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Many real-world networks are directed, sparse, and hierarchical, with a mixture of feedforward and feedback
connections with respect to the hierarchy. Moreover, a small number of master nodes are often able to drive the
whole system. We study the dynamics of pattern presentation and recovery on sparse, directed, Hopfield-like
neural networks using trophic analysis to characterize their hierarchical structure. This is a recent method which
quantifies the local position of each node in a hierarchy (trophic level) as well as the global directionality of the
network (trophic coherence). We show that even in a recurrent network, the state of the system can be controlled
by a small subset of neurons which can be identified by their low trophic levels. We also find that performance
at the pattern recovery task can be significantly improved by tuning the trophic coherence and other topological
properties of the network. This may explain the relatively sparse and coherent structures observed in the animal
brain and provide insights for improving the architectures of artificial neural networks. Moreover, we expect
that the principles we demonstrate here, through numerical analysis, will be relevant for a broad class of system
whose underlying network structure is directed and sparse, such as biological, social, or financial networks.

DOI: 10.1103/PhysRevE.105.064304

I. INTRODUCTION

Models of the brain provided the original inspiration for
the invention of artificial neural networks. However, biolog-
ical neural networks have a much richer structure than their
artificial counterparts. In particular, they are not exclusively
feedforward like conventional deep network architectures, yet
there is a direction to information processing, unlike in recur-
rent network models. For example, the neural network of the
nematode C. elegans [1,2], the only animal nervous system to
have been fully mapped at the level of neurons and synapses,
is quite sparse and displays a nontrivial mix of feedforward
and feedback connections, as revealed by a recent technique
from the field of complex networks called trophic analysis [3].
What might explain this particular neural-network architec-
ture? We address this question by studying the relationship
between trophic structure and the dynamics of a simple model
which we refer to as a Hopfield-like neural network.

Trophic analysis, inspired by ecological networks, assigns
to each node a trophic level, which can be regarded as a
position in a hierarchy, and measures the trophic coherence of
the whole network, a property which indicates to what extent
this hierarchy is well defined, conferring on the network an
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overall directionality. In this work we take the convention
that the bottom of the hierarchy is where information enters
the system, just as energy flows up from plants in a food
web. This may be different in other fields, for example, in the
study of hierarchical trees, but all definitions are equivalent,
including relabeling top and bottom or by reversing the edge
directions. When the C. elegans neural network is visualized
so as to show the trophic level of each neuron, as in Fig. 1,
it is observed that while most of the synapses are consistent
with an overall direction, there are some which feed back as
in a recurrent architecture. In fact, when the trophic coherence
is calculated, it lies exactly halfway between a maximally
coherent (i.e., entirely feedforward) network and one which
is entirely incoherent (fully recurrent). Moreover, it has been
shown previously that this level of coherence amounts to a
significant deviation from the kind of networks which arise
from random graph models such as the Erdős-Rényi model
[6,7].

How the dynamics and hierarchy interact is demonstrated
in this paper by performing a pattern recognition task (de-
scribed in detail in the next section) on network architectures
which span a range of hierarchical structures. We find that
trophic coherence is very strongly linked to the ability to
correctly recognize and display the pattern shown. Maximally
coherent networks lack the feedback to store patterns, while
maximally incoherent networks are unable to change state
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FIG. 1. Illustration of the real-world connectome of C. elegans
which has intermediate incoherence with node height drawn using
trophic levels. Data were taken from [4]. The figure was drawn using
the NETWORKX graph package [5].

when presented with fractions of new patterns. The optimal
configuration is intermediate coherence, a mixture of feed-
forward and feedback structure which is shared with many
biological systems. A similar result was reported in Ref. [8]
for a system in which elements followed majority rule dy-
namics where the stability of the C. elegans neural network
was analyzed using trophic analysis. We concentrate our study
on synthetic networks inspired by this network which can be
made dense enough to store multiple pattern states and lack
basal nodes (nodes with no in-degree) which would act as
input to the system without being influenced by it.

There are clear differences between the structures of
biological neural networks and artificial recurrent neural net-
works, such as standard implementations of the Hopfield
model. Biological networks are sparse, whereas the artificial
versions are often based on complete or very dense graphs.
They are also directed, since chemical synapses have a pre-
and a postsynaptic neuron [9], while some models such as that
of Hopfield tend to assume symmetric synapses in order to
avoid the possible periodic or chaotic behavior associated with
asymmetric interactions [10] or to align with experimental
data limited to the undirected case [9].

In addition, in nature there are a limited number of sensory
neurons which receive information directly from the outside
world, a fact not usually replicated in Hopfield models. How-
ever, it is possible to implement a Hopfield-like model on
sparse directed networks and to present stimuli only to a
subset of neurons, as we go on to do here in order to inves-
tigate how the dynamics is affected by modifying the trophic
structure.

Feedforward artificial neural networks, such as those used
in deep learning, in these respects resemble more closely the
architectures of biological neural networks, at least in the
case of nature’s only fully mapped connectome, that of C.
Elegans. The main difference is that deep neural networks
tend to be maximally coherent, with each layer corresponding
to a distinct (integer) trophic level.

We show, through numerical analysis, that network hierar-
chy can be exploited in order to use a small subset of neurons
to drive the system, with how well a pattern is recovered being
strongly influenced by where in the hierarchy it is received.

Hierarchical structure creates heterogeneous dynamics with
different parts of the network recovering patterns differently.
Additionally, we show that by preferentially adding edges to
lower-level nodes, pattern recovery can be made more consis-
tent. This has potential applications for how artificial neural
networks are designed [11,12] as well as for controllability
of dynamics on general directed complex networks [13–15],
which could range from biological neural networks [16,17] to
ecosystems, economies [18], or the Internet [19]. In particular,
Hopfield networks have recently been used to model gene
regulatory networks [20,21]. We will therefore use this model
to highlight principles which may be of general application to
any system wired according to a directed network.

II. USING TROPHIC ANALYSIS TO QUANTIFY
NETWORK HIERARCHY

Trophic analysis is a method of quantifying the hierarchy
of nodes and the global directionality of a directed complex
network, first introduced by Johnson et al. [22], which is based
on the ecological concept of trophic level [23]. A directed
network, or graph, can be represented via an adjacency matrix,
defined as

Ai j =
{

1 if there exists an edge i → j
0 otherwise. (1)

Unlike in undirected networks, this matrix is not necessarily
symmetric, Ai j �= Aji. Directed networks have the additional
complexity of the notion of in- and out-degrees, where the
in-degree is the number of incoming edges a vertex receives
and the out-degree is the number of edges leaving a vertex.
In undirected networks the in- and out-degrees coincide. Di-
rected networks can also be weakly or strongly connected.
Weakly connected means that there is a path between all pairs
of vertices if you ignore the edge directions, while strongly
connected means there is such a path respecting the edge
directions. The networks studied in this work are all weakly
connected but may not be strongly connected.

Trophic analysis was recently extended and redefined to
cover more general networks [3], removing the requirement
that networks must have basal nodes (nodes with in-degree
0). This is the definition that will be used in this work. Trophic
structure has been used to study spreading processes in neu-
ral and epidemiological settings [18], infrastructure [24,25],
and the structure of organizations [26]. Trophic analysis is
composed of two parts: the node level information, i.e., the
trophic level, which describes where each node sits in the
overall hierarchy of a network; and the global information of
how directed, or coherent, the overall network is. The idea
of trophic level arises from ecology where the lowest trophic
level nodes represent plants which sit at the bottom of the
network hierarchy and the highest trophic level nodes are
carnivores at the top of the food chain. The trophic level can
be calculated for a network of N nodes by solving the N × N
matrix equation

�h = v, (2)

where h is the vector of trophic levels, v is the imbalance of
in-degree and out-degree of a node, vi = kin

i − kout
i , and � is
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the Laplacian matrix

� = diag(u) − A − AT . (3)

This depends on the sum of the in- and out-degrees of each
node ui = kin

i + kout
i and the adjacency matrix A of the graph

and its transpose AT . This definition can also be extended
to cover weighted adjacency matrices [3]. The solutions to
Eq. (2) can be modified by adding a constant vector since �

acting on a constant vector is zero. This allows the minimum
level to be set at zero by convention and fully coherent net-
works to have integer levels.

Trophic coherence is based upon the distribution of trophic
levels of the nodes in a network. How coherent or incoherent
a network is can be described by the parameter

F =
∑

i j Ai j (h j − hi − 1)2∑
i j Ai j

. (4)

We call F the trophic incoherence such that when F = 0 the
network is completely coherent and when F = 1 it is com-
pletely incoherent. This depends on the levels of each node hi

and the entries of the adjacency matrix Ai j . Loosely speaking,
F quantifies, per connection in the graph, to what degree the
connections i → j are not one-step connections in the order of
trophic levels, i.e., by how much h j − hi differs (in the mean
square sense) from 1. In principle, these could have positive
weights, but throughout this work we will take the entries of
the adjacency matrix to always be 0 or 1 to avoid confusion
with the trained weights associated with the neural network.
A network for which F = 0 is acyclic and completely free
from any feedback, with the amount of feedback and cycles
growing as this parameter increases to 1 [3]. This is reflected
in results showing an increase in spectral radius and a reduc-
tion in the deviation from normality of the adjacency matrix,
how far the matrix is from commuting with its transpose, as
incoherence increases [3,7].

Note that the levels h, defined by Eq. (2), can be regarded
as the argument which minimizes F , as given by Eq. (4) [3].
One can therefore think of the trophic levels of a network as
those which maximize its trophic coherence which relates to
how it was derived in [3].

III. HOPFIELD-LIKE NETWORKS

The Hopfield model is a recurrent neural-network model
which is very similar to the Ising model studied in statisti-
cal physics [10]. The neurons can take binary states +1 or
−1. Due to similarity to the Ising model, these neuron states
are sometimes referred to as spins and the order parameter
measuring the state of the system can be referred to as a mag-
netization. A Hopfield network can store binary memories,
or patterns, by setting the weights of connections between
neurons such that when an update rule is applied the system
moves across an energy landscape to its attractors, which
correspond to the stored patterns. This system can, in some
cases, be studied via mean-field theory or other theoretical
methods [27]. In our case, however, due to the asymmetric
connections and complex network topology, we will use nu-
merical simulations.

We want the system to update in such a way that it moves
towards the minima in the energy landscape defined by

E = −
∑

i j

wi jAi jsis j, (5)

where wi j is the coupling between neurons i and j, which
may be positive or negative depending on patterns stored.
The states of the neurons take values si = ±1 and Ai j are the
elements of the adjacency matrix, as defined by Eq. (1). There
are many possible update rules which can achieve the desired
behavior, such as the Metropolis-Hastings algorithm [28]. We
use a sigmoid probability function such that

si(t + �t ) = −si(t ) (6)

with

Prob = 1

1 + exp �E
T

, (7)

where �E is the energy change associated with flipping the
neuron state and T is a temperature parameter which makes
the system stochastic. To reduce complexity and uncertainty,
the results we present here are for a temperature very close to
zero, T = 10−5, so the dynamics is essentially deterministic
and equivalent to using the sign of the incoming field, the
sum of the states of the in neighbors, as the update rule.
The system can therefore be referred to as Hopfield-like, or
simply as a Hopfield network, which is generally taken to be
deterministic, as opposed to Boltzmann machines, which are
stochastic [29]. However, even in this regime the asymmetry
in A leads to a range of surprising behaviors not observed in
undirected networks [30].

Updates to the system can be made in parallel or asyn-
chronously. We use a parallel update rule, which allows for
complex behavior such as limit cycles [13].

A. Training the network

Setting the weights so that the attractors of the system cor-
respond to the random binary patterns we wish to store in the
network is a key part of the process. The traditional method
of setting weights in a Hopfield network so that the network
recalls the desired patterns is Hebb’s rule [31]. This is often
summarized as “neurons that fire together wire together.” That
is, if two neurons have the same state in a particular pattern the
connection between them is strengthened and if they are in
opposite states it is decreased. For learning P patterns, where
for each pattern each neuron has a fixed state ξ

p
i = ±1, the

rule sets the weights as

wi j = 1

P

P∑
p=1

ξ
p
i ξ

p
j . (8)

This very simple rule works and can be used on any network
topology. It has the benefit of being a one-shot rule in that it
only requires one loop over the set of patterns to train the net-
work. However, it suffers from the fact that on a graph which
is not complete the information about the correlations between
disconnected neurons is not used. We found during initial tests
that on very sparse directed networks the memory capacity of
the network was substantially reduced. This is very similar

064304-3
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Algorithm 1. Iterative Hebb rule [32].

Set the initial weights wi j = 0 for all nodes i, j.
Set the stop condition flag, flag = 0.
Set the step counter, steps = 0.
while f lag = 0 and steps < stepsmax do

flag=1;
for p in range P do

for i in range N do
field = 0;
for j in range N do

field ← field + Ajiw jiξ
p
j

end
if f ield × (ξ p

j ) < δ then
for q in range N do

wqi ← wqi + Aqiξ
p
q ξ

p
i

N ;
flag = 0

end
end

end
end
steps ← steps + 1

end

to the finding of Tanaka et al. [32] for undirected networks.
They remedy this issue by adopting an iterative version of
Hebb’s rule based on earlier work [33,34], which was found
to increase capacity substantially, with other similar results
noted in the literature [35]. For the remainder of this work
we implement this rule [32]. Both the original Hebb rule and
the adapted version are local, in that synaptic weights are
updated using only information from the pre- and postsynaptic
neurons, as also happens, we believe, in the brain [36].

The iterative Hebb rule works to set the weights so that
every pattern corresponds to a local minimum of the energy
landscape where updates of the system stop. This condition
can be expressed as

ξ
p
i

(∑
j

A jiw jiξ
p
j

)
� δ (9)

for all P patterns and N nodes, and δ a positive constant. This
means that at each node, for every pattern the polarities of
the state and the incoming field are the same. As a result it
is always energetically unfavorable to flip the state at zero
temperature so the system is stable.

The iterative Hebb rule is laid out in detail in Algorithm I.
At each iteration the weights are updated by

w ji ← w ji + Ajiξ
p
j ξ

p
i

N
, (10)

until the required condition is met. For this study δ was always
set at 1, but other values can be used to change the stability
of the patterns. If a stable solution of this set of inequalities
exists it should always converge in a finite amount of time
[33]. However, a solution does not always exist for sparse di-
rected networks, so the algorithm needs to be terminated after
a chosen maximum number of iterations. Here we use 400
iterations. The patterns can still be quite successfully stored
and recovered if full convergence has not been achieved, as

the number of weights continually updated is small after only
a few iterations.

Pattern recovery is measured with an order parameter,
which we call magnetization, and is defined for each pattern p
as the scalar product of the state of the system and the pattern:

mp = 1

N

N∑
i=1

siξ
p
i . (11)

This is equivalent to the cosine of the angle between the state
and the pattern. In this work we study patterns which are
random, independent, and identically distributed. Correlation
between patterns and between patterns and the network
topology may affect the performance of the network in a
wide variety of ways depending on the topology, sparsity, and
nature of the correlation [32,37], so this may be a potential
avenue for future work.

IV. NETWORK GENERATION

To generate networks with a specified trophic coherence
and fixed numbers of nodes and edges, we use a variant of the
generalized preferential preying model from Refs. [18,38], al-
though the original work used a different definition of trophic
level. We generate networks such that each node has in-degree
at least 1. One reason for this is that if the network con-
tains basal nodes (nodes with in-degree 0), one must choose
whether their states s should remain constant, take random
values at each time step, or act as external inputs to the system.
Moreover, it is known that basal (or source) nodes can drive
the dynamics on directed networks in certain contexts [8,39],
but we investigate here the importance of trophic level for
dynamics on networks without basal nodes.

The detailed steps of the generative process are laid out
in Appendix B. In short, we randomly generate an initial
configuration of N nodes where each node has in-degree 1 and
then calculate the initial trophic level h̃ of this configuration.
Then edges are added until the specific number is reached
where the probability of connecting node i to j is

Pi j = exp

(
− (h̃ j − h̃ j − 1)2

2Tgen

)
. (12)

Afterward, the updated trophic levels h are recalculated. With
this method networks of any incoherence can be generated by
varying the control parameter Tgen, as demonstrated in Fig. 2.

The networks generated via this method can act as an
approximation to the hierarchical structures seen in real-world
systems. In Ref. [3] it was shown that many real-world net-
works conform approximately to an analytical prediction for
their scaled spectral radius ρs as a function of the incoherence
parameter F . This relationship is

ρs = exp

(
1 − 1

F

2

)
(13)

and can be derived from the coherence ensemble of random
graphs [7]. Here ρs is defined such that it is scaled between 0
and 1 to compare networks of different sizes

ρs = ρ

‖A‖2
, (14)

where ρ is the standard spectral radius of the adjacency matrix
and ‖A‖2 is the 2-norm of A, that is, ‖A‖2

2 is the largest eigen-
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FIG. 2. Example of the distribution of trophic incoherence with
the temperaturelike parameter Tgen in this generative model.

value of AAT . As we show in Fig. 3, the generated networks
we use in this work also have ρs close to the value given by
Eq. (13). This justifies the assumption that the numerically
generated networks reflect some of the characteristics exhib-
ited by real-world networks.

V. RESULTS

First, as we impose the constraint that only a subset of
neurons is presented the pattern to make the setup more like
real-world systems, we must decide which set of neurons is
to be shown the pattern and assess the effects of this choice.
It was chosen that for this model 20% of the neurons would
be set into a pattern state and then it would be measured how
well the system recovered the remainder of the pattern from
this setup. The location of pattern presentation is analogous
to the initial conditions of a dynamical system where the
question would be which initial condition sends the system
into the desired state given the constraint of only controlling

FIG. 3. Plot of scaled spectral radius of generated networks vs
trophic incoherence following the same analytic prediction as real
networks as shown in Ref. [3]. The number of nodes is always N =
500 and the mean degree 〈k〉 = 20.

FIG. 4. Plot of performance of 200 networks with N = 500 and
〈k〉 = 100 recovering ten patterns vs trophic incoherence. Patterns
are shown for the different 20% sets of nodes.

a small number of elements. To assess the effect of hierar-
chy on pattern recovery, patterns were shown to the 20%
of nodes with the lowest trophic level (at the bottom of the
hierarchy), highest trophic level (at the top of the hierarchy),
and a random 20% of nodes. The results are shown in Fig. 4
for networks spanning a range of trophic coherence. We plot
the results for each individual network, rather than just the
averages with error bars, in order to highlight the breadth
and distribution of network behavior, which becomes more
apparent as we study sparser networks in Sec. V A. These
results demonstrate the difference in dynamics depending on
the part of the network shown the pattern. When the pattern
is shown to 20% of the nodes randomly this is not enough to
move the system into a new state, so the shown pattern is not
recovered well across the whole range of trophic coherence. It
is only possible to extend down to networks of intermediate
coherence at this edge density with the generative method
used. When the perturbation is made to the state of the top
20% of nodes by the trophic level, it has little effect on the
state of the system. This is because the perturbation cannot
filter back down the system, so the top nodes do not drive the
dynamics. For sparse enough networks and high coherence,
it is unlikely there will be any paths from the highest trophic
levels to other nodes further down. If the network is denser,
such paths may exist, but they will still be few compared
with the number of paths from lower levels to higher. Hence,
information flow will always be predominantly from lower to
higher trophic levels in coherent networks.

The dynamics is more complex when patterns are pre-
sented to the lowest-level nodes, since we observe different
behaviors when trophic incoherence is varied. For the most in-
coherent networks, which are most similar to random graphs,
the performance is on average poorer as the system is more
stable due to the amount of feedback in the system. By sta-
bility we mean here the system’s resistance to changing state
when a new pattern is presented. At intermediate coherence,
the network has an overall direction, so the perturbation at
low-level nodes is transmitted through the hierarchical net-
work structure and pattern recovery is quite good even though
only 20% of nodes are stimulated. This is behavior that would
not be seen in a Hopfield model on a complete graph, nor on a
random graph, since more than half the nodes would need to
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FIG. 5. Plot of performance of 200 networks with N = 500 and
〈k〉 = 100 recovering ten patterns vs trophic incoherence. Patterns
are shown for the different 60% sets of nodes.

be changed to a new pattern in order to change the state of the
system. These results demonstrate the variety of dynamics that
can be induced by the more complex hierarchical networks as
compared to a complete or random graph [10,40,41].

When the constraint of a small number of input neurons
is removed, the effect of hierarchy on the dynamics is less
obvious. Figure 5 illustrates the case when the patterns are
shown to 60% of neurons. When this many neurons receive
an input the distinction between the outcome of showing a
pattern to a random 60% and the lowest level 60% is blurred,
with both being able to recover the pattern across a range
of trophic coherence. This highlights the impact of remov-
ing the constraint of a small number of inputs. When the
inputs are large the effect of the trophic level is hidden as
randomly chosen inputs can control the system. However, for
the highest-level nodes this is still not the case. Even at 60%,
the higher-level nodes fail to influence the coherent networks,
as the lowest-level nodes still have more control over the
system and prevent the pattern from being modified. When the
network is hierarchical, perturbations can be both amplified
or damped by the structure, something not seen in either a
complete or a random graph Hopfield network. This is again
different behavior than what would be observed on a dense
network with no internal structure, as 60% of neurons being
flipped would be enough to change the state to that of the new
pattern in all cases. This highlights the connection between the
trophic level of a node and its ability to control the network:
The high-level nodes have much less ability to influence the
system than those at a low level. This difference remains at all
levels of trophic coherence, but is most pronounced for more
coherent structures. In all examples the trophic incoherence
does not actually reach 1, where all the nodes would have the
same level. This is because this only happens in balanced net-
works, such as a directed cycle, and the limit of our model is
Erdős-Rényi random graphs, which have incoherence around
0.95. It is interesting to note the graphs which are random still
have a slight hierarchical structure which can be revealed by
the trophic levels.

A. Sparser networks

When the networks are made sparser, that is, the average
degree 〈k〉 is reduced from 100 to 20, the results are broadly

FIG. 6. Performance of 200 networks with trophic incoherence
showing patterns to the 20% lowest (blue), highest (green), and
random (orange) nodes by trophic level, for N = 500 and 〈k〉 = 20.

the same as on denser networks, but there is more variation
in the performance of different networks, even for similar
trophic coherence (see Fig. 6). For networks of this sparsity
the whole range of coherence can be investigated, as there
are no difficulties associated with generating the more co-
herent networks. For inputs to both randomly selected and
highest-level nodes, the recovery is very poor, just as it was
before. When it is the lowest-level nodes which receive the
input, behavior depends on the trophic incoherence of the
network. For the networks with lowest incoherence, the per-
formance is generally very poor. This is due to the fact that
these networks have very little feedback and small strongly
connected components, so the patterns are not well recov-
ered. For the intermediate coherence networks, performance
is inconsistent. Some networks perform very well, with their
structure being suited to controlling the system with only the
low-level nodes, while other networks perform very badly.
Finally, higher incoherence networks are again more likely to
get stuck in a pattern rather than to respond to the stimulus at
the lowest-level nodes, due to the high amount of feedback in
the system, and the maximum performance begins to decrease
again. Therefore, for sparser networks we find that the best
performance is found at intermediate coherence, although not
all networks in this range are necessarily high performing.

The relationship between average degree and recovery of
patterns is shown in Fig. 7, where all networks have 500
nodes and are generated using Tgen = 1. The task cannot be
performed by the most sparse networks, as they all fail to store
any patterns. At an average degree of around 20, we reach the
regime where some recovery is possible. For higher density,
recovery reaches an inconsistent regime, where performance
varies greatly for networks of similar degree and trophic prop-
erties. This kind of regime is most interesting to study since
the dynamics has a great deal of variability and successful
pattern recovery is possible but not sure. Above an average
degree of about 200, the structural features of the network are
lost as the network is too dense and it simply gets stuck in one
state for the whole dynamics and there is no ability to update
when presented with a small number of inputs. Hence, Fig. 7
demonstrates that increasing the network density can make
performance at a pattern recovery task worse, which is counter
to the general expectation for Hopfield networks where higher
connectivity improves performance [41,42].
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FIG. 7. Performance of networks of varying degree for fixed
generation temperature Tgen = 1, showing patterns to the 20% lowest
nodes by trophic level, for N = 500. The average trend is shown by
the red dashed line and the standard deviation is shown in the shaded
area.

B. Comparison of targeting highest-degree nodes

To validate our choice of nodes we compare our results to
a targeted presentation of the pattern to the 20% of nodes of
highest out-degree, which one might assume form the subset
of nodes with greatest local influence on the system. This
comparison is shown in Fig. 8, which compares the influence
of the nodes of high degree to the selection of nodes by their
local trophic properties. The set of nodes with highest degree
do not influence the network to the extent that the lowest-level

(a)

(b)

FIG. 8. Distribution of performance for networks showing ten
patterns to the lowest trophic level, highest degree, and random 20%
of nodes for N = 500 and (a) 〈k〉 = 100 and (b) 〈k〉 = 20.

FIG. 9. Relationship between network performance and the ratio
between the number of edges leaving the set shown the pattern and
total edges in the network for N = 500 and 〈k〉 = 20. Networks are
of intermediate incoherence.

nodes do. However, they do perform better than a random set
of nodes, as expected, in both networks of average degrees 20
and 100. In the networks of average degree 100 [Fig. 8(a)], the
lowest trophic level nodes are better than the highest degree
nodes when the network is more coherent and hierarchical,
as in this case the system is more strongly controlled by the
low-level nodes. When the networks are less hierarchical, the
influence of the high out-degree nodes becomes comparable
to the influence of the low-level nodes. This highlights a
crucial point: In a complex network, the “importance” of
nodes can be determined both by their degree-based centrality
and by their relative position in the hierarchy, depending
on how trophically coherent the overall system is. In a very
hierarchical (i.e., coherent) network, even if a node has a high
out-degree, the state of the system can still be more controlled
by lower out-degree nodes below it in the hierarchy. Our
results, due to the generative model, focus on networks where
the degree distributions are not extremely heterogeneous.
The fact that in very hierarchical networks low-level nodes
control the state of the nodes above them would still hold in a
very heterogeneous network. However, degree may be a more
important factor if the out-degree of a few nodes were so
large that they directly affected much of the network. These
network properties can interact in a variety of ways and may
be the subject of future work.

C. Structural properties of networks affecting performance

We hypothesized that some network properties outwith
trophic coherence could explain the range and inconsistency
of behavior for sparse networks. One possible measure was
the number of edges leaving the node set shown the pattern
compared to the total number of edges. When very few edges
connect the nodes shown the pattern to the rest of the network,
it is unlikely for the pattern to be successfully recovered,
as when the pattern is updated it cannot be properly trans-
mitted outside the set shown the pattern. The results of this
are displayed in Fig. 9. This shows that there is a strong
correlation (correlation coefficients in the legend) between the
edge ratio and performance, but it does not exactly determine
the behavior of the system. However, it is very clear that the
worse performing networks have very small values of this
parameter and it can be used to identify the failing networks,
if not precisely to select the very best networks.
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FIG. 10. Plot of distribution of performance of 200 intermediate
incoherence networks vs the integral from 0 to 1 over a parameter
α of the curve of the number of nodes of trophic level less than
αhmax for N = 500 and 〈k〉 = 20. Networks are of intermediate
incoherence.

Another factor which we thought may influence the perfor-
mance was the distribution of trophic levels among the nodes.
In networks generated with the model used here (see Sec. IV),
edges tend only to span a small difference in trophic level.
We would therefore like the level distribution to be peaked
towards lower levels so that more nodes have a lower level
and are more likely to be densely interconnected with the set
of nodes shown the pattern. This is shown in Fig. 10, where
we sum the cumulative distribution of the number of nodes
of trophic level less than αhmax for α in the range 0 – 1.
This function is maximized when the level distribution peaks
towards lower-level nodes and so provides a good measure of
where the peak in trophic level lies, while being normalized so
different networks can be compared. It shows a similar profile
to the result of Fig. 9, where the correlation is again strong
but does not precisely predict the performance of the network.
We therefore surmise that the performance of a network at this
task depends on several topological features, including but not
limited to trophic coherence, mean degree, mean degree of the
lowest-level nodes, and trophic level distribution.

D. Time series of pattern recovery in sparse
network components

In this section we review the time series of the dynamics
of pattern recovery in a network with average degree 20 and
highlight some of the reasons for the inconsistency in per-

formance between similar networks. In all of the following
example time series the pattern is presented to the 20% of
nodes with the lowest trophic level.

We find that the network structure can induce quite het-
erogeneous dynamics. This is something that is not noticeable
when the recovery is working well. Let us consider first the
case of a dense network, with mean degree 100, as shown in
Fig. 11. In this time series each color represents the pattern
which has been most recently presented to the network, while
the y axis represents the order parameter corresponding to that
pattern. For a well-performing network, the order parameter
quickly returns close to 1 whenever a new pattern is presented.
This is the case for the network shown in Fig. 11. Due to the
recovery being this good and the edge density being high, het-
erogeneous dynamics is not observed. Patterns are recovered
to the same extent in all parts of the network hierarchy and
additionally the whole network is strongly connected, so there
is no difference in dynamics inside or outside that component.

This is very different from the dynamics exhibited by
the sparse network used in Fig. 12, which stores four pat-
terns. This network is a specific example of a network which
performs reasonably well, but it should be borne in mind
that many sparse networks fail very badly. The dynamics is
analyzed by considering four different network components
(subgraphs): the whole system, the largest strongly connected
component, the bottom 20% of the nodes by trophic level, and
the top 20% of nodes by level. Note that these components
are simply where the data were collected and the presentation
location was unchanged. In the full system [Fig. 12(a)], recov-
ery is good for some patterns but fails badly for others. The
behavior of each pattern is roughly consistent, and if a pattern
fails or succeeds at one presentation it will repeat the same
behavior at subsequent presentations. The order parameter
dips when a new pattern is presented and then moves to its
new stable value. Additionally, there are fluctuations around
the stationary states and updates to the system do not stop
(i.e., some neurons continue to change state in subsequent
time steps). This is different from the dynamics inside the
largest strongly connected component [Fig. 12(b)], where for
the fully recovered stable patterns updates stop and there
are no fluctuations. This highlights the stabilizing effects of
feedback associated with being strongly connected. Among
the low-level nodes [Fig. 12(c)], for those patterns which are
correctly recalled, the order parameter goes to 1 when the new

FIG. 11. Time series of the pattern order parameter for an average degree 100 network with 500 nodes storing 20 patterns. Each color
represents the pattern most recently shown to the network. At this edge density recovery is very consistent.
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(a)

(b)

(c)

(d)

FIG. 12. Time series for different network components for an average degree 20 network with 500 nodes storing 4 patterns: (a) full pattern
order parameter, (b) strongly connected component, (c) bottom 20% of nodes by trophic level, and (d) top 20% of nodes by trophic level. Each
color represents the pattern most recently shown to the network.

pattern is presented. However, if a pattern is not recovered by
the low-level nodes then this precludes the possibility of that
pattern being successfully transmitted through the network.
This means that if a pattern is not recovered by the low-level

nodes [Fig. 12(c)], then it will also fail to be recovered by
the high-level nodes [Fig. 12(d)]. Recovery by the high-level
nodes is the least consistent and fluctuates the most, since
these nodes are furthest from where the patterns are presented.
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In addition, the order parameter initially drops to zero when-
ever a new pattern is presented as it is not shown to any of the
nodes contained in this set. These results might be different if
the network included basal nodes (those with no in neighbors)
and would depend on what update rule we chose for these,
e.g., maintain their state indefinitely, update randomly, etc.

E. Search for improvements to network structure

The results relating the distribution of trophic levels to
neural-network performance open the possibility of biasing
the network generation process so that it preferentially leads
to networks with topology better suited to the task. A simple
way to accomplish this is to generate the networks in the same
way as previously, but modify the probability of adding edges
so that it is biased towards adding edges to lower-level nodes.
This can be accomplished by modifying the probability of
placing and edge so that

Pi j = exp

(
− (h̃ j − h̃ j − 1)2

2Tgen
+ γ h̃i

)
, (15)

where the γ h̃i modification in the exponential acts to bias the
distribution towards high or low levels, depending on the sign
of γ . In what follows we choose γ = −0.5 in order to add
more edges to nodes with lower trophic level. One downside
of this method is that it is harder to control precisely the
trophic incoherence of a network and to span the full range
of incoherence.

The broad effects of biasing the network generation and
performance are demonstrated in Fig. 13. This shows that
when edges are more likely to connect to low-level nodes
[Fig. 13(a)], the very worst performing networks are es-
sentially eliminated and all the sparse networks recall at
least a fraction of the pattern. This biasing has no effect
on performance when presenting the pattern to the random
or higher-level nodes, as they still fail to force the sys-
tem to change state when the perturbation is applied to
these nodes.

To demonstrate the importance of where feedback is placed
in the hierarchy we change the sign of the biasing factor and
make it more likely that edges are added to the higher-level
nodes [Fig. 13(b)]. This creates networks which are not suited
to the recovery task and perform badly in all cases. This is due
to the fact that the edges connecting to high-level nodes do not
allow both for the pattern to be stable and for the information
to be transmitted across the system. One issue with biasing the
network generative process is that it becomes more difficult to
control precisely the trophic coherence of the network, which
is why the range of trophic incoherence is restricted in Fig. 13.

The time series of pattern recovery for sparse biased
networks clearly demonstrate how this biasing procedure
modifies the dynamics of the system. Pattern recovery across
the whole system [Fig. 14(a)] is very consistent compared
to the unbiased networks (Fig. 6), which fully recover some
patterns and fail to recover others. This time series is a rep-
resentative example of the behavior seen in biased networks
and comes from a single network. The consistent level which
they reach however is below 1, so the patterns are not fully
recovered and the recovery is not as high as the maximum
seen in some specific unbiased networks (Fig. 12). Whether

(a)

(b)

FIG. 13. Distribution of performance for biased networks biased
towards (a) low-level nodes with γ = −0.5 and (b) high-level nodes
with γ = 0.5, for N = 500 and 〈k〉 = 20.

this is better may depend on the context: Remembering part
of every pattern so it can be identified may be preferable to re-
calling some patterns perfectly but not recovering others at all.
Additionally, for biased networks there are large fluctuations
and updates continue when the system has reached the new
state. This can be explained by looking at the dynamics inside
the largest strongly connected component only [Fig. 14(b)].
In this component recovery is very consistent and all patterns
are fully recovered, so the network does much better when this
component is larger. It also explains why, in the time series for
the dynamics of the full network, fluctuations around a stable
point are observed, since updates to neuron states stop in the
strongly connected component but continue outside it. The
fact that the recovery is very good inside the largest strongly
connected component opens up the possibility of selectively
generating networks which both are biased towards lower-
level nodes and have large strongly connected components.

This is demonstrated in Fig. 15, which shows the per-
formance of biased networks where the largest strongly
connected component comprises more than 60% of the nodes.
These networks are simply generated by repeating the gener-
ative process and discarding networks which do not meet this
requirement. The higher this threshold, the more inefficient
the process but the more likely we are to keep only highly
performing networks. At a threshold of 60% all very poorly
performing networks are eliminated and the recovery perfor-
mance is consistently around 0.6. These results demonstrate
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(a)

(b)

FIG. 14. Time series of the pattern order parameter calculated inside the different components for an average degree 20 network with
500 nodes storing 4 patterns, generated with a bias towards adding edges to lower-level nodes: (a) order parameter of the whole network and
(b) largest strongly connected component only. Each color represents the pattern most recently shown to the network.

that despite the variability in the dynamics of directed sparse
Hopfield networks, it is possible to generate structures which
perform well consistently by tuning a few parameters: Tgen to
set the trophic coherence, γ to place edges preferentially at
lower level nodes, and the threshold for the minimum size of
the strongly connected component.

There are many possible ways to modify network structure
to maintain performance and we just give a small sample here.
Biasing is limited by the fact that it reduces the control of the
trophic structure and that strongly biasing may decrease the
size of the strongly connected component which is needed for
recovery. The best way to improve network structure depends

FIG. 15. Performance of low-level-biased networks with nodes
of average degrees 20 and 500 where the largest strongly connected
component contains at least 60% of the neurons.

on the constraints, on whether edges can be added or removed,
and on how success is defined. Biasing makes the recovery
more consistent, but the performance of unbiased networks
may peak higher for certain networks and patterns, which may
be preferred in some situations.

VI. CONCLUSION

We have shown that neural networks based on sparse troph-
ically coherent graphs have a much wider range of possible
behavior than ones based on either fully random or complete
graphs [10,40,41], where all nodes necessarily have very sim-
ilar dynamical roles. This symmetry is broken in a coherent
network, as different nodes can have very different abilities
to affect the dynamics of the system. The interplay between
trophic structure and dynamics has already been observed
across a range of systems in the literature [18,22,26]. It has
also been shown that the coherence of a network is linked
to the non-normality of the adjacency matrix [3,8]. Non-
normality in networks has in turn been linked to sensitivity
to perturbations and to the stability of the system across a
wide range of dynamics [43–47], which is consistent with
our results that more coherent networks are more sensitive to
targeted perturbations and less stable.

The behavior observed in the system studied here relies
on two key facts: that the networks are sparse and that the
sets of input nodes are small. If the networks are too dense
then hierarchical structure is destroyed and the asymmetry
between nodes does not exist (there is a limit to how co-
herent a dense network can be). Moreover, it is due to the
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network’s trophic coherence that a small subset of nodes is
able to drive the dynamics of the whole system. Many real-
world systems display both of these properties. Additionally,
they are often neither highly coherent nor incoherent, but
have trophic coherence in the intermediate range which al-
lows for a balance between stability and sensitivity to stimuli
[3,7,8]. Therefore, we believe the principles studied here for
the case of Hopfield-like neural networks may be broadly
applicable to a range of real-world systems. The limitations
of these methods are that since trophic incoherence is an
average global network property it lacks the precise detail
to characterize fully the behavior of the system in all cases.
It is challenging to control precisely both the trophic inco-
herence and another aspect of network structure, since one
may restrict the other, as with the biasing method. In the
future this work could be extended by looking at a time
series of patterns which are correlated with each other [37],
patterns correlated with the structure, or networks with hetero-
geneous degree distributions and varying in- and out-degree
correlations.

In conclusion, we have demonstrated, through numerical
analysis, that trophic structure strongly shapes pattern recov-
ery in directed Hopfield-like networks. In particular, on a
sparse directed network a small number of input neurons,
which can be identified by their trophic levels even in the
absence of basal nodes, are able to drive the system in such
a way that it recovers patterns. This would not be possi-
ble on either a complete or fully random network, which
requires at least about 50% of the nodes to receive the in-
put in order to change state. In order for such networks to
recover patterns successfully, they must have the correct bal-
ance between feedback and directionality, a feature which
is determined by the trophic coherence. However, we ob-
served that setting the appropriate trophic coherence was not
enough to guarantee good performance. We found that by
biasing the network generation process so as to add edges
preferentially to lower-level nodes and then discarding net-
works with strongly connected components below a minimum
size, we could reliably produce architectures that perform the
task well.
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APPENDIX A: SOFTWARE TOOLS USED

Various software packages were used manipulate the net-
works and perform the simulations. The PYTHON package
GRAPH TOOL [48] was used for some of the network manip-
ulation. NETWORKX [5] was used for network drawing and
some network manipulation and analysis. The JULIA package
LIGHTGRAPHS.JL was used for the spectral radius results [49].
All the updating and training of the Hopfield-like networks
was done with the aid of the CYTHON package [50] to convert

PYTHON code to C as pure PYTHON was found to be too slow
to allow efficient study.

APPENDIX B: NETWORK GENERATION

The detailed steps to the network generative process are as
follows:

(1) Create the N nodes of the network and assign to each
node one incoming edge in each case from a randomly chosen
other node. After this, each node has in-degree 1.

(2) Compute the initial trophic levels h̃ using Eq. (2). This
is best solved iteratively, since this method is fast and works
even if there are small disconnected components.

(3) Add edges up to the desired edge number with proba-
bility dependent on the trophic level difference between the
nodes minus 1. The edge probability used is Gaussian and
defined as

Pi j = exp

(
− (h̃ j − h̃ j − 1)2

2Tgen

)
, (B1)

where Tgen is a temperaturelike parameter used to control how
coherent the network is: Small Tgen generates networks which
are highly coherent.

(4) Recompute the trophic levels h including the newly
added edges. Then compute the incoherence parameter F of
the generated network.

This method works best for reasonably sparse networks,
since when the edge density is too large it becomes difficult to
find configurations of high trophic coherence, if they exist at
all. On the other hand, if the edge density is very low the re-
sulting network may not be even weakly connected. However,
for a large range of densities it will encounter no issues. Due to
the stochastic nature of the method it is not possible to predict
precisely the incoherence of a generated graph. For example,
1000 networks generated with 500 nodes and 30 × 500 edges,
at temperature Tgen = 1.3, cluster around F ≈ 0.59, with most
networks in the interval F ∈ (0.56, 0.65). However this level
of precision is sufficient for analyzing general regions of be-
havior with no issues.

The third step can be quite computationally inefficient for
large networks with many possible edges as the probabilities
for adding an edge at most locations are very close to zero.
This can be improved by more efficiently sampling the prob-
ability distribution using the method outlined below.

The goal of this sampling method is to set up the sampling
so that each time a random number is drawn it results in an
edge. This avoids repeatedly drawing numbers for the major-
ity of edges which are unlikely to be added. The steps are as
follows:

(1) Label all the possible edges and probabilities with an
integer l and Pl , respectively.

(2) Compute the sum of all these probabilities

S =
∑

l

Pl .

(3) Draw a random number r between 0 and S.
(4) Sum the probabilities one at a time until the random

number r is reached.
(5) Add an edge at the space l corresponding to the proba-

bility Pl which made the same greater than r.
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(6) Set Pl = 0 and repeat steps 2–6 until the required edge
number is reached.

This method is much more efficient: The sums can be com-
puted quickly as it avoids the many repeated random number
draws for every single missed edge that would otherwise be

necessary. It is possible to also create variants of this method
by modifying the initial structure to which subsequent edges
are added or to recast the model so as to start from a dense
network and prune edges with a similarly defined probability
to generate networks of the desired trophic incoherence.
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