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ABSTRACT
This paper introduces the monotone extended second-order cone (MESOC), which
is related to the monotone cone and the second-order cone. Some properties of the
MESOC are presented and its dual cone is computed. Projecting onto the MESOC is
reduced to the pool-adjacent-violators algorithm (PAVA) of isotonic regression. An
application of MESOC to portfolio optimisation is provided. Some broad descriptions
of possible MESOC-regression models are also outlined.
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1. Introduction

The purpose of this paper is to introduce a new second-order cone, which we call
the monotone extended second-order cone. Some properties of the MESOC are stud-
ied and formulas for projecting onto it are presented. We will follow the ideas used
in [1] for projecting onto a non-monotone extension of the second-order cone. It is
worth to note that the projection in this paper is considerably more difficult to find,
because it is partly based on projecting onto the monotone nonnegative cone, which
is a nontrivial problem compared to the projection onto the nonnegative orthant, see
[2,3]. The definition of the MESOC relates two well-known cones, namely, the mono-
tone cone and a second-order cone, known as Lorentz cone. The monotone cone has
connections with the isotonic regression problem, in fact it is the constraint set of this
problem, see for example [4]. This cone arises in statistics and has also connections
with finance [5]. In [6] some properties of the weighted version of the monotone cone
have been also considered. The Lorentz cone is an important object in theoretical
physics, and it is commonly used in optimization, a good survey paper with a wide
range of applications of second-order cone programming is [7]. Various connections
of second-order cone programming and second-order cone complementarity problem
with physics, mechanics, economics, game theory, robotics, optimization and neural
networks have been considered in [8–16].

The structure of the paper is as follows: In Section 2 we fix the notations and the
terminology used throughout the paper. In Section 3 we introduce the MESOC and
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compute its dual cone, and in Section 4 we find the complementarity set of the MESOC.
The formulas for projecting onto the pair of mutually dual monotone extended second-
order cones are derived in Section 5. In Section 6 we have presented an application
of the MESOC to portfolio optimisation via a conic optimization problem related to
the mean-absolute deviation model [17]. Finally, we make some remarks in the last
section, including some broad descriptions about how could the projection onto the
MESOC occur directly in modelling some practical problems.

2. Preliminaries

Here, we recall some notations, definitions, and basic properties of convex cones and
projections onto it. Let `,m, p, q be positive integers such that m = p+ q. We identify
the vectors of R` with `×1 matrices with real entries. The scalar product in R` and the
corresponding norm are defined, respectively, by R`×R` 3 (x, y) 7→ 〈x, y〉 := x>y ∈ R
and R` 3 x 7→ ‖x‖ :=

√
〈x, x〉 ∈ R. The equality 〈x, y〉 = 0 is denoted by x ⊥ y. We

identify the elements of Rp×Rq with the elements of Rm through the correspondence
Rp×Rq 3 (x, y) 7→ (x>, y>)>. Through this identification the scalar product in Rp×Rq
is defined by 〈(x, y), (u, v)〉 := 〈x, u〉 + 〈y, v〉. A closed set K ⊆ R` with nonempty
interior is called a proper cone if K + K ⊆ K, K ∩ (−K) = {0} and λK ⊆ K, for
any λ positive real number. The dual cone of a proper cone K ⊆ R` is a proper
cone defined by K∗ := {x ∈ R` : 〈x, y〉 ≥ 0, ∀y ∈ K}. For a proper cone K ∈ R`,
the complementarity set of K is defined by C(K) := {(x, y) ∈ K ×K∗ : x ⊥ y}. Let
C ∈ R` be a closed convex set. The projection mapping PC : R` → R` onto C is
defined by PC(x) := argmin{‖x − y‖ : y ∈ C}, which is piecewise linear whenever C
is a polyhedral cone; see [18, Definition 4.1.3 and Proposition 4.1.4]. We recall here
Moreau’s decomposition theorem [19] (stated here for proper cones only):

Theorem 2.1. Let K ⊆ R` be a proper cone, K∗ its dual cone and z ∈ R`. Then, the
following two statements are equivalent:

(i) z = x− y and (x, y) ∈ C(K),
(ii) x = PK(z) and y = PK∗(−z).

In particular, Theorem 2.1 implies that

PK(z) ⊥ PK∗(−z), z = PK(z)− PK∗(−z).

For z ∈ R` we denote z = (z1, . . . , z`)
>. Denote by R`+ = {x ∈ R` : x ≥ 0}

the nonnegative orthant. The proper cone R`+ is self-dual, i.e., R`+ = (R`+)∗. For a
real number α ∈ R denote α+ := max(α, 0) and α− := max(−α, 0). For a vector
z ∈ R` denote z+ := (z+1 , . . . , z

+
` )>, z− := (z−1 , . . . , z

−
` )> and |z| := (|z1|, . . . , |z`|)>.

Therefore, z+ = PR`
+

(z), z− = PR`
+

(−z), z = z+− z− and |z| = z+ + z−. In particular,

we denote PK(z)+ = x+ and PK(z)− = x−, where K ⊆ R` is a proper cone and
x = PK(z). Thus, PK(z) = PK(z)+ − PK(z)−. Without leading to any confusion,
depending on the context, we will denote by 0 the vector in R` or a scalar zero and
by ei ∈ Rp the i-th canonical unit vector, i.e., the vector with all coordinates 0 except
the i-th coordinate which is 1. The monotone cone Rp≥ is defined as follows:

Rp≥ := {x ∈ Rp : x1 ≥ x2 ≥ · · · ≥ xp} . (1)
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Let j ∈ {1, ..., p− 1}. To simplify the notations we define

e1:j := e1 + · · ·+ej = (1, . . . , 1︸ ︷︷ ︸
j times

, 0, . . . , 0︸ ︷︷ ︸
p−j times

) ∈ Rp, e := e1 + · · ·+ep = (1, . . . , 1︸ ︷︷ ︸
p times

) ∈ Rp.

The dual of the cone Rp≥ is given by

(Rp≥)∗ :=
{
y ∈ Rp :

〈
y, e1:j

〉
≥ 0, j = 1, . . . , p− 1, 〈y, e〉 = 0

}
. (2)

The monotone nonnegative cone, is defined by

Rp≥+ := {x ∈ Rp : x1 ≥ x2 ≥ · · · ≥ xp ≥ 0} . (3)

The dual of the cone Rp≥+ is given by

(Rp≥+)∗ :=
{
y ∈ Rp :

〈
y, e1:j

〉
≥ 0, j = 1, . . . , p− 1, 〈y, e〉 ≥ 0

}
. (4)

3. The monotone extended second-order cone

In this section we introduce the monotone extended second-order cone, which gener-
alize the well known Lorentz cone. We also compute the dual cone of the monotone
extended second-order cone. The monotone extended second-order cone Lp,q ⊆ Rm :=
Rp+q is defined as follows:

Lp,q :=
{

(x, u) ∈ Rp × Rq : x1 ≥ x2 ≥ · · · ≥ xp ≥ ‖u‖
}
. (5)

Remark 1. If p, q ≥ 1, then the cone Lp,q is a proper cone. Letting p = 1 in (5), the
cone Lp,q becomes L1,p = {(t, u) ∈ R× Rq : t ≥ ‖u‖}, which is the second-order cone
in R1+q ≡ R × Rq known as Lorentz cone. The cone Lp,q is polyhedral, if and only if
q = 0 or q = 1. If q = 0, then the cone Lp,q becomes the monotone nonnegative cone
Rp≥+ defined in (3).

Before proceeding with our presentation, let us state Abel’s partial summation for-
mula that will be useful to study the properties of the MESOC:

〈x, y〉 =

p−1∑
i=1

(xi − xi+1)

i∑
j=1

yj + xp

p∑
i=1

yi, ∀x, y ∈ Rp. (6)

Interesting applications of this formula can be found in [20,21]. Next we present the
dual cone of the MESOC.

Proposition 3.1. The dual cone L∗p,q of the monotone extended second-order cone
Lp,q is

L∗p,q :=
{

(y, v) ∈ Rp × Rq :
〈
y, e1:j

〉
≥ 0, j = 1, . . . , p− 1, 〈y, e〉 ≥ ‖v‖

}
. (7)

Proof. To simplify the notations, denote by M the right hand side of (7). Our task
is to prove that M = L∗p,q, this will be done by proving that M ⊆ L∗p,q and L∗p,q ⊆M .
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We proceed to prove the first inclusion, for that take (y, v) ∈M . The definition of M
implies

〈
y, e1:i

〉
=

i∑
j=1

yj ≥ 0, i = 1, . . . , p− 1, 〈y, e〉 =

p∑
i=1

yi ≥ ‖v‖. (8)

Let (x, u) ∈ Lp,q be arbitrary. The definition of Lp,q implies x1−x2 ≥ 0, . . . , xp−1−xp ≥
0, and xp ≥ ‖u‖, which together with (6) and (8) yield

〈x, y〉 =

p−1∑
i=1

(xi − xi+1)

i∑
j=1

yj + xp

p∑
i=1

yi ≥ ‖u‖‖v‖.

Therefore, the last inequality and Cauchy’s inequality imply

〈(x, u), (y, v)〉 = 〈x, y〉+ 〈u, v〉 ≥ ‖u‖‖v‖+ 〈u, v〉 ≥ 0,

which proves the inclusion M ⊆ L∗p,q. To prove the second inclusion, take (y, v) ∈ L∗p,q.
First note that

(
e1:j , 0

)
∈ Lp,q. Thus, since (y, v) ∈ L∗p,q, we have

〈(
e1:j , 0

)
, (y, v)

〉
≥ 0,

for all j = 1, 2, . . . , p− 1, which implies〈
y, e1:j

〉
≥ 0, ∀ j = 1, 2, . . . , p− 1. (9)

To proceed, first assume v = 0. Since (e, 0) ∈ Lp,q and (y, 0) ∈ L∗p,q, we have

〈y, e〉 ≥ 0 = ‖v‖. (10)

Now, assume v 6= 0. Since (‖v‖e,−v) ∈ Lp,q and (y, v) ∈ L∗p,q, we obtain that

〈(‖v‖e,−v), (y, v)〉 ≥ 0, which implies ‖v‖ 〈y, e〉 − ‖v‖2 ≥ 0. Thus, due to v 6= 0,
we have 〈y, e〉 − ‖v‖ ≥ 0. Therefore, the last inequality together with (10) imply that

〈y, e〉 ≥ ‖v‖, (11)

for all (y, v) ∈ L∗p,q. Hence, it follows from (9) and (11) that (y, v) ∈M . Therefore, we
conclude that L∗p,q ⊆M . Since M ⊆ L∗p,q and L∗p,q ⊆M , we have L∗p,q = M .

Remark 2. Letting p = 1 in (7), there are no inequalities, for j = 1, . . . , p−1, because
p− 1 = 0. Thus, the cone L∗p,q becomes the Lorentz cone L1,p (see also Remark 1).

4. The complementarity set

After finding the dual of the monotone extended second-order cone, we want to find
the complementarity set of this cone. In order to find the complementarity set, we
need two inequalities introduced in the next lemma.

Lemma 4.1. Let (x, u) ∈ Lp,q and (y, v) ∈ L∗p,q. Then,

〈x, y〉 ≥ ‖u‖ 〈y, e〉 ≥ ‖u‖‖v‖. (12)
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Proof. Since (x, u) ∈ Lp,q, we have x1 ≥ x2 ≥ · · · ≥ xp ≥ ‖u‖. Thus, letting 0 ∈ Rq,
we have (x−‖u‖e, 0) ∈ Lp,q. Considering that (y, v) ∈ L∗p,q, the definition of L∗p,q yields

0 ≤ 〈(x− ‖u‖e, 0), (y, v)〉 = 〈x, y〉 − ‖u‖〈y, e〉.

which implies the first inequality in (12). Since (y, v) ∈ L∗p,q, we have 〈y, e〉 ≥ ‖v‖,
from where the second inequality in (12) follows.

In the next proposition we presents some relationships of the monotone extended
second-order cone with the monotone nonnegative cone. Since its proof is an immediate
consequence of (5), (7), (3) and (4), it will be omitted.

Proposition 4.2. Let (x, u), (y, v) ∈ Rp × Rq. Then, there hold:

(i) (x, u) ∈ Lp,q if and only if x− ‖u‖e ∈ Rp≥+.
(ii) (y, v) ∈ L∗p,q if and only if y − ‖v‖ep ∈ (Rp≥+)∗.

By using Lemma 4.1 and Proposition 4.2, next we determine the complementarity
set of Lp,q.

Proposition 4.3. Let x, y ∈ Rp and u, v ∈ Rq \ {0}.Then (x, u, y, v) :=
((x, u), (y, v)) ∈ C(Lp,q) if and only if xp = ‖u‖, 〈y, e〉 = ‖v‖, 〈u, v〉 = −‖u‖‖v‖,
and (x− ‖u‖e, y − ‖v‖ep) ∈ C(Rp≥+).

Proof. Take (x, u, y, v) ∈ C(Lp,q). The definition of C(Lp,q) implies (x, u) ∈ Lp,q,
(y, v) ∈ L∗p,q and 〈(x, u), (y, v)〉 = 0. Since (x, u) ∈ Lp,q and (y, v) ∈ L∗p,q, Proposi-

tion 4.2 implies that x − ‖u‖e ∈ Rp≥+ and y − ‖v‖ep ∈ (Rp≥+)∗. Furthermore, the
condition 〈(x, u), (y, v)〉 = 0, Lemma 4.1 and the Cauchy inequality imply that

0 = 〈x, y〉+ 〈u, v〉 ≥ ‖u‖〈y, e〉+ 〈u, v〉 ≥ ‖u‖‖v‖+ 〈u, v〉 ≥ 0.

Thus, 〈x, y〉 = ‖u‖〈y, e〉, ‖u‖〈y, e〉 = ‖u‖‖v‖ and 〈u, v〉 = −‖u‖‖v‖. Moreover, taking
into account that u 6= 0, we also have 〈y, e〉 = ‖v‖. Hence, using (6), we conclude that

(‖u‖ − xp) ‖v‖ = (‖u‖ − xp) 〈y, e〉 =

p−1∑
i=1

(xi − xi+1)

i∑
j=1

yj .

Since (x, u) ∈ Lp,q and (y, v) ∈ L∗p,q, the left hand side and the right hand side of the
last equality have opposite signs. Hence, they must be 0. In particular (‖u‖ − xp) ‖v‖ =
0. Thus, due to v 6= 0, we conclude that xp = ‖u‖. On the other hand,

〈x− ‖u‖e, y − ‖v‖ep〉 = 〈x, y〉 − ‖u‖〈y, e〉 − xp‖v‖+ ‖u‖‖v‖,

which taking into account that 〈x, y〉 = ‖u‖〈y, e〉 and xp = ‖u‖, yields 〈x− ‖u‖e, y −
‖v‖ep〉 = 0. Hence, (x − ‖u‖e, y − ‖v‖ep) ∈ C(Rp≥+), which concludes the proof of
necessity.

Reciprocally, assume that xp = ‖u‖, 〈y, e〉 = ‖v‖, 〈u, v〉 = −‖u‖‖v‖ and (x −
‖u‖e, y − ‖v‖ep) ∈ C(Rp≥+). First note that x − ‖u‖e ∈ Rp≥+, y − ‖v‖ep ∈ (Rp≥+)∗

and 〈x − ‖u‖e, y − ‖v‖ep〉 = 0. Since x − ‖u‖e ∈ Rp≥+ and y − ‖v‖ep ∈ (Rp≥+)∗,
Proposition 4.2 implies(x, u) ∈ Lp,q and (y, v) ∈ L∗p,q. On the other hand, the equality
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〈x− ‖u‖e, y − ‖v‖ep〉 = 0 implies that

〈x, y〉 − ‖u‖〈y, e〉 − xp‖v‖+ ‖u‖‖v‖ = 0.

Thus, due to xp = ‖u‖, we conclude that 〈x, y〉 = ‖u‖〈y, e〉. Hence, also using 〈u, v〉 =
−‖u‖‖v‖ and 〈y, e〉 = ‖v‖, we obtain

〈(x, u), (y, v)〉 = 〈x, y〉+ 〈u, v〉 = ‖u‖〈y, e〉 − ‖u‖‖v‖ = ‖u‖ (〈y, e〉 − ‖v‖) = 0.

Therefore, (x, u, y, v) ∈ C(Lp,q).

5. Projection onto monotone extended second-order cone

The aim of this section is to present the formulas for projecting onto the pair of
mutually dual monotone extended second-order cone. For that we need a preliminary
result.

Lemma 5.1. Let (z, w) ∈ Rp×Rq. If PLp,q
(z, w) = (x, u) and PL∗

p,q
(−z,−w) = (y, v),

then the following statements hold:

(i) 〈P(Rp
≥+)∗(−z), e〉 ≥ ‖w‖ if and only if u = 0;

(ii) PRp
≥+

(z)p ≥ ‖w‖ if and only if v = 0.

(iii) 〈P(Rp
≥+)∗(−z), e〉 < ‖w‖ and PRp

≥+
(z)p < ‖w‖ if and only if u 6= 0 and v 6= 0.

Proof. To prove item (i), we first assume that u = 0. Considering that PLp,q
(z, w) =

(x, 0) and PL∗
p,q

(−z,−w) = (y, v), Theorem 2.1 for Lp,q implies that (x, 0) ∈ Lp,q,
(y, v) ∈ L∗p,q, 〈(x, 0), (y, v)〉 = 0 and (z, w) = (x, 0)− (y, v). Hence, we have x ∈ Rp≥+,

y ∈ (Rp≥+)∗, 〈y, e〉 ≥ ‖v‖, 〈x, y〉 = 0, z = x − y and w = −v. Hence, by ap-

plying Theorem 2.1 for Rp≥+, we obtain that x = PRp
≥+

(z) and y = P(Rp
≥+)∗(−z).

Since w = −v and 〈y, e〉 ≥ ‖v‖, we have that 〈P(Rp
≥+)∗(−z), e〉 ≥ ‖w‖. Conversely,

suppose that 〈P(Rp
≥+)∗(−z), e〉 ≥ ‖w‖. First note that (PRp

≥+
(z), 0) ∈ Lp,q and, us-

ing 〈P(Rp
≥+)∗(−z), e〉 ≥ ‖w‖, we have (P(Rp

≥+)∗(−z),−w) ∈ L∗p,q. Moreover, we con-

clude that (PRp
≥+

(z), 0, P(Rp
≥+)∗(−z),−w) ∈ C(Lp,q) and (z, w) = (PRp

≥+
(z), 0) −

(P(Rp
≥+)∗(−z),−w). Hence, by applying Theorem 2.1 for Lp,q, we have PLp,q

(z, w) =

(PRp
≥+

(z), 0) and PL∗
p,q

(−z,−w) = (P(Rp
≥+)∗(−z),−w). Therefore, u = 0.

To prove item (ii), we first assume that v = 0. Considering that PLp,q
(z, w) =

(x, u) and PL∗
p,q

(−z,−w) = (y, 0), Theorem 2.1 for Lp,q implies that (x, u) ∈ Lp,q,
(y, 0) ∈ L∗p,q, 〈(x, u), (y, 0)〉 = 0 and (z, w) = (x, u)− (y, 0). Hence, we have x ∈ Rp≥+,

y ∈ (Rp≥+)∗, xp ≥ ‖u‖, 〈x, y〉 = 0, z = x − y and w = u. Thus, by applying

Theorem 2.1 for Rp≥+, we obtain that x = PRp
≥+

(z) and y = P(Rp
≥+)∗(−z). Since

w = u and xp ≥ ‖u‖, we have that PRp
≥+

(z)p ≥ ‖w‖. Conversely, assume that

PRp
≥+

(z)p ≥ ‖w‖. Note that (P(Rp
≥+)∗(−z), 0) ∈ L∗p,q and, using PRp

≥+
(z)p ≥ ‖w‖,

we have (PRp
≥+

(z), w) ∈ Lp,q. Moreover, (PRp
≥+

(z), w, P(Rp
≥+)∗(−z), 0) ∈ C(Lp,q) and

(z, w) = (PRp
≥+

(z), w) − (P(Rp
≥+)∗(−z), 0). Hence, by applying Theorem 2.1 for the

cone Lp,q, we have PLp,q
(z, w) = (PRp

≥+
(z), w) and PL∗

p,q
(−z,−w) = (P(Rp

≥+)∗(−z), 0).

Therefore, v = 0.
Item (iii) is an immediate consequence of items (i) and (ii).
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The next lemma is essential for reducing the projection onto the MESOC to isotonic
regression.

Lemma 5.2. Let (z, w) ∈ Rp×Rq such that w 6= 0. Assume that PLp,q
(z, w) = (x, βw)

for some x ∈ Rp and β > 0. Then,

PRp+1
≥+

(z, ‖w‖) = (x, β‖w‖). (13)

Proof. Suppose by contradiction that (13) does not hold. Hence, PRp+1
≥+

(z, ‖w‖) =

(y, µ‖w‖) for some y ∈ Rp and µ ≥ 0 with (y, µ‖w‖) 6= (x, β‖w‖). Let u := βw
and v := µw. Then, we have PRp+1

≥+
(z, ‖w‖) = (y, ‖v‖) and consequently (y, v) ∈ Lp,q.

Hence, due to

Rp+1
≥+ 3 (x, ‖u‖) 6= (y, ‖v‖) = PRp+1

≥+
(z, ‖w‖),

we obtain that

‖z − x‖2 + (‖w‖ − ‖u‖)2 > ‖z − y‖2 + (‖w‖ − ‖v‖)2.

Because w, u and u are collinear vectors with the same orientation, the last inequality
implies ‖z − x‖2 + ‖w − u‖2 > ‖z − y‖2 + ‖w − v‖2, or equivalently

‖(z, w)− (x, u)‖2 > ‖(z, w)− (y, v)‖2,

which contradicts PLp,q
(z, w) = (x, u), as (y, v) ∈ Lp,q.

In order to simplify the notations of our main result, for a fixed z ∈ Rp and w ∈ Rq,
we define

f(λ) := z − 1

1 + λ
‖w‖e+

λ

1 + λ
‖w‖ep. (14)

Theorem 5.3. Let (z, w) ∈ Rp × Rq, then the following statements hold:

(1) If 〈P(Rp
≥+)∗(−z), e〉 ≥ ‖w‖, then

PLp,q
(z, w) = (PRp

≥+
(z), 0), PL∗

p,q
(−z,−w) = (P(Rp

≥+)∗(−z),−w);

(2) If PRp
≥+

(z)p ≥ ‖w‖, then

PLp,q
(z, w) = (PRp

≥+
(z), w), PL∗

p,q
(−z,−w) = (P(Rp

≥+)∗(−z), 0);

(3) If 〈P(Rp
≥+)∗(−z), e〉 < ‖w‖ and PRp

≥+
(z)p < ‖w‖, then there holds

PLp,q
(z, w) =

(
PRp

≥+
(f(λ)) +

1

1 + λ
‖w‖e, 1

1 + λ
w

)
, (15)

PL∗
p,q

(−z,−w) =

(
P(Rp

≥+)∗(−f(λ)) +
λ

1 + λ
‖w‖ep,− λ

1 + λ
w

)
, (16)
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where λ := ‖w‖/〈PRp+1
≥+

(z, ‖w‖), ep+1〉 − 1.

Proof. Let (z, w) ∈ Rp × Rq. Our task is to find (x, u) ∈ Lp,q and (y, v) ∈ L∗p,q such
that

PLp,q
(z, w) = (x, u), PL∗

p,q
(−z,−w) = (y, v). (17)

To prove item (1), assume that 〈P(Rp
≥+)∗(−z), e〉 ≥ ‖w‖. Thus, by item (i) of Lemma 5.1

we must have u = 0. Since PLp,q
(z, w) = (x, 0) and PL∗

p,q
(−z,−w) = (y, v), applying

Theorem 2.1 for Lp,q we have (x, 0) ∈ Lp,q, (y, v) ∈ L∗p,q, 〈(x, 0), (y, v)〉 = 0 and

(z, w) = (x, 0) − (y, v). Thus, x ∈ Rp≥+ and y ∈ (Rp≥+)∗, 〈x, y〉 = 0, z = x − y and

v = −w. Now, applying Theorem 2.1 for Rp≥+ we conclude that x = PRp
≥+

(z) and

y = P(Rp
≥+)∗(−z), which together with (17), u = 0 and v = −w proves item (1).

We proceed to prove item (2). Since PRp
≥+

(z)p ≥ ‖w‖, the item (ii) of Lemma 5.1

implies v = 0. Considering that PLp,q
(z, w) = (x, u) and PL∗

p,q
(−z,−w) = (y, 0),

applying Theorem 2.1 for Lp,q we have (x, u) ∈ Lp,q, (y, 0) ∈ L∗p,q, 〈(x, u), (y, 0)〉 = 0

and (z, w) = (x, u) − (y, 0). Hence, x ∈ Rp≥+ and y ∈ (Rp≥+)∗, 〈x, y〉 = 0, z = x − y
and u = w. Using Theorem 2.1 for Rp≥+, we conclude that x = PRp

≥+
(z) and y =

P(Rp
≥+)∗(−z), which together with (17), v = 0 and u = w yields item (2).

To prove item (3), we first note that conditions 〈P(Rp
≥+)∗(−z), e〉 < ‖w‖ and

PRp
≥+

(z)p < ‖w‖ together with item (iii) of Lemma 5.1 implies that u 6= 0 and v 6= 0.

Moreover, it follows from Theorem 2.1 that (17) is equivalent to

(x, u, y, v) ∈ C(Lp,q) (z, w) = (x, u)− (y, v). (18)

Due to u 6= 0, v 6= 0 and (18), we apply Proposition 4.3 to obtain the following
equivalent conditions

xp = ‖u‖, 〈y, e〉 = ‖v‖, 〈u, v〉 = −‖u‖‖v‖, (x−‖u‖e, y−‖v‖ep) ∈ C(Rp≥+),
(19)

z = x− y, w = u− v. (20)

Since 〈u, v〉 = −‖u‖‖v‖, u 6= 0 and v 6= 0, there exists λ > 0 such that v = −λu.
Hence, it follows from the second equality in (20) that

u =
1

1 + λ
w, v = − λ

1 + λ
w. (21)

Meanwhile, the second equality in (19) gives 〈y, e〉 = ‖v‖. Thus we have that

〈y, e〉 =
λ

1 + λ
‖w‖. (22)

Since (x − ‖u‖e, y − ‖v‖ep) ∈ C(Rp≥+) by (19), applying Theorem 2.1 for Rp≥+ we
obtain

x−‖u‖e = PRp
≥+

(x− ‖u‖e− y + ‖v‖ep) , y−‖v‖ep = P(Rp
≥+)∗ (−x+ ‖u‖e+ y − ‖v‖ep) .
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Thus, by using the first equality in (20) and (21), we obtain after some calculations
that

x = PRp
≥+

(
z − 1

1 + λ
‖w‖e+

λ

1 + λ
‖w‖ep

)
+

1

1 + λ
‖w‖e; (23)

y = P(Rp
≥+)∗

(
−z +

1

1 + λ
‖w‖e− λ

1 + λ
‖w‖ep

)
+

λ

1 + λ
‖w‖ep. (24)

Hence, combining (17) with (21), (23) and (24) and considering (14), we obtain (15)
and (16). It remains to compute λ. For that, by using (15) we can apply Lemma 13
with

x = PRp
≥+

(f(λ)) +
1

1 + λ
‖w‖e, β =

1

1 + λ
,

to conclude that

PRp+1
≥+

(z, ‖w‖) =

(
PRp

≥+
(f(λ)) +

1

1 + λ
‖w‖e, 1

1 + λ
‖w‖

)
, (25)

which gives 〈PRp+1
≥+

(z, ‖w‖), ep+1〉 = 1
1+λ‖w‖. Therefore, λ =

‖w‖/〈PRp+1
≥+

(z, ‖w‖), ep+1〉 − 1, which concludes the proof.

Remark 3. If p = 1, then the projection formulas in Theorem 5.3 become the pro-
jection onto the second-order cone (see Exercise 8.3 (c) in [22]).

The next theorem states that to compute a projection onto the cone Rp≥+ it is

sufficient to know how to compute a projection onto the cones Rp≥ and Rp+, its proof
can be found in [3]. For the sake of completeness we include its proof here.

Theorem 5.4. For any z ∈ Rp, there holds PRp
≥+

(z) = PRp
≥

(z)+ = PRp
+

(PRp
≥

(z)).

Proof. To simplify the notations set K = Rp≥. Thus, Theorem 2.1 yields

z = PK(z)− PK∗(−z), 〈PK(z), PK∗(−z)〉 = 0.

Moreover, as PK(z) = PK(z)+ − PK(z)−, the last inequality becomes

z = PK(z)+ − PK(z)− − PK∗(−z), 〈PK(z)+ − PK(z)−, PK∗(−z)〉 = 0. (26)

Note that PK(z)+ ∈ K and −PK(z)− ∈ K. Indeed, due to PK(z) ∈ K and −PK(z) ∈ K,
we have from (1) that PK(z)1 ≥ PK(z)2 ≥ · · · ≥ PK(z)p and −PK(z)1 ≥ −PK(z)2 ≥
· · · ≥ −PK(z)p. Hence, bearing in mind that the functions R 3 t 7→ t+ and R 3 t 7→
−t− are monotone increasing, we also have PK(z)+1 ≥ PK(z)+2 ≥ · · · ≥ PK(z)+p ≥ 0 and

−PK(z)−1 ≥ −PK(z)−2 ≥ · · · ≥ −PK(z)−p . Thus, PK(z)+ ∈ Rp≥+ ⊂ K and −PK(z)− ∈ K.
Therefore, the second equality in (26) yields

〈PK(z)+, PK∗(−z)〉 = 〈PK(z)−, PK∗(−z)〉 = 0. (27)

On the other hand, (2) and (4) implies K∗ ⊂ (Rp≥+)∗. Furthermore, due to PK(z)− ∈
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Rp+ and Rp+ ⊂ (Rp≥+)∗, we conclude that

PK(z)− + PK∗(−z) ∈ (Rp≥+)∗. (28)

Considering (27) and 〈PK(z)+, PK(z)−〉 = 0, we also have

〈PK(z)+, PK(z)− + PK∗(−z)〉 = 0. (29)

Therefore, the reformulation z = PK(z)+ − (PK(z)− + PK∗(−z)) of (26)1, together
with the formulas PK(z)+ ∈ Rp≥+, (28), (29) and Theorem 2.1 imply that PK(z)+ =
PRp

≥+
(z), which is the desired result.

We end this section by pointing out that efficient numerical methods to compute
projection onto the cone Rp≥ can be found by using the pool-adjacent-violators algo-

rithm for isotonic regreession [2,4]. For projecting onto the cone Rp+, we only need to
apply the formula of Theorem 5.4 to the output of the p-dimensional PAVA.

In the next section we present a conic optimisation problem with respect to the
MESOC related to a portfolio optimisation problem. We note that this problem is
an adaptation of Xiao’s application in Chapter 4 of his PhD dissertation [23] (which
is an improved version of the application in Section 3 of [24]) to the monotone case.
Such problems can be solved by algorithms where the projection onto the intersection
of MESOC with a hyperplane is important [25]. Our efficient projection method onto
MESOC can be incorporated into Dykstra’s alternating projection method [26] for the
aforementioned intersection. One can also investigate a possible more direct adaptation
of our method to such projections.

6. An application of the monotone extended second-order cone to
portfolio optimisation

Markowitz developed the mean-variance (MV) model in [27], which is the classical
method in investigating the problem of portfolio optimisation. Suppose we build port-
folio by using n arbitrary assets. Let w ∈ Rn denote the weights of the assets, r ∈ Rn
represent the return of assets and Σ ∈ Rn × Rn be the covariance matrix. Then, the
two traditional and equivalent MV models could be given as:

min
w

{
w>Σw : r>w ≥ α, e>w = 1

}
and

max
w

{
r>w : w>Σw ≤ β, e>w = 1

}
,

where α is the minimum profit that the investor demands and β is the minimum risk
that the investor wants to tolerate. They are typical quadratic optimisation problems
with higher computational complexity.

In order to reduce the complexity of solving the portfolio optimisation problem,
based on the traditional mean-variance model, Konno and Yamazaki developed the
mean-absolute deviation (MAD) model in [17], by replacing the risk measure from
the covariance matrix to the absolute deviation. They demonstrated that the results
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obtained by using MAD model are similar with the results obtained by using the
MV model when the return of assets are multivariate normally distributed. It has
also been recognized that the MAD model has reduced the computational complexity
significantly [28,29]. Before introducing the MAD model, we will give the definitions
of some key parameters.

Denote the returns of assets be r̃ = (r̃1, . . . , r̃n)> ∈ Rn. Suppose that they are

distributed over a finite sequence of points Rj =
(
Rj1, . . . , R

j
n

)>
∈ Rn, where j =

1, . . . , T and Rj denotes T different scenarios such that the behaviour of the assets
are different in different scenarios. Meanwhile, denote fj the probability distribution
of the rates of returns of assets, that is

fj = Probability

{
(r̃1, . . . , r̃n)> =

(
Rj1, . . . , R

j
n

)>}
, j = 1, . . . , T.

The sequences {Rj}j=1,...,T and {fj}j=1,...,T can be obtained by using the historical
data of assets and some techniques for the future projection of these assets. Meanwhile,
since fj ∈ [0, 1], j = 1, . . . , T represent probabilities, we will have e>f = 1, where
f = (f1, . . . , fT ). In particular, we have

r = E[r̃] = f1R
1 + · · ·+ fTR

T .

In order to measure the uncertainty of the returns of the assets for j = 1, . . . , T , let
us define U = (U1, . . . , UT )>, where Uj = Rj − r. Let yj denote the upper bound of
disturbance of return at day j. Then, the traditional MAD model can be represented
as the following linear programming problem:

min
y,w

c0f
>y − r>w

s.t. yj ≥ |U>j w|, j = 1, . . . , T,

e>w = 1,

where c0 > 0 is the Arrow-Pratt absolute risk-aversion index defined in [30].
In reality, the uncertainty of the returns of the assets will increase with the increasing

of the investment horizon. Thus, it is meaningful to optimize the MAD model to make
it more in line with the real-world market behaviour. Meanwhile, by using Cauchy’s
inequality, we also have |U>j w| ≤ ‖Uj‖‖w‖ for any j. Then, based on the current MAD
model, we obtain the following related problem

min
y,w

c0f
>y − r>w

s.t. yT ≥ yT−1 ≥ . . . ≥ y1 ≥ ‖Uj∗‖‖w‖,
e>w = 1,

where j∗ = argminj |U>j w|, for j = 1, . . . , T . Note that the vector

(
yT
‖Uj∗‖

,
yT−1
‖Uj∗‖

, . . . ,
y1
‖Uj∗‖

, w

)>
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belongs to the monotone extended second-order cone LT,n. Thus, the last problem is
equivalent to the following conic optimization problem:

min
y,u

c0f
>y − r> u

‖Uj∗‖
s.t. e>u = ‖Uj∗‖,

(yT , yT−1, . . . , y1, u)> ∈ LT,n,

where u := w‖Uj∗‖.

7. Final remarks

In this paper we have introduced the monotone extended second-order cone and its
dual cone. We have reduced the projection onto the MESOC to two isotonic regrees-
sions in neighboring dimensions. The isotonic regression can be solved efficiently by
pool-adjacent-violators algorithm [2,4]. We have also presented an application of the
MESOC to portfolio optimization via a conic optimization problem related to the
mean-absolute deviation model [17]. Knowing the projection onto the MESOC can be
a useful “ingredient” of projection methods for the latter problem. We predict more
direct applications of the projection onto MESOC to practical problems. These ap-
plications would be regressions with respect to a set of points whose distance (more
generally a “cost”) from a source point is expected to decrease and only the position
of the point closest to the source is important. For example to capture a strong enough
“signal” of a point from the source it is expected to put the better capturing devices
further from the source. If one point is (significantly) closer to the source than the
other ones, than its position becomes important, because any obstacle “between” this
point and the source will have a dominant impact in comparison to the other points.
In this probably a better device would be needed than one based on the distance from
the source only. Similar types of problems can be imagined in case of a football (i.e.,
soccer) game where one would expect the defenders to be in general further from the
opponents goal and the striker’s position to be much more important.
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