearly clouded 
for 35% of the time. The cloudiest period begins around October and 
lasts around 7–8 months, ending around June. In April, the sky remains 
cloudy or mostly cloudy for more than 80% of the time and cloudless, 
almost cloudless, or partly cloudy for less than 20% of the time. The 
evolution of cloud cover over the year is shown in Fig. 2. Understanding 
how climatic conditions change throughout the year helps with an un-
derstanding of the dynamics of deforestation in the region. With a rainy 
season that lasts almost nine months, the dry season is limited to the 
remaining three months of the year, June, July, and August, when there 
is good satellite visibility across the entire area. 

One possible concern with a number of empirical studies on the 
causes and consequences of deforestation is that it has been shown that 
for parts of the Amazon forest, cloud formation depends on the topog-
raphy of the location (Chagnon et al., 2004; Heiblum et al., 2014; Koren 
et al., 2004; Pinto et al., 2009; Wang et al., 2009). More precisely, the 
evapotranspiration characteristics of land cover vegetation are inti-
mately related to the dynamics of the boundary layer and the develop-
ment of clouds that often cap the boundary layer. As a consequence, 
compared to heavily wooded regions, deforested areas in the Amazon 
(when replaced with pasture or farmland) are more likely to have 
greater sensible heat and lower latent heat fluxes. This may increase the 
boundary layer’s development throughout the day and therefore favour 
the production of bigger clouds. In other words, deforested regions 
promote cloud formation. The difficulty for academics is to determine 
whether the presence of clouds promotes deforestation or whether prior 
deforestation facilitates cloud formation. However, the empirical design 
employed in this study alleviates these issues by concentrating on the 
ecological stress zone of Maranhão, a region devoid of thick forest, 
which implies that cloud formation over adjacent wooded areas or 
neighbouring deforested areas is not a problem. Instead, the ecological 
tension zone enables clouds to spread evenly throughout the region, thus 
excluding deforestation’s reverse causality impact on cloud production 
but maintaining the applicability as it is considered a forest formation 

Fig. 1. Map of Maranhão including forest formation and institutional delimi-
tation. The vertical line is the institutional division of the Legal Amazon in the 
State. Forest Formation includes Amazon biome and Cerrado biome classifica-
tion. Map created by authors with data from MMA (2018); NUGEO (2018); F. G. 
Assis et al. (2019). 

Fig. 2. Cloud Cover Dynamics in Maranhão. The plot represents the percentage 
of cloud cover in the state over 12 months. Map created by authors with data 
from INPE (2020). 
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for the monitoring instrument. 

3.2. Cloud cover mask 

Two remotely sensed datasets were used – Vegetation Indices 16-Day 
L3 Global 250m MODIS13Q1 and Land Cover Type Yearly L3 Global 
500m MODIS12Q1. The MODIS Land Cover Type Product (MCD12Q1) 
provides a diverse classification Land cover scheme. The MODIS Vege-
tation Indices (VI) (MOD13Q1) product consists of time series compar-
isons of global vegetation conditions and cloud cover persistence. Two 
masks were derived from the products, namely, the Land Cover mask 
and Goodness of Fit mask. The Land Cover mask was utilized to select 
only forested pixels according to the classification of the University of 
Maryland (UMD). A complete list of the classes and their definitions can 
be found in Setiawan et al. (2014); Sulla-Menashe and Friedl (2018). 
After applying the Land Cover mask to the VI images, the Goodness mask 
was used to select pixels that were reported as being covered by clouds. 
With the goodness mask results, an image from the first and second 
16-day periods that contains only cloud-marked pixels was created and 
these were then summed for all months to calculate the number of 
months in a year when a pixel is flagged as cloudy. The next stage was to 
perform a Kernel Regression of the share of deforested pixels against the 
number of periods with cloud cover to check the threshold period for 
cloud cover persistence for the study period. The optimal bandwidth 
used was the one suggested by Bowman and Azzalini (1997) with 1000 
replications and with cross-validation. Seventeen cross-validated kernel 
regressions were estimated. The results of the regressions suggested a 
threshold of approximately five months. 

The final cloud mask was applied to all annual images using the 
identified threshold. If the pixel’s cloud cover value was equal to or 
more than the threshold within a year, it was reported as a cloud cover 
pixel and a dichotomous variable was created. In addition, the same 
approach described above was used to create a monthly cloud cover data 
set. However, instead of implementing a kernel regression, the exact 
month in which the pixel was covered by a cloud was tabulated. All 
regressions exhibited a consistent pattern of outcomes. As a conse-
quence, the primary findings section presents the analysis on the 
outcome of the threshold selection highlighted. The resulting data set 
consists of a binary variable indicating whether or not a pixel was 
flagged as clouded according to the threshold. 

3.3. Deforestation dataset 

The study collected deforestation information from the Brazilian- 
based annual land use and land cover mapping project (MapBiomas 
Collection 5). This dataset reconstructs yearly land use and land cover 
(LULC) information at 30-m spatial resolution for every Brazilian biome 
from 1985 to 2019 using a random forest algorithm applied to the 
Landsat archive and Google Earth Engine (Project, 2021; Souza et al., 
2020). The MapBiomas initiative emerges as a novel tool for studying 
forest dynamics in the extremely heterogeneous study region by 
combining medium-resolution remote sensing data with a comprehen-
sive land use classification. The mosaic of images is composed of the best 
pixels from all images available during a specified period within a year. 
After defining the start and end dates of this period, the median of the 
pictures captured during that time period was computed, yielding one 
median value per pixel per year. The window period used in the Map-
Biomas dataset corresponds to the period of April to September ranging 
from 60% to 30% of cloudy days according to Fig. 2. The legend cate-
gories of the yearly deforestation maps were aggregated into two cate-
gories: “deforested” and “not deforested”. The study also included a 
binary land cover map of “forest” and “not-forest” to filter out of the 
deforestation map land cover classifications that do not belong to the 
biome. 

Notably, a temporal gap fill filter was used to account for the absence 
of data values (gaps) caused by cloud-covered (or cloud shadow) pixels 

in a given picture. The filter consistently filled in the gaps using the 
classification of the chronologically nearest future valid event. If no 
future valid classification could be determined, the no-data value was 
replaced with its prior valid classification. To account for cloud cover, 
the deforestation dataset was superimposed over the cloud mask dataset. 
A postclassification temporal filter based on a moving window was also 
applied to simplified maps to reduce uncertainty and year-to-year fluc-
tuations in native forest loss and growth (Nanni et al., 2019). Hence, 

Suppressiont =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ft− 2

Ft− 1

At

At+1

(1)  

where F corresponds to Forest as a class of vegetation (Forest Formation, 
Savanic Formation), A corresponds to any class of Anthropic use and t =
2000, …, 2016 taking 2000 as the base year. When a pixel was classified 
as “Forest” for at least two years and then “Anthropic” for at least two 
years, the algorithm considered it to be part of a deforestation episode 
(Souza et al., 2020). 

The dataset was aggregated from a 30-m resolution to a 250-m res-
olution using reproject and resampling tools from the Google Earth 
Engine (Gorelick et al., 2017). This is vital for the analysis because it 
allows, for example, a comparison of 30-m pixels from a Landsat-based 
deforestation analysis to coarse pixels from the MODIS-based cloud 
cover mask. For the investigated area, the final data set consists of a 
binary variable denoting deforested pixels (1) and forest pixels (0) 
matched by unique IDs to the final dataset of Cloud Cover. 

3.4. Risk factors 

Numerous studies demonstrate that a variety of factors may influ-
ence deforestation patterns and are suspected as risk factors that can 
cause a shift in the trend (Arima et al., 2014; Rochedo et al., 2018; 
Soares-Filho et al., 2006). To account for these factors, information was 
gathered from a variety of sources to create a distance-based set of risk 
factor covariates that are described in Table 1. To determine the distance 
between each pixel and the covariates, the data were converted into a 
raster format and the Euclidean distance between each pixel and the 
variable source within the research area was calculated. Roads, pro-
tected areas (PA), regional markets, city centres, and mines were the 
source variables measured in 2000. The Euclidean distance between a 
certain pixel and a river basin was used (but no transformation was 
needed). Time-varying variables were calculated for each year of the 
study period as the percentage of adjacent pixels that are forested. 
Annual averages of rainfall and temperature are also included. Latitude, 
longitude, and elevation are calculated at the pixel level. In addition, 
factors influencing the trend in deforestation were created, such as 
identifying the DETER-A policy’s presence and the persistence of clouds 
in a specific pixel. 

3.5. Survival models 

Let n be the total number of pixels and t(j) is the time under study for 
the jth pixel. δ(j) is the deforestation indicator, where δ(j) = 1 for 
deforestation and δ(j) = 0 if the pixel is right-censored, i.e., it is not 
possible to calculate the pixel real survival period because the study 
period ended and the pixel had no evidence of deforestation). X(j) is a 
vector of risk factors for the jth pixel that may affect the distribution of 
X, the time it takes to deforest. 

Let λ(t∣X) be the hazard rate in the subpopulation with covariate 
value X. The Cox proportional hazard regression model relates cova-
riates to the hazard function as follows: 

λ(t|X) = λ0(t)exp(β′ ⋅X) (2) 
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where λ0(t) is the baseline hazard function and β′

=
(
β1, β2,…, βp

)
is a 

vector of regression coefficients. This model is semi-parametric since the 
baseline hazard model is estimated non parametrically, while the risk 
factors are constrained by the parametric representation exp(β′ ⋅ X). The 
parametric function is assumed to take the exponential form exp(β′X) =

exp(
∑p

k=1 = βkXk) = e
∑p

k=1
=βkXk . The Cox model is a proportional haz-

ard model in the sense that the ratio of the hazard function at time t does 
not depend on t and the hazard rates are proportional (Cao, 2005; Lee & 
Wang, 2003) and is given by: 

λ(t|X1) = λ0(t)exp(β′ ⋅X1)

λ(t|X2) = λ0(t)exp(β′ ⋅X2)
= exp[(β

′

(X1 − X2))] (3) 

Time-varying covariates are introduced to the model to compensate 
for possible unobserved spatial and temporal heterogeneity: 

λ(t|Z(t)) = λ0(t)exp(β′

x + γ′X(t)) (4)  

where β′ and γ′ are the coefficients of time-invariant and time-varying 
covariates, respectively. Letting Z(t) represent the time-varying cova-
riates, then: 

Z(t) =
[
x1, x2…xp,X1(t),X2(t)…,Xq(t)

]
(5) 

Hence, the hazard ratio can be written as: 

ĤR =

(
λ(t;Z(t)
λ(t;Z(t)∗

)

= exp(β
′

x∗ + γ
′

X(t)∗) (6)  

which is a nonconstant hazard. One way to model coefficients that vary 
significantly over time is to use a step function, g(t) = I(t ≥ to), where to 
has a specified value. The idea is to split the analysis of time into several 
intervals so that the Cox proportional model is stratified for these time 
intervals. As previously mentioned, the DETER-A instrument is likely to 
have followed a similar nonlinear policy course as the PPCDAm. Thus, 
the strategy stratifies the survival model over three distinct time periods 
to rule out nonlinear outcomes hindered by the dichotomous variables. 
According to the literature, the phases are as follows: (1) the policy 
implementation phase (2004–2008); (2) the sectoral agreements phase 
(2009–2011), and; (3) the new Forest Code implementation phase 
(2012–2016). 

In general, relative hazard values greater than one indicate a positive 
impact of the risk factor, i.e., it increases the probability of deforesta-
tion. Values less than one imply a negative impact on deforestation. A set 
of controls are included: A policy coverage dummy (Policy), that is, one 
from 2004 onwards and zero otherwise for the standard model and a 
stratified policy dummy with 3 intervals (2004–2007, 2008–2011, 
2012–2016); cloud cover dummy created from the cloud cover mask 
(Clouds); a Legal Maranhão indicator (LM); interaction terms capturing 
(1) the role of cloud cover during those years when the policy was 
operating (Policy*Clouds) and (2) for the whole period of the study 
(Clouds*LM) regardless the implementation of the policy. 

3.6. Counterfactual analysis 

Counterfactual analysis were conducted to determine how much 
forest would have been lost in the absence of policy or clouds by 
comparing the total marginal probabilities of two distinct scenarios. This 
calculation utilises an Augmented-IPTW model (AIPTW). The AIPTW 
estimator is doubly robust in which one model forecasts the treatment 
(in this case, IPTW) and another model predicts the outcome (like the g- 
formula) Funk et al. (2011). 

The estimator only takes into consideration the time that a pixel was 
deforested, and it considers that a pixel is deforested if its difference in 
the probability of survival is positive. The IPTW technique creates a 
pseudopopulation in which the average causal effect of the treatment A 
= (0, 1) (clouds and policy) on the time to deforest δ(j) is identical to the 
observed population’s average causal effect. In the pseudopopulation, 
the set of risk factors, X, is no longer related to the clouds and policy 
variables, i.e., the covariates are unrelated to treatment assignment. 
Pixels in the pseudopopulation are weighted according to their treat-
ment probabilities. If a pixel j is covered by clouds or within the policy 
area, its weight is one over its probability of A = 1 (based on its cova-
riates). If the pixel j did not receive the treatment, A = 0, their weight is 
one over their probability of receiving the control. Therefore, treated 
pixels who were less likely to be treated have larger weights, as do the 
control pixels who were less likely to receive the control, thus creating a 
balanced pseudopopulation. On the other hand, the g-formula enables 
the identification of the marginal value of a possible outcome for δ(j) 
under treatment A = a, i.e. the counterfactual scenario (δ(j)a), under the 
identifiability assumptions. The estimator then combines these esti-
mates in such a way that if either specification is valid, the estimate is 
consistent. Given that Cox model is estimated consistently, the 
Augmented-IPTW (AIPTW) consists of the following: 

E[δa] =
1
n
∑n

i

(
δ ∗ I(A = a)
P̂r (A = a|X)

−
Ê[δ|A = a,X] ∗ (I(A = a) − P̂r (A = a|X))

1 − P̂r (A = a|X)

)

(7)  

where P̂r (A= a|X) comes from the IPTW model and Ê[δ|A= a,X] comes 
from the g-formula. 

3.7. Cost-benefit analysis (CBA) 

CBA is employed to assess the impact of the DETER-A instrument and 
the degree to which cloud cover affects the policy’s efficacy in the battle 
against deforestation. The analysis is then expanded to assess the effect 
in terms of CO2 emissions. The CBA is done by comparing the total of 
Ibama’s and INPE’s annual budgets with the counterfactual outcomes of 
the estimated monetary benefits of maintaining forested areas and 
therefore avoiding carbon dioxide emissions. The estimated values are 
based on the conversion factor of 10,000 tC/km2 (36,700 tCO2/km2), as 
determined by the Ministry of the Environment MMA (2018) and the 
price of 5 USD/tCO2/km2 commonly used in current applications. This 

Table 1 
Data description.  

Variable Source Description Source Data 
Type 

Source 
Resolution 

PA MMA Euclidean distance to the nearest protected area in decimal degree. Polygon – 
Mine EMBRAPA Euclidean distance to the nearest mineral resource/mining in decimal degree. Point – 
Market CONAB Euclidean distance to the nearest regional market in decimal degree. Point – 
Municipality IBGE Euclidean distance to the nearest municipality centre in decimal degree. Point – 
River IBGE Euclidean distance to the nearest river/basin in decimal degrees. Polyline – 
Road IBGE Euclidean distance to the nearest road in decimal degrees. Polyline – 
Elevation EMBRAPA Digital elevated map of Maranhão. Raster 30m 
Latitude and 

Longitude 
IBGE latitude and longitude of each pixel in the study. This is used to account for spatial 

autocorrelation across large distances. 
Raster 250m 

Rainfall and 
Temperature 

BDMEP/ 
INMET 

historical series of several conventional meteorological stations of the INMET station network. Point –  
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approach was taken in this paper so the estimates are comparable with 
those of the Ministry of the Environment. 

3.8. Validation 

The study is predicated on the buffer zone established either side of 
the artificial line to isolate and compare pixels being geographically and 
physiologically homogeneous. To establish support for this critical 
assumption, an effect size index is produced for the two regions on either 
side of the line following Cohen (1977) who computed and represented 
variations in means in terms of the pooled within-area standard devia-
tion. The Cohen index is interpreted in terms of the average percentile 
standing area compared to another. To assess the sensitivity of our 
choice of buffer zone, we also replicated the results after a 0.2◦ increase 
in the buffer zone. 

To validate the survival analysis results, a concordance index, 
commonly known as the c-index, which assesses the precision with 
which the anticipated time is ordered, is employed. This is a general-
isation of the AUC (area under the curve), another often used loss 
function, and is interpreted identically (Davidson-Pilon et al., 2018). 
More precisely, a c-index of around 0.5 represents the predicted 
outcome of random predictions, whereas 1.0 represents perfect 
concordance and 0.0 represents perfect anti-concordance. In addition, 
k-fold validations are performed which entails splitting a training set 
from the data into k smaller sets (k = 5). A model is trained using k − 1 of 
the folds as training data. The resulting model is validated on the 
remainder of the data, i.e., it is used as a test set to compute a perfor-
mance measure such as accuracy. The performance measure reported by 
k-fold cross-validation is then the average of the values computed in the 
loop and should be close to 0 (Pedregosa et al., 2011). 

According to Souza et al. (2020), the deforestation dataset (Collec-
tion 5.0) was constructed using Random Forest models calibrated with 
training data drawn from the region with stable categorization during 
the 34-year period covered by the previous collection, as well as from 
Native Vegetation (NV) reference maps. The sample size was first fixed 
at 7000 per classification unit of forest type (Forest Formation and 
Savanna Formation (legend ID: 3,4)) and then divided proportionately 
across classes according to the area of each class using the year 2000 as 
the baseline. The minimum sample size was set at 700 to ensure that 
adequate samples were collected for classes that included less than 10% 
of a particular region. Independent classifications were created for the 
region in different years, and the resulting time series were post-
processed using filters to improve temporal and spatial coherence. Vi-
sual examination of intermediate versions was used to detect if the 
region presented spatial discontinuities with neighbouring regions or 
regions with notable omission/commission mistakes for a particular 
class. These instances were reclassified using a modified sample size 
distribution per class, which was determined by an interpreter to ac-
count for the proportionate excess/deficiency of the area in a particular 
class in the assessed version. 

The validation strategy was based on statistical techniques using 
independent sample points with visual interpretation across the study 
region (Amazonia/Cerrado) and time series. The accuracy study was 
conducted using the LAPIG dataset, which had around 50,000 reference 
sample pixels for the study region (Stehman, 2014). An impartial team 
evaluated the sites during the dry/wet season using a combination of 
Landsat and Google Earth data and the Temporal Visual Inspection tool 
(tvi.lapig.iesa.ufg.br). Each location was reviewed by three separate 
interpreters, and the legends were simplified to match those seen on 
yearly maps (See S1 for detailed information on the legend groups) 
(Olofsson et al., 2014). The confusion matrix was used to determine 
global and class-level accuracy, omission and commission errors, as well 
as quantity and allocation conflicts, by comparing the reference dataset 
to sample pixels from Collection 5’s integrated version. 

4. Results 

4.1. Validation 

The validation results include the Cohen index for the study area. 
The average is about 0.09, indicating that the mean of the LM region is at 
the 50th percentile of the CM region, implying that the distribution of 
scores for the LM region overlaps with the distribution of scores for the 
CM region, with effectively 0% of non-overlap and dissimilarity. 
Checking for the robustness assumption of a homogeneous study area, 
the Cohen index for the area not included in the study design by 0.2◦ was 
0.28, indicating that the LM region is at the 62nd percentile of the CM 
region, rejecting the null hypothesis that these two regions are identical. 
Indeed, the index value of 0.28 shows a 21 percent difference between 
the two distributions, following Cohen (1977) methodology. 

Validating the survival models, the c-index is equivalent to 0.511 (se 
= 0.003) for the standard model and 0.513 (se = 0.003) for the stratified 
model. The k-fold validation result for the standard model is equal to 
− 0.35 (se = 0.001) and for the stratified model − 0.34 (se = 0.001). The 
accuracy analysis of the MapBiomas dataset were carried out using the 
method described by Pontius and Millones (Pontius & Millones, 2011), 
and revealed an overall accuracy of 83 percent for the most detailed 
legend, with an 11.8 percent disagreement in allocation and a 5.2 
percent disagreement in area, and consistent accuracy across the time 
series (See S1 for detailed information). The results for the study area are 
in line with the region’s geographical and temporal deforestation 
pattern. The comparison between the original dataset (MapBiomas 
Collection 5) and the final deforestation dataset for the study is shown in 
the visual graph supplied in the S1 supplementary file. 

4.2. Summary statistics 

Table 2 provides the summary statistics for the survival rates and risk 
factor variables. The sample contains 550,428 observations for the time- 
varying model as well as eight risk factors and several other controls. 
The period of the study is 2000–2016 using the first year as the baseline. 
Overall, the average time a pixel is in the sample before it becomes 
deforested is 16 years. Around 41% of the pixels belong to the Legal 
Maranhão region and approximate 0.1% of the analysed pixels are 
deforested at some point during the sample period. Around 68% of the 
pixels were covered by clouds on two consecutive 16-day images at least 
for five consecutive months (capturing cloud persistence). Rivers and 
roads were the closest features to any given pixel, on average, with 
Protected Areas and regional market places being the furthest away. 

Table 2 
Descriptive statistics.  

Variables Mean Std Deviation Min Max 

Survival 16.968 4.129 1.000 17.000 
Deforestation 0.001 0.198 0.000 1.000 
Clouds 0.682 0.465 0.000 1.000 
LM 0.411 0.492 0.000 1.000 
Rainfall 83.433 35.366 19.500 189.500 
Temperature 32.245 2.259 20.166 35.333 
Forest 0.983 0.093 0.000 1.000 
PAs 0.623 0.289 0.000 1.188 
Mining 0.059 0.081 0.000 0.370 
Market 0.327 0.188 0.000 1.087 
Municipality 0.124 0.057 0.000 0.302 
River 0.016 0.012 0.000 0.063 
Road 0.046 0.042 0.000 0.212 
Lat − 2.642 0.193 − 3.003 − 2.347 
Lon − 40.839 1.040 − 43.770 − 39.586 
Elevation 218.168 106.496 0.000 492.000 

1 Statistics refer to 550,428 observations. All distancing values are in decimal 
degrees. 
2 The conversion assumes 0.1◦ to 11 km2. 
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Reassuringly, almost 98% of pixels were surrounded by other forested 
pixels to ensure that it is the forest that is being captured by the indices. 
Throughout the entire period, rainfall averaged about 83 mm and 
temperatures hovered around 32c per year. 

4.3. Survival analysis 

Table 3 shows the estimated effect of covariates on the hazard of any 
of the pixel observations becoming deforested, where the coefficients 
are given as hazard ratios. The relative hazard ratios (RHR) in the second 
column of Table 3 show that pixels in the Legal Maranhão (LM) were 
twice as likely to be deforested (RHR of 2.143) as pixels in the Cerrado 
Maranhão (CM). However, the implementation of the monitoring policy 
(Policy) reduced the probability of a pixel being deforested by almost 
45% (RHR of 0.551). Although the policy reduced deforestation rates in 
the LM region, and in concordance with the hypothesis of this paper, 
cloud cover during the period of the policy (captured by the Policy*-
Cloud variable) reduced the effectiveness of the policy by 2.2 times 
compared to the CM region (RHR of 2.299). This result should be 
considered alongside the general finding that cloudy skies per se do not 
have an impact on the relative hazard ratio. This finding is substantiated 
by the magnitude of the effect of clouds on the Legal Maranhão for the 
whole period, which decreases the probability of deforestation by 
almost 66% (RH of 0.449 for the Cloud*LM interaction term). 

The results from the survival analysis support the hypothesis that 
while the introduction of the satellite monitoring program significantly 
reduced the level of forest loss in the LM region relative to the Cerrado 
Maranhão, this coincided with an increase in deforestation in those 
years that experienced a higher prevalence of cloud cover. In terms of 
the other controls, an increase in the distance of one degree or 11 km of a 
mine from a pixel lowers the hazard ratio by 41% (RHR of 0.604), 
whereas being further from a road decreases the hazard by almost 62% 
(RHR of 0.482). In contrast, being further away from one of the major 
storage and trading markets (RH of 1.317) increases the probability of 
being deforested. The other controls had no significant impact on sur-
vival rates. 

The stratification results of the three policy implementation periods 
are given in Table 4 by the relative hazard ratios (RHR) of the stratified 
covariates Policy and the interaction effect of Policy*Clouds. Policy had 
a nonlinear trajectory throughout the sample period, being only signif-
icant during the last phase of the policy analysis. The probability of a 
pixel being deforested between 2012 and 2015 decreased by 45% (RHR 
0.550). When the cloud cover during the policy’s implementation period 

is taken into account (as shown by the Policy*Cloud variable), the sig-
nificance is observed for two periods: the implementation of the policy 
and the new Forest Code. As can be shown, the policy’s efficacy reduced 
by 3.2 to 2.2 times when compared to the CM region (RHR of 3.279 and 
2.292, respectively), despite the fact that the effects diminished over 
time. 

4.4. Counterfactual analysis 

The survival model estimates are now used to run a series of coun-
terfactual simulations. Under the no monitoring program scenario, it is 
predicted that there would have been an additional 1954 km2 of the 
forest that would have been flagged as deforested. Given that the total 
area of the sample is the equivalent of 34,401.75 km2, this implies that if 
the satellite monitoring program had not been implemented, ceteris 
paribus, the deforestation area would have covered almost 5.7% of the 
sample area. When allowing for the satellite program, but assuming that 
there was no disruption to monitoring due to clouds, the results indicate 
that the area of deforestation would have been reduced by 1995 km2. 
The counterfactual survival model estimates suggested that almost 41 
Km2 of forests were cleared due to the presence of clouds, which cor-
responds to almost 0.14% of the study region. 

4.5. Cost-benefit analysis 

With the results above, a simple cost-benefit analysis is conducted 
based on the absence of the satellite monitoring program in the study 
region using counterfactual estimates. More precisely, with no moni-
toring, the estimated level of additional deforestation that would have 
occurred during the sample period would have consumed approximately 
71 million tonnes of CO2, which is equivalent to US$ 358 million (at 
2018 prices). For the scenario in which clouds no longer pose a problem 
for monitoring, estimates suggest that the newly preserved forest area 
could store an additional 73 million tonnes of CO2 with a value of US$ 
366 million over the study period for the LM and CM regions. 

Table 3 
Cox proportional hazard model time varying covariates.  

Variables Coef RelativeHazard 
Ratio 

StandardErrors Z score 

Clouds − 0.032 0.968 0.017 − 1.881 
Policy − 0.596*** 0.551 0.207 − 2.888 
Policy*Clouds 0.833** 2.299 0.362 2.298 
LM 0.762*** 2.143 0.207 3.684 
Clouds*LM − 0.801** 0.449 0.363 − 2.210 
PAs 0.135 1.145 0.087 1.561 
Mining − 0.504*** 0.604 0.111 − 4.535 
Market 0.276*** 1.317 0.074 3.749 
Municipality 0.040 1.041 0.120 0.335 
River − 0.315 0.730 0.540 − 0.583 
Road − 0.730*** 0.482 0.182 − 4.001 
Forest 0.012 1.012 0.051 0.236 
Rainfall 0.000 1.000 0.002 0.165 
Temperature − 0.246*** 0.782 0.009 − 27.791 

Sample consists of 550,428 observations. ‘***’ denotes hazard ratios that are 
significantly different from 1 at the 99% (0.001) confidence level. ‘**’ denotes 
hazard ratios that are significantly different from 1 at the 95% (0.01) confidence 
level. PAs stand for Protected Areas (Indigenous Lands and Conservational 
Units). *LM stands for interaction with Legal Maranhão region. We include 
latitude, longitude and elevation as additional unreported controls. 

Table 4 
Cox proportional hazard model time varying covariates - stratified model.  

Variables Coef RelativeHazard 
Ratio 

StandardErrors Z score 

Clouds − 0.032 0.968 0.017 − 1.881 
Policy:(1) − 0.370 0.691 0.350 − 1.056 
Policy:(2) 0.013 1.013 0.365 0.036 
Policy:(3) − 0.598*** 0.550 0.206 − 2.899 
Policy*Clouds: 

(1) 
1.188** 3.279 0.472 2.517 

Policy*Clouds: 
(2) 

0.332 1.394 0.492 0.675 

Policy*Clouds: 
(3) 

0.830** 2.292 0.362 2.289 

LM 0.761*** 2.143 0.207 3.684 
Clouds*LM − 0.800** 0.449 0.363 − 2.210 
PAs 0.136 1.145 0.087 1.561 
Mining − 0.504*** 0.604 0.111 − 4.535 
Market 0.276*** 1.317 0.074 3.749 
Municipality 0.040 1.041 0.120 0.335 
River − 0.313 0.730 0.540 − 0.583 
Road − 0.731*** 0.482 0.182 − 4.001 
Forest 0.012 1.012 0.051 0.236 
Rainfall 0.000 1.000 0.002 0.165 
Temperature − 0.246*** 0.782 0.009 − 27.791 

Sample consists of 550,428 observations. ‘***’ denotes hazard ratios that are 
significantly different from 1 at the 99% (0.001) confidence level. ‘**’ denotes 
hazard ratios that are significantly different from 1 at the 95% (0.01) confidence 
level. PAs stand for Protected Areas (Indigenous Lands and Conservational 
Units). *LM stands for interaction with Legal Maranhão region. We include 
latitude, longitude and elevation as additional unreported controls. 
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5. Discussion 

The survival analysis and counterfactual simulations indicate that 
deforestation is facilitated by an intricate relationship between illicit 
loggers, government regulators, technological advancements, and cli-
matic circumstances. The narrative is mainly a positive one in that 
Brazil’s implementation of the satellite monitoring programme 
(together with wider environmental laws designed to encourage the use 
of such technology) resulted in a reduction in deforestation in the Legal 
Maranhão. 

However, at the same time, the results show that following the 
introduction of the monitoring program, those years where there was a 
greater degree of cloud cover saw a relative increase in the probability of 
deforestation. This suggests that cloud cover had a mitigating effect on 
the effectiveness of the monitoring programme. This is consistent with 
the decision of illegal loggers to change their behaviour and to under-
take their illegal activities under the cover of clouds when the proba-
bility of being caught is likely to be substantially lower. The findings can 
also reflect a possible shift with illegal loggers moving their activities 
across the line that distinguishes the Legal Maranhão from the Maranhão 
Cerrado (where the monitoring program does not operate) (Pfaff & 
Robalino, 2017). 

Regarding the policy instrument DETER-A, a nonlinear trend is found 
for the study region, indicating a significant decrease in the likelihood of 
deforestation between 2012 and 2016 compared to the period of the 
policy implementation phase. This period highlights the implementation 
of the New Forest Code, under which 58 per cent of all unlawful 
deforestation committed up to July 22, 2008, was granted amnesty, with 
tax assessments disallowed for individuals who deforested prior to that 
date. Prior to 2008, a significant portion of the infraction notices for 
damages to flora was suspended, totalling 28 thousand notices worth R$ 
4.8 billion. This strategy significantly increased the sense of impunity, 
creating an incentive for illegal deforestation. Fortunately, the inspec-
tion authorities took steps to address the increased pressure caused by 
deforestation. In addition, the banking industry was singled out for 
giving rural loans to manufacturing in an area that had been unlawfully 
deforested. The goal was to maximise the deterrent capacity of people 
who buy or finance products from illegally deforested areas at the lowest 
possible cost, to encourage market-based behaviour change (Rajão et al., 
2021). 

In terms of the other covariates, it is reassuring that their estimates 
are generally consistent with the previous literature. More specifically, 
the results show that the further the area of forest is away from a road, a 
river, or a mining concession, the less chance that trees in a given pixel 
have been deforested. This is consistent with the fish bone style pattern 
of deforestation that is often seen in images of Brazilian deforestation 
(Pfaff, 1997, 1999; Pfaff et al., 2007). Likewise, pixels close to a river are 
those that are most likely to be deforested, arguably because it makes 
transporting the logs to the market much less costly than moving them 
across land. This is consistent with the common image of substantial 
numbers of logs floating down the river to be picked up, processed, and 
sold downstream. In terms of human settlement, the closer a pixel is to a 
regional market, the probability of deforestation falls is a result that is 
consistent with there being a stronger police presence in these areas. 

Turning to the counterfactual simulations, it was shown that without 
a monitoring programme, almost 2000 km2 of forest would have been 
categorised as deforested in the study region. This is a significant finding 
since, in the absence of the policy, the likelihood of the Legal Amazon 
becoming a savanna ecosystem would have been considerably greater 
(Lovejoy & Nobre, 2018). The cost benefit analysis indicated that under 
no monitoring, the estimated level of consumed CO2 would surpass 71 
million tonnes, which is worth roughly US$ 360 million (in 2018 prices). 
This is crucial not just for the investigated area, but also for the Amazon 
forest, since the Brazilian Cerrado/Amazon transitional forests act as 
natural barriers of protection to the Amazon forest (Costa & Pires, 2010; 
Lapola et al., 2011; Malhado et al., 2010; Morandi et al., 2016). 

Moreover, the implementation of a more technologically advanced 
satellite system that can better deal with cloud cover was considered. An 
example of such a technology would be that carried out in the DETER-C/ 
DETER INTENSO microwave domain, since microwaves have the ability 
to penetrate through clouds and are very useful for the detection of 
deforestation in real time (Dupuis et al., 2020; Nazarova et al., 2020). In 
addition, the existing efforts of the DETER-B instrument to detain 
deforestation by increasing image resolution and temporal path com-
bined with machine-learning-based cloud detection methods, such as 
neural networks and support vector machine algorithms, can extract 
more robust and high-level information from optical sensors, such as 
MODIS and Landsat satellites, within a reasonable testing time. In fact, 
from 2017 to 2019, DETER-B alerts were able to account for approxi-
mately 40% of total deforestation in the state of Maranhão. 

Nonetheless, the supposed battle against deforestation is far from 
over and rates of deforestation have been increasing in recent years. 
Apart from climatic barriers, federal inspection is in danger owing to a 
shortage of people and financial resources, as well as changes in envi-
ronmental and penal legislation that provide flexibility for offenders or 
render operations impossible (Zi et al., 2018; F. G.; Assis et al., 2019; 
Rajão et al., 2021; Valente, 2021). One concerning aspect of these 
findings is that, in a recent study by Matricardi et al. (2020), it was 
observed that forest degradation has overtaken deforestation in the 
Brazilian Amazon from 1992 to 2014, and this article does not clearly 
address or analyse this fact. It is recognised that the results may un-
derestimate the real casual influence of clouds on the policy instrument. 

6. Conclusion 

The state of Maranhão provides an ideal setting in which to study the 
impact of clouds on the behaviour of illegal loggers as the state is divided 
by an artificial line that separates it into two parts. To the left of the line 
is the Legal Maranhão (LM) where the satellite monitoring DETER-A 
operates and to the right of the line the area called the Cerrado 
Maranhão (CM) where there is no monitoring. Other than that, both 
areas have the same institutions, rules, and laws. This study quantified 
the extent to which cloud cover inhibited the ability of the Brazilian 
satellite monitoring system to detect episodes of deforestation in the 
Brazilian Amazon using satellite-derived data and forest survival anal-
ysis estimation. The findings support the hypothesis that more defor-
estation occurs during years with higher cloud cover. In addition, the 
results indicate that improved satellite monitoring technologies, such as 
the DETER-C/DETER INTENSO testing phase policy instrument, may 
have a substantial effect on deforestation rates. Similarly, one might use 
improved techniques to identify vegetation in the presence of clouds, 
such as a new cloud identification approach for multispectral remote 
sensing images based on machine-learning algorithms (Zi et al., 2018). 
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