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Abstract

Probabilistic load forecasting (PLF) aims to predict the future uncertainties of loads to reduce the potential

risks in power system planning and operation. In the increasingly complex power market environment,

exploring advanced approaches to obtain more accurate PLF is still a significant topic. Optimizing individual

forecasting method is no longer the only direction to improve the accuracy of load forecasting in recent years.

Researchers started to focus on combination methods because of their better accuracy in most cases than

a single model. There are existing combination methods designed for parametric environment, where some

results are based on the certain assumption (e.g., Gaussian distribution assumption of single prediction).

Combining probabilistic forecasts in nonparametric environment is rarely investigated, because modeling

the combination problem without assuming distributions of parameters is hard. This paper proposes a

novel combined model for probabilistic forecasting tailored to nonparametric environments, which combines

multiple quantile-based models by minimizing the overall loss function composed of continuous ranked

probability score (CRPS) under kernel density estimation (KDE). We define a multilayer Gaussian mixture

distribution, which is an extended form of Gaussian mixture distribution that can simulate any distribution

type in nonparametric environment. Based on the multilayer Gaussian mixture distribution, the combined

model is further formulated into a quadratic programming problem with linear restrictions that can be

solved efficiently. Case studies are performed using benchmark and competition datasets from the United

States and China. The results show that our proposed method outperforms the best individual model and

other existing combination methods. In summary, this paper constructs a complete theoretical framework

of nonparametric probabilistic combination forecasting and proves its effectiveness in practical application.

Keywords: Combination of quantile forecasts, Kernel density estimation, Continuous ranked probability

score, Probabilistic load forecasting
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1. Introduction

Due to the unique features of electricity production, electricity cannot be stored in large quantities.

Utility companies need to carefully maintain the balance of power supply and demand in order to reduce

power shortage and investment waste [1]. The economic development and social stability will be greatly

affected once the power system oscillates and a blackout occurs [2, 3]. Load forecasting with high accuracy

can help hybrid energy system to increase operational efficiency [4]. One major challenge in load forecasting

is to quantify significant uncertainties in smart grids caused by the consolidation of distributed energy

resources (DERs) and the deregulation of the electricity market [5]. Traditional deterministic forecasting

only provides a single predicted value for load, which is unable to quantify the future uncertainty. Different

from point forecasting, probabilistic load forecasting (PLF) can provide more detailed information about

the variability of future power demand by depicting the load variation interval under certain confidence

level and the probability of occurrence for each point within the interval. Therefore, PLF has become more

dominating in this area [6].

Based on the form of prediction outputs, PLF can be classified into three types: prediction intervals

(PIs), quantile and probability density function (PDF) forecasting [7]. Among them, traditional PIs methods

assume the shape of the predictive distribution, such as Bayesian [8], Delta [9] and bootstrap [10]. However,

the assumption based on prior knowledge of data or prediction errors is not always guaranteed to be correct

because the actual load has strong seasonality and volatility. Unlike PIs, a quantile forecasting model is

trained to minimize the pinball loss function, and the output of the trained model is utilized to build a set

of quantiles. As a non-parametric estimation technique, the quantile type of methods does not assume any

distributions of predictions [11]. Density forecasting can construct the probability density function to present

more holistic and flexible information on future load than the above two forms. Therefore, the probability

density prediction is also regarded as the most complete form of probabilistic forecasting [12]. Fortunately,

quantile prediction can be converted to the form of probability density via nonparametric kernel density

estimation (KDE) to obtain more comprehensive information [13].

The Global Energy Forecasting Competition 2014 (GEFCom2014) stimulated the development of quantile

prediction [14]. Many machine learning algorithms used for point forecasting have been adapted for quantile

forecasting. Nagy et al. proposed a method using gradient boosting machine (GBM) in quantile form,

which has the superiority and robustness in performing regression tasks [15]. Other powerful tree-based

models include LightGBM (LGB) and XGBoost (XGB), both of which have available and mature packages

to facilitate quantile forecasting [16, 17]. However, a GBM cannot support quantile regression with multiple

quantiles. Consequently, training GBM to obtain multiple quantile results becomes time-consuming.
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As a classical deep learning technology, artificial neural network (ANN) has been widely used in prediction

realm, such as weather forecasting [18], electricity price forecasting [19], wind power forecasting [20], and

load forecasting [21]. For quantile forecasting, deep learning techniques establish another research stream.

Pinball loss is used to guide the training of deep learning models to achieve quantile probabilistic forecasting

[22]. Researchers have developed many advanced neural network models based on pinball loss, such as

quantile regression neural network (QRNN) [23], quantile regression long short-term memory (QRLSTM)

[24], quantile regression gated recurrent unit (QRGRU) [25], quantile regression minimal gated memory

(QRMGM) [26], which have been successfully applied in various energy forecasts. It is worth noting that

the prediction results under different quantiles from deep neural networks can be given simultaneously, due

to the multi-output structure.

Although many of the individual forecasting methods have demonstrated their superior performance, no

one can be the best for all datasets. The combination of different models is usually an effective approach

to reduce the overall risk of selecting a poor model and obtain a smaller generalization error. Forecast

combination is also known as a type of ensemble methods in machine learning, which can be divided into

homogeneous and heterogeneous combinations, depending on whether the component models are of same

or different types respectively [27]. Common homogeneous ensemble methods include random forest [28]

and Adaboost algorithms [29]. Heterogeneous ensemble methods mainly include two forms: stacking and

weight allocation. A stacking model consists of a base layer and a meta-layer. The results given by different

models in base layer are combined as the input of model in meta-layer and the final prediction results are

the output from the meta-layer model [30]. The other type of heterogeneous ensemble methods is based

on weight allocation. Dudek developed a heterogeneous method by integrating 10 forecasting models with

different weights and proved to be effective in improving the generalization ability [31]. Nowotarski et

al. used different weight averaging methods to combine 8 sister load forecasts, including simple averaging,

performance-based averaging, positive weights averaging, and so on [32]. Most of combination methods are

designed to produce point load forecasting.

A few combination methods have been proposed to give probabilistic forecasting. In [33], Hall and

Mitchell first brought together density forecasting and forecast combination by minimizing the Kullback-

Leibler distance between the forecast and true. Bracale et al. [34] proposed a competitive ensemble method

for the short-term probabilistic forecasting of photovoltaic power, which uses the continuous ranked probabil-

ity score (CRPS) to guide the search for optimal weights. However, the literature on combining probabilistic

load forecasting is still rarely discussed. The key challenge lies in the problem of how to deal with different

distribution types in power data and combine individual models for the best results.

One related work was proposed in [35] to transform the probabilistic load forecasting results of all

individual models into corresponding Gaussian distribution and combine them with the guidance of minimum

CRPS. This is a parametric combination method, which assumes the forecasting results of the individual
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models to be Gaussian distributed and needs to estimate the relevant parameters of the corresponding

Gaussian distribution. However, no assumption is guaranteed to be correct under the strong fluctuation of

actual load. Once there is too much difference between them, forced transformation to Gaussian distribution

will cause information deviation. As the authors of this method mentioned at the end of the paper, the

distribution assumption is a restriction of their method.

To overcome this restriction, this paper proposes a nonparametric combination method for probabilistic

load forecasting, which introduces KDE into CRPS oriented optimization problems. KDE does not assume

sample distributions [36]. Zhang et al. utilized KDE to transform the quantile forecast into the probability

density curve for further forecast combination [12]. The combination of quantile regression neural network

(QRNN) and KDE shows great effectiveness in improving probabilistic load forecast [13].

In this paper, we propose a new combining probabilistic load forecasting suitable for the nonparametric

environment with a complete theoretical framework. First, the concept of multilayer Gaussian mixture

distribution is defined and a derived proposition is proposed. Then, according the CRPS in the expectation

form raised by Székely et al.[37] and the above proposition, we prove that the difference between two

independent random variables in the CRPS under KDE obeys 4-layer Gaussian mixture distribution after

quantile combination. On this basis, the CRPS integrated with KDE is used as the objective function of

the combination problem, which can further be cast to a linearly constrained quadratic programming (QP)

model. Compared with Ref. [35], our paper has two novelties: 1) The work in [35] converts the quantile

forecasts by using a parameter estimation method—Gaussian approximation of quantiles (GAQ), while this

paper finishes the process by utilizing KDE, which is a non-parametric approach. 2) The combination

model constructed in [35] takes the CRPS with Gaussian distribution parameters as the objective function,

while this paper selected the CRPS integrated with KDE as the objective function, which can complete the

combining probabilistic prediction in the case of non-parameters. Finally, case studies are conducted on the

real-world load data from ISO New England (ISO-NE) in the US and electrician mathematical contest in

modeling (EMCM) in China.

The key contributions are outlined in the statement listed below.

(1) A novel method for combining probabilistic load forecasting is proposed, which is tailored to the

nonparametric situation and does not assume the distribution types of quantile forecasts. All the information

about the quantiles given by quantile-based models can be fully utilized in the combination process.

(2) In our combined model, the CRPS integrated with KDE is used as the objective function. To find

the optimal solution, we construct a complete theoretical deduction and transform our model into a QP

problem with linear constraint.

(3) An ensemble framework for combining quantile forecasts is developed for PLF. Four quantile-based

techniques consisting of QRNN, QRLSTM, QRGRU and QRMGM are integrated for performance improve-

ment.
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(4) By comparing with base models and existing combination forecast methods (simple averaging, a

combination method based on individual performance, and two combinations to find the optimal weight),

our combined model indicate a significant improvement in probabilistic prediction as well as deterministic

prediction.

The rest of the paper is organized as follows: Section 2 introduces the problems to be solved in the

combination quantile forecast framework. In Section 3, a new combined model named KDE-CRPS-guided

combined model (KCGC) is proposed and transformed into QP model. Section 4 briefly introduces four base

models for generating quantile forecasts, and a feature selection technique. Section 5 summarizes the whole

steps of producing probability density forecasts through combining quantile forecasts. Section 6 conducts

case studies on load data to verify the proposed method. Conclusions and future works are given in Section

7.

2. Load density forecasting framework and problem formulation for model combination

Fig. 1: Framework of probabilistic load forecast combination method. Note: ŷi,q denotes the prediction

result of the i-th QR-model at the q-th quantile, fi is the PDF obtained by converting the quantile forecasts

of the i-th model, and wi is the weight of the i-th model.
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2.1. Load density forecasting framework

As depicted in Fig. 1, we develop a framework of load density forecasts that combines multiple quantile

forecasting models. It involves four stages: model construction, quantile conversion, model combination and

model assessment. The four stages focus on the following issues:

(1) Construct a series of base models for the quantile forecasting results. In order to improve the

prediction performance and the diversity of models, feature selection and the generation of different training

sets are required. In addition, we need to make model construction more efficient.

(2) Convert different quantiles into probability density curves. The converting method should be non-

parametric estimation for the best fits of different quantiles.

(3) Combine multiple converted forecast results to form the final probabilistic forecasts. The framework

will find a set of optimal weights for the base models for the best combined performance.

(4) Make quantitative assessment of the combined model. The process involves performance evaluation

in terms of effectiveness and reliability on an independent test set.

The subsequent sections will further explain these four stages. Specifically, the main innovations of

this paper focus on stage 2 and 3, so they are first described in Section 3. The base model types and a

feature selection method in the first stage are introduced in Section 4. Section 5 describes the complete

implementation process of the four stages.

2.2. Problem formulation of model combination

Among the above four stages, how to combine the outputs of the probabilistic forecast models in stage

3 is the key problem. One of the common approaches is to assign weights to each base model. In order to

find the optimal weights, the weight selection procedure can be formulated as an optimization problem in

the whole time period t = 1, 2, · · ·, T :

min
wi

T∑
t=1

L

(
N∑
i=1

wiFi,t, yt

)

s.t.
N∑
i=1

wi = 1

wi ≥ 0, i = 1, 2, . . . , N

(1)

where yt is real value at time t; wi is the weight for the i-th model; Fi,t denotes a cumulative distribution

function of fi,t for the time period t; and L denotes the loss function to evaluate the performance of the

combined model.

3. KDE-CRPS-guided combined model (KCGC)

In this section, how KDE-CRPS-guided combined model (KCGC) implements the combined model under

in a nonparametric situation minimizing Eq. (1) is discussed in detail. First, kernel density estimation (KDE)
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is applied to convert different quantiles into probability density curves, which is a classic nonparametric

method. After combining the converted result with a set of weights, the CRPS integrated with KDE,

denoted by KDE-CRPS, is used to evaluate the combined result. Thus, in KCGC, the minimum total KDE-

CRPS loss is set to be the objective function in Eq. (1). Finally, multilayer Gaussian mixture distribution

and its derived proposition are leveraged to simplify the calculation of the objective function in KCGC. Then,

the combination problem in KCGC is reformulated into a linearly constrained quadratic programming (QP)

model.

3.1. Kernel density estimation (KDE)

KDE is a nonparametric method estimating unknown density functions without distributional assump-

tions. We use KDE to obtain the prediction distribution of base models. The PDF fK
i of the i-th basis

model using KDE is formulated as:

fK
i (x) =

1

QBi

Q∑
q=1

K

(
ŷi,q − x

Bi

)
(2)

where Bi is a bandwidth for the quantile forecasting result {ŷi,q}q=1,2,...,Q of the i-th basis model, and K (·)

is the kernel function.

In this paper, the Gaussian kernel is selected as the kernel function for its advantageous mathematical

properties. It is widely used for probability density forecasting, showing good performance [38]. The

Gaussian kernel function is defined as:

K (η) =
1√
2
e−

1
2η

2

(3)

By replacing K (η) in Eq. (2) with Eq. (3):

fK
i (x) =

1

QBi

Q∑
q=1

1√
2
exp

[(
−1

2

)(
ŷi,q − x

Bi

)2
]

=
1

Q

Q∑
q=1

ϕ (x |ŷi,q, Bi )

(4)

where ϕ (· |ŷi,q, Bi) is the PDF of Gaussian distribution N
(
ŷi,q, B

2
i

)
. The combined PDF of N models with

model weights (w1, . . . , wN ) is:

fK (x) =

N∑
i=1

wif
K
i (x)

=
1

Q

N∑
i=1

Q∑
q=1

wiϕ (x |ŷi,q, Bi )

(5)

The CDF of the combination can be obtained:

FK (x) =

∫ x

−∞
fK (z) dz (6)
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3.2. Continuous ranked probability score (CRPS) integrated with KDE

CRPS is a scoring metric used for model evaluation in probabilistic forecasts [39].Given a cumulative

distribution function (CDF) F of a random variable X and the real value y, the formula of CRPS can be

expressed as:

CRPS (F, y) =

∫ +∞

−∞
(F (x)− I (x− y))

2
dx (7)

F (x) = P [X ≤ x] =

∫ x

−∞
p (z) dz (8)

I (x− y) =

 0 x < y

1 x ≥ y
(9)

where p (x) is the probability density function (PDF) of X; Heaviside step function I (x− y) is used to

simulate the ”CDF” of the real value. In essence, CRPS evaluates the performance of probabilistic prediction

by comparing the difference between the predicted and observed CDF. The smaller the CRPS, the better

the performance of the probabilistic prediction is.

Due to the difficulty of solving the integral in Eq. (7), a closed form to estimate the integral is provided

in [37]. In KCGC, the closed form of CRPS is integrated with KDE, denoted by KDE-CRPS, defined as

follows:

CRPS
(
FK , y

)
= E |H − y| − 1

2
E |H −H ′| (10)

where H and H ′ are independent copies of a random variable with CDF being FK .

3.3. Multilayer gaussian mixture distribution

According to the statistical analysis of load data, there is no common probability distribution that

can completely describe the variation of power load [40]. The Gaussian mixture distribution can simulate

the complex probability density function by taking a weighted average of the finite normal distributions.

Meanwhile, the Gaussian mixture model (GMM) has been widely used in the forecast field [41]. The

probability density function (PDF) fM (x) of a random variable following the Gaussian mixture distribution

is defined in Eq. (11) with the finite PDFs of Gaussian distribution {ϕ (x |µa, σa )}a=1,2,···,A.

fM (x) =

A∑
a=1

waϕ (x |µa, σa ) (11)

where A denotes the number of components in the Gaussian mixture distribution and wa is the weight of

the a-th Gaussian component of X, subject to wa ≥ 0 and
∑A

a=1 wa = 1.

We extend the concept of Gaussian mixture distribution to a multi-layer Gaussian mixture distribution,

defined for the later calculation of the KDE-CRPS.
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Definition 1. Let {xa}a=1,2,···A denote a set of random variables with Gaussian mixture distribution

that is defined as follows:

x1 = w2,1x1,1 + w2,2x1,2 + · · ·+w2,Bx1,B

x2 = w2,1x2,1 + w2,2x2,2 + · · ·+w2,Bx2,B

. . .

xA = w2,1xA,1 + w2,2xA,2 + · · ·+w2,BxA,B

where {xa,b}a=1,2,···A;b=1,2,···,B are independent random variables with normal distribution N
(
µa,b, σ

2
a,b

)
;

(w2,1, w2,2, · · ·, w2,B) is a set of weights, satisfying
∑B

b=1 w2,b = 1 and w2,b ≥ 0 (b = 1, 2, . . . , B). Then, the

random variable X = w1,1x1 +w1,2x2 + · · ·+w1,AxA is called the 2-layer Gaussian mixture distribution, in

which
∑A

a=1 w1,a = 1, w1,a ≥ 0 (a = 1, 2, . . . , A). It has the structure shown in Fig. 2.

Fig. 2: The structure of 2-layer Gaussian mixture distribution.

Let the PDF of xa be fa:

fa (x) =

B∑
b=1

w2,bϕ (x |µa,b, σa,b )

where ϕ (x |µa,b, σa,b ) is the PDF of xa,b with normal distribution N
(
µa,b, σ

2
a,b

)
.

Therefore, the PDF of 2-layer Gaussian mixture distribution X can be calculated by:

fX (x) =

A∑
a=1

B∑
b=1

w1,aw2,bϕ (x |µa,b, σa,b ) (12)

where w1,a and w2,b are subject to w1,a > 0,
∑A

a=1 w1,a = 1 and w2,b > 0,
∑B

b=1 w2,b = 1, respectively.

By analogy, let P be l-layer Gaussian mixture distribution whose PDF is defined:

fP =

A∑
a=1

B∑
b=1

· · ·
R∑

r=1

w1,aw2,b · · ·wl,rϕ (x |µa,b,...,r, σa,b,...,r ) (13)

where R denotes the number of weights in the l-layer; the sum of each layer of weights (wi,1, wi,2, . . . , wi,j)

is 1, i = 1, 2, . . . , l, j = A,B, . . . , R; all weights are greater than or equal to 0.

Proposition 1. If X and Y are independent random variables with 2-layer Gaussian mixture distribu-

tion, their difference is a 4-layer Gaussian mixture distribution. In mathematical words, if
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X = w1,1x1 + w1,2x2 + · · ·+ w1,AxA Y = w′
1,1y1 + w′

1,2y2 + · · ·+ w′
1,CyC

fX (x) =

A∑
a=1

B∑
b=1

w1,iw2,jϕ (x |µa,b, σa,b ) fY (x) =

C∑
c=1

D∑
d=1

w′
1,cw

′
2,dϕ

(
x
∣∣µ′

c,d, σ
′
c,d

)
A∑

a=1

w1,a = 1,

B∑
b=1

w2,b = 1

C∑
c=1

w′
1,c = 1,

D∑
d=1

w′
2,d = 1

w1,a ≥ 0, w2,b ≥ 0 w′
1,c ≥ 0, w′

2,d ≥ 0

then the PDF of Z = X − Y is:

fZ (z) =

A∑
a

B∑
b

C∑
c

D∑
d

w1,aw2,bw
′
1,cw

′
2,dϕ

(
z

∣∣∣∣µa,b − µ′
c,d ,

√
σ2
a,b + σ′2

c,d

)
Proof: Since X and Y are independent, then

fZ (z) =

∫ +∞

−∞
fX (y)fY (y − z) dy

=

∫ +∞

−∞

A∑
a=1

B∑
b=1

w1,aw2,bϕ (y |µa,b, σa,b )

C∑
c=1

D∑
d=1

w′
1,cw

′
2,dϕ

(
y − z

∣∣µ′
c,d, σ

′
c,d

)
dy

=

A∑
a=1

B∑
b=1

C∑
c=1

D∑
d=1

w1,aw2,bw
′
1,cw

′
2,d

∫ +∞

−∞
ϕ (y |µa,b, σa,b )ϕ

(
y − z

∣∣µ′
c,d, σ

′
c,d

)
dy

=

A∑
a=1

B∑
b=1

C∑
c=1

D∑
d=1

w1,aw2,bw
′
1,cw

′
2,dfza,b,c,d

(z)

where fza,b,c,d
(z) can be regarded as the PDF of za,b,c,d = xa,b − yc,d, in which xa,b and yc,d are the

normal distribution N
(
µa,b, σ

2
a,b

)
and N

(
µ′

c,d, σ
′2
c,d

)
respectively. According to the additivity of normal

distribution, za,b,c,d is still a normal distribution and za,b,c,d ∼ N
(
µa,b − µ′

c,d, σ
2
a,b + σ′2

c,d

)
.

Therefore,

fZ (z) =

A∑
a

B∑
b

C∑
c

D∑
d

w1,aw2,bw
′
1,cw

′
2,dϕ

(
z

∣∣∣∣µa,b − µ′
c,d ,

√
σ2
a,b + σ′2

c,d

)

3.4. Problem reformulation

In order to calculate the KDE-CRPS shown in Eq. (10), H −H ′ needs to be decided. According to Eq.

(12), the combined PDF fK (x) in Eq. (5) can be treated as a 2-layer Gaussian mixture distribution because

of
∑Q

q=1 (1/Q) = 1,
∑N

i=1 wi = 1 and wi > 0. Therefore H −H ′ is the difference of two 2-layer Gaussian

mixtures. Based on Proposition 1 in Section 3.3, H −H ′ is a 4-layer Gaussian mixture distribution. The

PDF fZ=H−H′ thus becomes:

fZ=H−H′ (z) =
1

Q2

N∑
i=1

N∑
j=1

wiwj

Q∑
q=1

Q∑
q′=1

ϕ
(
z
∣∣∣ŷi,q − ŷj,q′ ,

√
B2

i +B2
j

)
(14)
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Moreover, the expectation of the absolute value of a Gaussian distribution N
(
µ, σ2

)
is calculated as

follows:

E |X| =
∫ +∞

−∞
|x|f (x) dx

=

∫ 0

−∞
−xf (x)dx+

∫ +∞

0

xf (x)dx

= 2σϕs

(µ
σ

)
+ µ

[
2Φ
(µ
σ

)
− 1
]

(15)

where ϕs (·) and Φ (·) are the PDF and CDF of the standard Gaussian distribution.

Therefore,

E |H −H ′| = E |Z|

=
1

Q2

N∑
i=1

N∑
j=1

wiwj

Q∑
q=1

Q∑
q′=1

∫ +∞

−∞
|z| · ϕ

(
z
∣∣∣ŷi,q − ŷj,q′ ,

√
B2

i +B2
j

)
dz

=
1

Q2

N∑
i=1

N∑
j=1

wiwj

Q∑
q=1

Q∑
q′=1

2√B2
i +B2

j · ϕs

 ŷi,q − ŷj,q′√
B2

i +B2
j

+ (ŷi,q − ŷj,q′)

2Φ

 ŷi,q − ŷj,q′√
B2

i +B2
j

− 1


(16)

The E |H − y| is:

E |H − y| =
∫ +∞

−∞
|h|fH (h+ y) dh

=
1

Q

N∑
i=1

Q∑
q=1

wi

∫ +∞

−∞
|h|ϕ (h |ŷi,q + y,Bi ) dh

=

N∑
i=1

wi

Q

Q∑
q=1

[
2Biϕs

(
ŷi,q − y

Bi

)
+ (ŷi,q − y)

(
2Φ

(
ŷi,q − y

Bi

)
− 1

)]
(17)

Finally, the KDE-CRPS can be described explicitly:

CRPS
(
FK , y

)
=

N∑
i=1

N∑
j=1

Q∑
q=1

Q∑
q′=1

αi,j,q,q′wiwj +

N∑
i=1

Q∑
q=1

βi,qwi (18)

where

αi,j,q,q′ = −

√
B2

i +B2
j

Q2
· ϕs

 ŷi,q − ŷj,q′√
B2

i +B2
j

− ŷi,q − ŷj,q′

2Q2

2Φ

 ŷi,q − ŷj,q′√
B2

i +B2
j

− 1

 (19)

βi,q =
2Bi

Q
· ϕs

(
ŷi,q − y

Bi

)
+

ŷi,q − y

Q

(
2Φ

(
ŷi,q − y

Bi

)
− 1

)
(20)

This is how the KDE-CRPS of probabilistic forecasts FK after combining quantiles is calculated given

the observation y. The discussion above is generalized to the entire time range t = 1, 2, . . . , T . Then, the

11



total KDE-CRPS loss TL is calculated by:

TL =

T∑
t=1

CRPS
(
FK
t , yt

)
=

T∑
t=1

N∑
i=1

N∑
j=1

Q∑
q=1

Q∑
q′=1

αi,j,q,q′,twiwj +

T∑
t=1

N∑
i=1

Q∑
q=1

βi,q,twi

(21)

Based on Eq. (21), the matrix expression of combination problem in KCGC becomes:

min
W

WTGW + cTW

s.t. 1
TW = 1

W ≥ 0

(22)

whereW = [w1, w2, . . . , wN ]
T
is the optimal weights vector; G is a matrix with elementsGi,j =

T∑
t=1

Q∑
q=1

Q∑
q′=1

αi,j,q,q′,t,

and c =

[
T∑

t=1

Q∑
q=1

β1,q,t,
T∑

t=1

Q∑
q=1

β2,q,t, . . . ,
T∑

t=1

Q∑
q=1

βN,q,t

]T
; 1 is a column vector whose elements are all equal

to 1.

4. Base model generation and feature selection

In this section, four quantile regression (QR) models (QRNN, QRLSTM, QRGRU, QRMGM) are intro-

duced as our base models in the combination framework. To improve the performance of these 4 QR-models,

a feature selection method is provided to find a better set of representative input variables.

4.1. Quantile regression

Unlike traditional regression analysis which can only find the central trend of the dependent variable,

quantile regression (QR) can infer its conditional probability distribution under the guidance of pinball loss

(PL), which is defined as

LP (y, ŷ) =

 (y − ŷ)× (1− τ) y < ŷ

(y − ŷ)× τ y ≥ ŷ
(23)

In Eq. (23), ŷ is the conditional quantile of the dependent variable y at τ (0 < τ < 1) quantile.

For each quantile q and regression model i, QR-model gi,q (i = 1, 2, . . . , N ; q = 1, 2, . . . , Q) can be gener-

ated by optimizing the following programming problem that minimizes PL:

Wi,q = argmin
Wi,q

T∑
t=1

LP (yt, gi,q (Xi,t,Wi,q)) (24)

where the parameter vector to be optimized is denoted by Wi,q; Xi,t is the input feature vector and yt is

the real value at time t.
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4.2. Quantile regression models

4.2.1. QRNN

Quantile regression neural network (QRNN) was put forward by Taylor [42]. It aims to overcome the

shortcoming of the traditional linear model that is incapable of simulating the nonlinear relationship between

variables. The structure of QRNN consists of an input layer, multiple hidden layers and an output layer.

The neurons in each layer are fully connected to its previous layer. The output of each neuron in the hidden

layer passes through the nonlinear activation function and then enters the next layer as the input.

4.2.2. QRLSTM

Long short-term memory (LSTM) is one of the variants of recurrent neural network (RNN) [43]. It

introduces memory units and gated memory units to preserve historical information and long-term state

and control the flow of information, which can effectively overcome the problem of gradient disappearance

in RNN [44]. Therefore, it provides more accurate results for data with short-term or long-term dependence.

Specifically, for each quantile q, the principle of LSTM forward propagation is as follows:

ILt,q = θ
(
WIL,q ·

[
Xi,t,H

L
t−1,q

])
FL
t,q = θ

(
WFL,q ·

[
Xi,t,H

L
t−1,q

])
CL

t,q = FL
t,q ∗ CL

t−1,q + ILt,q ∗ tanh
(
WCL,q

[
Xi,t,H

L
t−1,q

])
Ot,q = θ

(
WO,q ·

[
Xi,t,H

L
t−1,q

])
HL

t,q = Ot,q ∗ tanh
(
CL

t,q

)
ŷLi,t,q = θ

(
WL,q ·HL

t,q

)
(25)

where square brackets indicate that the two vectors are connected; asterisk indicates matrix multiplication;

The symbol · indicates the product of matrix elements; θ (·) and tanh (·) represent the activation function

of sigmoid and tanh; W•,q denotes parameter vector of certain unit; ILt,q and FL
t,q are the input gate and the

forget gate, which determine how much information goes into memory unit CL
t,q at time t; The output gate

Ot,q is multiplied by the memory unit CL
t,q with the tanh activation function to obtain the final updated

information HL
t,q; H

L
t,q passes the last dense layer with the parameter WL,q, and finally outputs the quantile

forecasting value ŷLi,t,q.

4.2.3. QRGRU

Gated recurrent unit (GRU) is a simplified structure of LSTM [45]. The newly introduced update gate,

denoted by Ut,q, is equivalent to merging the input gate and the forget gate of the LSTM. The forget gates

and the memory unit are replaced by the reset gate Rt,q. More specifically, the principle of GRU forward
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propagation is calculated as follows:

Ut,q = θ
(
WU,q ·

[
Xi,t,H

G
t−1,q

])
Rt,q = θ

(
WR,q ·

[
Xi,t,H

G
t−1,q

])
H̃G

t,q = tanh
(
WH̃,q

[
Xi,t,Rt,q ∗HG

t−1,q

])
HG

t,q = (1−Ut,q) ∗Ht−1,q +Ut,q ∗ H̃G
t,q

ŷGi,t,q = θ
(
WL,q ·HG

t,q

)
(26)

Here, the information HG
t−1,q of the previous moment and the new information H̃G

t,q at present are used

to generate the final output information HG
t,q. Similarly, the quantile forecasting result ŷGi,t,q is obtained by

HG
t,q through the dense layer.

4.2.4. QRMGM

Minimal gated memory (MGM) is a variant of LSTM to reduce training time and increase prediction

accuracy [26]. Compared with LSTM, the input gate IMt,q and the forget gate FM
t,q in MGM are coupled.

Further more, the output gate in MGM is removed. The calculation steps of MGM forward propagation are

as follows:

FM
t,q = θ

(
WFM ,q ·

[
Xi,t,H

M
t−1,q

])
IMt,q = 1− FM

t,q

CM
t,q = tanh

(
WFM ,q ·

[
Xi,t,H

M
t−1,q

])
HM

t,q = FM
t,q ∗HM

t−1,q + IMt,q ∗ CM
t,q

ŷMi,t,q = θ
(
WL,q ·HM

t,q

)
(27)

Here, the hidden layer in MGM has only one set of weight matrix WFM ,q, compared with four in the

LSTM and three in the GRU. This simplified structure in MGM can reduce a lot of calculation in the

training of the model without harming prediction accuracy.

4.3. Incremental association markov blanket

Many feature selection methods consider features in isolation rather than as a whole, such as selection

using Maximal Information Coefficient (MIC) [46]. They are problematic because the selected features are

not used separately in the model training, but as a whole. In other words, the best performing feature

selected by this type of methods may not work well with other selected features, while combining the rest

of the features could outperform the best feature.

Therefore, we adopt Incremental Association Markov Blanket (IAMB) [47]. This is a Markov Blanket

(MB) based feature subset selection algorithm. From the MB of a target T , denoted by MB(T ), we can

determine a minimal set of features conditioned on which all other features are independent of the target
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T . Koller et al. demonstrated that MB(T ) is the theoretically optimal set of features to predict the value

of target T [48]. Thus, we can only use features in the MB(T ) instead of all the features for prediction.

Meanwhile, IAMB considers cooperative relationships between features through the grow phase and shrink

phase. Specifically, it first implements the grow phase to include all features that are dependent of a target

variable, and then the shrink phase to remove invalid candidates in a separate step.

5. Model combination workflow

A more detailed implementation process for the proposed combination model is presented in this sec-

tion, including data splitting, feature selection, base model construction, combination problem solution and

combined model assessment. For a clearer illustration, the block diagram of the proposed model is given in

Fig. 3.

Fig. 3: The block diagram of the proposed combination model.

5.1. Data splitting

In order to evaluate the proposed combination method and avoid overfitting, we divide a data set into

four parts, namely D1, D2, D3 and D4. Increasing the diversities of the base models can help to improve

the forecasting performance of combined model [49]. One common way to achieve model diversity is to train
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individual models with different sub-training sets through random sampling. This process of sampling is

applied toD1. In our case studies, the sampling proportion is 25% and four sub-training sets
(
D

(1)
1 , . . . , D

(4)
1

)
are obtained by random sampling D1 for 4 times. The D2 set is used for hyper-parameter tuning. D3 is

used to determine component weights. The combined model is evaluated on D4. Our splitting ratio is set

to D
(m)
1 : D2 : D3 : D4 = 10 : 1 : 1 : 1, m = 1, 2, 3, 4.

5.2. Feature selection

The IAMB introduced in Section 4.3 is adopted to choose the input features. With the help of large

sample size, the IAMB can produce more representative features. As a result, the selection is carried out on

the D1, rather than on the sub-training set. First, many alternative features are provided, including load

features, time features and meteorological features, which are detailed in our case studies. Subsequently,

IAMB selects a set of representative features from the alternative features for further QR-models training.

5.3. Parameter settings and parallel computing

There are several techniques that can improve the prediction of the QR-models and prevent overfitting,

such as decayed learning rate [50], mini-batch mechanism [51], dropout [52] and multiple hidden layers.

We include them into the models for our case studies. To diversify the base models, the hyperparameters

including the dropout rate and the number of hidden layer and nodes are changed to feed to base models

with different sub-training sets, while the remaining hyper-parameters are set to be the same in different

models as shown in Table 1. The sub-training sets are normalized to eliminate the influence of dimension

before model training. The models that perform well on D2 are selected for further combination. In this

paper, a total of 16 base models are picked, which is four of each type of QR models.

Table 1: Parameter settings.

Parameters Details Value Value range

Decayed learning

rate parameter

Initial learning rate 0.01 Common value [0.005,0.01,0.05,0.1,. . . ]

Decay rate 1.5 Common value [0.8,0.9,1.0,1.5,. . . ]

Decay steps 10 Common value [5,10,15,20,. . . ]

Minimum of learning rate 1.00E-04 A small value

Mini-batch parameter
Batch size 32 Common value [8,16,32,50,. . . ]

Epochs of training 200 Satisfying convergence

In the traditional ensemble framework, the training of the base models is carried out sequentially. Com-

putational time increases significantly with the number of models. In order to improve the computational

efficiency, parallel computing is used in the our framework to train the base models. This process takes place
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on CPU with 16-thread in following cases, where the training tasks of each base model are independently

run on different threads. Thus, 16 base models are built simultaneously.

5.4. Combination problem solution

After the construction of base models, the quantile prediction result {ŷt,q}q=1,2,...,Q given by each of

QR-models at each time t on D3 is collected, and then the coefficient matrixes G and c in combination

problem Eq. (22) are calculated. Thereinto, the choice of bandwidth B has an important effect on the final

prediction results. The optimal bandwidth can be obtained by minimizing integrated mean squared error

(IMSE). Silverman proposed a rule-of-thumb bandwidth estimator, which has been proved to be effective

in many kernels [53]. Moreover, IMSE obtained by using Silverman’s rule of thumb in different kernel

functions has little difference. Thus, we adopt the rule to get the optimal choice for bandwidth, which can

be calculated by:

B =

(
4σ̂5

3Q

) 1
5

≈ 1.05924σ̂Q− 1
5 (28)

where σ̂ is the standard deviation of a set of quantiles {ŷq}q=1,2,...,Q.

Although the problem (22) is a quadratic programming problem, it cannot be solved directly since all

elements in G are negative according to Eq. (18). Therefore, we adopt the similar transformation proposed

in [35] to make the problem (22) a convex quadratic programming problem. First, the matrixes in the

objective function are divided into blocks:

G =

 G′ G̃

G̃T GN,N

 ,W =

 W ′

WN

 , c =

 c′

cN

 (29)

where the shapes of G′ and G̃ are (N − 1)× (N − 1) and (N − 1)×1; W ′ and c′ are column vectors of shape

(N − 1)× 1; GN,N , WN and cN are the last elements of the corresponding matrixes.

Therefore, equality constraint in Eq. (22) is transformed into:

WN= 1− 1
TW ′ (30)

Then, two new coefficient matrixes are constructed:

Gnew = G′ − 1G̃T − G̃1T +GN,N11
T

cnew = c′ + 2G̃− 2GN,N1− cN1
(31)

Substitute Eq. (30) and Eq. (31) into the problem Eq. (22), and the transformed problem is as follows.

min
W ′

W ′TGnewW
′ + cnew

TW ′

s.t. 1
TW ′ ≤ 1

W ′ ≥ 0

(32)
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For convenience, some constants in the objective function are ignored in the transformation process.

Though it is not proven mathematically that Gnew is positive definite, we observe that this characteristic

exists in all following case studies. Thus, the global optimum can be obtained by solving the problem Eq.

(32) in polynomial time. After determining the optimal weight, the combined PDF of N base models can

be calculated by Eq. (5).

5.5. Evaluation of the combined model

5.5.1. Comparison design

To fully verify the performance of the proposed method, it is compared with other four model weighting

methods in our experiment.

1. CRPS-guided combined model (CGC): To compare with KCGC, CRPS-guided combined model

(CGC) proposed in [35] is considered in this work. Similarly, the CRPS is selected as the loss function in

CGC. But it is a combination method in a parametric situation since they assume density distributions of

the base models to be Gaussian distributed. Thus, unlike this paper, Gaussian approximation of quantiles

(GAQ) is used in the their quantile conversion stage. the optimization problem in CGC can be formulated

as:

min

T∑
t=1

CRPS

(
N∑
i=1

wiF
G
i,t, yt

)

s.t.
N∑
i=1

wi = 1

wi ≥ 0, i = 1, 2, . . . , N

(33)

where FG
i,t is the converted output of i-th base model at time t by using GAQ.

2. MAPE-based model (MBM): The weights are determined by minimizing a similar problem as

Eq. (1) with the objective function being mean absolute percentage error (MAPE) [54].

wi = min
wi

1
T MAPE

(
N∑
i=1

wiŷ
P
i,t, yt

)
= min

wi

1
T

T∑
t=1

|yt−wiŷ
P
i,t|

yt

s.t.
N∑
i=1

wi = 1

wi ≥ 0, i = 1, 2, . . . , N

(34)

where ŷPi,t is the point forecast result of i-th model at time t. In this paper, the median of quantile forecasts

is selected as the point prediction result.

3. Simple average (SA): Each base model has the same weight as Eq. (35).

wi =
1

N
(35)
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4. PL-weighted average (PLWA): The pinball loss (PL) is an indicator to represent the comprehen-

sive performance of the QR-model. The smaller the indicator, the better the QR-model. Therefore, PLWA

applies higher weights to models with smaller PL as Eq. (36).

wi =
1
/
L̄P
i

N∑
i=1

(
1
/
L̄P
i

) (36)

where L̄P
i is the average PL and L̄P

i = 1
T×Q

T∑
t=1

Q∑
q=1

LP (yt, ŷi,t,q).

5.5.2. Method evaluation metric

After obtaining the optimal weight based on D3, the performance of KCGC is verified on D4 from

three metrics: MAPE, mean absolute error (MAE) and CRPS. In particular, the results based on KCGC

are compared to those of the combined models, including CGC, MBM, SA and PLWA, all of which are

combined with the same QR-models but use different weights. As shown in Eqs. (33) and (21), the best

combination of CGC and KCGC is based on GAQ and KDE, respectively. The median is not affected by

the maximum and minimum extreme values, and as the point prediction result, it has well representative.

In order to compare with the proposed model, the point forecasting results of CGC are the expectation

of probability distribution obtained by GAQ, while those of other models are the median of probability

distribution which are calculated using KDE. It should be noted that the probability distribution given by

GAQ is the Gaussian distribution, so its expectation is also equal to the median.

6. Case studies

To validate the effectiveness of the proposed combination method, two case studies consider 24 h fore-

casting horizon to perform day-ahead load forecasting. Case 1 discusses the system load from ISO New

England Inc. (ISO-NE) in the United States [55]. Case 2 uses data from electrician mathematical contest

in modeling (EMCM) in China, which can be found in the attachment.

6.1. Data description

Case 1 contains 8 datasets collected from 8 regions ISO-NE operates: Maine (ME), New Hampshire (NH),

Vermont (VT), Connecticut (CT), Rhode Island (RI), Southeast Massachusetts (SEMA), Western/Central

Massachusetts (WCMA), and Northeast Massachusetts and Boston (NEMA), which includes hourly real-

time load profiles, dry bulb temperature and dew point temperature from 2015 to 2019. Case 2 involves

the load data sampled every 15 minutes and daily data of maximum temperature, minimum temperature,

average temperature, humidity and rainfall. Their time span is from 2013 to 2014. There are only a few null

values and outliers in the datasets for both cases, which are removed directly during data processing. Since

19



the resolution of load data and meteorological data in case 2 is inconsistent, the meteorological data are

resampled to align the load data. Simultaneously, the whole processes of these case studies are performed

in the computer with 16 threads and 32 GB RAM.

6.2. Case study 1

Using the data splitting method in Section 5.1, a total of 35030 data points from 2015 to 2018 are used

as the training set D1. After random sampling for 4 times, each sub-training set D
(m)
1 , m = 1, . . . , 4, with

8400 data points is obtained. Each sub-training set is used to train the four QR-models described in Section

4.2, resulting in a total of 4× 4 = 16 QR-models. The data from the first 15 weeks in 2019 are divided into

3 parts, each containing 840 data points and corresponding to D2, D3 and D4 sequentially. The alternative

features for load are lagged observations with 24, 25, 26, 27, 28, 48, 72, 96, 120, 144, and 168 hours lagged.

The time features include hour of the day, day of the week, month of the year, and a binary feature which

is assigned to 1 when the corresponding day is the weekend, otherwise equivalent to 0. The meteorological

features include the dry bulb temperature and the dew point temperature. In the same case study, different

datasets consider the same alternative features.

6.2.1. Results in the RI area

Table 2 shows numerical results in RI area, including the performances of sixteen QR-models in different

metrics and the weights in the five combination methods. Concretely, the columns 2 to 4 provide the

performances evaluated by the MAPE, MAE and CRPS as evaluated on set D4. The last five columns

show the weights given by different combination methods. The weight acquisition process of all combination

methods is carried out on D3.

The best model in D4 is QRMGM1, with the lowest MAPE, MAE and CRPS, which are shown in bold.

Although it is weighted in most combination methods, the value is relatively small. The reason is that the

methods obtain the optimal weight on D3, where QRMGM1 is not the best model. Moreover, Table 2 shows

that the base models picked by CGC are also included in KCGC, because they have the same goals that

find minimum CRPS. Since MBM is more concerned with minimizing MAPE after combination, the chosen

models are different with other combination methods.

For SA and PLWA, in order to avoid being affected by the QR-model with poor performance, they chose

the best five models in D3, and then assigned weights according to Eq. (35) and (36) respectively.

Fig. 4 provides real loads through two weeks starting from Mar 21, 2019 and predictions of QR-models

selected by KCGC. Obviously, no one can always perform best, especially at peak and trough load forecasting.

Nevertheless, this makes it possible to reduce the overall prediction deviation when considering the prediction

results of multiple models. In fact, that is exactly what KCGC does. Overall, the trend of the prediction
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Table 2: QR-models’ performances and their weights in different combination methods.

Model
MAPE

(%)

MAE

(MW)

CRPS

(MW)

K-

weights

C-

weights

M-

weights

S-

weights

P-

weights

QRGRU1 3.995 32.092 22.211 0 0 0.254 0 0

QRGRU2 4.807 37.074 26.425 0 0 0 0 0

QRGRU3 4.431 34.544 23.898 0 0 0 0 0

QRGRU4 5.777 42.087 37.045 0 0 0 0 0

QRLSTM1 4.058 32.344 22.652 0.226 0.241 0.314 0.200 0.190

QRLSTM2 4.115 32.604 22.240 0 0 0.075 0 0

QRLSTM3 4.422 34.485 23.936 0 0 0 0.200 0.196

QRLSTM4 5.484 41.327 27.534 0 0 0 0 0

QRMGM1 3.621 29.095 19.877 0.075 0.042 0 0.200 0.198

QRMGM2 4.128 31.908 23.231 0.273 0.269 0.335 0 0

QRMGM3 6.968 50.836 36.488 0 0 0 0 0

QRMGM4 7.283 55.723 40.654 0 0 0.022 0 0

QRNN1 3.876 30.359 21.007 0.424 0.448 0 0.200 0.211

QRNN2 4.288 33.053 22.983 0.001 0 0 0.200 0.204

QRNN3 6.167 46.087 33.384 0 0 0 0 0

QRNN4 6.849 51.039 36.402 0 0 0 0 0

Note: In the columns 2 to 4, smaller values are the better and the best value is in bold. The

last five columns provide the weights of the QR-models in different combination methods,

which sequentially correspond to KCGC, CGC, MBM, SA and PLWA. The weight greater

than zero is highlighted with gray fill.
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Fig. 4: Load forecasting for RI area by QR-models with weight greater than 0 in KCGC, from 21-Mar-2019

to 25-Mar-2019. Note: the solid color line is point forecasting results and the shaded area indicates 80%

confidence interval forecasting results.

given by each QR-model is close to the real load and their fluctuation ranges cover the real loads most of

the time, indicating that the predictions of five QR-models are reasonable.

Table 3: Performance metrics of combination methods.

Models MAPE(%) MAE(MW) CRPS(MW)

KCGC 3.342 25.845 18.509

CGC 3.457 26.670 18.616

MBM 3.405 26.380 18.754

SA 3.956 31.007 21.020

PLWA 3.953 30.976 21.001

Note: Smaller values are the better. The best

value in each column is in bold.

Table 3 shows the performance metrics of the different combination methods on D4. It is shown that

the KCGC, CGC and MBM perform better than the best QR-model (QRMGM1, with 3.621% MAPE,

29.095MW MAE, and 19.877MW CRPS), while SA and PLWA struggles with poor performance models in

the base model set. KCGC, CGC and MBM are the combination methods based on overall optimization.

When assigning weights, they do not just rely on the performance of a base model, but consider whether it

can work better with other base models and produce the overall optimal result. In contrast, the combined
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models, such as SA and PLWA, which only rely on the performance of the base model to determine the

weights, may get much worse prediction results.

Using the best QR-model QRMGM1 as the benchmark, KCGC shows the largest improvement in all

aspects compared to other combined methods, with 7.705% improvement in MAPE, 11.170% improvement

in MAE and 6.882% improvement in CRPS. Notably, MBM aims to minimize MAPE of the overall ensemble

and achieves indeed a higher MAPE improvement than CGC, but it is lower than that of KCGC. It shows

that the combination strategy of KCGC can not only obtain better probability prediction results, but also

better point prediction results. Although the optimization achieved by KCGC appears unremarkable on the

surface compared to other combined models, it is still meaningful and worthy because the combined model

needs to break through the performance limits of individual models. In particular, KCGC can get the best

results in both point prediction and probabilistic prediction, which is a unique advantage.

6.2.2. Results in eight areas

Fig. 5: Weights of the QR-models in KCGC in eight areas

The weight distributions of QR-models in KCGC in 8 areas are illustrated in Fig. 5. It can be seen that

the number of QR-models included in KCGC is at least two and up to six, whose weights are significantly

different. Table 4 compares the number of QR-models selected by different combined models in 8 areas. We

can see that KCGC and CGC tend to select a larger number of QR-models in combination than MBM. This

property may enable the former two models to gain more stability of combinations.
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Table 4: The number of QR-models selected by different combined models

Models VT ME NH CT RI SEMA WCMA NEMA

KCGC 5 3 4 6 5 2 4 4

CGC 6 2 4 6 5 2 4 4

MBM 4 2 4 5 5 1 3 2

SA 5 5 5 5 5 5 5 5

PLWA 5 5 5 5 5 5 5 5

The results of each combined model and the best QR-model in each region are listed in Tables 5-7,

where the minimum values are marked in bold and the ”Best QR-model” column provides the value and

the name of the corresponding QR-model. By comparing the three tables, it can be concluded that in

different regions, the best QR-model varies. Even in the same region, the best individual model under

different metrics also varies. In VT, for example, the QR-models with the minimum CRPS and MAPE are

QRMGM3 and QRGRU3 respectively. However, KCGC is usually better than the best QR-model in each

metric. In other words, KCGC combines the advantages of different models and shows better performance

than any of individual model.

Table 5: CRPS of the best QR-model and combined models (MW)

Areas Best QR-model KCGC CGC MBM SA PLWA

VT 29.300 (QRMGM3) 28.736 28.977 29.132 29.133 29.119

ME 31.290 (QRMGM3) 31.173 31.360 31.365 40.096 39.155

NH 28.288 (QRGRU2) 28.180 28.617 29.356 29.438 29.405

CT 96.517 (QRMGM1) 90.347 90.508 90.892 102.521 104.003

RI 19.877 (QRMGM1) 18.509 18.616 18.754 21.020 21.001

SEMA 97.888 (QRLSTM4) 97.234 97.710 102.409 99.185 102.303

WCMA 55.836 (QRMGM2) 50.081 50.130 50.225 58.053 58.076

NEMA 59.676 (QRMGM1) 57.230 57.323 57.685 60.208 60.357

Note: Smaller values are the better. The best value in each row is in bold.

Figs. 6 and 7 illustrate the relative improvements of combined models in CRPS and MAPE respectively.

By comparing the two graphs, we can find that KCGC, CGC and MBM exceed SA and PLWA in all areas.

The reason is that SA and PLWA based on average weight only relies on the respective performance of the

base model to assign weight, and does not consider the overall optimization when the base models combined

with each other. As a result, models that perform well may not play well with others. By contrast, KCGC,

CGC and MBM can find the cooperative relationship between the base models by solving the optimization
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Table 6: MAPE of the best QR-model and combined models (%)

Areas Best QR-model KCGC CGC MBM SA PLWA

VT 7.703 (QRGRU3) 7.648 7.734 7.692 7.731 7.728

ME 3.531 (QRMGM3) 3.515 3.633 3.517 4.906 4.797

NH 3.339 (QRMGM3) 3.307 3.459 3.440 3.615 3.610

CT 4.660 (QRMGM2) 4.227 4.236 4.136 5.217 5.290

RI 3.621 (QRMGM1) 3.342 3.457 3.405 3.956 3.953

SEMA 10.133 (QRMGM2) 10.229 10.291 10.432 10.640 10.969

WCMA 4.569 (QRMGM2) 3.840 3.860 3.846 5.013 5.014

NEMA 3.372 (QRLSTM1) 3.341 3.377 3.328 3.575 3.601

Note: Smaller values are the better. The best value in each row is in bold.

Table 7: MAE of the best QR-model and combined models (MW)

Areas Best QR-model KCGC CGC MBM SA PLWA

VT 39.900 (QRGRU3) 39.587 39.891 39.808 39.502 39.495

ME 42.684 (QRMGM3) 42.457 43.740 42.482 55.560 54.374

NH 39.097 (QRMGM3) 38.688 40.382 39.936 39.920 39.873

CT 136.304 (QRMGM2) 122.589 122.735 120.554 148.300 150.156

RI 29.095 (QRMGM1) 25.845 26.670 26.380 31.007 30.976

SEMA 140.591 (QRLSTM4) 140.685 140.239 143.826 146.319 150.068

WCMA 77.617 (QRMGM2) 65.351 65.593 65.472 82.909 82.933

NEMA 84.367 (QRMGM4) 82.479 83.197 82.399 88.534 88.869

Note: Smaller values are the better. The best value in each row is in bold.
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problem, leading to obtain more stable and effective combination results. They performed much better in

CT, RI and WCMA regions than in other regions.

Although the improvement in some regions seems not very significant, any small optimization is worthy

of attention, especially when the individual model has achieved good prediction results. In similar work [35],

Li et al. also used the datasets from ISO-NE and their combination method can reach an improvement ratio

of 1.90% to 7.36% compared with the best individual model and 0.13% to 1.01% compared with the best

another combination model. In the case 1 of this paper, the proposed method has an improvement ratio of

0.37% to 10.31% compared with the best individual model and 0.10% to 1.53% compared the best another

combination model (CGC). So the improvement degree of the proposed method is not trivial.

Fig. 6: Relative CRPS improvements of the combined models compared with the best local QR-models.

Fig. 7: Relative MAPE improvements of the combined models compared with the best local QR-models.
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On average, KCGC gives the highest improvement rates among the five compared methods, with 3.879%

in CRPS, 4.381% in MPAE and 5.196% in MAE. In addition, we can see that KCGC is more robust than

CGC and MBM. In NH, CGC and MBM all fail, their CPRS and MAPE are inferior to the local best model,

while KCGC has some improvement. Also, similar cases exist in other regions. Particularly, compared with

CGC, KCGC can obtain lower MAPE under the premise of ensuring the maximum optimization of CRPS. As

shown in Section 5.5.1, CGC requires the assumption that the base model obeys the Gaussian distribution.

If this condition is not met, the results will be biased when CGC uses the GAQ to simulate the PDF of the

base model, which in turn influences the process of combination and the final prediction. Although MBM

outperforms KCGC in MAPE improvement in some regions, KCGC always achieves better CRPS in all

regions.

6.3. Case study 2

Variations in load are strongly seasonal. To verify the applicability of the proposed method, case 2 is

conducted to analyze the system load in summer and winter. The reason why we choose only summer and

winter datasets is that they are more representative. Because temperature has a big impact on electricity

demand, the peak load demand tends to occur during the two seasons of the year. Forecasting dataset

containing the peak value is also more challenging and valuable. A total of 35040 data in 2013 from EMCM

are used as the D1. Like case 1, 8400 data points are randomly sampled from D1 as a sub-training set and

16 QR-models are trained. The time spans covered by D2, D3 and D4 in summer and winter are shown in

Table 8, and each contains 840 data points. The alternative features of load and time for IMAB are the

same as case 1, while the meteorological features include maximum temperature, minimum temperature,

average temperature, humidity and rainfall.

Table 8: The time spans of D2, D3, D4 in summer and winter

Datasets Span D2 D3 D4

Summer
Starting 2014/7/2 19:00 2014/7/11 13:00 2014/7/20 7:00

Ending 2014/7/11 12:45 2014/7/20 6:45 2014/7/30 0:45

Winter
Starting 2014/11/27 13:45 2014/12/6 7:45 2014/12/15 1:45

Ending 2014/12/6 7:30 2014/12/15 1:30 2014/12/23 19:30

Table 9 compares the performance metrics of the best QR-model and combined models in D4. The

“Number” row indicates the number of QR-models selected by different combined method. In D4, KCGC

has the best CRPS among them, and the improvement rates are 5.159% in summer data and 2.483% in

winter data compared with the best QR-model. In MAPE, KCGC is second only to MBM in summer, but

it reaches the best in winter. In contrast, the MAPE of CGC is not optimized in summer and is worse than

KCGC in both seasons. SA and PLWA show some improvement, but far less than KCGC.
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Table 9: Performance metrics of the best QR-model and combined models in D4.

Datasets Metrics Best QR-model KCGC CGC MBM SA PLWA

Summer

CRPS(MW) 409.806(QRNN4) 388.664 390.308 393.283 397.040 400.143

MAPE(%) 5.910(QRNN4) 5.836 6.131 5.828 6.343 6.419

MAE(MW) 527.673(QRNN4) 524.856 552.738 523.303 575.742 581.316

Number - 2 2 2 5 5

Winter

CRPS(MW) 99.589(QRMGM3) 97.116 97.982 99.761 99.391 98.411

MAPE(%) 1.917(QRMGM3) 1.852 1.885 1.881 1.938 1.916

MAE(MW) 125.970(QRMGM3) 126.292 127.797 127.963 130.810 129.329

Number - 6 6 4 5 5

Note: Smaller values are the better. The best value in each row is in bold.

Fig. 8 shows the PDFs of the QR-models, CGC and KCGC at four typical times in summer. The CGC

and KCGC include the same base models, which are QRMGM3 and QRNN4. However, the PDFs of the

same QR-model are different by estimating with different methods. Thereinto, when the predicted results

of QRMGM3 are not Gaussian distribution, GAQ skews its PDF away from the real value and further

leads to poor combinations in CGC. Whereas, since KDE can obtain the fine estimation regardless of the

type of the distribution function, the combination given by KCGC is closer to the real. Fig. 9 depicts

the prediction results of KCGC in winter dataset. It is clear that KCGC can precisely delineate the real

load curve and obtain the appropriate interval forecasting results. At the same time, the prediction errors

are evenly distributed on both sides of the zero value rather than continuously increasing, indicating that

KCGC has robust prediction performance.

6.4. Robustness analysis

The prediction effectiveness of the model may be affected when training data present to be noisy. It

is necessary to verify the robustness of the model in the case of data pollution. One common way to

simulate data contamination in a real-world environment is to add perturbed data [56]. First, the dataset

is normalized in the range (0,1). Second, 5% stochastic disturbances with uniform random numbers in

[-0.05,0.05] are added to the normalized data.

The analysis experiments are conducted on four datasets, which are selected form CT and SEMC regions

of ISO-NE and two datasets of ECMC. CT and SEMC are representative in case study 1 because they have

a relative low and high percentage of CRPS optimization in KCGC respectively. Table 10 shows that the

performance metrics between the best QR-model and combined models after adding perturbed data in four

datasets. KCGC obtains the best CRPS in all four datasets and the best MAPE and MAE in three other
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Fig. 8: The PDF graphs of loads from summer dataset for QR-models, CGC and KCGC at four different

times. Note: the red line is real load and the other two solid lines are the PDFs predicted by CGC and

KCGC respectively. Two types of dotted lines represent the PDFs obtained by the base model using different

estimation methods, of which the one with circular mark is obtained by GAQ and the other is obtained by

KDE.

Fig. 9: Prediction results of KCGC in winter dataset.
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datasets except CT region. In CT region, the MAPE and MAE of KCGC are only inferior to MBM. Thus,

the KCGC model has good robustness and low sensitivity to perturbed data.

Table 10: Comparison of performance metrics after adding perturbed data.

Datasets Metrics Best QR-model KCGC CGC MBM SA PLWA

CT

(ISO-NE)

CRPS(MW) 152.804 (QRMGM1) 150.211 150.586 150.634 154.823 153.627

MAPE(%) 7.785 (QRGRU2) 7.735 7.764 7.704 8.072 7.968

MAE(MW) 219.526 (QRGRU2) 216.347 216.928 215.599 218.139 219.518

SEMA

(ISO-NE)

CRPS(MW) 79.214 (QRMGM2) 78.063 78.248 78.450 82.607 81.941

MAPE(%) 8.410 (QRGRU3) 8.343 8.394 8.381 9.015 8.957

MAE(MW) 113.604 (QRMGM2) 111.560 111.887 112.035 113.301 113.253

Summer

(EMCM)

CRPS(MW) 342.452 (QRNN1) 338.627 339.492 342.817 536.323 490.682

MAPE(%) 5.464 (QRNN1) 5.410 5.441 5.427 7.991 7.378

MAE(MW) 472.508 (QRNN1) 471.334 474.503 475.553 599.237 583.478

Winter

(EMCM)

CRPS(MW) 224.821 (QRGRU1) 222.489 223.182 224.638 247.681 242.865

MAPE(%) 5.105 (QRGRU1) 5.067 5.077 5.097 5.481 5.421

MAE(MW) 324.364 (QRGRU1) 322.526 322.952 323.232 324.956 324.879

Note: Smaller values are the better. The best value in each row is in bold.

7. Conclusion

A novel combined model, named KCGC, is proposed for probabilistic forecasting in this paper, and is

tailored to the nonparametric situation. KDE is introduced into the quantile conversion stage to obtain the

best fit in the face of different quantiles. In order to combine the converted results, the CRPS integrated with

KDE is selected as the objective function in KCGC. A complete theoretical deduction helps KCGC transform

into a quadratic programming problem. Optimal weights are obtained by solving the quadratic programming

problem. The whole combination process does not need distribution assumption and additional parameter

estimation, which means that KCGC extends the combining probabilistic forecast problem to non-parametric

environment.

Detailed empirical comparisons illustrate that no individual model is the best for all datasets. Even

in the same data set, the best base model is not the same under different evaluation metrics. However,

KCGC can integrate the strengths of base models and outperform any individual model. In addition, when

common combination methods such as SA and PLWA fail, KCGC can still work well. Comparing other

advanced combination methods (CGC and MBM), KCGC also can show its unique advantages: 1) Due to
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the removal of distribution constraints on the predicted results of the base model, KCGC is able to achieve

better performance in both probabilistic and deterministic predictions. 2) KCGC is robust to noisy data.

Future works will focus on the following three directions: (1) Consider other types of quantile forecasting

models. Base models with good accuracy and diversity may further improve the combined model. (2) Use

more elaborate combinations. Our study on combination stage is to assign weights for different base models.

It is also worth investigating to determine weights for different quantiles or even each time point. (3) Apply

to more energy forecasting problems. Since the combined model is performed on quantile results, it is not

limited to only probabilistic load forecasting and can be extended to different forecasting problems, such as

renewable energy forecasting involving wind power or solar irradiance.
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