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Abstract

In 1975 Bollobas, Erdés, and Szemerédi asked the following question: given positive integers #, t, r with
2 <t <r— 1, what s the largest minimum degree §(G) among all r-partite graphs G with parts of size n and
which do not contain a copy of K, ? The r = ¢ + 1 case has attracted a lot of attention and was fully resolved
by Haxell and Szabé, and Szab6 and Tardos in 2006. In this article, we investigate the » > ¢ 4 1 case of the
problem, which has remained dormant for over 40 years. We resolve the problem exactly in the case when
r=—1 (mod t), and up to an additive constant for many other cases, including when r > (3t — 1)(t — 1).
Our approach utilizes a connection to the related problem of determining the maximum of the minimum
degrees among the family of balanced r-partite rn-vertex graphs of chromatic number at most t.

Keywords: Turan-type problems; multipartite graphs
2020 MSC Codes: Primary: 05C35, Secondary: 05C07, 05D15, 05C15

1. Introduction

The foundation stone of extremal graph theory is Turan’s theorem from 1941 [14], which states
that the Turan graph T;(n) (the complete t-partite graph on n vertices with parts of size (ﬂ or
\_H) has the most edges among all K;;-free graphs on n vertices. Erdés [7] and Bollobas, Erdés,
and Szemerédi [5] asked the following Turan-type problem for multipartite graphs.

Problem 1.1. Given integers n and 2 <t <r — 1, what is the largest minimum degree §(G) among
all r-partite graphs G with parts of size n and which do not contain a copy of K;1?

Let f(n,r,t + 1) denote the answer to Problem 1.1. At a meeting in 1972, Erdés conjectured
that f(n,r,7) = (r — 2)n, see [7, Problem 2, 353-354]. Graver gave a short and elegant proof
for r =3 but Seymour constructed counterexamples for r > 4, see [5]. The study of f(n,r,r)
(mostly in its complementary form concerning independent transversals) has been a central topic
in Combinatorics (see, e.g., [1, 9-11, 13]) due to its applications in graph arboricity, list colouring,
and strong chromatic numbers. The problem of determining f(n, r, ) was finally settled by Haxell
and Szab6 [9] and Szabé and Tardos [13]; indeed, for every n € N and even r > 2,

f(n,r+1,r+1)—n=f(n,r,r)=(r—l)n—’V%—‘. (1.1)

In contrast, little is known about the value of f(n, 7, t + 1) for r > ¢ + 1. In 1975 Bollobas, Erdés,
and Szemerédi [5] stated Problem 1.1 explicitly and noted that Turdn’s theorem easily implies that
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f,rt+1)= (r — ;) n  when t divides r. (1.2)

Indeed, for any r > t 4 1, Turan’s theorem implies that every K1 -free graph G on rn vertices has
at most (1 — 1/t)(rn)?/2 edges, and thus §(G) < (1 — 1/¢f)rn. On the other hand, we may let G be
the complete ¢-partite graph on rn vertices with parts of size [ﬂ nor L%J n (in other words, G is
an n-vertex blow-up of the Turan graph Ty(r)). Then

(r—H—anf(n,r,t-i-l)i(r—;) n. (1.3)

Extending Graver’s work on f(#, 3, 3), Bollobds, Erdés, and Straus [4] answered Problem 1.1 for
all (not necessarily balanced) r-partite graphs G when ¢ = 2. Their result implies that for every
neNandr> 3,

f(n,r,3)=|r/2]n.

The aim of this article is to rebuild momentum on Problem 1.1 for r > t 4+ 1 > 4. For any such
choice of r and ¢, our results either resolve Problem 1.1 or provide a lower bound on f(n, r,t 4 1)
that improves that given in (1.3). In particular, in the case that r = —1 (mod t), our first result
shows that the lower bound in (1.3) is tight.

Theorem 1.2. Given integers n>1, m>2, and t>3, let r=mt—1. Then f(n,r,t+1)=
(r—T[r/t]) n.

It turns out that the lower bound in (1.3) is best possible only if r=0, —1 (mod ?); in all
other cases we give constructions that improve on this lower bound (see Section 4). Moreover, in
many such cases, including when r > (3t — 1)(t — 1), we determine f(n, 7, t + 1) up to an additive
constant.

Theorem 1.3. Given integers n>1,m=>2,t>3, let r=mt—a with 2<a<min{m,t— 1}.

Suppose
(i) r=aBt—1)or
(i) r . a n a—1 - 1
VGt Dm—1) tm—1) mi—2-n
Then

(r—1n
mt—2

(r—l)n—(m—l)’r

]sﬂn,nwnsu_l)n_ [mw

mt — 2

Thus, up to an additive constant, (1.2), Theorems 1.2 and 1.3 together resolve Problem 1.1
whenever r > (3t — 1)(# — 1). In particular, if r> (3t — 1)(t — 1), r #0 (mod t), and [r/t]t —2
divides n, then
[r/t] — 1
[r/t]t—2

Combining the last two theorems with (1.2), we essentially determine f(n, r, 4) for all r £ 7.

fn,rt+1)=(—1)n— (r—Dn.

Corollary 1.4. Let r > 5 withr £ 7. Suppose n > 60 if r = 10; n > 22 if r = 13, and n € N otherwise.
Then

(r—1r/3) =n—¢ ifr=1 (mod 3),
fln,r,4)= e
(r—1[r/3)n otherwise,
where 0 <c¢, <r/3.
The proof of Theorem 1.3 applies a result of Andrasfai, Erdds, and Sés [2]. In particular,
this result allows us conclude that, if r is large compared to ¢, then f(n,r,t+ 1) is equal to the
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maximum of the minimum degrees among the family of balanced r-partite rn-vertex graphs of
chromatic number at most ¢. This approach is also utilized in the proof of Theorem 1.2 when
m > 3. Interestingly, this approach breaks down when m =2, so we require a separate direct
argument in this case (which hinges on the fact that r =2t — 1).

There are two extremal problems closely related to Problem 1.1. First, a multipartite Turan
theorem has been known since the 1970s. Bollobas, Erdds, and Szemerédi [5] showed that the
n-vertex blow-up of T¢(r) has the most edges among all r-partite K;y;-free graphs with » vertices
in each part. In fact, this easily follows from Turan’s theorem and indicates that for multipartite
graphs, the minimum degree version, Problem 1.1, is indeed harder than the Turan problem.1
Furthermore, Bollobds, Erdds, and Straus [4] determined the largest size of (not necessarily bal-
anced) r-partite K;y1-free graphs. Another related problem concerns finding the smallest d’ such
that every r-partite graph whose parts have pairwise edge density greater than d. contains a copy
of K;. Bondy, Shen, Thomassé, and Thomassen [6] showed that dg =0.618. . ., the golden ratio.
Pfender [12] showed that d = (t — 2)/(t — 1) for sufficiently large r; in particular, df =1/2 for
r>13.

1.1 Notation

Given a graph G and x € V(G), we write N(x) for the neighbourhood of x in G and define d(x) :=
IN(x)| as the degree of x in G. If X C V(G) we write N(x, X) := N(x) N X and d(x, X) := |N(x, X)|.
We write G[X] for the induced subgraph of G with vertex set X.

Let G be an r-partite graph with parts Vy,..., V,. A transversal is a subset S C V(G) so that
SN V| =1 for each part V; of G. A set S C V(G) is crossing if |SN V;| <1 for each part V; of G.
Thus, an independent transversal is simply a crossing independent set of size 7. Define K,(#) to be
the complete r-partite graph where each part has size .

1.2 Organization of paper

In Section 2, we formally restate Problem 1.1 in its complementary form and prove Theorem 1.2
for m = 2. In Section 3, we introduce a related parameter §(n, r, t) that is equal to f(n, r, t + 1) if
r is large compared to t. In Section 4, we give constructions that improve on the lower bound in
(1.3) whenever r £ 0, —1 (mod t). We give an upper bound on §(#, 7, t) in Section 5 that allows us
to easily deduce Theorems 1.2 and 1.3 in Section 6. We finish the paper with concluding remarks
in Section 7.

2. The complementary problem and Proof of Theorem 1.2 form =2

In most papers on f(n,r,r), the complementary form of f(n, r,r) was considered, namely, the
smallest A(G) among all r-partite graphs G with parts V7, ..., V, of size n and without an inde-
pendent transversal. For a couple of our proofs, it will also be easier to work in the corresponding
complementary setting also.

Let A(n,r,t):= (r — 1)n— f(n,r,t) denote the smallest maximum degree A(G) among all
r-partite graphs G with parts Vi, . . ., V, of size n and without a crossing independent set of size t.
Note that (1.3) is equivalent to

G—l)ngA(n,r,H-l)g(H]—1) .

n contrast, Turdn’s theorem easily implies that max §(G) = n — [n/t] among all K -free graphs on n vertices.
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We now prove the following lemma, which is the m = 2 case of Theorem 1.2.
Lemma 2.1. Foreveryn e Nandt>3, f(n,2t — 1,t + 1) = (2t — 3)n.

Proof. Letr:= 2t — 1. By (1.3), it suffices to prove that f(n, 2t — 1, t + 1) < (2t — 3)n. Further, by
considering the complementary problem, it suffices to prove that if G is an r-partite graph with
vertex classes Vi, ..., V; of size n so that G does not contain a crossing independent set of size
t+ 1, then A(G) > n.

Suppose for a contradiction that A(G) < n.

Claim 2.2. Forall x € V(G) and i € [r], we have d(x, V;) < n/(t — 1).

Proof of claim. Suppose the claim is false. Let D := max{d(v, V;): ve V(G),i € [r]} = n/(t — 1).
Without loss of generality, we may assume that there exists x; € V; such that d(x;, V2) = D.
Since A(G) < n, there exists x; € V, \ N(x1). Furthermore, since A(G) < nand r =2t — 1, we can
greedily find x3, . . ., x¢—; such that S = {x1, ..., x;_1} is a crossing independent set.2 Without loss
of generality, assume that x; € V; forie [t — 1].

For each i € [t], let W; consist of all the vertices of V,;1_; that are not adjacent to any vertex in
S. Set n; := |W;| and without loss of generality, assume that n; > ny > ... > n;. Let £ := max{i e
[t]: n; > 0}. Note that

m—+...+nmp=m-+...+n= U Vi\ U N(xj)

t<i<r jelt—1]
> tn— ((t = 1)A(G) — d(x1, V2)) > n+D.
By averaging, we have
m+...+n_1>U—-1)mn+D)/L (2.1)

Notice that the £-partite subgraph of G induced by W1, . .., W, must be complete (otherwise one
can extend S into a crossing independent set of size t 4 1, a contradiction). Hence, there exists
y € We such that ( J;c(,_;) Wi © N(p). By the definition of D, we deduce that

n+...+n1 =< Z Ay, Vig1-i) < (£ = 1)D.
ie[{—1]

Together with (2.1), this implies that D > n/(£ — 1) and so
AG) =dy)=zm+...+m_1>L—-1)(n+D)/l>n,

a contradiction. O

Given a crossing independent set S of G, let o/(S) := ) ¢ d(x, V5) where Vg is the union of all
Vi that contain a vertex from S. As mentioned in Footnote 2, we can greedily construct a crossing
independent set of size ¢. Let S be a crossing independent set of size t with o (S) maximal. Without
loss of generality, SN ;) Vi=9.

Consider any (f — 1)-set §' C S. By Claim 2.2, there exists a vertex y € V; that is not adjacent
to any vertex in §'. Note that &' U {y} is a crossing independent set of size t. Hence, o (S) > o (§' U
{y) =0(S) + ) cg d(x, V1). By summing over all (f — 1)-sets §' C S, we obtain that

(8= Y oS)+E=1Y dxVI)=(—2)0S)+({—1)) dx V1)

§cS: |9|=t—1 x€S$ x€$S
> (t—2)o(S)+ (t — 1)n,

2We can actually find a crossing independent set of size t. However, considering a crossing independent set of size t — 1 is
crucial to the argument here.
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where the last inequality follows as every vertex in V; must be adjacent to at least one vertex in S
(else there exists a crossing independent set of size f 4 1, a contradiction). Thus, o (S) > (t — 1)n/2.

As SNUicpr—1) Vi= 90, then U;c(,_1) Vi € U, s N(x) or else there exists a crossing indepen-
dent set of size t + 1, a contradiction. Therefore,

Q=Y dx=e®)+| | J Wi z(t_zl)”+(t—1)nztn,

x€S ie[t—1]

implying that A(G) > n, a contradiction. U

3. Aconnection to the parameter §(n, r, t)

The following problem turns out to be closely related to Problem 1.1. Let G(n, 7, t) be the family
of all r-partite graphs G with parts of size n and with chromatic number x (G) <t. Let §(n, 1, t) :=
max{8(G): G € G(n,r,t)}. An n-vertex blow-up of the Turdn graph Ty(r) is a member of G(n, r, ).
Together with (1.3), this gives

(r— H—an(?(n,r,t) §f(n,r,t+1)§(7’—;) n. (3.1)

Therefore, when t divides 7, we have §(n, r, t) = f(n, r, t + 1) = (r — r/t)n.
When r is large compared to ¢, Corollary 3.3 below implies that f(n, 7, t + 1) = §(n, r, t) as well.
In fact, this is an easy consequence of the following result of Andrasfai, Erdds, and Sés [2].

Theorem 3.1. (Andrasfai, Erdds, and Sés [2].) Let t > 2 and let G be a Ki41-free graph on N
vertices. If §(G) > 3t 4N then x(G) <t.

Corollary 3.2. Forr>t>2, f(n,r,t+ 1) < max [%(rn), S(n, 1, t)}.

Proof. Let G be a Ky ;-free r-partite graph with n vertices in each part. If §(G) > %(rn), then
x(G) <t by Theorem 3.1. Thus G € G(n, r,t) and 8(G) < &(n, 1, t). O

By applying (3.1) together with Corollary 3.2, one can conclude that f(n,r,t+ 1) =68(n,r,t)
provided that r > (t — 1)(3t — 1).

Corollary 3.3. Let r>t>2 and 0<a<t—1 so that r=—a (mod t). If r>a(3t — 1) then
f(n,r,t+1)=68(n,r,1).

Proof. (1.2) covers the case when a = 0 so we assume that a € [t — 1]. By Corollary 3.2, it suffices
to show that 8(n, r, t) > 3= 4rn By (3.1), we have

= 3=
r r+a r 3t—4 a 3t—4
5(n,1’,t)2(r—’7—-‘)n= r — n= _|,_ r— — n_ m,
t t t(3t—1) 3t—1 t 3t—1
where we use the fact that » > a(3¢ — 1) in the last inequality. U

4. Lower bound constructions

In this section, we give constructions that improve on the lower bound in (1.3) whenever r # 0, —1
(mod t).
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Proposition 4.1. Let r > m, t > 2 be such that m(t — 1) <r < mt — 1. Then there exists a graph
GeGn,r,t)such that §(G)=(r—1)n—(m—1) (w] In particular,

mt—2

—1
f(n,r,t+1)28(n,r,t)z(r—l)n—(m—l)[(r )’ﬂ.
mt — 2

Proof. When r = mt — 1, the desired bound follows from (3.1). We thus assume r < mt — 2.
Let £:= [(r— 1)n/(mt —2)] <n. Let K:= Ky(n) and let Vi,...,V, denote its parts. For i€
[t—1],letB;:= {(i—1)m+1,...,im}.So By, ..., B;—; form an equipartition of [m(t — 1)]. For
ie[t—1],let W; C UjeBi V; be such that |[W; N Vj| = £ for j € B;. Let W;:= V(K) \ Uie[t_l] Wi.
Then

[Wil=---=|Wi_1|=€m and |W;|=rn—m(t— 1)L
Let G’ be the complete t-partite graph with parts W1, ..., Wy. We set G:= K N G; that is, G is the
graph on V(K) such that, for x € V; N Wjand x’ € Vy N Wy, we have xx” € E(G) if and only if i # i’

and j # . Clearly x(G) < x(G) <t. If x € V; with i ¢ [m(¢ — 1)], then as x is only non-adjacent
to the vertices in Wy, we have that d(x) = rn — |Wy|. If x € V; with i € [m(t — 1)], then
m—(n+|Wi| —£) ifx ¢ Wy,
d(x) =
m—(n+ W —mn—2£) ifxe W;
By our choice of ¢,

8(G)=(r—1n—max{(m—1)¢,(r—1n— (m@E—1)—1)¢}

=(r—Dn—(m—-Dl=(r—-n—(m—1) ’7(7:1;—1)271—‘ ,

as required. O

Note that the lower bound in Proposition 4.1 improves the lower bound from (1.3) in the case
when r=mt — a with 2 <a <min{m, t — 1}. Indeed, in this case (1.3) gives a lower bound of
(r — m)n while

(r—1n (r—1)
r—1n—(m-—1) ’7 p— —‘ >r—1)n—(m-— l)mt_zn—(m—l)
—1 -1
=(r—m)n+wn—(m— 1). (4.1)
mt — 2
Thus, if n > (mt — 2)/(a — 1), then the lower bound in Proposition 4.1 improves the lower bound

from (1.3).
In the remaining case - when m < a <t — 1 - the next result beats the lower bound from (1.3)
when # is not too small.

Proposition 4.2. Let r >t > 3 be such that r = mt — awith2 <m < a < t. Then
(mit—1—a+m)—1)n
m(it—a+m)—2 ’

f(n,r,t—i—1)28(n,r,t)z(r—1)n—(m—1)’7

Proof. Let t':= t —a+m and r := m(f' — 1). By Proposition 4.1, there exists a graph G’ €
G(n, 7, t') such that
¥ —Dn
SG)=0F -1n—(m—1) ’72
mt’

_2—‘5(r/—1)n—(m—2)n,

where the last inequality is due to fact that
m=DF =1)—=mt' =2)m—=2)=m{t' —m+2)—-3=(Ft—a+2)m—3>0.
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We now construct a graph Ge G(n,r,t) from G’ as follows. Let W,_,,4;:= V(G'). Let
Wi, ..., Wa_,, be vertex sets each of size (m — 1)n such that Wy, ..., W,_,,,4 are disjoint. Let G
be the resulting graph on (¢ (,_,41) Wi obtained from G’ by adding edges xx’ for all x € W; and
x' € Wy with i #7'. Note that x(G) = x(G') + a — m < t. Since each W; with i € [a — m] can be
partitioned into m — 1 vertex classes of size n, we deduce that G € G(n, 1, t).

For x € V(G) \ V(G'), x is non-adjacent to the vertices in the class W; it lies in and so dg(x) =
rn — (m — 1)n. For x € V(G'), we have dg(x) = (a — m)(m — 1)n + d (x) and so the vertex y €
V(G') with smallest degree d(y) satisfies

do(y)=(a—m)(m—1n+8(G)=(r—1)n—(m—1) {%W <(r—Dn—(m—2)n.
Hence,
(G =@r—1n—(m-—1) ’7(:1;—_1)2”—‘ ,
as required. O

By applying Corollary 3.2 with Proposition 4.1, we can obtain the following result, which
improves on Corollary 3.3 in most cases when # is not too small.

Corollary 4.3. Given m, t > 2, let r = mt — a where 2 < a <min{m, t — 1}. If

r a a—1 1
- + > )
tBt—1)(m—1) tm—1) tm—2 " n
then f(n,r,t+1)=48(n,1,1).
Proof. By (3.1) and Corollary 3.2, it suffices to prove that
3t—4
S(n,r, t) > I . (4.2)
Proposition 4.1 and (4.1) together imply that
—1 —1
S(nyryt) > (r—m)n+ wn —(m—1).
mt — 2
On the other hand, =2 51 1 —m + — G [ ok Thus, to prove (4.2), it suffices to have
Wn_(m_l)zﬁ_L_
mt — 2 t tBt—1)
Indeed, this is equivalent to our assumption
r a a—1 1
_ 4 >,
tBt—1)(m—-1) tm—1) mt—2"n 0

5. An upper boundon §(n,r,t)
In this section, we prove the following upper bound on §(n, r, £).

Proposition 5.1. Let r,n € N and m, t > 2 be such that (m — 1)t < r < mt. Then,

S(n,r,t) < (r—n— [w—‘
mt — 2

Proof. Let A*:= (m —1)(r — 1)n/(mt — 2). Since §(n,r,t) is an integer, it suffices to show
that 8(n,r,t) <(r—1)n — A*. Suppose to the contrary that §(n,r,t) > (r — 1)n — A*. Let
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Ged(n,r,t) be such that §(G)=48(n,r,t). As GeG(n,r,t), V(G) can be partitioned into r
independent sets Vi, ..., V, each of size n; as x(G) <t, V(G) can be partitioned into ¢ colour
classes W1y, .., W;. For every x € V; N Wj, x is non-adjacent to those vertices in V; U W; and so
dx) < — Vil = [W| + [ViNn Wj| = (r — Dn — [Wj| + [V; N Wj].

For i € [r], let C(i) := {j € [t]:|]Vi N Wj]| # 0} be the set of colours present in V;. For j € [¢], let
supp(j) := {i € [r]:] Vi N Wj| # 0} be the set of parts that colour j is present. Let

Aj:= |Wj| = min |V;NWj|.
iesupp(j)

Thus §(G) < minje({(r — 1)n — A;}. Hence we have for all j € [¢],

(m—1)(r—1Dn

Aj<A*=
mt — 2

(5.1)

Claim 5.2. Forallj € [t], |[Wj| < mA*/(m — 1).

Proof of claim. Note that
mA*  m(r—1)n - m(m — 1)tn
m—1 mt—2 —  mt—2

> (m—1)n.

If [supp(j)] <m — 1, then |Wj| < (m —1)n < "5 A* as desired. Hence, we may assume that
|supp(j)| > m. Using the definition of A and (5.1), we obtain that
-1 N —1
e < lsupp()I = 1 [Wjl < Aj < A*.
|supp(/)l

Hence the claim follows. U

J

Suppose that |C(i)| =1 for all i € [r]. Every V; is a subset of some W; and consequently, there
exists j € [t] with |Wj| > [r/t]n > mn. It follows that
r—1
mt—2

Ai>|Wj|—n>(m—1)n>(m—1) n=A%,

a contradiction.
Without loss of generality, we assume that |C(1)| = s> 2. For every j € C(1), we know that
|[Wj| < Aj+ [V1 N Wj| from the definition of A;. Hence,

(5.1)
Yo wii< Y (A IViN W) = sA 4,
jec(n) jec(n)
Together with Claim 5.2, this gives

mt—s mt—2

m
m Zl il <sA™ +n+( S)m—l p— —I—n_m_1 +n=rn
jelt]
a contradiction. O

6. Proof of the main results

The proofs of Theorems 1.2 and 1.3 and Corollary 1.4 now follow easily from our auxiliary results.
Proof of Theorem 1.2. The m = 2 case of the theorem is precisely Lemma 2.1. For m > 3, we may
apply Corollary 3.3 (with a:= 1) to conclude that f(n, r, t + 1) = 8(n, 1, t). Then Proposition 5.1
implies 8(n, r, t) < (r — m)n = (r — [r/t])n; together with the lower bound in (1.3) this completes
the proof. 0
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Proof of Theorem 1.3. Under Condition (i), we first apply Corollary 3.3 to obtain that
f(n,r,t4+ 1) =8(n, r, t). Then Propositions 4.1 and 5.1 give the desired lower and upper bounds,
respectively. Under Condition (ii), we apply Corollary 4.3 instead of Corollary 3.3. O

Proof of Corollary 1.4. The case when r=0 (mod 3) follows from (1.2). The case when
r=2 (mod 3) follows immediately from Theorem 1.2.Ifr =1 (mod 3) thenr = 3m — 2 for some
m > 4. Thus Condition (i) of Theorem 1.3 holds provided that m > 6. If r =10 and n > 60 or
r=13and n > 22, then it is easy to check that Condition (ii) of Theorem 1.3 holds. Thus, Theorem
1.3 yields the corollary in this case. O

7. Concluding remarks

In this article, we have resolved Problem 1.1 for many choices of r and t. For the remaining
open cases, it would be interesting to establish when (if at all) a lower bound construction from
Section 4 is extremal. One obvious case would be to determine f(n,7,4), which is the only
remaining case for f(n, r, 4).

Our results show that f(n, 7, t + 1) = 8(n, r, t) when r is large compared to ¢. It would be inter-
esting to determine all values of r and ¢ for which this equality holds. Proposition 5.1 and (1.1)
together show that f(n,t+1,¢4+1) > 8(n, t 4+ 1,t) when ¢ > 3 is odd and # is sufficiently large.
Indeed, Proposition 5.1 implies that §(n, t + 1, £) < tn — (%1 for every t > 2. If t is odd, then by
(1.1), we have

fnt+1,t+1)=tn— [(t—;:)n—‘ > tn— [

T 2—‘ >8(n, t+1,1).

As mentioned in the Introduction, Bollobas, Erdds, and Straus [4] determined the largest §(G)
among all K3-free (not necessarily balanced) r-partite graphs G for all . It is natural to extend the
results in the present paper to unbalanced multipartite graphs as well.

It is also natural to ask for the largest §(G) among H-free multipartite graphs G for a fixed
graph H # K;. For example, Bollobas, Erdés, and Szemerédi [5] showed that if G is a tripartite
graph with n vertices in each part and with §(G) > n + \/Linz'/ 4, then G contains a copy of K3(2);

they asked if 8(G) > n + Cn'/? suffices. Furthermore, extending the aforementioned multipartite
Turan theorem of Bollobds, Erdds, and Straus [4], there has been recent work on determining
the largest e(G) among all multipartite graphs G on n vertices that contain no multiple (disjoint)
copies of K, see, e.g., [3, 8].

The following result might be useful for constructing extremal examples for the remaining
open cases of Problem 1.1. It shows that given an upper bound on A(ny, 7o, o)/ one can obtain
an upper bound on A(n, r, t)/n for other triples (n, r, t).

Proposition 7.1. Let 1y, to € N so that 2 <ty <ry. Let Ag > 0 be such that A(ng, 1o, to)/no < Ao
for all ng € N. Let n, k> 2 be integers. Set r:= rok and t:= k+ ty. Then there exists an r-partite
graph G with parts of size n so that:

« G contains no crossing independent set of size t;

« AG)<(rg—1) [Wﬂ.

That is,

Al 7, 8) < (ro — 1) {Mﬂ ,

Ao+ krg—1
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or equivalently

fn,r,t)>(r—1)n—(ro — 1) [w_n—"

Ao+ krg—1

Proof. Let £:= |(ro — 1)n/(Ag + kro —1)]. We construct an r-partite graph G with parts
Vi,...,V, of size n as follows. Partition each V; into L; U S; such that |S;| =¢ and |L;| =n — £.
We call the vertices in each L; large and those in each S; small. We partition [r] into k blocks of
size ro by assigning i and j to the same block if [i/ry] = [j/ro]. We form a complete bipartite graph
between L; and L; (joining L; and L; for short) if and only if i and j are in the same block. We join
S;iand §; if i and j are not in the same block. By the definition of Ay, there exists an ro-partite graph
Gs with £ vertices in each part and A(Gs) < Aof containing no crossing independent set of size
to. We place a copy of Gg in each block so that the sets S; in the block each form one of the vertex
classes of Gg.

We claim that G contains no crossing independent set of size t. Indeed, a crossing independent
set contains at most one large vertex from each block, and at most ¢y — 1 small vertices. Thus, the
largest crossing independent set has size k+#) — 1 =1t — 1.

Note that

A(G) =max{(Ag + (k — 1)ro)L, (ro — 1)(n — £)}.
The choice of £ ensures

A k—1
AG) = (- 1) [Mﬂ

as desired. O
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