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We study numerical methods for the generalized Langevin equation (GLE) with a positive 
Prony series memory kernel, in which case the GLE can be written in an extended variable 
Markovian formalism. We propose a new splitting method that is easy to implement 
and is able to substantially improve the accuracy and robustness of GLE simulations in 
a wide range of the parameters. An error analysis is performed in the case of a one-
dimensional harmonic oscillator, revealing that several averages are exact for the newly 
proposed method. Various numerical experiments in both equilibrium and nonequilibrium 
simulations are also conducted to compare the method with popular alternatives in 
interacting multi-particle systems.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is well known that the popular Langevin dynamics is based on the assumption that there is a clear separation between 
the characteristic time scale of the “massive” particles and that of those smaller solvent particles forming the heat bath. 
Within this assumption, the effect of the solvent is simply reduced to an instantaneous drag force and a delta-correlated 
random force, thereby significantly reducing the computational cost of an “explicit solvent” model. However, it has been 
well documented that this underlying assumption breaks down in many physically compelling scenarios, in which case a 
generalized version of the Langevin dynamics is more suitable—it is known as the generalized Langevin equation (GLE) 
derived from the Mori–Zwanzig formalism [42,55]. The GLE has been widely applied in a large number of applications, 
including molecular simulations [21,30,17], mesoscopic modeling [11,22], solids [23,24,52], nuclear quantum effects [8,9], 
and various anomalous diffusion phenomena [16,40].

Unlike the Langevin dynamics, a temporally nonlocal drag force and a random force with nontrivial correlations are 
typically associated with the GLE, which make its numerical integration highly nontrivial [21,6]. To be more precise, the 
temporally nonlocal drag force, in the form of a convolution of the momentum with a memory kernel, requires the stor-
age of the momentum history, whose numerical evaluation at each time step can be computationally demanding. On the 
other hand, it can also be computationally expensive to generate a random force with nontrivial correlations, which may 
require the storage of a sequence of random numbers at each time step. Although considerable effort has been devoted to 
developing accurate and robust numerical methods that circumvent either or both of these challenges mentioned above, it 
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is very difficult to claim any individual method as being optimal, especially given the fact that there are such a broad range 
of applications where the GLE can be applied.

To this end, in this article we focus our attention on a general form of the memory kernel, which is a sum of exponentials 
and also known as a positive Prony series. It has been widely used in a large number of studies in the literature [15,41,
45,6,46,20]. Moreover, as pointed out in [1,41,16], with certain choice of the parameters, a Prony series can be seen as an 
approximation of a power law [28,40,16], another primary example of the memory kernel.

The rest of the article is organized as follows. In Section 2, we discuss the mathematical formulations of the GLE, includ-
ing not only the extended variable Markovian formalism and its white noise limit but also the Markovian approximations 
of the GLE with a more general memory kernel. Section 3 reviews three popular integration methods for GLE, followed 
by the derivations of a new promising scheme. Error analysis on the averages in the case of a one-dimensional harmonic 
oscillator will also be performed. A variety of numerical experiments are performed in Section 4 to compare all the schemes 
described in the article. Our findings are summarized in Section 5.

2. Mathematical formulations

Consider an N-particle system evolving in dimension d with position qi ∈Rd , momentum pi ∈Rd , and mass mi ∈R for 
i = 1, . . . , N , the equations of motion for the non-Markovian form of the GLE are given by

dqi = m−1
i pidt , (1a)

dpi = −∇qi U (q)dt −
t∫

0

K̂ (t − s)m−1
i pi(s)ds dt + ηidt , (1b)

where U (q) is a smooth potential energy. Component-wise, the random force ηx
i (t), where the index x indicates the appro-

priate Cartesian components, is a mean zero stationary Gaussian process with an autocorrelation function K̂ , satisfying the 
fluctuation-dissipation relation [7,27],

〈ηx
i (t + s)ηy

j (t)〉 = β−1 K̂ (s)δi jδxy , s ≥ 0 , (2)

where β denotes the inverse temperature, both δi j and δxy are Kronecker delta functions. In this article, we focus our 
attention on the following general form of the memory kernel:

K̂ (t) =
M∑

k=1

λ̃2
k exp

(−α̃kt
)

, t ≥ 0 , (3)

where M is a positive integer that represent the number of modes,

λ̃k = λk/
√

ε > 0 , α̃k = αk/ε > 0 , (4)

with λk and αk being two constant parameters and ε > 0 being a rescaling parameter (see more discussions in [45]). Note 
that for the sake of notational simplicity we do not explicitly express the dependence of λ̃k and α̃k on ε .

2.1. Extended variable Markovian formalism

In order to avoid dealing with the integral form of (1b), it is desirable to rewrite (1) as an extended variable Markovian 
formalism [28,9,45,6,46,10,36]. More specifically, following [6], we define the extended variable, ξ i,k ∈ Rd , associated with 
the k-th Prony mode’s action on the i-th component of q and p:

ξ i,k = −
t∫

0

λ̃k exp [−α̃k(t − s)]m−1
i pi(s)ds . (5)

Subsequently, (1) may be rewritten as

dqi = m−1
i pidt , (6a)

dpi = −∇qi U (q)dt +
M∑

k=1

λ̃kξ i,kdt + ηidt . (6b)

Differentiating (5) gives a simple stochastic differential equation (SDE):

dξ i,k = −α̃kξ i,kdt − λ̃km−1pidt . (7)
i

2
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In order to construct a random force that satisfies the fluctuation-dissipation relation (2), we consider the following SDE:

dηi,k = −α̃kηi,kdt +
√

2α̃kβ
−1dWi,k , (8)

where Wi,k = Wi,k(t) ∈ Rd is a vector of uncorrelated standard Wiener processes. It can be easily seen that (8) is an 
Ornstein–Uhlenbeck (OU) process where, component-wise, ηx

i,k(t) has mean zero (i.e., 〈ηx
i,k〉 = 0) and time correlation func-

tion [49] of

〈ηx
i,k(t + s)ηx

i,k(t)〉 = β−1 exp
(−α̃ks

)
, s ≥ 0 . (9)

Therefore, the random force ηi in (1b) can be rewritten as

ηi =
M∑

k=1

λ̃kηi,k . (10)

Moreover, combining the results of (3)–(10) and introducing a new variable of zi,k = ξ i,k +ηi,k , the GLE (1) may be rewritten 
as the following extended variable Markovian form:

dqi = m−1
i pidt , (11a)

dpi = −∇qi U (q)dt +
M∑

k=1

λ̃kzi,kdt , (11b)

dzi,k = −λ̃km−1
i pidt − α̃kzi,kdt +

√
2α̃kβ

−1dWi,k , k = 1, . . . , M . (11c)

It is worth mentioning that, in the special case of M = 1, (11) is very similar to a third-order Langevin dynamics that has 
certain advantages in controlling the discretization errors over its corresponding second-order form, i.e., an underdamped 
Langevin dynamics (see more discussions in [43]). Note also that, by introducing an additional variable, the extended 
variable Markovian form (11) can be cast into the GENERIC (General Equation for Non-Equilibrium Reversible–Irreversible 
Coupling) formalism (see more discussions in [44,14,26]), while this cannot be easily done in the original non-Markovian 
form (1). We can write down the Fokker–Planck (or forward Kolmogorov) equation associated with (11)

∂ρ

∂t
= L†

GLEρ =
N∑

i=1

[
−m−1

i pi · ∇qi ρ + ∇qi U (q) · ∇pi ρ
]

+
N∑

i=1

M∑
k=1

[
λ̃k

(
−zi,k · ∇pi ρ + m−1

i pi · ∇zi,kρ
)

+ α̃k
(∇zi,k · (zi,kρ

)+ β−1
zi,kρ
)]

.

(12)

It can then be shown that there exists a unique invariant measure defined by the density

ρβ(q,p, z) = 1

Ẑ
exp

(
−β

[
U (q) +

N∑
i=1

pi · pi

2mi
+

N∑
i=1

M∑
k=1

zi,k · zi,k

2

])
, (13)

where Ẑ is the partition function. That is, (13) is the unique solution of the stationary Fokker–Planck equation (12), i.e., 
L†

GLEρβ = 0.

2.2. White noise limit

From (11c) we have

zi,kdt = 1

α̃k

(
−dzi,k − λ̃km−1

i pidt +
√

2α̃kβ
−1dWi,k

)
, (14)

and substituting it into (11b) gives

dpi = −∇qi U (q)dt −
M∑

k=1

λ̃k

α̃k
dzi,k −

M∑
k=1

λ̃2
k

α̃k
m−1

i pidt +
M∑

k=1

√
2λ̃2

kβ−1

α̃k
dWi,k , (15)

which, in the white noise limit of ε → 0 (4), becomes
3
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dpi = −∇qi U (q)dt −
M∑

k=1

λ2
k

αk
m−1

i pidt +
M∑

k=1

√
2λ2

kβ−1

αk
dWi,k . (16)

Rewriting the summation of dWi,k in the equation above as√√√√ M∑
k=1

2λ2
kβ−1

αk
dWi , (17)

we have

dpi = −∇qi U (q)dt − γ m−1
i pidt +

√
2γ β−1dWi , (18)

where the friction coefficient is given by

γ =
M∑

k=1

λ2
k

αk
, (19)

which is precisely the integral of the memory kernel defined in (3),

γ =
∞∫

0

K̂ (t)dt . (20)

Thus, we have heuristically verified that, in the white noise limit of ε → 0, the solution of the GLE (11) converges weakly 
to that of the Langevin dynamics (see a rigorous proof in [45]).

2.3. Markovian approximations of the GLE with a more general memory kernel

We have demonstrated in Section 2.1 that, for the particular form of the memory kernel (3), the GLE (1) may be rewritten 
as the extended variable Markovian form (11). We consider here the case of N = d = 1 while dropping the subscripts for 
simplicity. Moreover, for a more general form of the memory kernel, we may be able to approximate the trajectories of (q, p)

in (1) by trajectories of (q̃, p̃) that solve a Markovian system with a vector of M auxiliary variables, ξ = (ξ1, ξ2, . . . , ξM)T ∈
RM :

dq̃ = m−1 p̃dt , (21a)

dp̃ = −∇U (q̃)dt + gTξdt , (21b)

dξ = −m−1 p̃gdt − Aξdt + CdW , ξ(0) ∼ N (0,�) , (21c)

where g ∈ RM is a constant vector, A, C ∈ RM×M are constant matrices, and W = W(t) ∈ RM is a vector of uncorrelated 
standard Wiener processes. As demonstrated in [28], (21) would be a Markovian approximation of (1) if g, A, C and � satisfy 
the following relations:

� = β−1I , CCT = β−1 (A + AT) , (22)

with the approximated memory kernel being

K̃ (t) = gTe−Atg . (23)

We can also write down the Laplace transform of the approximated memory kernel as

L{K̃ }(s) = gT (A + sI)−1 g , (24)

where the right-hand side is a rational function of s. Thus, a Markovian approximation is established in two steps: first we 
approximate the Laplace transform of the memory kernel by a rational function; then we construct a matrix A and a vector 
g so that (24) holds. Subsequently, � and C are determined from (22).

For a general memory kernel K̂ , these tasks are nontrivial. The simplest case is when the memory kernel can be approx-
imated by a sum of exponentials, e.g., the positive Prony series memory kernel (3), whose Laplace transform can be easily 
computed as

L{K̃ }(s) =
M∑ λ̃2

k

s + α̃k
. (25)
k=1

4
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In this case, A and g are chosen as

A = diag
(
α̃1, . . . , α̃M

)
, g =

(
λ̃1, . . . , λ̃M

)T
. (26)

Note also that in cases where A is diagonalizable they can be reduced to the case above after an appropriate orthogonal 
transformation [28].

3. Numerical methods

Splitting methods have been widely used in a range of systems, including Hamiltonian dynamics [35,19], dissipative 
systems [51], and various stochastic dynamics [31,32,34,37–39,50,48]. The techniques have also been adopted in the con-
struction of numerical methods for the GLE (e.g., [9,6,36]). In what follows we will first review three splitting methods 
proposed by Baczewski and Bond [6]. We will then propose a new method based on an alternative splitting of the vector 
field. Error analysis on the averages in the case of a one-dimensional harmonic oscillator will also be performed.

3.1. The BACSCAB method

The vector field of the GLE (11) can be decomposed into pieces, for instance, A, B, C, and S:

d

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

qi
pi

zi,1
zi,2
...

zi,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m−1
i pi
0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dt

︸ ︷︷ ︸
A

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−∇qi U (q)

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dt

︸ ︷︷ ︸
B

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0∑M
k=1 λ̃kzi,k

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dt

︸ ︷︷ ︸
C

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−λ̃1m−1
i pidt − α̃1zi,1dt +√2α̃1β−1dWi,1

−λ̃2m−1
i pidt − α̃2zi,2dt +√2α̃2β−1dWi,2

...

−λ̃Mm−1
i pidt − α̃M zi,M dt +√2α̃Mβ−1dWi,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
S

,

(27)

in such a way that each subsystem can be solved “exactly”. It is worth mentioning that the S part consists of a vector of 
uncorrelated OU processes, each of which has an exact (in the sense of distributional fidelity) solution [25].

In describing splitting methods, we use the formal notation of the generator of the diffusion as in [12,47,54]. The gener-
ators for each part of the system may be written out as follows:

LA =
N∑

i=1

m−1
i pi · ∇qi , (28a)

LB = −
N∑

i=1

∇qi U (q) · ∇pi , (28b)

LC =
N∑

i=1

M∑
k=1

λ̃kzi,k · ∇pi , (28c)

LS =
N∑

i=1

M∑
k=1

[
−λ̃km−1

i pi − α̃kzi,k + α̃kβ
−1∇zi,k

]
· ∇zi,k . (28d)

The generator for the GLE thus can be written as

LGLE = LA +LB +LC +LS . (29)

Moreover, the flow map (or phase space propagator) of the system may be given by the shorthand notation

Ft = etLGLE , (30)
5
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where the exponential map is used to formally denote the solution operator to the equation ∂t u = LGLEu. Furthermore, 
approximations of Ft may be obtained as products (taken in different arrangements) of exponentials of the various splitting 
terms. For instance, the phase space propagation of a splitting method in Section II E of [6], termed BACSCAB, can be written 
as

e
tL̂BACSCAB = e

t
2 LB e


t
2 LA e


t
2 LC e
tLS e


t
2 LC e


t
2 LA e


t
2 LB , (31)

where exp
(

tL f

)
denotes the phase space propagator associated with the corresponding vector field f . Note that the 

steplengths associated with various operations are uniform and span the interval 
t . Therefore, each of the A, B, and C 
steps in (31) is taken with a steplength of 
t/2, while a steplength of 
t is associated with the S step. Moreover, it is 
worth mentioning that, while each of the OU processes in the S step is exactly solvable, known as the “method 2” in [6],

zi,k(
t) = θkzi,k(0) − (1 − θk)
λ̃km−1

i pi

α̃k
+ ηk

√
β−1Ri,k , (32)

where

θk = exp
(−α̃k
t

)
, ηk =

√
1 − θ2

k , (33)

zi,k(0) is the initial value of zi,k , and Ri,k is a vector of independent and identically distributed (i.i.d.) standard normal 
random variables. Note that an alternative approach was used in the BACSCAB method, known as the “method 3” in [6], by 
slightly modifying the ηk defined above,

η̃k =
√

2 (1 − θk)
2


tα̃k
, (34)

in order to improve the stability [6]. However, we would like to point that in the current form there does not appear to 
have stability issues in the exact solutions (32)–(33) as α̃k → ∞. (The memory kernel was written in a slightly different 
way in [6].) The Euler–Maruyama method can also be used for solving the OU process, known as the “method 1” in [6]. 
However, it will not be included for comparisons since it has been observed that its performance is not as good as the other 
two alternative methods. The integration steps of the BACSCAB method (31) read

pn+1/4
i = pn

i − (
t/2)∇qn
i
U (qn) , (35a)

qn+1/2
i = qn

i + (
t/2)m−1
i pn+1/4

i , (35b)

pn+2/4
i = pn+1/4

i + (
t/2)

M∑
k=1

λ̃kzn
i,k , (35c)

zn+1
i,k = θkzn

i,k − (1 − θk)
λ̃km−1

i pn+2/4
i

α̃k
+ η̃k

√
β−1Rn

i,k , (35d)

pn+3/4
i = pn+2/4

i + (
t/2)

M∑
k=1

λ̃kzn+1
i,k , (35e)

qn+1
i = qn+1/2

i + (
t/2)m−1
i pn+3/4

i , (35f)

pn+1
i = pn+3/4

i − (
t/2)∇qn+1
i

U (qn+1) . (35g)

3.2. The PASP method

An alternative splitting method was proposed in Section II C of [6], termed PASP, whose phase space propagation can be 
written as

exp
(

tL̂PASP

)
= exp

(

t

2
LP

)
exp (
tLA)exp (
tLS)exp

(

t

2
LP

)
, (36)

where

LP = LB +LC . (37)

Depending on how the S part is solved, there are three variants of the PASP method. For example, if the S part is solved 
exactly as in (32)–(33), we arrive the PASP-2 method, whose integration steps read
6
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pn+1/2
i = pn

i − (
t/2)∇qn
i
U (qn) + (
t/2)

M∑
k=1

λ̃kzn
i,k , (38a)

qn+1
i = qn

i + 
tm−1
i pn+1/2

i , (38b)

zn+1
i,k = θkzn

i,k − (1 − θk)
λ̃km−1

i pn+1/2
i

α̃k
+ ηk

√
β−1Rn

i,k , (38c)

pn+1
i = pn+1/2

i − (
t/2)∇qn+1
i

U (qn+1) + (
t/2)

M∑
k=1

λ̃kzn+1
i,k . (38d)

Note that the integration steps for the PASP-3 method [6] are exactly the same as PASP-2 except the ηk in (38c) is replaced 
by η̃k as in (34).

3.3. The BAEOEAB method

BACSCAB and both PASP methods mentioned above rely on solving the S part exactly as in (32)–(33) or with a slight 
modification (34). However, one potential drawback of that approach is, as α̃k → ∞, the update on zi,k becomes increasingly 
dominated by the noise in (32), thereby shrinking the contribution from the “force term” (i.e., −λ̃km−1

k pk), which is likely to 
cause potential accuracy and/or stability issues in sampling the invariant measure (13). To this end, we propose to combine 
the “force term” with the original C part in (27) to form the E part as follows:

d

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

qi
pi

zi,1
zi,2
...

zi,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m−1
i pi
0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dt

︸ ︷︷ ︸
A

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−∇qi U (q)

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dt

︸ ︷︷ ︸
B

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0∑M
k=1 λ̃kzi,k

−λ̃1m−1
i pi

−λ̃2m−1
i pi

...

−λ̃Mm−1
i pi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dt

︸ ︷︷ ︸
E

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−α̃1zi,1dt +√2α̃1β−1dWi,1

−α̃2zi,2dt +√2α̃2β−1dWi,2
...

−α̃M zi,M dt +√2α̃Mβ−1dWi,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
O

.

(39)

In this case, each of the OU processes in the O step is still exactly solvable,

zi,k(
t) = θkzi,k(0) +
√

β−1
(
1 − θ2

k

)
Ri,k . (40)

Moreover, we can further split the E part in such a way that each subsystem, Ex
i,k, component-wise,

d

⎡
⎢⎣ qx

i

px
i

zx
i,k

⎤
⎥⎦=

⎡
⎢⎣ 0

λ̃kzx
i,k

−λ̃km−1
i px

i

⎤
⎥⎦dt , (41)

with qx
i remaining fixed, corresponds to a harmonic oscillator with the exact solution:

px
i (
t) = cos(λ̃km−1/2

i 
t)px
i (0) + sin(λ̃km−1/2

i 
t)m1/2
i zx

i,k(0) , (42a)

zx
i,k(
t) = − sin(λ̃km−1/2

i 
t)m−1/2
i px

i (0) + cos(λ̃km−1/2
i 
t)zx

i,k(0) , (42b)

where the superscript x ≤ d is a positive integer that represents a specific dimension, px
i (0) and zx

i,k(0) are the initial values 
of px

i and zx
i,k , respectively. We further propose a new splitting method, termed BAEOEAB, whose phase space propagation 

can be written as

e
tL̂BAEOEAB = e

t
2 LB e


t
2 LA e


t
2 L̂E e
tLO e


t
2 L̂E e


t
2 LA e


t
2 LB . (43)
7
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Given that the E part has been further split, the propagation of either of the E parts in (43) should be more explicitly 
defined as

e

t
2 L̂E = e


t
2 LEz

N,M e

t
2 L

E
y
N,M e


t
2 LEx

N,M . . . e

t
2 LEz

1,1 e

t
2 L

E
y
1,1 e


t
2 LEx

1,1 . (44)

Note that one may wish to reverse the order in either of the E parts in (43), which would affect neither its overall perfor-
mance nor the order of convergence to the invariant measure. The corresponding integration steps may be written out as 
follows:

pn+1/4
i = pn

i − (
t/2)∇qn
i
U (qn) , (45a)

qn+1/2
i = qn

i + (
t/2)m−1
i pn+1/4

i , (45b)

px,n+2/4
i = cos(λ̃km−1/2

i 
t/2)px,n+1/4
i + sin(λ̃km−1/2

i 
t/2)m1/2
i zx,n

i,k , (45c)

zx,n+1/3
i,k = − sin(λ̃km−1/2

i 
t/2)m−1/2
i px,n+1/4

i + cos(λ̃km−1/2
i 
t/2)zx,n

i,k , (45d)

zn+2/3
i,k = θkzn+1/3

i,k +
√

β−1
(
1 − θ2

k

)
Ri,k , (45e)

px,n+3/4
i = cos(λ̃km−1/2

i 
t/2)px,n+2/4
i + sin(λ̃km−1/2

i 
t/2)m1/2
i zx,n+2/3

i,k , (45f)

zx,n+1
i,k = − sin(λ̃km−1/2

i 
t/2)m−1/2
i px,n+2/4

i + cos(λ̃km−1/2
i 
t/2)zx,n+2/3

i,k , (45g)

qn+1
i = qn+1/2

i + (
t/2)m−1
i pn+3/4

i , (45h)

pn+1
i = pn+3/4

i − (
t/2)∇qn+1
i

U (qn+1) . (45i)

As indicated in (44), both (45c)–(45d) and (45f)–(45g) loop over not only each pair of i = 1 . . . N and k = 1 . . . M , but 
also each Cartesian component (i.e., x, y, or z). Note that we can combine the E and O parts in (39) together to form an 
OU process that can also be solved exactly as in [9,36]. However, this approach relies on operations involving potentially 
very large matrices, which could be computationally very demanding (especially when the number of modes, M , is large 
and/or some of the parameters, λ̃k and α̃k , are, for instance, position-dependent) and thus we would like to avoid. It is 
also worth mentioning that we can easily adopt the procedures based on the framework of the long-time Talay–Tubaro 
expansion [53,13,31,32,34,3,2,38,33,48] to analyze the accuracy of ergodic averages (with respect to the invariant measure) 
in the stochastic numerical methods previously mentioned in this section (with a general nonlinear force), and conclude 
that they all have second order convergence to the invariant measure.

3.4. Error analysis

As in [6], we adopt a standard test case typically used in classical Langevin dynamics [32] by applying a one-dimensional 
harmonic oscillator U (q) = Kq2/2 (K > 0) with a single mode (i.e., M = 1 in (3) while dropping the subscripts for simplicity 
to have m, λ̃, and α̃). In such a simple case, we can explicitly write down one iteration of a general numerical method 
evolving the dynamics as⎡

⎣ qn+1
pn+1
zn+1

⎤
⎦= �

⎡
⎣ qn

pn

zn

⎤
⎦+ μn , (46)

where � = (ψi j), i, j ∈ {1, 2, 3}, is a constant matrix and μn is a vector of stochastic processes, whose components can be 
denoted as μn,i . Taking products of qn+1, pn+1, and zn+1 in the update equations above and then taking expectations on 
both sides of the equations with respect to the invariant measure of the numerical method yields

〈q2〉 =ψ2
11〈q2〉 + ψ2

12〈p2〉 + ψ2
13〈z2〉 + 〈μ2

1〉 + 2ψ11ψ12〈qp〉 + 2ψ11ψ13〈qz〉 + 2ψ12ψ13〈pz〉 ,

〈p2〉 =ψ2
21〈q2〉 + ψ2

22〈p2〉 + ψ2
23〈z2〉 + 〈μ2

2〉 + 2ψ21ψ22〈qp〉 + 2ψ21ψ23〈qz〉 + 2ψ22ψ23〈pz〉 ,

〈z2〉 =ψ2
31〈q2〉 + ψ2

32〈p2〉 + ψ2
33〈z2〉 + 〈μ2

3〉 + 2ψ31ψ32〈qp〉 + 2ψ31ψ33〈qz〉 + 2ψ32ψ33〈pz〉 ,

〈qp〉 =ψ11ψ21〈q2〉 + ψ12ψ22〈p2〉 + ψ13ψ23〈z2〉 + 〈μ1μ2〉 + (ψ11ψ22 + ψ12ψ21) 〈qp〉
+ (ψ11ψ23 + ψ13ψ21) 〈qz〉 + (ψ12ψ23 + ψ13ψ22) 〈pz〉 ,

〈qz〉 =ψ11ψ31〈q2〉 + ψ12ψ32〈p2〉 + ψ13ψ33〈z2〉 + 〈μ1μ3〉 + (ψ11ψ32 + ψ12ψ31) 〈qp〉
+ (ψ11ψ33 + ψ13ψ31) 〈qz〉 + (ψ12ψ33 + ψ13ψ32) 〈pz〉 ,

〈pz〉 =ψ21ψ31〈q2〉 + ψ22ψ32〈p2〉 + ψ23ψ33〈z2〉 + 〈μ2μ3〉 + (ψ21ψ32 + ψ22ψ31) 〈qp〉
+ (ψ21ψ33 + ψ23ψ31) 〈qz〉 + (ψ22ψ33 + ψ23ψ32) 〈pz〉 ,
8
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where 〈·〉 denotes an ensemble average with respect to the invariant measure of the numerical method. See examples in 
the case of Langevin dynamics in Chapter 7 of [33]. While the analytical expressions to the averages on the left-hand side 
above are given respectively by

〈q2〉 = 1

Kβ
, 〈p2〉 = m

β
, 〈z2〉 = 1

β
, 〈qp〉 = 0 , 〈qz〉 = 0 , 〈pz〉 = 0 , (47)

we can also solve the above linear system to obtain the averages associated with each numerical method. For brevity, some 
results are shown as leading order series in 
t .

3.4.1. PASP-2
In the PASP-2 method (36), we have the following averages:

〈q2〉 = 1

Kβ

[
1 + 
t2

(
mα̃2 + 3K

)
12m

]
+ O (
t4) , (48a)

〈p2〉 = m

β

[
1 + 
t2α̃2

12

]
+ O (
t4) , (48b)

〈z2〉 = 1

β

[
1 + 
t2λ̃2

4m

]
+ O (
t4) , (48c)

〈qp〉 = 〈pz〉 = 0 , (48d)

〈qz〉 = −
t2λ̃

4mβ
+ O (
t4) . (48e)

While the averages of 〈qp〉 and 〈pz〉 are exact, there exist second order errors in the averages of 〈q2〉, 〈p2〉, 〈z2〉, and 〈qz〉. 
Note also that the minus sign of the leading order term in 〈qz〉 appeared to be missing in [6].

3.4.2. PASP-3
Similarly in the PASP-3 method, we have the following averages:

〈q2〉 = 1

Kβ

[
1 + 
t2 K

4m

]
+ O (
t4) , (49a)

〈p2〉 = m

β
, (49b)

〈z2〉 = 1

β

⎡
⎣1 +


t2
(

3λ̃2 − mα̃2
)

12m

⎤
⎦+ O (
t4) , (49c)

〈qp〉 = 〈pz〉 = 0 , (49d)

〈qz〉 = −
t2λ̃

4mβ
+ O (
t4) . (49e)

Similar to the case of the PASP-2 method, the averages of 〈qp〉 and 〈pz〉 are exact, while there exist second order errors in 
the averages of 〈q2〉, 〈p2〉, 〈z2〉, and 〈qz〉. Again, the minus sign of the leading order term in 〈qz〉 appeared to be missing 
in [6].

3.4.3. BACSCAB
In the BACSCAB method (31), we have the following averages:

〈q2〉 = 1

Kβ
, (50a)

〈p2〉 = m

β

[
1 − 
t2 K

4m

]
, (50b)

〈z2〉 = 1

β

⎡
⎣1 +


t2
(

3λ̃2 − mα̃2
)

12m

⎤
⎦+ O (
t4) , (50c)

〈qp〉 = 〈qz〉 = 〈pz〉 = 0 . (50d)

While the averages of 〈q2〉, 〈qp〉, 〈qz〉, and 〈pz〉 are exact, there exist second order errors in the averages of 〈p2〉 and 〈z2〉.
9
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Fig. 1. Double logarithmic plot of the relative error in the computed averages of 〈q2〉 (left) and 〈z2〉 (right) against stepsize by using 
various numerical methods for the GLE described in Section 3 with parameters of λ̃ = 2 and α̃ = 1. The system was simulated for 107

reduced time units but only the last 80% of the data were collected to calculate the static quantity in order to make sure the system was 
well equilibrated. 1000 different runs were averaged to reduce the sampling errors. The stepsizes tested began at 
t = 0.25 and were 
increased incrementally by 20% until all methods either started to show significant relative errors or became unstable. The dashed black 
line represents the second order convergence to the invariant measure.

3.4.4. BAEOEAB
In the BAEOEAB method (43), we have the following averages:

〈q2〉 = 1

Kβ
, 〈p2〉 = m

β

[
1 − 
t2 K

4m

]
, 〈z2〉 = 1

β
, 〈qp〉 = 〈qz〉 = 〈pz〉 = 0 . (51)

That is, all of the averages are exact, with the only exception of 〈p2〉 that has second order errors, which yields a 
friction-independent upper bound of the stepsize 
tmax = 2

√
m/K , coinciding with the (deterministic) Verlet stability 

threshold [32]. Note that a similar method to BAEOEAB (i.e., BAOEOAB) yields exactly the same averages, but requires 
additional generations of random numbers. It is also worth mentioning that the averages of 〈q2〉, 〈p2〉, and 〈qp〉 match 
perfectly with their counterparts in the BAOAB method of the underdamped Langevin dynamics [32].

4. Numerical experiments

In this section, a variety of numerical experiments are conducted to systematically compare the newly proposed BAEOEAB 
method (43) with alternative methods described in Section 3. While all the methods presented can be used in multi-mode 
systems, we focus our attention on a single mode (i.e., M = 1) for simplicity where the subscripts in λ̃ and α̃ (3) can be 
dropped.

4.1. Harmonic oscillator

In order to verify the error analysis results in Section 3.4, we compare the performance of various methods with a one-
dimensional harmonic oscillator U (q) = Kq2/2 (K > 0). The following set of parameters were used: m = K = β = α̃ = 1 and 
λ̃ = 2.

Fig. 1 compares the control of the relative errors in the computed averages of 〈q2〉 and 〈z2〉. According to the dashed 
order lines, both PSAP-2 and PASP-3 methods exhibit second order convergence in both averages whereas the BACSCAB 
method appears to be second order only in the average of 〈z2〉 on the right panel. Moreover, the BAEOEAB method is exact 
in both averages while the BACSCAB method is exact only in the average of 〈q2〉 on the left panel. It is worth mentioning 
that the error in cases where the corresponding averages are exact comes solely from the sampling error, rather than the 
discretization error. Note also that all the observations are consistent with our findings in Section 3.4.

More precisely, for the average of 〈q2〉 on the left panel of Fig. 1, PASP-3 appears to be only slightly more accurate 
than PASP-2 while both methods are significantly outperformed by either BACSCAB or BAEOEAB in terms of accuracy. It is 
worth pointing out that the BAEOEAB method also appears to be more robust than alternative methods in a wide range 
of stepsizes—while both PASP-2 and PASP-3 methods exhibit around 50% relative errors at a stepsize of around 
t = 0.75
and the BACSCAB method became unstable just over 
t = 1, the BAEOEAB method is still extremely accurate (i.e., up to 
sampling error) when the stepsize is around 
t = 1.9, close to its stability threshold 
tmax = 2. The behavior is largely 
similar for the average of 〈z2〉 on the right panel of Fig. 1 except the performance of PASP-2, PASP-3, and BACSCAB are 
almost indistinguishable. In this case, the BAEOEAB method substantially outperforms alternative methods in terms of not 
only accuracy but also robustness.
10
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Fig. 2. Comparisons of the distributions obtained from various methods for the GLE with parameters of λ̃ = 2 and α̃ = 1. The solid black 
line is the reference solution obtained by using the BACSCAB method with a very small stepsize of 
t = 0.01, while the colored lines 
correspond to different stepsizes as indicated. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

The distributions of positions associated with different stepsizes were compared in Fig. 2. The behavior is consistent with 
our findings on the left panel of Fig. 1. That is, the distributions of both PASP-2 and PASP-3 methods visibly deviate from the 
reference solutions with a stepsize of 
t = 0.7 and substantial deviations can be observed with a stepsize of 
t = 0.9. In 
contrast, the distributions of both BACSCAB and BAEOEAB methods are both indistinguishable from the reference solutions; 
however the largest stepsizes used in the BACSCAB and BAEOEAB methods were 
t = 1 and 
t = 1.9, respectively. This 
again demonstrates the superior accuracy and robustness of the BAEOEAB method over alternative methods.

4.2. Multi-particle system

We also compare the performance of various methods in systems where multiple particles are interacting with each 
other. To this end, we chose a soft pair potential energy that has been widely used in the so-called dissipative particle 
dynamics [37,39,48],

U (q) =
∑

i

∑
j>i

ϕ(ri j) , (52)

where

ϕ(ri j) =
{

aijrc
(
1 − ri j/rc

)2
/2 , ri j < rc ,

0 , ri j ≥ rc ,
(53)

where parameter aij denotes the maximum repulsion strength between particles i and j, ri j = |qi j| = |qi −q j | is the distance, 
and rc represents a certain cutoff radius, beyond which there is no interaction between particles. We adopted a standard 
set of parameters commonly used in algorithms tests as in [48]: mi = rc = β = 1. Moreover, a particle density of ρd = 3
was used throughout the current article, which also determines the repulsion parameter of aij = 75/(βρd) = 25 in order to 
match the compressibility of water [18]. A system of N = 500 identical particles was simulated in a cubic box with periodic 
boundary conditions [5], unless otherwise stated. The initial positions of the particles were i.i.d. with a uniform distribution 
over the box, while the initial momenta were i.i.d. normal random variables with mean zero and variance 1/β .

The average of the computed configurational temperature in the canonical ensemble is expected to be precisely the 
target temperature:
11
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Fig. 3. Double logarithmic plot of the relative error in the computed configurational temperature against stepsize by using various numer-
ical methods for the GLE described in Section 3 with parameters of λ̃ = 1 and α̃ = 16 (top left), α̃ = 32 (top right), α̃ = 64 (bottom left), 
and α̃ = 128 (bottom right). The system was simulated for 1000 reduced time units but only the last 80% of the data were collected 
to calculate the static quantity in order to make sure the system was well equilibrated. Ten different runs were averaged to reduce the 
sampling errors. The stepsizes tested began at 
t = 0.03 and were increased incrementally by 15% until all methods either started to 
show significant relative errors or became unstable.

β−1 = 〈∇i U (q) · ∇i U (q)〉〈∇2
i U (q)

〉 , (54)

where ∇i U and ∇2
i U , respectively, represent the gradient and Laplacian of the potential energy U with respect to the 

position of particle i. The control of the configurational temperature has been recommended in [4] as a verification of 
equilibrium; importantly, good control of the configurational temperature also appears to imply good performance in other 
configuration-based physical quantities (see more discussions on the configurational temperature in [37,39,48]).

The control of the configurational temperature was compared in Fig. 3 with λ̃ = 1 and varying α̃. All the methods appear 
to have second order convergence to the invariant measure (dashed order lines not shown). On the top left panel where 
α̃ = 16, the PASP-3 method appears to be more accurate than the PASP-2 method; however it is outperformed by either 
BACSCAB or BAEOEAB methods, whose curves are almost indistinguishable. As we increase the value of α̃ , the behavior is 
largely similar except (a) PASP-2 becomes less and less accurate than alternative methods and displays substantial relative 
error at a stepsize of around 
t = 0.05 on the bottom left panel where α̃ = 64; (b) BAEOEAB becomes increasingly better 
than alternative methods in terms of not only accuracy but also robustness—while, on the bottom right panel where α̃ =
128, both PASP-3 and BACSCAB show an around 25% relative error with a stepsize of slightly over 
t = 0.05, the relative 
error is around 36% for BAEOEAB with a stepsize of around 
t = 0.08.

Fig. 4 also compares the control of the configurational temperature when the well-known Lees–Edwards boundary con-
ditions [29] were applied in order to generate a simple and steady shear flow (shear rate κ = 0.1), again with λ̃ = 1 and 
varying α̃. The behavior is very similar to Fig. 3 except the superiority of the BAEOEAB method is even more evident par-
ticularly in the bottom row where α̃ is relatively large. For instance, on the bottom right panel where α̃ = 128, BAEOEAB 
achieves around an order of magnitude improvement over both PASP-3 and BACSCAB in terms of accuracy. This indicates 
that BAEOEAB has a even better configurational temperature control over alternative methods in nonequilibrium simulations 
than in equilibrium when α̃ is relatively large. It is worth mentioning that, although BAEOEAB has been designed in equilib-
rium settings where the invariant measure is preserved, it appears that its performance is also very good in nonequilibrium, 
particularly when the shear rate is relatively small, which may be thought of as in “near-equilibrium”.
12
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Fig. 4. Double logarithmic plot of the relative error in the computed configurational temperature against stepsize by using various nu-
merical methods for the GLE described in Section 3 with parameters of λ̃ = 1 and α̃ = 16 (top left), α̃ = 32 (top right), α̃ = 64 (bottom 
left), and α̃ = 128 (bottom right). The format of the plots is the same as in Fig. 3, except with a shear rate of κ = 0.1 generated by the 
Lees–Edwards boundary conditions.

5. Conclusions

We have reviewed the constructions of popular splitting methods proposed for the GLE. Having also pointed the potential 
drawback of those existing methods, we have proposed an alternative method based on a different splitting of the vector 
field of the GLE. We have also analyzed the errors on the averages associated with different methods in the case of a one-
dimensional harmonic oscillator. We have demonstrated that all of the averages are exact for the newly proposed BAEOEAB 
method, with the only exception being the average of 〈p2〉 that has second order errors, leading to a friction-independent 
upper bound of the stepsize 
tmax = 2

√
m/K that coincides with the (deterministic) Verlet stability threshold. In contrast, 

there are at least two averages that are not exact for all the other splitting methods examined.
Restricting our attention to a single mode (i.e., M = 1) for simplicity, we have systematically compared the BAEOEAB 

method with alternative methods in a variety of numerical experiments. In the case of a one-dimensional harmonic oscil-
lator, the BAEOEAB method is exact in both averages of 〈q2〉 and 〈z2〉 and substantially outperforms alternative methods in 
terms of not only accuracy but also robustness. The BACSCAB method is also exact in the average of 〈q2〉, and appears to 
be as accurate as the BAEOEAB method. However, the former became unstable just over 
t = 1, while the latter is still ex-
tremely accurate (i.e., up to sampling error) when the stepsize is around 
t = 1.9, close to its stability threshold 
tmax = 2. 
In the average of 〈z2〉, the BACSCAB method becomes second order as both PASP methods. Moreover, the performance of 
the three methods is very similar to each other, all outperformed by the BAEOEAB method.

We have also examined the case of multiple particles that are interacting with each other—a soft pair potential en-
ergy widely used in the so-called dissipative particle dynamics. Fixing λ̃ to be unity, as we increase the value of α̃, the 
BAEOEAB method becomes increasingly better than alternative methods in terms of not only accuracy but also robustness. 
Moreover, the superiority of the BAEOEAB method is even more evident when the well-known Lees–Edwards boundary 
conditions were applied in order to generate a simple and steady shear flow, a technique commonly used in nonequilibrium 
simulations.

Although we have focused our attention on a single mode in this article, it is expected that the newly proposed BAEOEAB 
method will perform well in multi-mode cases (i.e., a general Prony series) that can be viewed as a summation of single 
modes. However, we leave a detailed examination (including more general forms of the memory kernel, for instance, in 
Section 2.3) for future work.
13
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Following similar results in Langevin dynamics [31,38], a fourth-order convergence to the invariant measure has been 
demonstrated recently for a particular splitting method for the GLE with certain choices of the parameters [36]. However, 
such superconvergence results have not been generally observed in our numerical experiments. Therefore, we leave further 
exploration of this observation for future work.
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