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EFFICIENT NUMERICAL ALGORITHMS FOR THE GENERALIZED
LANGEVIN EQUATION∗

BENEDICT LEIMKUHLER† AND MATTHIAS SACHS‡

Abstract. We study the design and implementation of numerical methods to solve the general-
ized Langevin equation (GLE) focusing on the sampling properties of the numerical integrators. For
this purpose, we cast the GLE in an extended phase space formulation and derive a family of splitting
methods that generalize existing Langevin dynamics integration methods. We show exponential con-
vergence in law and the validity of a central limit theorem for the Markov chains obtained via these
integration methods, we show that a suggested integration scheme is consistent with asymptotic lim-
its of the exact dynamics and can reproduce (in the short memory limit) a superconvergence property
for the analogous splitting of underdamped Langevin dynamics. We then apply our proposed inte-
gration method to several model systems, including a Bayesian inference problem. We demonstrate
in numerical experiments that our method outperforms other proposed GLE integration schemes in
terms of the accuracy of sampling. Moreover, using a parameterization of the memory kernel in the
GLE as proposed by Ceriotti, Bussi, and Parrinello Phys. Rev. Lett., 6 (2010), pp. 1170–1180, our
experiments indicate that the obtained GLE-based sampling scheme can, in some cases, outperform
state-of-the-art sampling schemes based on underdamped Langevin dynamics in terms of robustness
and efficiency.

Key words. generalized Langevin dynamics, Markov chain Monte Carlo, symmetric splitting
methods

AMS subject classifications. 68Q25, 68R10, 68U05
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1. Introduction. In this article we study numerical discretization schemes for
a generalized Langevin equation (GLE) of the form

q̇ = M−1p,

ṗ = −∇qU(q)−
∫ t

0

K(t− s)M−1p(s)ds+ η(t),
(GLE)

where the dynamical variables q ∈ Rn,p ∈ Rn denote the positions and momenta of
a Hamiltonian system with energy function

H(q,p) = U(q) +
1

2
pTM−1p.(1.1)

The mass matrix M ∈ Rn×n is assumed to be symmetric positive definite, and U is a
smooth confining potential function (i.e., U ∈ C∞(Rn,R) and U(q)→∞ as ∥q∥ → ∞)
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EFFICIENT NUMERICAL ALGORITHMS FOR THE GLE A365

such that
∫
Rn e−U(q)dq < ∞. K : [0,∞) → Rn×n is a matrix-valued (generalized)

function, which is referred to as the memory kernel, and η is a stationary Gaussian
process in Rn with zero mean, i.e., E[η(t)] = 0 for all t ≥ 0.

The dynamical variable η models a random force, which is such that a fluctuation
dissipation relation holds. That is, the autocovariance function of the random force
and the memory kernel K coincide up to a constant prefactor:

E[η(s+ t)η⊤(s)] = β−1K(t) for all t, s > 0,

where β−1 = TkB > 0 with T being the temperature of the modeled system and
kB denoting Boltzmann’s constant. In its general form (GLE) the GLE is a non-
Markovian dynamical model, meaning that the evolution of the state of the described
system depends not only on the state itself but on the state history. The underdamped
Langevin equation is obtained as a special Markovian variant of the GLE when the
memory kernel is chosen as K(t) = Γ̂δ(t) and η =

√
2β−1Γ̂1/2Ẇ , where Γ̂1/2 is a

matrix root of Γ̂, and δ(·) denotes the Dirac delta function, Ẇ is a Gaussian white
noise in Rn with independent components, i.e., Ẇ = [Ẇi]1≤i≤n, such that Ẇi ∼
N (0, 1) and E[Ẇi(t)Ẇj(s)] = δijδ(t−s), and Γ̂ is a symmetric positive definite matrix
which is commonly referred to as the friction matrix. Under this parameterization
(GLE) simplifies to the Itô diffusion

q̇ = M−1p, ṗ = −∇qU(q)− Γ̂M−1p+
√

2β−1Γ̂1/2Ẇ .(LD)

1.1. The GLE as a dynamical model. Traditionally, the GLE is widely used
in thermodynamics to model the dynamics of an open system which exchanges energy
with one or more heat baths. The equation can be formally derived via the Mori–
Zwanzig projection formalism [39, 55]. As such, it provides a dynamical description of
the projection of a physical system onto a finite subset of its degrees of freedom. In the
absence of a clear scale separation in the time evolution of explicitly modeled degrees
of freedom and the traverse degrees of freedom, Markovian approximations in the
form of (LD) fail to reproduce the dynamical properties of the system. Incorporation
of memory effects via the stochastic integro-differential equation (GLE) are key to an
accurate description of the system dynamics in such a setup. As such the GLE is used
as a dynamical model in a wide range of applications, including coarse-grained meso-
and macroscale molecular particle dynamics models [18, 33, 34], simulation of solids
[23, 42], nonequilibrium dynamics in open systems with temperature gradient [15, 48,
43], and complex fluids and (anomalous) diffusive transport in soft matter [16, 36, 52].

1.2. Application in sampling. Besides its application as a dynamical model,
the GLE has been used in molecular sampling to design (approximate) Markov chain
Monte Carlo methods with enhanced sampling properties [11, 12, 40, 54, 9], and there
are theoretical results showing that GLE-based sampling schemes [41] and annealing
schemes [13] can exhibit better convergence properties in comparison to schemes based
on an (underdamped) Langevin equation. Indeed, under certain conditions (see sub-
section 1.4.1) on the memory kernel K, the process defined by (GLE) is exponentially
ergodic with unique invariant measure given by the Gibbs–Boltzmann distribution

π(dq dp) =
1

Z
e−βH(q,p)dqdp(1.2)

so that, in particular, the process q(t), t ≥ 0 can be used to draw samples from the
marginal measure

πq(dq) ∝ e−βU(q)dq.(1.3)
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A366 BENEDICT LEIMKUHLER AND MATTHIAS SACHS

In a nutshell, the idea behind the enhanced sampling methods developed in [11, 12]
is to equip the GLE with a memory kernel of the form K(t) = K(t)In, where K
is a scalar-valued generalized function which is constructed such that mixing times
associated to (GLE) with U(q) = 1

2ωq
2 are minimized over a prescribed frequency

range ω ∈ [ωmin, ωmax] ⊂ (0,∞) assuming M = In. The Fourier transform of the ob-
tained generalized functionK(t) resembles the frequency response of a high-pass filter.
The corresponding convolution term thus results in weaker damping of low-frequency
components and stronger damping of high-frequency components. Consequently, the
combined effect of the convolution term and random force on the momentum trajec-
tory is similar to a low-pass filter, where slower modes evolve almost ballistically and
faster modes are sufficiently strongly thermostatted to suppress resonance effects in
numerical discretizations of the dynamics. Even though this construction assumes
the target πq to be Gaussian, the enhanced sampling properties have been shown
in practice to extend to the non-Gaussian case [12, 10]. In particular, in sampling
problems where πq is ill-conditioned (in the sense that the associated covariance ma-
trix has a large condition number), such constructed sampling schemes may result in
dramatically improved sampling efficiency and robustness in comparison to schemes
obtained from a discretization of an underdamped Langevin equation [12, 4]. Impor-
tantly, mixing properties of such constructed GLEs are invariant under orthogonal
transformations of the underlying coordinate system (i.e., under change of variables
of the form q 7→ Uq,p 7→ Up, where U ∈ Rn×n is some orthogonal matrix); see [10].

1.3. Scope and main results of this article. The purpose of this article is
to provide a class of numerical integrators with well-understood theoretical properties
which are suitable for simulation of the GLE in a wide range of applications. Within
this class of numerical integrators, we identify one scheme, gle-BAOAB, which we
show analytically and in numerical experiments to outperform previously proposed
schemes in terms of numerical discretization error and numerical stability.

The fact that in any computer simulation only finite memory is available means
that any computer simulation of (GLE) inevitably results in a quasi-Markovian
process. That is, the obtained process is Markovian in some (generally obscure)
state space. Here, we focus on a particular class of quasi-Markovian instances of
(GLE), whose Markovian form can be related directly to a certain class of Itô diffu-
sion processes in an extended state space (see subsection 1.4). Instead of attempting
to directly discretize (GLE), we numerically integrate the corresponding equivalent
stochastic differential equation (SDE). This approach allows us, in applications where
the solution process of (GLE) is not quasi-Markovian (e.g., if K(t) has the form of
a power law), to clearly separate the error due to time discretization of the process
from the error induced by a quasi-Markovian approximation.

The focus of this article is on the construction and analysis of integration schemes
for the quasi-Markovian approximation. The proposed time discretizations (section 2)
of the equivalent SDE are constructed as symmetric stochastic splitting schemes.
The decomposition (of the associated generator) which is used as the basis for these
stochastic splitting schemes is suggested by results on stochastic splitting schemes for
the underdamped Langevin equation [8, 28, 30, 1, 2].

In terms of the analysis, we focus on the properties of the Markov chain obtained
by such time discretizations of the quasi-Markovian approximation. That is, we dis-
cuss the existence of a stepsize-dependent invariant measure πh of that Markov chain
(here, h > 0 denotes the stepsize of the time discretization) and provide conditions
for geometric convergence and the validity of a central limit theorem (section 3).
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EFFICIENT NUMERICAL ALGORITHMS FOR THE GLE A367

Moreover, we provide a detailed analysis of the marginal measure πh(dq) of the po-
sition variable q and its convergence to the exact marginal measure π(dq) as h → 0
(subsection 3.2). While the approximation accuracy of the measure πh(dq) is obvi-
ously highly relevant for sampling applications, we emphasize that an accurate ap-
proximation of the marginal measure π(dq) is also relevant for accurately recovering
dynamical properties [29, 30].

Another aspect covered in this article is the behavior of the introduced stochas-
tic splitting schemes in certain limits of parametrization (section 4). We show that
the obtained numerical schemes behave consistently with well-known scaling limits
(summarized in subsection 1.5) of the continuous dynamics and reduce to numerical
integrators of the corresponding limiting dynamics with well-known numerically fa-
vorable properties. This has important implications both for sampling applications
and for applications where the GLE is used as a dynamical model. In the former case,
our results ensure that the convergence order of the stepsize-dependent error incurred
in the invariant measure πh is not reduced in the respective limits. In fact, we show
that in the overdamped limit of (GLE) we obtain an increase of convergence order
(fourth order instead of second order). A property which—in accordance with previ-
ous results [28, 30]—we refer to as superconvergence. In the latter case, our results
ensure that the dynamical properties of the simulated dynamics remain consistent
with the underdamped/white noise limit of (GLE).

In the remainder of this section, we set up the basic framework for studying
the Markovian reformulation of the GLE. We briefly review the above-mentioned
homogenization results for the continuous dynamics as well as some results on the
ergodic properties of the continuous dynamics.

1.4. Quasi-Markovian generalized Langevin equations (QGLEs). Con-
sider the SDE defined on the extended space Ωx = Rn × Rn × Rm,

q̇ = M−1p dt,(
ṗ
ṡ

)
=

(
−∇qU(q)

0

)
− Γ

(
M−1p

s

)
+
√
β−1ΣẆ ,

(QGLE)

where Γ,Σ are block matrices of the form

Γ :=

[
Γ1,1 Γ1,2

Γ2,1 Γ2,2

]
∈ R(n+m)×(n+m), Σ :=

[
Σ1

Σ2

]
=

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
∈ R(n+m)×(n+m),

with m ≥ n and where Ẇ is a Gaussian white noise in Rn+m with independent
components, i.e., Ẇ = [Ẇi]1≤i≤n+m, such that Ẇi ∼ N (0, 1) and E[Ẇi(t)Ẇj(s)] =
δijδ(t− s).

In what follows we first provide a set of sufficient conditions which ensure that
the SDE (QGLE) can be rewritten in the form of the stochastic integro-differential
equation (GLE) and possesses an invariant measure which is such that its marginal
in q,p coincides with the Gibbs–Boltzmann distribution.

Assumption 1.
(i) There exists a symmetric positive definite matrix Q ∈ Rm×m such that

Γ

(
In 0
0 Q

)
+

(
In 0
0 Q

)
ΓT = ΣΣT .(1.4)D
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A368 BENEDICT LEIMKUHLER AND MATTHIAS SACHS

(ii) The real parts of all eigenvalues of the matrix

ΓM := Γ

(
M−1 0
0 Im

)
(1.5)

are positive. That is, −ΓM is a stable matrix.
(iii) The matrices Γ1,1 and M commute.

A derivation of the following proposition can be found in [12] (see also [31]).

Proposition 1.1. Let Assumption 1 hold, and let Q ∈ Rm×m be as specified
therein. The SDE (QGLE) conserves the probability measure π(dq dpds) with density

ρQ,β(q,p, s) ∝ e−β[U(q)+ 1
2p

TM−1p+ 1
2s

TQ−1s].(1.6)

If, further, s(0) ∼ N (0,Q) (independent of q(0),p(0), Ẇ ), then the SDE (QGLE)
can be rewritten in the form of a stochastic integro-differential equation (GLE) with

K(t) = KΓ(t) := Γ1,1δ(t)− Γ1,2e
−tΓ2,2Γ2,1.(1.7)

We refer to GLEs whose memory kernel is of the form specified in (1.7) as Quasi-
Markovian generalized Langevin equations (QGLEs). While more general parametriza-
tions of (QGLE) are possible, we focus in this article on two classes of memory ker-
nels which can be characterized by some additional constraints on the form of Γ
as summarized in Assumption 2. Memory kernels falling into either of these two
classes (or which are positive linear combinations of instances of either class) make up
most of the common parameterizations of (QGLE) appearing in the literature (e.g.,
[36, 27, 19, 26, 39, 3, 35]).

Assumption 2. The matrices Γ and Q are such that either
(i) Γ1,1 = 0 and Γ1,2Q = −ΓT

2,1

or
(ii) Γ1,1 is symmetric positive definite, Q = Im, and Γ1,2 = ΓT

2,1.

Parametrization according to Assumption 2 (i) allows for the representation of
memory kernels of the form

K(t) = In

R∑
l=1

cle
−alt cos(blt), cl, al > 0, bl ≥ 0, R ∈ N.

By choosing the matrices Γ1,2 and Q appropriately, one can additionally include
cross-correlations between components. Typically such parameterizations are used in
applications where the GLE is being treated as a dynamical model; see subsection 1.1.

Parametrization according to Assumption 2 (ii) allows for the representation of
memory kernels whose Fourier transform is similar to the frequency response of a high-
pass filter. Such parameterizations are most commonly used in sampling applications;
see subsection 1.2. For example, the memory kernel K(t) = In(γδ(t)−λγ

τ e
−t/τ ), λ ∈

[0, 1), γ > 0, τ > 0 used in [54] can be represented in the form (1.7) using Γ1,1 = γIn,

Γ1,2 = Γ2,1 =
√
λγ/τIn, and Γ2,2 = τ−1In.

1.4.1. Ergodicity and central limit theorem for QGLEs. Under additional
conditions on the coefficients of (QGLE), the solution process is ergodic with unique
invariant measure π and satisfies a central limit theorem. This follows from the fact
that the associated semigroup of the dynamics converges exponentially in a suitably
weighted L∞ functional space as made precise below.
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EFFICIENT NUMERICAL ALGORITHMS FOR THE GLE A369

In order to state this result, we first need to set some notation. For prescribed
K ∈ C∞(Ωx, [1,∞)) with K(x)→ +∞ as ∥x∥ → ∞, we define the set of functions

L∞
K (Ωx) :=

{
φ : Ωx → R, measurable : sup

x∈Ωx

∣∣∣∣φ(x)K(x)

∣∣∣∣ <∞} ,

which, when equipped with the norm φ 7→ ∥φ∥L∞
K

:= supx∈Ωx
|φ(x)/K(x)|, forms a

Banach space. We denote by CP (Ωx,R) =
⋂

l∈N L∞
Kl
(Ωx) with Kl(x) = 1+|x|2l the set

of at most polynomially growing real-valued functions and by CpP (Ωx,R) ⊆ CP (Ωx,R)
the set of real-valued functions whose partial derivatives up to order p ∈ N exist and
grow at most polynomially, i.e.,

φ ∈ CpP (Ωx,R) ⇐⇒ ∂xi1
. . . ∂xim

φ ∈ CP (Ωx,R)

for any differential operator ∂xi1
. . . ∂xim

with m ≤ p. Unless stated otherwise, we
consider operators introduced in the following to be defined on the core:

C∞P (Ωx,R) :=
∞⋂
p=1

CpP (Ωx,R).(1.8)

In particular, the infinitesimal generator, LGLE, of (QGLE) when constrained to this
set of test functions takes the form

LGLE = −∇qU(q) · ∇p +M−1p · ∇q − ΓM

(
p
s

)
· ∇z +

β−1

2
ΣΣT : ∇2

z,(1.9)

where ΣΣT : ∇2
z =

∑M
i=1

∑M
j=1[ΣΣT ]i,j∂zi

∂zj
, M = n +m. Here, as well as in the

remainder of this article, z = (p, s) is used as shorthand for the combined vector
of momenta and auxiliary variables. For t ≥ 0, we denote the evolution operator
associated with the SDE (QGLE) as etLGLE , i.e., (etLGLEφ)(x) = E[φ(x(t)) |x(0) = x],
where the expectation is with respect to the driving Wiener process, W of (QGLE),
and x = (q,p, s) is used as a shorthand for the combined vector of positions, momenta,
and auxiliary variables.

Assumption 3.
(i) The matrices ΓM and Σ are such that the operator ∂t − LGLE is hypoellip-

tic. (See [31, Proposition 7] for sufficient algebraic conditions on ΓM ,Σ for
hypoellipticity of the operator.) In particular,

RM =

M⋃
k=0

M⋃
i=1

Γk
MΣi, Σ = (Σ1, . . . ,ΣM ),

where M = n+m and Σi ∈ RM for 1 ≤ i ≤M .
(ii) The potential function U is of the form U(q) = U1(q)+U2(q), where U1(q) =

1
2q

TΩq, with Ω ∈ Rn×n being a symmetric positive definite matrix, and
U2 ∈ C∞(Rn,R) is such that its derivatives are uniformly bounded in Rn,
i.e., supq∈Rn∥∂qi1

∂qi2
. . . ∂qik

U2(q)∥ < ∞ for any k ∈ N, and i1, . . . , ik ∈
{1, . . . , n}.

Under the above stated assumptions exponential convergence of the associated
semigroup and a central limit theorem for trajectory averages can be established.
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Proposition 1.2 ([31]). Let Assumptions 1 to 3 be satisfied.
(i) For any l ∈ N, there exist constants κl > 0, Cl > 0 such that

for all t ≥ 0 for all φ ∈ L∞
Kl

,

∥∥∥∥etLGLEφ−
∫

φ dπ

∥∥∥∥
L∞

Kl

≤ Cle
−tκl

∥∥∥∥φ−
∫

φdπ

∥∥∥∥
L∞

Kl

.

(ii) Let φt := t−1
∫ t

0
φ(x(t))dt. If φ ∈ L∞

Kl
(Ωx) for some l ∈ N, then there is a

finite σ2
φ > 0 so that

√
t

(
φt −

∫
φdπ

)
law−−−−→

t→+∞
N (0, σ2

φ).(1.10)

If not explicitly stated otherwise, we assume throughout the remainder of this
article that the parameterization of (QGLE) is such that Assumptions 1 to 3 are all
satisfied.

1.5. Limiting dynamics. The underdamped and overdamped Langevin equa-
tions can be obtained as limits of the Markovian reformulation of the GLE. In what
follows we briefly review two key results from [44] and [35] (see also [46] for related
long-time equilibration estimates), which we will later show to hold in slightly modified
form for the discretized dynamics. For this purpose we consider the following rescaled
process, which is obtained from (QGLE) by a change of variable corresponding to a
time rescaling as (qλ(t),pλ(t), sλ(t)) = (q(λt),p(λt), s(λt)), with λ > 0:

q̇λ = λpλ,(
ṗλ

ṡλ

)
=

[
λ

(
−∇qU(qλ)

0

)
− λΓµ

(
pλ

sλ

)]
+
√

λβ−1ΣµẆ ,
(QGLE-scaled)

with sλ(0) ∼ N (0, In) and

Γµ =

(
0 −µ1Da

µ1Da µ2Db

)
∈ R2n×2n, Σµ =

(
0 0
0
√
2µ2Db

)
∈ R2n×2n,(1.11)

where Da := diag(a1, a2, . . . , an) and Db := diag(b1, b2, . . . , bn) are positive diag-
onal matrices. In the view of the stochastic integro-differential equation (GLE)
the form of the matrices Γµ,Σµ corresponds to a rescaling of the memory kernel
K(t) = diag(a21e

−tb1 , . . . , a2ne
−tbn) as Kµ(t) = µ2

1K(µ2t). Without loss of generality
we assume M = In here.1

For the parameter choice λ = 1, µ1 = ϵ−1, and µ2 = ϵ−2, the rescaled process
(1.11) converges weakly to the solution of an underdamped Langevin equation as
ϵ→ 0 as detailed in the following proposition.

Proposition 1.3 (white noise limit, [44]). Let λ = 1, µ1 = ϵ−1, and µ2 = ϵ−2.
For finite T > 0 we have

(qλ(t),pλ(t))
law−−−→
ε→0

(q(t),p(t)),

uniformly in t ∈ [0, T ], where (q(t),p(t))t≥0 denotes the solution process of the un-

derdamped Langevin equation (LD) with Γ̂ = D2
aD

−1
b , M = In, and initial values

(q(0),p(0)) = (qλ(0),pλ(0)).

1Note that (QGLE) can always be transformed to a system with an isotropic mass matrix by
applying a change of variable of the form q 7→ M1/2q, p 7→ M−1/2 to the process resulting
in modifications as −∇U 7→ −M−1/2∇U , Γ 7→ diag(M−1/2, Im)Γ diag(M−1/2, Im), and Σ 7→
diag(M−1/2, Im)Σ of the force, friction matrix, and diffusion matrix, respectively.
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GLE

BD

LD

Fig. 1. Diagram of Langevin limits. The overdamped limit of the GLE (GLE → BD) is
detailed in Proposition 1.4. The white noise limit (GLE → LD) is detailed in Proposition 1.3. The
overdamped limit of the underdamped Langevin equation (LD → BD) is a well-known result in the
literature (see, e.g., [45]).

Similarly, when considering the scaling λ = µ1 = µ2 = ϵ−1 one can show that
the solution of (QGLE-scaled) converges weakly to the solution of an overdamped
Langevin equation of the form

q̇ = −Λ∇U(q) +
√

2β−1Λ1/2Ẇ .(BD)

Proposition 1.4 (overdamped limit). Let λ = µ1 = µ2 = ϵ−1. sλ(0) ∼
N (0, In), and (qλ(0),pλ(0)) ∈ R2n. For finite T > 0 we have

qλ(t)
law−−−→
ε→0

q(t),

uniformly in t ∈ [0, T ], where (q(t))t≥0 denotes the solution process of the overdamped
Langevin equation (BD) with Λ = (D2

aD
−1
b )−1.

Proof. This result is a direct consequence of Theorem IV.1 in [35]. The same
limit has also been studied in a less general setup in [50]. Refer to Figure 1 for a
diagram illustrating these different limits.

2. Symmetric stochastic splitting methods for the QGLE. In this sec-
tion we present the basic construction and implementation of the class of proposed
stochastic splitting schemes for the Markovian reformulation (QGLE) of the GLE as
well as an elementary analysis of the incurred weak error.

2.1. Construction of numerical methods based on splitting. As men-
tioned in the introduction, we construct splitting schemes using a similar procedure
as that employed for the underdamped Langevin equation in [28, 30]. Such schemes
are based on a decomposition of the generator of the underdamped Langevin equa-
tion as LLD = LA + LB + LÔ, where LA = −∇U(q) · ∇p, LB = −p ·M−1∇q and

LÔ = −Γ̂M−1 · ∇p + β−1Γ̂ : ∇2
p. By applying a Strang splitting with stepsize

h > 0 twice (typically first to treat the Liouville operator LA + LB associated with
the Hamiltonian vector field and then subsequently to compute the combination of
that operator with the term LO), a symmetric stochastic splitting scheme with the
following associated evolution operator is obtained:
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P̂ ld-OBABO
h = exp

(
(h/2)LÔ

)
exp ((h/2)LB) exp (hLA) exp ((h/2)LB) exp

(
(h/2)LÔ

)
.

Similarly, by either changing the ordering within the Strang splitting or by changing
the pair of operators selected for the first application of the Strang splitting, other
splitting schemes can be obtained which are uniquely identified by palindromes of the
form XYZYX, where X,Y,Z ∈ {A,B, Ô} are distinct placeholders. (The symmetry of
this decomposition is not essential but typically improves the accuracy and efficiency
of the resulting scheme with little added computational cost.)

This construction can be easily generalized to the Markovian reformulation of the
GLE (QGLE) by using the fact that (QGLE) structurally resembles the underdamped
Langevin equation (LD). That is, we consider a decomposition of LGLE as LGLE =
LA + LB + LO, where LA,LB are defined as above and

LO = −Γ
(
M−1p

s

)
· ∇z +

β−1

2
ΣΣT : ∇2

z.

The only difference between this decomposition and the decomposition of the operator
LLD is that LO corresponds to the generator of a linear SDE in p and s, whereas the
operator LÔ in the otherwise identical decomposition of LLD is the generator of a linear
SDE in p only. Thus, symmetric splitting schemes for (QGLE) can be constructed
in the same way as for the underdamped Langevin equation resulting in numerical
integrators with associated evolution operators of the form

P̂gle-XYZYX
h = exp

(
h

2
LX

)
exp

(
h

2
LY

)
exp (hLZ) exp

(
h

2
LY

)
exp

(
h

2
LX

)
,(2.1)

where X,Y,Z ∈ {A,B,O} are again distinct placeholders.

2.2. Implementation. By construction the numerical integrator for the associ-
ated evolution operator P̂gle-XYZYX

h is of the form

Φ̂gle-XYZYX
h = ΦX

h/2 ◦ Φ
Y
h/2 ◦ Φ

Z
h ◦ ΦY

h/2 ◦ Φ
X
h/2,(2.2)

where ΦX
h ,X ∈ {A,B,O} are the solution maps of the differential equations associated

with the operators LX,X ∈ {A,B,O}, respectively. A practical implementation of the
above-described splitting schemes therefore requires that each differential equation
associated with the operators LA,LB, and LO can be solved exactly. Indeed, in the
case of the operators LA and LB the solution of the associated differential equations
q̇ = M−1p, and ṗ = −∇U(q) correspond to Euler updates of the form

ΦA
h : (q,p, s) 7→ (q + hM−1p,p, s), ΦB

h : (q,p, s) 7→ (q,p− h∇qU(q), s),(2.3)

respectively. The solution of the SDE associated with the operator LO,

ż = −ΓMz +
√
β−1ΣẆ ,(2.4)

coincides in law with z(h) = Fhz(0)+ShR (see, e.g., [17, 45]), where R ∼ N (0, In+m)
denotes a vector of independent and standard normal distributed random variables
in Rn+m, Fh = exp(−hΓM ) is the matrix exponential of the matrix −hΓM , and Sh

solves the equation

ShSh
T = β−1

[(
M 0
0 Q

)
− Fh

(
M 0
0 Q

)
Fh

T

]
.
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Algorithm 1. gle-BAOAB

input: (q,p, s)
p← p− h

2∇U(q);

q ← q + h
2M

−1p;[
p
s

]
← Fh

[
p
s

]
+ ShR;

q ← q + h
2M

−1p;

p← p− h
2∇U(q);

output: (q,p, s)

The corresponding stochastic flow map which updates the combined state vector x
accordingly is of the form

ΦO
h : (q, z) 7→ (q,Fh z + ShR) ,

where R is independently resampled at every application of ΦO
h . With the definition

of the updates ΦA
h ,Φ

B
h ,Φ

O
h at hand, one can find explicit algorithmic forms for the in-

tegration map Φ̂gle-XYZYX
h . We provide an algorithmic implementation of Φ̂gle-BAOAB

h

in Algorithm 1.

2.3. Weak convergence order. A numerical scheme with associated evolution
operator Ph is said to have global weak order p when applied to (QGLE) with x(0) ∼
π0 if, for all φ ∈ C∞P (Ωx,R) and for all T > 0, there exists a constant C(T, φ) > 0
such that ∣∣(Pn

hφ) (x)− (enhLGLEφ)(x)
∣∣ ≤ hpC(T, φ)

for all tn = nh ∈ [0, T ], for π0-almost all x, and for all sufficiently small h > 0. Here,
as well as in what follows, Pn = Pn−1P with P0 = Id denotes the nth power of the
evolution operator P. The above discretization schemes all have weak order p = 2.

Proposition 2.1. Let Assumption 3 be satisfied. Then, any symmetric stochas-
tic splitting scheme with evolution operator P̂gle-XYZYX

h has global weak order 2.

Proof. This result is a direct consequence of Theorem 2 in [38] which provides
a set of sufficient conditions for the local weak error to coincide with that of the
global weak order. We therefore only provide a brief outline of the proof. By Taylor
expanding (at h = 0) both (enhLGLEφ)(x) and (Pn

hφ)(x) with Ph = P̂gle-XYZYX
h and

comparing powers in h, we obtain an expansion of the local weak error as∣∣∣(Phφ
)
(x)− (ehLGLEφ)(x)

∣∣∣ = h3A3φ(x) + h5rφ,δ,5(x),

with

A3 =
1

12

(
[LZ, [LZ,LY]] + [LY + LZ, [LY + LZ,LX]]

− 1

2
[LY, [LY,LZ]]−

1

2
[LX, [LX,LY + LZ]]

)
,

(2.5)

where [A,B] = AB − BA denotes the commutator of the two linear operators A,B.
In other words the convergence order of the local weak error is 2. Assumption 3
ensures that for φ ∈ C∞P (Ωx,R) the remainder term rφ,h,5 as well as A3φ are both
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contained in C∞P (Ωx,R). For sufficiently small stepsize h > 0 the existence of a suitable
Lyapunov function (see proof of Theorem 3.1) ensures that moments, E

[
∥x̂k∥2m

]
, of

any orderm ∈ N are uniformly bounded in the iteration index k ∈ N. All together, the
conditions of [38, Theorem 2] are met, which implies that the global weak convergence
order coincides with the local weak convergence order.

3. Error analysis of ergodic averages. As in the case of the underdamped
Langevin equation and the overdamped Langevin equation, Markov chains of the
discretized dynamics

x̂k+1 = Φ̂gle-XYZYX
h (x̂k), x̂0 = x(0), k ∈ N,(3.1)

can be used as approximate Markov chain Monte Carlo methods for the computation
of expectations with respect to the extended Gibbs–Boltzmann distribution π. That
is, expectations of observables φ ∈ L2(π), where L2(π) := {φ : Ωx → R measurable |∫
φ2dπ <∞}, are approximately computed as trajectory averages of the form φ̂N :=

1
N

∑N−1
k=1 φ(x̂k) from a finite trajectory (xk)k=1,...,N . Such approximate computations

are performed under the premise that (x̂k)k∈N is ergodic with respect to the invariant
measure πh ≈ π so that

lim
N→∞

φ̂N =

∫
φ(x)πh(dx)

for almost all realizations of the Markov chain (x̂k)k∈N. In this section, we provide
theoretical justification for such a computation by showing that the above-mentioned
assumptions are indeed satisfied. We first show in subsection 3.1 that the proposed
numerical schemes result in ergodic Markov chains. Moreover, we show the validity
of a central limit theorem for the Monte Carlo error in the following decomposition
of the approximation error:

φ̂N − Ex∼π [φ(x)] = (φ̂N − Ex∼πh
[φ(x)])︸ ︷︷ ︸

Monte Carlo error

+(Ex∼πh
[φ(x)]− Ex∼π [φ(x)])︸ ︷︷ ︸
Systematic bias

.(3.2)

In the next subsection (subsection 3.2) we provide an analysis of the stepsize-dependent
systematic bias.

3.1. Ergodic properties and central limit theorem. In addition to showing
the existence and uniqueness of the invariant measure πh, we show geometric ergod-
icity of the Markov chain (x̂k)k∈N. Geometric ergodicity is equivalent to exponential

convergence of the corresponding evolution operator P̂gle-XYZYX
h in some suitably

weighted L∞ space. By [7], the latter property implies the validity of a central limit
theorem.

Theorem 3.1. Let Assumption 1 and Assumption 3 be satisfied, and let Ph =
P̂gle-XYZYX
h . Fix l ∈ N, l > 0, and consider

Kl(q,p, s) =
(
xTCx

)l
+ 1, l ∈ N,(3.3)

where C ∈ Rn+m is a suitably chosen symmetric positive definite matrix (see subsec-
tion SM1.1 for details). Then, there exists h∗ > 0 such that for any h ∈ (0, h∗)

1. the Markov chain associated with Ph has a unique invariant probability mea-
sure πh, which admits a density with respect to the Lebesgue measure on Ωx

and has finite moments, i.e.,∫
Ωx

Kldπh <∞ for all l ∈ N;(3.4)
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2. there are constants Cl > 0, rl ∈ (0, 1) such that

for all φ ∈ L∞
Kl

for all k ∈ N,
∥∥(Pk

hφ)− Eπh
φ
∥∥
L∞

Kl

≤ Clr
k
l ∥φ∥L∞

Kl
.(3.5)

A complete proof of this result can be found in section SM1 of the supplementary
material. Here, we provide a brief outline: the proof of the theorem relies on an
application of Theorem 1.2 of [20] (see also [37, 6] for similar results) and as such
includes the standard steps commonly followed for proving geometric ergodicity of a
Markov chain. We first show that under the conditions of Theorem 3.1 a minorization
condition is satisfied.

Assumption 4 (minorization condition). Fix any xmax > 0. There exists h∗ > 0
such that for any h ∈ (0, h∗), there is α > 0 so that

for all φ ∈ C0(Ωx,R), inf
|x|≤xmax

(
Pk
hφ
)
(x) ≥ α

∫
Ωx

φ(x)ν(dx),(3.6)

where k = 2 and ν denotes the Lebesgue measure on Ωx.

The validity of this minorization condition ensures that within any compact ball
that is centered at the origin, the Markov chain (xk)k∈N is mixing within a finite
number of steps. As such it already ensures irreducibility of the Markov chain and
thus guarantees the uniqueness of the invariant measure πh provided the latter exists.
In order to ensure the existence of an invariant measure and exponential converge to
that measure, the existence of a suitable Lyapunov function is shown in the second
step of the proof.

Assumption 5 (uniform Lyapunov condition). For any l ∈ N, l > 0, there exist
h∗ > 0 and al, bl > 0 such that for any h, 0 < h ≤ h∗,

PhKl ≤ e−alhKl + blh.

Given the validity of both Assumption 4 and Assumption 5, the remaining statements
of Theorem 3.1 then follow as a consequence of [20, Theorem 1.2].

By [32, Corollary 2.26] exponential convergence in the sense of Theorem 3.1 im-
plies that the operator Id− Ph, when constrained to the subspace

L∞
Kl,0

=

{
φ ∈ L∞

Kl
:

∫
φπh = 0

}
,

is invertible and the corresponding inverse operator is bounded in terms of the operator
norm induced by ∥·∥L∞

Kl
. By the results in [7], this is sufficient for a functional central

limit theorem to hold (3.7).

Corollary 3.2 (central limit theorem). Let l ∈ N and φ ∈ L∞
Kl
. For sufficiently

small h > 0, there is finite σ̂2
φ > 0 so that

√
N

(
φ̂N −

∫
φdπh

)
law−−−−−→

N→+∞
N (0, σ̂2

φ).(3.7)

3.2. Analysis of the systematic bias. In this section we provide results re-
garding the convergence order in h of the discretization bias in ergodic averages of
symmetric splitting schemes. As discussed in subsection 2.3, the weak convergence
order of these schemes is two, which together with the above shown ergodicity result
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implies that also the convergence order of the systematic discretization bias in ergodic
averages is at least two, i.e.,

lim
N→∞

φ̂N =

∫
φ(x)πh(dx) =

∫
φ(x)π(dx) +O(h2),

as h → 0. In what follows we discuss two special cases where the second order
convergence can be improved upon. We first derive the explicit form of the measure
πh of the gle-BAOAB scheme in the situation where the target measure π is Gaussian.
Secondly, we analyze the behavior of the discretization error of the gle-BAOAB scheme
in the overdamped limit.

Remark 3.3. We point out that the gle-OABAO scheme is similar to the gle-
BAOAB scheme in the sense that(

P̂gle-OABAO
h

)n
= e

h
2 LOe

h
2 LA

(
P̂gle-BAOAB
h

)n−1

e
h
2 LAe

h
2 LO

for any n ≥ 1. Under certain technical conditions which are detailed in [30, Lemma
24] this observation allows us to write the invariant measure of gle-OABAO as a

transformation (by the adjoint of e
h
2 LAe

h
2 LO) of the invariant measure of the gle-

BAOAB scheme. Similarly, this observation allows us to obtain Monte Carlo estimates
from gle-OABAO trajectories with the same statistical properties as Monte Carlo
estimates obtained from a gle-BAOAB trajectory by employing a postprocessing step
as detailed in [53].

3.2.1. Systematic bias for quadratic potentials. An important property of
the gle-BAOAB scheme is that its invariant measure πh, when applied to a system
with quadratic potential, is such that the marginal in q, πh(dq), coincides with the

marginal in q of the exact invariant measure π(dq) ∝ e−βqΩ−1q dq so that

lim
N→∞

φ̂N =

∫
φ(q)πh(dq)

for φ ∈ L2(π(dq)). More specifically, we have the following theorem.

Theorem 3.4. Let U(q) = 1
2q

TΩ q with Ω ∈ Rn×n symmetric positive definite.

The Gaussian measure πh(dx) ∝ exp(−(x− µh)
TV −1

h (x− µh))dx, with

µh = 0, Vh = β−1 diag
(
Ω−1,

(
1− h2/4

)
M , Q

)
,(3.8)

is invariant under gle-BAOAB with Q as defined in Proposition 1.1.

Proof. We take a dual perspective and show that the above specified Gaussian
measure πh is the unique stationary solution of the corresponding forward equation;
i.e., (

P̂gle-BAOAB
h

)†
πh = πh,(3.9)

where (P̂gle-BAOAB
h )† = exp(h2L

†
B) exp(

h
2L

†
A) exp(hL

†
O) exp(

h
2L

†
A) exp(

h
2L

†
B), is the

forward operator of the gle-BAOAB scheme, which by construction is simply the
concatenation of the forward operators corresponding to the respective B/A/O-steps
in the order given by the splitting scheme. The action of these forward operators
when applied to a multivariate Gaussian measure

N (x|µ,V )dx ∝ exp
(
−(x− µ)TV −1(x− µ)

)
dx
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is found to be

exp

(
h

2
L†
A

)
N ( · |µ,V ) = N ( · | ΨAµ,ΨAV ΨT

A),

exp

(
h

2
L†
B

)
N ( · |µ,V ) = N ( · | ΨBµ,ΨBV ΨT

B),

where

ΨA =

In h
2M

−1 0
0 In 0
0 0 Im

 , ΨB =

 In 0 0
−h

2Ω In 0
0 0 Im

 ,

and

exp(hL†
O)N ( · |µ,V ) = N ( · |F̃hµ, F̃hV F̃h

T
+ S̃hS̃h

T
),

where

F̃h =

(
In 0
0 Fh

)
, S̃h =

(
0 0
0 Sh

)
.(3.10)

Thus, the Gaussian measure with density N ( · |µ,V ) is invariant under the action

of (P̂gle-BAOAB
h )† precisely when

µ = ΨBΨAF̃hΨAΨBµ,

V = ΨBΨAF̃hΨAΨBV ΨT
BΨ

T
AF̃h

T
ΨT

AΨ
T
B +ΨBΨAS̃hS̃h

T
ΨT

AΨ
T
B ,

which are satisfied if µ = µh and V = Vh with µh = 0 and Vh is as specified in the
proposition. Since for sufficiently small h > 0 the discretized dynamics are ergodic
(see subsection 3.1), this solution is also the unique solution of (3.9).

Remark 3.5. With the same techniques as in the proof of Theorem 3.4, one may
show that for the same quadratic potential function, the invariant measure of the
Markov chain generated by gle-ABOBA is identical to the invariant measure of gle-
BAOAB and that the unique invariant measure of the Markov chains generated by
gle-OBABO and gle-OABAO is the Gaussian measure N (x;µh,Vh)dx with µh = 0
and Vh = β−1 diag((1− h2/4)Ω−1, M , Q).

3.2.2. Superconvergence of gle-BAOAB in the overdamped limit. The
gle-BAOAB scheme possesses a superconvergence property in the discrete time version
of the overdamped limit (see subsection 4.2). That is, for observables φ ∈ L2(π) which
are purely functions of the position variable q, the incurred discretization bias of the
corresponding ergodic average when computed using the gle-BAOAB scheme applied
to rescaled process (QGLE-scaled) with λ = 1 and µ1 = µ2 = ε−1 behaves as∣∣∣∣∫

Ωx

φ(q)πh(dx)− Eπφ

∣∣∣∣ = O(ϵh2) +O(h4)(3.11)

as ε → 0 and h → 0. For sufficiently small values of ε, the magnitude of the leading
order term of the discretization bias decreases linearly in ε. In particular, in the
limit ε = 0, the leading error term O(ϵh2) in (3.11) vanishes. This results in the
discretization bias to decrease at fourth order in h (instead of second order as one
would expect by construction)—a property which we refer to as “superconvergence.”
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We formally show this result for a particle of unit mass in a one-dimensional
positional domain and memory kernel corresponding to a matrix of the Γ of the
generic form

Γ =

(
Γ1,1 Γ1,2

Γ2,1 Γ2,2

)
∈ R2,

which is assumed to satisfy Assumption 1. Our derivation can be extended to more
general forms of (QGLE), but we refrain from doing so in order to keep notation
simple. As a starting point of the derivation we consider again a Taylor expansion of
the evolution operator

P̂gle-BAOAB
h = Id + hA1 + h3A3 +O(h5),(3.12)

where A1 = LGLE and A3 is as defined in (2.5) with X = B, Y = A, and Z =
O. By [32, Theorem 3.3] and under suitable regularity conditions on the generator
LGLE and on the operators Ak, k ≥ 1 (see Remark 3.6), there exists h∗ > 0 so that
the expectation of test functions φ ∈ L2(π) with respect to the perturbed invariant
measure πh can be expanded as∫

Ωx

φ(x)πh(dx) = Eπφ+ h2

∫
Ωx

φ(x)f3(x)π(dx) + h4Rφ,h(3.13)

with |Rφ,h| uniformly bounded for h ∈ (0, h∗]. The correction term f3 is obtained as
the solution of

L∗
GLEf3 = A∗

31,(3.14)

where the explicit form of the right-hand side can be computed as

A∗
31 = −1

4
β
(
p2Γ1,1 + p sΓ2,1 − β−1Γ1,1

)
U ′′(q)

− 1

12
βp3U (3)(q) +

1

4
βpU ′(q)U ′′(q).

Here, and below, we denote L2(π)-adjoint of an operator A by A∗ so that ⟨Ag, f⟩L2(π)

= ⟨g,A∗f⟩L2(π) for all g, f ∈ L2(π), where ⟨f, g⟩L2(π) :=
∫
fg dπ. By virtue of the

Fredholm alternative equation (3.14) possesses a solution iff ⟨g,A∗
31⟩L2(π) = 0 for

all functions g contained in the null space of LGLE. Since the SDE associated with
the generator LGLE is by assumption ergodic, the null space of LGLE only contains
constant functions for which ⟨g,A∗

31⟩L2(π) ∝ ⟨1,A∗
31⟩L2(π) = 0 is indeed true.

Finding a closed form solution of the PDE (3.14) is still intractable for general
potentials. Instead, we employ a singular perturbation approach. Under the scaling
λ = 1, µ1 = µ2 = ε−1 the generator decomposes as LGLE = ε−1LO + LH, and we can
expand the solution f3 in ε as f3 = f3,0 + εf3,1 + ε2f3,2 + O(ε3). By plugging this
into (3.14) we get(

1

ε
L∗
O + L∗

H

)(
f3,0 + εf3,1 + ε2f3,2 +O(ε3)

)
= A∗

31,(3.15)

from which we obtain the following collection of PDEs by equating powers of ε:

L∗
Of3,0 =

1

4
βp2Γ1,1U

′′(q)− 1

4
Γ1,1U

′′(q) +
1

4
βsTΓ2,1pU

′′(q),(3.16)

L∗
Hf3,0 + L∗

Of3,1 =
1

12
βp3U (3)(q)− 1

4
βpU ′(q)U ′′(q),(3.17)

L∗
Hf3,1 + L∗

Of3,2 = 0,(3.18)

L∗
Hf3,i + L∗

Of3,i+1 = 0, i ≥ 2.(3.19)
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Solving this system iteratively, we find (see section SM4 for details)

f3,0(q,p, s) = −
1

8
βp2U ′′(q) +

1

8
U ′′(q),

which can be verified to satisfy
∫
Ωx

φ(q)f3,0(x)π(dx) = 0 for any observable φ ∈
C∞P (Ωx,R) which is purely a function of q. Thus, for such φ, (3.13) can be written as∫

Ωx

φ(q)πh(x)dx =Eπφ+ ϵh2

∫
Ωx

φ(q)f3,1(q)π(dx) +O(ϵ2h2) +O(h4)

as ε→ 0 and h→ 0, which is the desired statement.

Remark 3.6. The formal error analysis can be made rigorous by showing that the
remainder terms in expansions (3.13) and (3.15) are uniformly bounded for sufficient
small h and ε, respectively. For the expansion (3.13) it would be sufficient to show
that the conditions of [32, Theorem 3.3] are indeed satisfied. In particular, this would
entail showing that the function set C∞P,0(Ωx,R) :=

{
φ ∈ C∞P (Ωx,R) :

∫
φdπ = 0

}
is

invariant under application of the operators L−1
GLE and (L∗

GLE)
−1

, as well as that
C∞P (Ωx,R) is invariant under application of the operators Ak, k ∈ N. Analogous esti-
mates have been shown in [24, 25, 47] for the generators of the overdamped Langevin
equation, the underdamped Langevin equation, and Langevin equations with gener-
alized kinetic energies, respectively. In order to make the expansion of (3.15) rigorous
one would need to show—in analogy to a result shown in [30] for the underdamped
Langevin equation—a uniform hypocoercivity property of the form: there is a K > 0
such that ∥(ε−1LO+LH)

−1φ∥H1(π) ≤ K∥φ∥H1(π) for any ε > 0 and all test functions
φ contained in the weighted Sobolev space H1(π) which are such that for almost all
q the mean with respect to the marginal measure π(dpds) vanishes.

4. White noise and overdamped limit of the gle-BAOAB method. In
this section we analyze the behavior of the gle-BAOAB splitting method in the over-
damped and white noise limit discussed in subsection 1.5. For this purpose consider
the stochastic flow map of the gle-BAOAB method when applied to the rescaled
process (QGLE-scaled),

Φ̂gle-BAOAB
h,µ = ΦB

h/2 ◦ Φ
A
h/2 ◦ Φ

O
h,µ ◦ ΦA

h/2 ◦ Φ
B
h/2,(4.1)

where

ΦO
h,µ : (q,p, s) 7→ (q,F µ

h (p, s)T + Sµ
hR), R ∼ N (0, In+m),(4.2)

with

F µ
h := exp(−hΓµ), (Sµ

h )
T
Sµ
h =

(
In 0
0 Q

)
− F µ

h

(
In 0
0 Q

)
F µT
h ,

and Γµ as defined in (1.11). In both limits gle-BAOAB converges to state-of-the-art
numerical integration schemes for the corresponding limiting dynamics which have
been shown exhibit particularly low discretization bias (see [28, 30]).

4.1. White noise limit. The gle-BAOAB integration scheme, when applied to
the rescaled process (QGLE-scaled) with λ = 1, µ1 = ϵ−1, and µ2 = ϵ−2, reduces
to the ld-BAOAB discretization of an underdamped Langevin equation in the white
noise limit ϵ→ 0. More precisely, we have the following result.
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Theorem 4.1 (white noise limit of gle-BAOAB). Let (qk,pk, sk)k∈N be the Markov

chain obtained with the gle-BAOAB method Φ̂gle-BOAOB
h,(ϵ−1,ϵ−2) . Let (q̂k, p̂k)k∈N denote

the Markov chain generated by the ld-BAOAB method of [28] (see also Algorithm

SM2.1) when applied to (LD) with friction tensor Γ̂ = D2
aD

−1
b , diffusion tensor

Σ̂ =
√
2DaD

−1/2
b , and stepsize h. Then, for all N ∈ N, we have

(qk,pk)0≤k≤N
law−−−→
ε→0

(q̂k, p̂k)0≤k≤N .

Proof. Since (q̂k, p̂k)k∈N is a Markov process, it is sufficient to show that the
transition probabilities converge appropriately; i.e.,

Π
(
Φ̂gle-BAOAB

h,(ε−1,ε−2)(q, p, s)
)

law−−−→
ε→0

Φ̂ld-BAOAB
h (q, p)

for all (q, p, s) ∈ Ωx, where Φ̂ld-BAOAB
h,µ denotes the stochastic flow map of the ld-

BAOAB splitting scheme and Π : (q, p, s) 7→ (q, p) denotes the projection operator on
the position and momentum component.

The two methods only differ in terms of their respective O-steps. It is therefore
sufficient to show that in the limit ε → 0, these become identical in distribution,
which is exactly the case if

lim
ϵ→0

exp
(
−hΓ(ϵ−1,ϵ−2)

)
=

(
exp(−hD2

aD
−1
b ) 0

0 0

)
,

where

Γ(ϵ−1,ϵ−2) =

(
0 −ϵ−1Da

ϵ−1Da ϵ−2Db

)
.

We show this by applying a suitable similarity transformation: without loss of gener-
ality let h = 1, and consider the orthogonal matrix

O = Î
(2n)
2n−1,2nÎ

(2n)
2n−3,2n−1 . . . Î

(2n)
5,n+3Î

(2n)
3,n+2Î

(2n)
1,n+1,

where Î
(2n)
i,j denotes the elementary matrix whose action when multiplied from the

left to a matrix A ∈ R2n×2n corresponds to a swap of ith and jth rows of A so that

Γ(ϵ−1,ϵ−2) = OT diag (Aϵ
1, A

ϵ
2, . . . , A

ϵ
n)O, with Aϵ

i =

(
0 −ϵ−1ai

ϵ−1ai ϵ−2bi

)
, 1 ≤ i ≤ n.

By Lemma SM3.1 we have limϵ→0 A
ϵ
i = Bi with Bi = ( e−a2

i /bi 0
0 0

). Thus,

lim
ϵ→0

exp
(
−Γ(ϵ−1,ϵ−2)

)
= lim

ϵ→0
OT diag (exp(−Aϵ

1), . . . , exp(−Aϵ
n))O

= OT diag
(
lim
ϵ→0

exp(−Aϵ
1), . . . , lim

ϵ→0
exp(−Aϵ

n)
)
O

= OT diag (B1, . . . , Bn)O =

(
exp(−hD2

aD
−1
b ) 0

0 0

)
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4.2. Overdamped limit. When applied to the rescaled process (QGLE-scaled)
with λ = 1, µ2 = ϵ−1, and µ3 = ϵ−1 the gle-BAOAB method reduces to the BAOAB-
limit method (the “Leimkuhler–Matthews method”) of [28] in the asymptotic limit
ϵ→ 0 as shown in the following.

Theorem 4.2. Let (qk,pk, sk)k∈N be the Markov chain obtained by with the gle-

BAOAB method Φ̂gle-BOAOB
h,(ϵ−1,ϵ−1) with p0 ∼ N (0, In). Let (q̃k)k∈N denote the Markov

chain generated by the BAOAB-limit method,

q̃k+1 ← q̃k − h̃Λ∇U(qk) +
√
2h̃Λ

1

2
(R̃k + R̃k+1),(4.3)

with q̃0 and q0 being identically distributed, R̃k ∼ N (0, In), k ∈ N independent,
stepsize h̃ = h2/2, and Λ = In. Then, for all N ∈ N, we have

(qk)0≤k≤N
law−−−→
ε→0

(q̃k)0≤k≤N .

Proof. For µ = (ε, ε−1), we have Γµ = ε−1( 0 −Da

Da Db
); thus,

Fh = exp

(
−h

ϵ

(
0 −Da

Da Db

))
→ 0 as ϵ→ 0,

and therefore also Sh → β−1/2In+m as ϵ→ 0. Thus,

lim
ϵ→0

ΦO
h,(ϵ−1,ϵ−1)(q,p, s) = (q, β−1/2R), R ∼ N (0, In+m),

which removes any coupling between the auxiliary variable s and (q,p). Consequently,
in the limit of ε→ 0 we can disregard the s-component in the corresponding updating
sequence of the positions and momenta. Moreover, since the momentum variables
are independently resampled at every iteration, we can eliminate the momentum
component from the updating sequence to obtain (4.3) with Λ = In, h̃ = h2/2, and
R−1 = p0.

5. Numerical experiments. In this section we assess the performance of the
splitting methods which we introduced in section 2 in numerical experiments.

5.1. Comparison of proposed splitting schemes. We first compare the per-
formance of the methods discussed in this article against each other. For this purpose
we consider a simple QGLE on a one-dimensional positional domain with potential
function

UDW (q) =
1

2
q2 + sin(1/4 + 2q),(5.1)

which is an uneven double-well. We evaluate the performance in terms of the incurred
stepsize-dependent discretization bias for observables which are purely functions of
the position variable. For the parameterization of the noise process in the GLE we
consider the memory kernels

K(t) = 2rK(t2r), K(t) :=
5

2
exp(−t/4) + 1

2
exp(−t/8),(5.2)

where we let r take values in {0, 1, 2}. The r-dependent parameterization of the
memory kernels is chosen such that in the limit of r → ∞, the corresponding GLE
approaches an underdamped Langevin equation.
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gle-BAOAB
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gle-OABAO

gle-ASA

gle-SAS

Fig. 2. Log-log plot of the mean approximate error of numerical integrators proposed in this
article. Results for the GLE with potential function (5.1) and memory kernel (5.2) with r = 0, 1, 2
are shown in panels (a), (b), and (c), respectively. Any missing error value indicates numerical in-
stability of the respective method for the corresponding stepsize. The dashed black line corresponds
to a second order decay. Details on the integrators gle-ASA and gle-SAS can be found in subsec-
tion SM5.3.

We consider as an error measure

EMAE((qk)1≤k≤N ) = n−1
B

nB∑
i=1

∣∣∣∣∣
(

1

N

N−1∑
k=0

1Bi
(qk)−

∫
Ωx

1Bi
(q)π(dx)

)∣∣∣∣∣,
where the equal-sized bins Bi ⊂ R, i = 1, . . . , nB , are chosen such that they form
a partition of an interval [a, b] ⊂ R, which contains 99.99% of the probability mass
of the Gibbs measure associated with R. The quantity EMAE((qk)1≤k≤N ) may be
considered as the mean approximate error (MAE) of the discretization bias incurred
for the observables φBi : q 7→ 1Bi(q), i = 1, . . . , nB , or as an estimate of the total
variation distance between the perturbed invariant measure πh and the exact target
measure π.

In total, 100 trajectories, all initialized in accordance with the exact equilibrium
distribution π, were simulated over a physical time period of length T = hN = 107

to obtain the statistics.
Figure 2 shows EMAE for the splitting schemes discussed in section 2. All meth-

ods displayed are by construction second order. Differences in performance are thus
measured in terms of the magnitude of the corresponding prefactors of the leading
error term. We find that the discretization error incurred in gle-OBABO and gle-
OABAO is comparable and is not noticeably affected by the parameterization of the
memory kernel. In comparison to that, the discretization error of gle-BAOAB and
gle-ABOBA is smaller, and the accuracy of gle-BAOAB improves significantly with
increasing value of r in the parameterization of the memory kernel.

5.2. Comparison with previously proposed GLE schemes. We next com-
pare the performance of gle-BAOAB with methods previously proposed in the lit-
erature using the same setup as in subsection 5.1. We compare the gle-BAOAB
method with the methods proposed in [5] (BB-BAOB, BB-BACOCAB), [51] (KLS-
OBOAB), and [12] (gle-OBABO). These methods are all constructed as weak second
order schemes.

For moderate variance and slowly decaying autocorrelation of the noise process
(that is, r = 0, 1) we observe that the error incurred by the methods BB-BACOCAB
and KLS-OBABO is very similar to the error of the gle-BAOAB method
(Figure 3(a) and (b)). For all choices of the memory kernel, the error in gle-OBABO
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Fig. 3. Different integrators but otherwise same setup as in Figure 2.

and BB-BAOB is at least by a factor of 10 higher than the error of gle-BAOAB, and
this factor increases further with an increasing value of r. Similarly, with an increasing
value of r, the accuracy of the KLS-OBABO method decreases in comparison to that
of gle-BAOAB. The maximum admissible stepsize of BB-BAOB and BB-BACOCAB
decreases significantly, while the maximum admissible stepsize for schemes discussed
in section 2 is not affected. The high accuracy of BB-BACOCAB is not surprising, as
Baczewski and Bond in [5] specifically design this method for the sampling of accurate
configurational averages. Interestingly, the KLS-OBABO method exhibits compara-
ble accuracy even though the construction of this numerical scheme is not based on a
systematic analysis of the discretization error in configurational averages. It is impor-
tant to note that the scope of the memory kernels to which the methods proposed in
[5] are applicable is very limited in comparison to the class of memory kernels which
can be simulated using gle-BAOAB and gle-OBABO. Similarly, the scope of applica-
tions for which KLS-OBABO is designed is different from the sampling applications
which are the focus of this article. As such the KLS-OBABO scheme is not applicable
to GLEs which are parameterized with the type of kernels proposed in [12, 54].

5.3. Parameter-dependent accuracy of gle-BAOAB. In order to support
the results derived by the singular perturbation ansatz in subsection 3.2.2, we eval-
uate the sampling accuracy of gle-BAOAB when applied to a GLE with a simple
exponentially decaying memory kernel, i.e.,

K(t) = γe−t/τ , γ > 0, τ > 0,(5.3)

and the potential function (5.1). As predicted we find that the discretization bias
decreases as the overdamped limit is approached (see Figure 4(b). Moreover, for
parameter values λ = 128 and τ = 1/16, we find the predicted fourth order decay
of the discretization bias as h tends to 0. For the chosen range of parameter values
we further observe (i) a decrease of the MAE in the white noise limit (Figure 4(a)),
(ii) a decrease of the MAE for fixed decay rate τ = 1 as the prefactor γ increases
(Figure 4(d)), and (iii) no systematic change of the magnitude of the MAE for fixed
prefactor γ = 4 and varying decay rate τ (Figure 4(c)).

5.4. Application to Bayesian posterior sampling. In this section, we con-
sider the Bayesian parameterization of a Gaussian mixture model as a simple appli-
cation of the discussed sampling methods, and we use this application to demonstrate
how the gle-BAOAB method when used in combination with the GLE-dynamics de-
veloped in [12] results in a sampling scheme which has drastically improved sampling
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Fig. 4. Log-Log plot of stepsize versus MAE of gle-BAOAB applied to the GLE with potential
function (5.1) and memory kernel K(t) = γe−t/τ . Black circles show the observed MAE of the
respective limiting dynamics.

properties in comparison to BAOAB discretizations of the underdamped Langevin
equation as well as in comparison to the sampling scheme proposed in the above-
mentioned reference, which in the language used in this article corresponds to the
gle-OBABO method.

As a benchmark system we consider a Bayesian Gaussian mixture model applied
to the Hidalgo stamp data set [21], which consists of the measurements {xi}Ni=1 ⊂
R of the thicknesses of N = 482 postage stamps from a certain Mexican issue of
postage stamps from the year 1872. We parameterize the model as described in
[14] (see also [49] and [22]). Specifically we choose the number of components to be
Nc = 3 and assume isotropic Gaussian components resulting in a parameter vector
q = ((wk)1≤k≤3, (µk,λk)1≤k≤3 , β) ∈ ∆3 × R6 × R, where ∆3 denotes the standard

simplex in R3, wk is the weight parameter, µk,λk are the mean and precision of
the kth Gaussian component, respectively, and β ∈ R denotes an additional hyper-
parameter of the prior distribution. The resulting target distribution is then given as
the Gibbs measure of the corresponding negative log-posterior function

U(q) = −
N∑
i=1

log p (xi | q)− log pprior(q),(5.4)

where the exact form of the likelihood function p(xi | q) and the prior pprior(q) are
both specified in subsection SM5.1 of the supplementary material.

We parameterize both the gle-BAOAB scheme and the gle-OBABO scheme with
the preoptimized memory kernel kv-8-8 obtained from the website GLE4MD [9] (see
also subsection SM5.2). Even in this very modest example, the computational cost
incurred by simulating the additional 8 auxiliary variables per parameter in the GLE
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dynamics is negligible in comparison to the computational cost of the evaluation of
the gradient of the log-likelihood over the whole data set. Thus, computational costs
per time step for the considered GLE schemes and discretizations of the underdamped
Langevin equation are very similar. In the cases with more complicated gradients or
larger data sets the differences would only further decrease. We compare the perfor-
mance of the sampling schemes:

(i) in terms of the observed discretization bias which we measure by the relative
error incurred for the variable specific configurational temperatures

φCT,i(q) = qi∂qi
U(q), i = 1, . . . , 9, and

(ii) in terms of mixing which we measure by estimates of the integrated autocor-
relation times

τi =

∫ ∞

0

E [(qi(t)− µqi
)(qi(0)− µqi

)] dt, i = 1, . . . , 9,

where q(0) ∼ π and E[·] is the expectation with respect to q(0) and the
Wiener process W in (QGLE).

For ld-BAOAB we considered the commonly used parameterization with a single scalar
friction coefficient, i.e., Γ̂ = γIn. The simulation run corresponding to the parameter
values γ = 1.0 and h = .01 was obtained as the result of minimizing the integrated
autocorrelation time for the slowest parameters by varying the stepsize after fixing
the friction coefficient to γ = 1.0. The simulation run corresponding to the parameter
values γ = .1 with h = .01 was obtained as the result of minimizing the integrated
autocorrelation time for the “slowest parameter” (i.e., the parameter with the largest
associated integrated autocorrelation time) by simultaneously optimizing both the
stepsize as well as the friction coefficient γ. The results reported for gle-BAOAB
and gle-OBABO use a stepsize h = .02, which was determined approximately as the
maximum admissible stepsize with a few (short) test runs. We find that, in terms of
sampling efficiency which we measured in terms of the integrated autocorrelation time
of the “slowest” sampled parameter λ1, the GLE schemes clearly outperform these as
Figure 5 shows. Among the GLE schemes, we find that the discretization error in the
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Fig. 5. Sampling statistics for the numerical experiments performed on the Hidalgo stamp
data set. The rightmost panel shows the integrated autocorrelation time (labeled as IAC) for each
sampled parameter of the Gaussian mixture model. The remaining four panels on the left show the
discretization bias incurred for the variable-specific configurational temperature. Note that since the
IACs of gle-BAOAB and gle-OBABO are almost identical the corresponding graph of the former is
covered by the graph of the latter.
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sample obtained from gle-BAOAB is significantly smaller than the discretization error
in the sample obtained with gle-OBABO. The improvement in terms of the maximum
admissible stable stepsize of the GLE methods in comparison to the Langevin schemes
is an interesting feature. Presumably, this is due to resonance effects which occur in
the discretized dynamics of the underdamped Langevin due to insufficient damping
of fast frequency modes for the tuned value of the friction coefficient.

Acknowledgments. We thank Gabriel Stoltz for helpful discussions. We also
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[11] M. Ceriotti, G. Bussi, and M. Parrinello, Langevin equation with colored noise for

constant-temperature molecular dynamics simulations, Phys. Rev. Lett., 102 (2009),
020601.

[12] M. Ceriotti, G. Bussi, and M. Parrinello, Colored-noise thermostats à la carte, J. Chem.
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