

University of Birmingham

Self-adaptation via multi-objectivisation: an
empirical study
Qin, Xiaoyu; Lehre, Per Kristian

DOI:
10.1007/978-3-031-14714-2_22

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Qin, X & Lehre, PK 2022, Self-adaptation via multi-objectivisation: an empirical study. in G Rudolph, AV
Kononova, H Aguirre, P Kerschke, G Ochoa & T Tušar (eds), Parallel Problem Solving from Nature – PPSN
XVII: 17th International Conference, PPSN 2022, Dortmund, Germany, September 10–14, 2022, Proceedings,
Part I. 1 edn, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 13398 LNCS, Springer, pp. 308–323, The seventeenth International
Conference on Parallel Problem Solving from Nature, Dortmund, Germany, 10/09/22.
https://doi.org/10.1007/978-3-031-14714-2_22

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This version of the contribution has been accepted for publication, after peer review (when applicable) but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: 10.1007/978-3-031-14714-
2_22. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-
research/policies/accepted-manuscript-terms.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-031-14714-2_22
https://doi.org/10.1007/978-3-031-14714-2_22
https://birmingham.elsevierpure.com/en/publications/d970f09e-84b2-4c9c-8f07-5cf3fe2261f6

Self-adaptation via Multi-objectivisation:
An Empirical Study

Xiaoyu Qin 1[0000−0002−9720−3220] and Per Kristian Lehre
1[0000−0002−9521−1251]

University of Birmingham, Birmingham B15 2TT, United Kingdom
{xxq896, p.k.lehre}@cs.bham.ac.uk

Abstract. Non-elitist evolutionary algorithms (EAs) can be beneficial
in optimisation of noisy and or rugged fitness landscapes. However, this
benefit can only be realised if the parameters of the non-elitist EAs are
carefully adjusted in accordance with the fitness function. Self-adaptation
is a promising parameter adaptation method that encodes and evolves
parameters in the chromosome. Existing self-adaptive EAs often sort the
population by first preferring higher fitness and then the mutation rate.
A previous study (Case and Lehre, 2020) proved that self-adaptation can
be effective in certain discrete problems with unknown structure. How-
ever, the population can be trapped on local optima, because individuals
in “dense” fitness valleys which survive high mutation rates and individ-
uals on “sparse” local optima which only survive with lower mutation
rates cannot be simultaneously preserved.

Recently, the Multi-Objective Self-Adaptive EA (MOSA-EA) (Lehre and
Qin, 2022) was proposed to optimise single-objective functions, treating
parameter control via multi-objectivisation. The algorithm maximises
the fitness and the mutation rates simultaneously, allowing individuals
in “dense” fitness valleys and on “sparse” local optima to co-exist on a
non-dominated Pareto front. The previous study proved its efficiency in
escaping local optima with unknown sparsity, where some fixed mutation
rate EAs become trapped. However, the performance is unknown in other
settings.

This paper continues the study of MOSA-EA through an empirical study.
We find that the MOSA-EA has a comparable performance on unimodal
functions, and outperforms eleven randomised search heuristics consid-
ered on a bi-modal function with “sparse” local optima. For NP-hard
problems, the MOSA-EA increasingly outperforms other algorithms for
harder NK-Landscape and k-Sat instances. Notably, the MOSA-EA
outperforms a problem-specific MaxSat solver on several hard k-Sat
instances. Finally, we show that the MOSA-EA self-adapts the muta-
tion rate to the noise level in noisy optimisation. The results suggest
that self-adaptation via multi-objectivisation can be adopted to control
parameters in non-elitist EAs.

Keywords: Evolutionary algorithms · Self-adaptation · Local optima ·
Combinatorial optimisation · Noisy optimisation.

2 X. Qin and P.K. Lehre

1 Introduction

Non-elitism is widely adopted in continuous EAs, and has recently shown to
be promising also for combinatorial optimisation. Several runtime analyses have
shown that non-elitist EAs can escape certain local optima efficiently [9,10] and
can be robust to noise [11,32]. There exist a few theoretical results to investigate
how non-elitist EAs can cope with local optima [9,10,14]. SparseLocalOpt [10]
is a tunable problem class that describes a kind of fitness landscapes with sparse
deceptive regions (local optima) and dense fitness valleys. Informally, search
points in a dense fitness valley have many Hamming neighbours in the fitness
valley, while search points in sparse deceptive regions have few neighbours within
the deceptive region. Non-elitist EAs with non-linear selection mechanisms are
proven to cope with sparse local optima [9, 10]. In non-linear selection mecha-
nisms [30,34], the selection probability is decreasing with respect to the rank of
the individual, e.g., tournament and linear ranking selection [22]. The fitter in-
dividual has a higher probability to be selected, but worse individuals still have
some chance to be selected. Thus, while individuals on sparse local optimum have
higher chance of being selected, fewer of their offspring stay on the peak under
a sufficiently high mutation rate. In contrast, even if individuals in dense fitness
valley individuals have less chance of being selected, a larger fraction of their
offspring stay within the fitness valley. However, it is critical to set the “right”
mutation rate, which should be sufficiently high but below the error threshold.
Non-elitist EAs with mutation rate above the error threshold will “fail” to find
optima in expected polynomial time, assuming the number of global optima is
polynomially bounded [29]. Finding the appropriate mutation rate which allows
the algorithm to escape not too sparse local optima is non-trivial. In noisy envi-
ronments, non-elitist EAs using the “right” mutation rate beat the current state
of the art results for elitist EAs [32] on several settings of problems and noise
models. However, the “right” mutation rate depends on the noise level, which is
usually unknown in real-world optimisation.

Self-adaptation is a promising method to automate parameter configuration
[4,36,41]. It encodes the parameters in the chromosome of each individual, thus
the parameters are subject to variation and selection. Some self-adaptive EAs are
proven efficient on certain problems, e.g., the OneMax function [17], the simple
artificial two-peak PeakedLO function [12] and the unknown structure version
of LeadingOnes [7]. These self-adaptive EAs sort the population by preferring
higher fitness and then consider the mutation rate. They might be trapped in
sparse local optima, because individuals in dense fitness valleys which survive
high mutation rates and individuals on sparse local optima which only survive
with lower mutation rates cannot be simultaneously preserved.

Recently, a new self-adaptive EA, themulti-objective self-adaptive EA (MOSA-
EA) [33], was proposed to optimise single-objective functions, which treats pa-
rameter control from multi-objectivisation. The algorithm maximises the fitness
and the mutation rates simultaneously, allowing individuals in dense fitness val-
leys and on sparse local optima to co-exist on a non-dominated Pareto front. The
previous study showed its efficiency in escaping a local optimum with unknown

Self-adaptation via Multi-objectivisation: An Empirical Study 3

sparsity, where some fixed mutation rate EAs including non-linear selection EAs
become trapped. However, it is unclear whether the benefit of the MOSA-EA
can also be observed for more complex problems, such as NP-hard combinatorial
optimisation problems and noisy fitness functions.

This paper continues the study of MOSA-EA through an empirical study of
its performance on selected combinatorial optimisation problems. We find that
the MOSA-EA not only has a comparable performance on unimodal functions,
e.g., OneMax and LeadingOnes, but also outperforms eleven randomised
search heuristics considered on a bi-modal function with a sparse local optimum,
i.e., Funnel. For NP-hard combinatorial optimisation problems, the MOSA-
EA increasingly outperforms other algorithms for harder NK-Landscape and
k-Sat instances. In particular, the MOSA-EA outperforms a problem-specific
MaxSat solver on some hard k-Sat instances. Finally, we demonstrate that the
MOSA-EA can self-adapt the mutation rate to the noise level in noisy optimi-
sation.

2 Multi-Objective Self-Adaptive EA (MOSA-EA)

This section introduces a general framework for self-adaptive EAs (Alg. 1), then
defines the algorithm MOSA-EA as a special case of this framework by specifying
a self-adapting mutation rate strategy (Alg. 2).

Algorithm 1 Framework for self-adaptive EAs [33]

Require: Fitness function f : {0, 1}n → R. Population size λ ∈ N. Sorting mechanism
Sort. Selection mechanism Psel. Self-adapting mutation rate strategy Dmut. Initial
population P0 ∈ Yλ.

1: for t in 0, 1, 2, . . . until termination condition met do
2: Sort(Pt, f)
3: for i = 1, . . . ,λ do
4: Sample It(i) ∼ Psel([λ]); Set (x,χ/n) := Pt(It(i)).
5: Sample χ′ ∼ Dmut(χ).
6: Create x′ by independently flipping each bit of x with probability χ′/n.
7: Set Pt+1(i) := (x′,χ′/n).

Let f : X → R be any pseudo-Boolean function, where X = {0, 1}n is the
set of bitstrings of length n. For self-adaptation in non-elitist EAs, existing algo-
rithms [7,12,17] optimise f on an extended search space Y := X × [ε, 1/2] which
includes X and an interval of mutation rates. Alg. 1 [33] shows a framework for
self-adaptive EAs. In each generation t, they first sort the population Pt using an
order that depends on the fitness and the mutation rate. To sort the population,
existing self-adaptive EAs [7,12,17] often prefer higher fitness and then consider
the mutation rate. Then, each individual in the next population Pt+1 is produced
via selection and mutation. The selection mechanism is defined in terms of the
ranks of the individuals in the sorted population. Then, the selected individual
changes its mutation rate based on a self-adapting mutation rate strategy and
each bit is flipped with the probability of the new mutation rate. For example,
the fitness-first sorting mechanism in the self-adaptive (µ,λ) EA (SA-EA) [7]

4 X. Qin and P.K. Lehre

ensures that a higher fitness individual is ranked strictly higher than a lower
fitness individual as illustrated in Fig. 1(a).

Different from the existing algorithms, the MOSA-EA sorts the population
by the multi-objective sorting mechanism (Alg. 3 in Appendix 1). It first applies
the strict non-dominated sorting method (Alg. 4 in Appendix 1) to divide the
population into several Pareto fronts, then sorts the population based on the
ranks of the fronts and then the fitness values. Unlike the non-dominated fronts
used in multi-objective EAs, e.g., NSGA-II [13, 42], each strict non-dominated
front only contains a limited number of individuals, i.e., no pair of individuals
have the same objective values. Alg. 5 in Appendix 1 shows an alternative way
to do multi-objective sorting. Fig. 1(b) [33] illustrates an example of the order
of a population after multi-objective sorting.

(a) Fitness-first sorting (SA-EA)

6

2
3
4
5

7

8

9!!"#"

!!$#"

!!$%"

!!"

!!"%"

!
"

…
…

1

…

…

!… $$ − 1$ − 2 $ − 1 $ + 2 …0

10
11

12

…

(b) Multi-objective sorting (MOSA-EA)

6

2

3

4

5
7

8

9

!!"#"

!!$#"

!!$%"

!!"

!!"%"

!
"

…
…

1

10

…

…

!… $$ − 1$ − 2 $ − 1 $ + 2 …0

ℱ!

ℱ"
ℱ#
ℱ$

ℱ%
ℱ&

Fig. 1: Illustration of population sorting in (a) SA-EA and (b) MOSA-EA [33].
The points in the same cell have the same fitness and the same mutation rate.

In this paper, we consider comma selection (Alg. 6 in Appendix 1) which
selects parents from the fittest µ individuals of the sorted population uniformly
at random. To self-adapt the mutation rate, we apply the same strategy as
in [33] (Alg. 2), where the mutation rate is multiplied by A > 1 with probability
pinc ∈ (0, 1), otherwise it is divided by A. The range of mutation rates is from
ε > 0 to 1/2. We sample the initial mutation rate of each individual from {εAi |
i ∈

!
0,
"
logA(

1
2ε)

#$
} uniformly at random, where i is an integer.

Most programming languages represent floats imprecisely, e.g., multiplying a
number by A, and then dividing by A is not guaranteed to produce the original
number. In the MOSA-EA, it is critical to use precise mutation rates to limit
the number of distinct mutation rates in the population. We therefore recom-
mend to implement the self-adaptation strategy as follows: build an indexed list
containing all mutation rates χ/n = εAi for all integers i ∈

!
0,
"
logA(

1
2ε)

#$
, and

encode the index into each individual. Then mutating the mutation rate can be
achieved by adding or subtracting 1 to the index instead of the mutation rate
multiplying A or dividing by A.

Algorithm 2 Self-adapting mutation rate strategy [33]

Require: Parameters A > 1, ε > 0 and pinc ∈ (0, 1). Mutation parameter χ.

1: χ′ =

!
min(Aχ, εnA⌊logA(1

2ε
)⌋) with probability pinc,

max (χ/A, εn) otherwise.

2: return χ′.

Self-adaptation via Multi-objectivisation: An Empirical Study 5

3 Parameter settings in MOSA-EA

One of the aims of self-adaptation is to reduce the number of parameters that
must be set by the user. MOSA-EA has three parameters ε, pinc and A, in
addition to the population sizes λ and µ. We will first investigate how sensitive
the algorithm is to these parameters. Adding three new parameters to adapt
one parameter seems contradictory to the aim of self-adaptation. However, as
we will see later in this paper, these parameters need not to be tuned carefully.
We use the same parameter setting of the MOSA-EA for all experiments in this
paper to show that the MOSA-EA does not require problem-specific tuning of
the parameters.

The parameter ε is the lower bound of the mutation rate in the MOSA-EA.
In fixed mutation rate EAs, we usually set a constant mutation parameter χ.
To cover the range of all possible mutation rates χ/n, we recommend to set the
lowest mutation rate ε = c/(n ln(n)), where c is some small constant. In this
paper, we set ε = 1/(2n ln(n)). As mentioned before, A > 0 and pinc ∈ (0, 1)
are two self-adapting mutation rate parameters in Alg. 2. We use some simple
functions as a starting point to empirically analyse the effect of setting the pa-
rameters of A and pinc. We run the MOSA-EA with different parameters A and
pinc on OneMax, LeadingOnes and Funnel (n = 100, the definitions can be
found in Section 4.2) which represent single-modal and multi-modal functions.
For each pair of A and pinc, we execute the algorithm 100 times, with popula-
tion sizes λ = 104 ln(n) and µ = λ/8. Figs. 2(a), (b) and (c) show the medians
of the runtimes of the MOSA-EA for different parameters A and pinc on One-
Max, LeadingOnes and Funnel, respectively. The maximal number of fitness
evaluations is 109.

From Figs. 2, the algorithm finds the optimum within 107 function evalua-
tions for an extensive range of parameter settings. The algorithm is slow when
A and pinc are too large. Therefore, we recommend to set pinc ∈ (0.3, 0.5) and
A ∈ (1.01, 1.5). For the remainder of the paper, we will choose pinc = 0.4
and A = 1.01. We also recommend to use a sufficiently large population size
λ = c ln(n) for some large constant c. We will state the population sizes λ and
µ later.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pinc

1.01

1.17

1.33

1.49

1.65

1.81

1.97

A

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pinc

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pinc

(c)

106

107

108

109

Fig. 2: Median runtimes of the MOSA-EA for different parameters A and pinc on
(a) OneMax, (b) LeadingOnes and (c) Funnel over 100 independent runs
(n = 100).

6 X. Qin and P.K. Lehre

4 Experimental settings and methodology

We compare the performance of the MOSA-EA with eleven other heuristic algo-
rithms on three classical pseudo-Boolean functions and two more complex com-
binatorial optimisation problems. We also empirically study the MOSA-EA in
noisy environments. In this section, we will first introduce the other algorithms
and their parameter settings. We will then describe the definitions of bench-
marking functions and problems. We will also indicate the statistical approach
applied in the experiments.

4.1 Parameter settings in other algorithms

We consider eleven other heuristic algorithms, including three single-individual
elitist algorithms, random search (RS), random local search (RLS) and (1+1) EA,
two population-based elitist algorithms, (1 + (λ,λ)) GA [15] and FastGA [16],
two estimation of distribution algorithms (EDAs), cGA [24] and UMDA [37],
two non-elitist EAs, 3-tournament EA and (µ,λ) EA, and two self-adjusting
EAs, SA-EA [7] and self-adjusting population size (1, {F 1/sλ,λ/F}) EA (SA-
(1,λ) EA) [27], and a problem-specific algorithm, Open-WBO [35]. These heuris-
tic algorithms are proved to be efficient in many scenarios, e.g., in multi-modal
and noisy optimisation [3, 6, 7, 9, 10, 16, 18, 19, 26, 31]. Open-WBO is a MaxSat
solver that operates differently than randomised search heuristics. It was one of
the best MaxSat solvers in MaxSAT Evaluations 2014, 2015, 2016 and 2017 [2].

It is essential to set proper parameters for each algorithm for a compara-
tive study [5]. In the experiments, we use parameter recommendations from the
existing theoretical and empirical studies, which are summarised in Tab. 1.

Note that to investigate the effect of self-adaptation via multi-objectivisation,
the SA-EA applied the same self-adapting mutation rate strategy and initiali-
sation method as the MOSA-EA, instead of the strategy used in [7]. The only
difference between the SA-EA and the MOSA-EA in the experiments is the sort-
ing mechanism: The SA-EA uses the fitness-first sorting mechanism [7] (Alg. 7
in Appendix 1) and the MOSA-EA uses the multi-objective sorting mechanism.

Table 1: Parameter settings of algorithms considered in this paper

Category Algorithm Parameter Settings

Elitist EAs

RS -
RLS -
(1+1) EA Mutation rate χ/n = 1/n

(1 + (λ,λ)) GA [15]
Mutation rate p = λ/n; Crossover bias c = 1/λ;
Population size λ = 2 ln(n) [6]

FastGA [16] β = 1.5 [16]

EDAs
cGA [24] K = 7

√
n ln(n) [44]

UMDA [37] µ = λ/8

Non-Elitist EAs
3-tournament EA Mutation rate χ/n = 1.09812/n [9, 10]
(µ,λ) EA Mutation rate χ/n = 2.07/n; Population size µ = λ/8 [29,34]

Self-adjusting EAs
SA-(1,λ) EA [27] Population size λinit = 1, λmax = enF 1/s; F = 1.5, s = 1 [27]
SA-EA Population size µ = λ/8; A = 1.01, pinc = 0.4, ε = 1/(2 ln(n))
MOSA-EA Population size µ = λ/8; A = 1.01, pinc = 0.4, ε = 1/(2 ln(n))

MaxSat solver Open-WBO [35]1 Default
1 We use version 2.1: https://github.com/sat-group/open-wbo.

https://github.com/sat-group/open-wbo

Self-adaptation via Multi-objectivisation: An Empirical Study 7

4.2 Classical functions

We first consider two well-known unimodal functions, OneMax and Leadin-
gOnes, i.e., OM(x) :=

%n
i=1 x(i) and LO(x) :=

%n
i=1

&i
j=1 x(j). One would

not expect to encounter these functions in real-world optimisation. However,
they serve as a good starting point to analyse the algorithms. We cannot expect
good performance from an algorithm which performs poorly on these simple
functions. We also consider Funnel which was proposed by Dang et al. [9], It
is a bi-modal function with sparse local optima and a dense fitness valley which
belongs to the problem class SparseLocalOptα,ε [10]. The parameters u, v,
w in the Funnel function describe the sparsity of the deceptive region and the
density of the fitness valley. Dang et al. [9] proved that the (µ+ λ) EA and
the (µ,λ) EA are inefficient on Funnel if v − u = Ω(n) and w − v = Ω(n),
while the 3-tournament EA with the mutation rate χ/n = 1.09812/n can find
the optimum in polynomial runtime. In the experiments, we test the Funnel
function with the parameters u = 0.5n v = 0.6n and w = 0.7n which satisfy the
restrictions above.

For each problem, we independently run each algorithm 30 times for each
problem size n from 100 to 200 with step size 10 and record the runtimes. For
fair comparison, we set sufficiently large population sizes λ = 104 ln(n) for the
MOSA-EA, the 3-tournament EA, the (µ,λ) EA, the UMDA and the SA-EA.

4.3 Combinatorial optimisation problems

We consider two NP-hard problems, the random NK-Landscape problem and
the random k-Sat problem, which feature many local optima [28, 38]. We com-
pare the performance of the MOSA-EA with other popular randomised search
heuristics in a fitness evaluation budget. To further investigate the MOSA-EA,
we compare it with the problem-specific algorithm Open-WBO [35] which is a
MaxSat solver in a fixed CPU time.

For fair comparisons, we set the population sizes λ = 20000 for the MOSA-
EA, the 3-tournament EA, the (µ,λ) EA, the UMDA and the SA-EA. We also
apply Wilcoxon rank-sum tests [45] between the results of each algorithm and
the MOSA-EA.
Random NK-Landscape problems The NK-Landscape problem [28] can
be described as: given n, k ∈ N satisfying k ≤ n, and a set of sub-functions fi :
{0, 1}k → R for i ∈ [n], to maximise NK-Landscape(x) :=

%n
i=1 fi (Π (x, i)) ,

where the function Π : {0, 1}n, [n] → {0, 1}k returns a bit-string containing k
right side neighbours of the i-th bit of x, i.e., xi, . . . , x(i+k−1) mod n. Typically,

each sub-function is defined by a lookup table with 2k+1 entries, each in the
interval (0, 1). The “difficulty” of instance can be varied by changing k [39].
Generally, the problem instances are considered to become harder for larger
k. We generate 100 random NK-Landscape instances with n = 100 for each
k ∈ {5, 10, 15, 20, 25} by uniformly sampling values between 0 and 1 in the lookup
table. We run each algorithm once on each instance and record the highest fitness
value achieved in the fitness evaluation budget of 108.
Random k-Sat problems The k-Sat problem is an optimisation problem that
aims to find an assignment in the search space {0, 1}n which maximises the

8 X. Qin and P.K. Lehre

number of satisfied clauses of a given Boolean formula in conjunctive normal form
[1,8,23]. For each random k-Sat instance, each of m clauses have k literals which
are sampled uniformly at random from [n] without replacement. We first generate
100 random k-Sat instances with k = 5, n = 100 and m ∈ {100i | i ∈ [30]}.
Similarly with the NK-Landscape experiments, we run each algorithm on these
random instances and record the smallest number of unsatisfied clauses during
runs of 108 fitness function evaluations. Additionally, we run Open-WBO and
the MOSA-EA on the same machine in one hour CPU time. The MOSA-EA
is implemented in OCaml, while OpenWBO is implemented in C++, which
generally leads to faster-compiled code than OCaml.

4.4 Noisy optimisation

We consider the one-bit noise model (q) which are widely studied [18,20,21,31,
40, 43]. Let fn(x) denote the noisy fitness value. Then the one-bit noise model
(q) can be described as: given a probability q ∈ [0, 1], i.e., noise level, and a

solution x ∈ {0, 1}n, then fn(x) =

'
f(x) with probability 1− q

f(x′) with probability q
, where x′ is

a uniformly sampled Hamming neighbour of x.
From the previous studies [11,32], non-elitist EAs can cope with the higher-

level noise by reducing the mutation rate. However, we need to know the exact
noise level to set a proper mutation rate. Our aim with the noisy optimisation
experiments is to investigate whether the mutation rate self-adapts to the noise
level when using the multi-objective self-adaptation mechanism. Therefore, we
set the mutation rate of the (µ,λ) EA as ln(λ/µ)/(2n) instead of the value close
to the error threshold [29, 34]. For a fair comparison, we set population sizes
λ = 104 ln(n) and µ = λ/16 for both the MOSA-EA and the (µ,λ) EA. The
difference between the two EAs is only the parameter control method.

We test the algorithms on LeadingOnes in the one-bit noise model with
noise levels q = {0.2, 0.6, 0.8, 0.9}. For each problem size n = 100 to 200 with
step size 10, we execute 100 independent runs for each algorithm and record
the runtimes. To track the behaviours of the MOSA-EA under different levels of
noise, we also record the mutation rate of the individual with the highest real
fitness value during the run.

5 Results and discussion

5.1 Classical functions

Figs. 3(a), 3(b) and 3(c) show the runtimes of the MOSA-EA and nine other
heuristic algorithms on OneMax, LeadingOnes and Funnel over 30 inde-
pendent runs, respectively. Based on theoretical results [25], the expected run-
times of the (1+1) EA are O (n log(n)) and O

(
n2

)
on OneMax and Leadin-

gOnes, respectively. We thus normalise the y-axis of Figs. 3(a) and (b) by n ln(n)
and n2, respectively. We also use the log-scaled y-axis for Figs. 3(a) and 3(b).
The runtime of the 3-tournament EA with a mutation rate χ/n = 1.09812/n
and a population size c log(n) for a sufficiently large constant c on Funnel is
O
(
n2 log(n)

)
[9]. We thus normalise the y-axis of Fig. 3(c) by n2 ln(n). Note

that (1+1) EA, RLS, (µ,λ) EA, cGA, FastGA, (1 + (λ,λ)) GA, SA-EA and

Self-adaptation via Multi-objectivisation: An Empirical Study 9

SA-(1,λ) EA cannot achieve the optimum of the Funnel function in 109 fit-
ness evaluations. It is known that no elitist black-box algorithm can optimise
Funnel in polynomial time with high probability [9, 10].

Although the MOSA-EA is slower than EDAs and elitist EAs on the uni-
modal functions OneMax and LeadingOnes, it has comparable performance
with the other non-elitist EAs and the SA-EA. Recall theoretical results on
Funnel [9,10], elitist EAs and the (µ,λ) EA fail to find the optimum, while the
3-tournament EA is efficient. The results in Fig. 3 (c) are consistent with the
theoretical results. In this paper, the (µ,λ) EA, the SA-EA and the MOSA-EA
use the (µ,λ) selection. Compared with the (µ,λ) EA and the SA-EA, self-
adaptation via multi-objectivisation can cope with sparse local optima and even
achieve a better performance than the 3-tournament EA.

100 110 120 130 140 150 160 170 180 190 200

Problem size n

100

102

104

106

R
u
n
ti

m
e

=
(n

ln
(n

))

(a)

MOSA-EA
SA-EA
3-tour. EA
(1 + 1) EA

UMDA
(7;6) EA
cGA
FastGA

RLS
(1 + (6;6)) GA
SA-(1;6) EA

100 110 120 130 140 150 160 170 180 190 200

Problem size n

100

102

104

R
u
n
ti

m
e

=
n

2

(b)

MOSA-EA
SA-EA
3-tour. EA
(1 + 1) EA

UMDA
(7;6) EA
cGA
FastGA

RLS
(1 + (6;6)) GA
SA-(1;6) EA

100 110 120 130 140 150 160 170 180 190 200

Problem size n

200

400

600

800

1000

1200

R
u
n
ti

m
e

=
! n

2
ln

(n
)"

(c)

MOSA-EA

3-tour. EA

Fig. 3: Runtimes of nine algorithms on the (a) OneMax, (b) LeadingOnes, (c)
Funnel (u = 0.5n, v = 0.6n,w = 0.7n) functions over 30 independent runs. The
y-axis in sub-figures (a) and (b) are log-scaled. (1+1) EA, RLS, (µ,λ) EA, cGA,
FastGA, (1 + (λ,λ)) GA, SA-EA and SA-(1,λ) EA cannot find the optimum of
the Funnel function in 109 fitness evaluations.

5.2 Combinatorial optimisation problems

Random NK-Landscape problems Fig. 4 illustrates the experimental re-
sults of eleven algorithms on random NK-Landscape problems. From Wilcoxon
rank-sum tests, the highest fitness values achieved by the MOSA-EA are sta-
tistically significantly higher than all other algorithms with significance level
α = 0.05 for all NK-Landscape with k ∈ {10, 15, 20, 25}. Furthermore, the ad-
vantage of the MOSA-EA is more significant for the harder problem instances.

k = 5 k = 10 k = 15 k = 20 k = 25
50

60

70

80

90

100

F
it
n
es
s

Random Search

cGA

RLS

SA-(1;6) EA

UMDA

(1 + 1) EA

FastGA

(1 + (6;6)) GA

(7;6) EA

3-tournament EA

MOSA-EA

Fig. 4: The highest fitness values found in the end of runs in 108 fitness evalua-
tions on 100 random NK-Landscape instances with different k (n = 100).

Fig. 5 illustrates the highest fitness values found during the optimisation
process on one random NK-Landscape instance (k = 20, n = 100). Note that
the non-elitist algorithms, i.e., EDAs, (µ,λ) EA, 3-tournament EA, SA-(1,λ) EA
and MOSA-EA, do not always keep the best solution found. Therefore, the

10 X. Qin and P.K. Lehre

corresponding lines might fluctuate. In contrast, the elitist EAs, e.g., (1+1) EA,
increase the fitness value monotonically during the whole run.

The elitist EAs converge quickly to solutions of medium quality, then stag-
nate. In contrast, the 3-tournament EAs, the (µ,λ) EA and the MOSA-EA im-
prove the solution steadily. Most noticeably, the MOSA-EA improves the solu-
tion even after 107 fitness evaluations.

105 106 107 108

Number of Fitness Evaluations

50

60

70

80

F
it

n
es

s

MOSA-EA
cGA
3-tour. EA

(1 + 1) EA
RLS
Random Search

UMDA
(7;6) EA
(1 + (6;6)) GA

FastGA
SA-(1;6) EA

Fig. 5: The median of the highest fitness values found in every 2 × 104 fitness
evaluations over 30 independent runs on one random NK-Landscape instance
(k = 20, n = 100). The x-axis is log-scaled.

Random k-Sat problems Fig. 6 illustrates the medians of the smallest number
of unsatisfied clauses found in the 108 fitness evaluations budget among eleven
algorithms on 100 random k-Sat instances (k = 5, n = 100) with different total
number of clauses m. Coja-Oghlan [8] proved that the probability of generating
a satisfiable instance drops from nearly 1 to nearly 0, if the ratio of the number of
clauses m and the problem size n is greater than a threshold, rk−Sat = 2k ln(2)−
1
2 (1 + ln(2)) + ok(1), where ok(1) signifies a term that tends to 0 in the limit
of large k. In this case, rk−Sat is roughly 2133 if we ignore the ok(1) term. We
therefore call an instance with m ≥ 2133 hard. The MOSA-EA is statistically
significantly better than the other ten algorithms with significance level α = 0.05
on hard instances from Wilcoxon rank-sum tests.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1
00

0

1
10

0

1
20

0

1
30

0

1
40

0

1
50

0

1
60

0

1
70

0

1
80

0

1
90

0

2
00

0

2
10

0

2
20

0

2
30

0

2
40

0

2
50

0

2
60

0

2
70

0

2
80

0

2
90

0

3
00

0

Total Number of Clauses m

0

10

20

N
u
m

b
er

o
f

U
n
sa

ti
s-

ed
C
la

u
se

s

3-tournament EA

(1 + 1) EA

Random Search

UMDA

(1 + (6;6)) GA

(7;6) EA

cGA

FastGA

RLS

SA-(1;6) EA

MOSA-EA

Fig. 6: The medians of the smallest number of unsatisfied clauses found in 108

fitness evaluations on 100 random k-Sat instances with different total numbers
of clauses m (k = 5, n = 100).

Fig. 7 illustrates the smallest number of unsatisfied clauses of the best so-
lution found during the optimisation process on one random k-Sat instance
(k = 5, n = 100, m = 2500). From Fig. 7, we come to similar conclusions with
the experiments on NK-Landscape (Fig. 5).

Fig. 8 illustrates the medians of the smallest number of unsatisfied clauses
found in one hour CPU-time budget of Open-WBO and the MOSA-EA on 100

Self-adaptation via Multi-objectivisation: An Empirical Study 11

105 106 107 108

Number of Fitness Evaluations

101

102

N
u
m

b
er

o
f

U
n
sa

ti
s-

ed
C

la
u
se

s MOSA-EA
cGA
3-tour. EA

(1 + 1) EA
RLS
Random Search

UMDA
(7;6) EA
(1 + (6;6)) GA

FastGA
SA-(1;6) EA

Fig. 7: The smallest number of unsatisfied clauses found over 2 × 104 fitness
evaluations over 30 independent runs on one random k-Sat instance (k = 5,
n = 100, m = 2500). The axis are log-scaled.

1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Total Number of Clauses m

0

20

40

60

N
u
m
b
er
of

U
n
sa
ti
s-
ed

C
la
u
se
s

MOSA-EA

Open-WBO

Fig. 8: The smallest number of unsatisfied clauses found in one hour CPU-time
on 100 random k-Sat instances with different total numbers of clauses m (k = 5,
n = 100).

random k-Sat instances (k = 5, n = 200) with different total number of clauses
m. For the instances with small numbers of clauses, i.e., m ≤ 1900, Open-WBO
returns all satisfied assignments within a few minutes, while the MOSA-EA takes
up to one hour to find all satisfied assignments. However, the performance of the
MOSA-EA is statistically significantly better than Open-WBO on hard instances
in one hour of CPU time.

5.3 Noisy optimisation

Figs. 9 show the runtimes of the MOSA-EA and the (µ,λ) EA on LeadingOnes
in the one-bit noise model. With a fixed mutation rate χ = ln(λ/µ)/(2n) =
ln(16)/(2n) ≈ 1.386/n, the runtimes of the (µ,λ) EA could be in O(n2) for low-
level noise, while the runtimes rise sharply as problem size growing if the noise
levels are q = 0.9. Based on the theoretical results [32], we could furthermore
cope with the higher-level noise by using a lower mutation rate.

However, the exact noise level in real-world optimisation is usually unknown.
Self-adaptation might help to configure the proper mutation rate automatically.
From Fig. 9, the MOSA-EA handles the highest levels of one-bit noise, where
the (µ,λ) EA encounters a problem. Fig. 10 illustrates the relationships between
mutation rates and real fitness values of the MOSA-EA. We observe a decrease
in the mutation rate when the noise level increases. In particular, the MOSA-
EA automatically adapts the mutation rate to below 1.386/n, when using the
(µ,λ) EA close to the optimum under the highest noise level. The lower mutation
rate could be the reason for successful optimisation under noise.

6 Conclusion

EAs applied to noisy or multi-modal problems can benefit from non-elitism.
However, it is non-trivial to set the parameters of non-elitist EAs appropriately.

12 X. Qin and P.K. Lehre

10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0

0

1000

2000

R
u
n
ti
m
e

=n
2

(a) Noise level q = 0:2

(7;6) MOSA-EA
(7;6) EA

10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0

0

1000

2000

(b) Noise level q = 0:6

10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0

Problem size n

0

2000

4000

R
u
n
ti
m
e

=n
2

(c) Noise level q = 0:8

10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0

Problem size n

0

2000

4000
(d) Noise level q = 0:9

Fig. 9: Runtimes of the MOSA-EA and the (µ,λ) EA with the fixed mutation
rate χ/n = 1.386/n on LeadingOnes under one-bit noise with different noise
levels q. (λ = 104 ln(n), µ = λ/16)

20 40 60 80 99

Fitness Value

1:0

1:386

2:0
2:5

5:0

10:0

M
u
ta

ti
on

P
a
ra

m
et

er
@

q = 0.2

q = 0.6

q = 0.8

q = 0.9

Fig. 10: Real fitness and mutation parameter of the highest real fitness individual
per generation of the MOSA-EA on LeadingOnes under one-bit noise with
different noise levels q. Lines show median value of mutation parameter χ. The
corresponding shadows indicate the IQRs. The y-axis is log-scaled. (n = 100,
λ = 104 ln(n), µ = λ/16)

Self-adaptation via multi-objectivisation, a parameter control method, is proved
to be efficient in escaping local optima with unknown sparsity [33]. This paper
continues the study of MOSA-EA through an empirical study of its performance
on a wide range of combinatorial optimisation problems. We first empirically
study the MOSA-EA on theoretical benchmark problems. The performance of
the MOSA-EA is comparable with other non-elitist EAs on unimodal functions,
i.e., OneMax and LeadingOnes. Self-adaption via multi-objectivisation can
also help to cope with sparse local optima. For the NP-hard combinatorial opti-
misation problems, randomNK-Landscape and k-Sat, the MOSA-EA is signif-
icantly better than the other nine heuristic algorithms. In particular, the MOSA-
EA can beat a state-of-the-art MaxSat solver on some hard random k-Sat in-
stances in a fixed CPU time. We then experimentally analyse the MOSA-EA in
noisy environments. The results also demonstrate that self-adaptation can adapt
mutation rates to given noise levels. In conclusion, the MOSA-EA outperforms a
range of optimisation algorithms on several multi-modal and noisy optimisation
problems.

Self-adaptation via Multi-objectivisation: An Empirical Study 13

Acknowledgements This work was supported by a Turing AI Fellowship (EP-
SRC grant ref EP/V025562/1). The computations were performed using Univer-
sity of Birmingham’s BlueBEAR and Baskerville HPC service.

Appendix 1 Omitted algorithms in this paper

Algorithm 3 Multi-objective sorting mechanism [33]

Require: Population sizes λ ∈ N. Population Pt ∈ Yλ. Fitness function f .
1: Sort Pt into strict non-dominated fronts F t

0,F t
1, . . . based on f1(x,χ) := f(x) and

f2(x,χ) := χ.
2: for F = F t

0,F t
1, . . . do

3: Sort F such that f1 (F(1)) > f1 (F(2)) >

4: Pt :=
"
F t

0,F t
1, . . .

#
.

5: return Pt.

Algorithm 4 Strict non-dominated sorting [33]

Require: Population sizes λ ∈ N. Population P ∈ Zλ, where Z is a finite state
space. Objective functions f1, f2, . . . : Z → R (assume to maximise all objective
functions).

1: for each individual P (i) do
2: Set Si := ∅ and ni := 0.

3: for i = 1, . . . ,λ do
4: for j = 1, . . . ,λ do
5: if P (i) ≺ P (j) based on f1, f2, . . . then
6: Si := Si ∪ {P (i)},
7: else if P (j) ≺ P (i) based on f1, f2, . . . then
8: ni := ni + 1,
9: else if fℓ(P (i)) = fℓ(P (j)) where ℓ = 1, 2, . . . then
10: if P (i) /∈ Sj then Si := Si ∪ {P (i)} else ni := ni + 1.

11: if ni = 0 then F0 = F0 ∪ {P (i)}.
12: Set k := 0.
13: while Fk ∕= ∅ do
14: Q := ∅.
15: for each individual P (i) ∈ Fk and P (j) ∈ Si do
16: Set nj := nj − 1.
17: if nj = 0 then Q := Q ∪ {P (j)}.
18: Set k := k + 1, Fk := Q.

19: return F0,F1,

14 X. Qin and P.K. Lehre

Algorithm 5 Multi-objective sorting mechanism (alternative)

Require: Population sizes λ ∈ N. Population Pt ∈ Yλ. Fitness function f .
1: Sort Pt into P 1

t , P
1
t , . . . where P 1

t containing all individuals with the highest fitness
f , P 2

t containing all individuals with the 2nd highest fitness f ,
2: for i = 1, . . . ,λ do
3: Set χ̂ := −∞.
4: for Q = P 1

t , P
1
t , . . . do

5: Find (x′,χ′) which is the element with the highest χ in Q.
6: if Q ∕= ∅ and χ′ > χ̂ then
7: Pt(i) := (x′,χ′) and χ̂ := χ′.
8: Pop (x′,χ′) from Q.
9: Break.
10: return Pt.

Algorithm 6 (µ,λ) selection

Require: Population size λ ∈ N. Parameter µ ∈ [λ]3.
1: It ∼ Unif([µ]).
2: return It.

Algorithm 7 Fitness-first sorting mechanism [7]

Require: Population sizes λ ∈ N. Population Pt ∈ Yλ. Fitness function f .
1: Sort Pt such that Pt(1) ≽ · · · ≽ Pt(λ), according to
2: (x,χ) ≽ (x′,χ′) ⇔ f(x) > f (x′) ∨ (f(x) = f (x′) ∧ χ ≥ χ′).
3: return Pt.

3 For any n ∈ N, we define [n] := {1, . . . , n}

Self-adaptation via Multi-objectivisation: An Empirical Study 15

Appendix 2 Omitted statistical results of experiments

Table 2: Statistical results of experiments on random NK-Landscape problems.
The p-values of each algorithm come from Wilcoxon rank-sum tests between the
algorithm and MOSA-EA.
k Stat. RS cGA UMDA RLS SA-(1,λ)EA (1 + 1)EA FastGA (1 + (λ,λ))GA (µ,λ)EA 3-tour.EA MOSA-EA

5
Median 66.6591 72.9964 74.8631 71.3547 74.8418 76.6613 76.9230 79.2846 78.2089 79.2846 79.2846
p-value 2.1e-22 2.3e-04 0.0213 6.5e-08 0.0226 0.2668 0.4215 0.9299 0.7985 0.8805 -

10
Median 66.4442 69.5499 73.2968 68.3100 71.0248 75.5792 76.1340 77.1520 79.2680 78.7832 82.5270
p-value 2.6e-34 1.5e-26 2.0e-15 2.6e-34 3.5e-34 5.0e-18 1.1e-12 2.2e-09 0.0030 0.0063 -

15
Median 66.2055 66.5517 70.9576 66.4446 67.8968 73.7253 74.2253 74.6407 76.0777 76.9053 80.4417
p-value 2.6e-34 2.6e-34 5.5e-22 2.6e-34 2.6e-34 2.6e-34 1.8e-33 5.2e-33 1.3e-20 1.1e-17 -

20
Median 66.1233 64.4191 69.6786 64.9865 66.0533 72.8025 72.8783 73.0882 74.2580 75.3662 78.5247
p-value 2.6e-34 2.6e-34 7.0e-31 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 4.0e-33 1.2e-31 -

25
Median 66.2207 63.1222 68.5683 64.3685 65.1886 70.8648 71.7564 71.9623 73.4398 74.8115 77.5024
p-value 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 2.6e-34 1.4e-33 -

1
00

2
00

3
00

4
00

5
00

6
00

7
00

8
00

9
00

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

Total Number of Clauses m

10!40

10!30

10!20

10!10
0.05

p
-v
a
lu
e

3-tournament EA

(1 + 1) EA

Random Search

UMDA

(1 + (6;6)) GA

(7;6) EA

cGA

FastGA

RLS

SA-(1;6) EA

Fig. 11: The p-values of Wilcoxon rank-sum tests between the algorithms and
the MOSA-EA on 100 random k-Sat instances. The y-axis is log-scaled.

1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Total Number of Clauses m

10!40

10!30

10!20

10!10
0.05

p
-v
al
u
e

Open-WBO

Fig. 12: The p-value of Wilcoxon rank-sum test between Open-WBO and the
MOSA-EA on 100 random k-Sat instances. The y-axis is log-scaled.

16 X. Qin and P.K. Lehre

References

1. Achlioptas, D., Moore, C.: Random kSAT: Two Moments Suffice to Cross a Sharp
Threshold. SIAM Journal on Computing 36(3), 740–762 (Jan 2006)

2. Ansótegui, C., Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT Evaluation 2017.
SAT (2017)

3. Antipov, D., Doerr, B., Karavaev, V.: A Rigorous Runtime Analysis of the (1 +
(λ,λ)) GA on Jump Functions. Algorithmica (Jan 2022)

4. Bäck, T.: Self-Adaptation in Genetic Algorithms. In: Self Adaptation in Genetic
Algorithms. pp. 263–271. MIT Press (1992)

5. Bartz-Beielstein, T., Doerr, C., Berg, D.v.d., Bossek, J., Chandrasekaran, S., Ef-
timov, T., Fischbach, A., Kerschke, P., La Cava, W., Lopez-Ibanez, M., Malan,
K.M., Moore, J.H., Naujoks, B., Orzechowski, P., Volz, V., Wagner, M., Weise, T.:
Benchmarking in Optimization: Best Practice and Open Issues. arXiv:2007.03488
[cs, math, stat] (Dec 2020), arXiv: 2007.03488

6. Buzdalov, M., Doerr, B.: Runtime analysis of the (1 + (λ,λ)) genetic algorithm
on random satisfiable 3-CNF formulas. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference. pp. 1343–1350. ACM, Berlin Germany (Jul
2017)

7. Case, B., Lehre, P.K.: Self-adaptation in non-Elitist Evolutionary Algorithms on
Discrete Problems with Unknown Structure. IEEE Transactions on Evolutionary
Computation pp. 1–1 (2020)

8. Coja-Oghlan, A.: The asymptotic k-SAT threshold. In: Proceedings of the forty-
sixth annual ACM symposium on Theory of computing. pp. 804–813. ACM, New
York New York (May 2014)

9. Dang, D.C., Eremeev, A., Lehre, P.K.: Escaping Local Optima with Non-Elitist
Evolutionary Algorithms. In: Proceedings of AAAI 2021. AAAI Press, Palo Alto,
California USA (2020)

10. Dang, D.C., Eremeev, A., Lehre, P.K.: Non-elitist Evolutionary Algorithms Excel
in Fitness Landscapes with Sparse Deceptive Regions and Dense Valleys. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference. ACM, Lille,
France (2021)

11. Dang, D.C., Lehre, P.K.: Efficient Optimisation of Noisy Fitness Functions with
Population-based Evolutionary Algorithms. In: Proceedings of the 2015 ACM Con-
ference on Foundations of Genetic Algorithms XIII - FOGA ’15. pp. 62–68. ACM
Press, Aberystwyth, United Kingdom (2015)

12. Dang, D.C., Lehre, P.K.: Self-adaptation of Mutation Rates in Non-elitist Pop-
ulations. In: Parallel Problem Solving from Nature PPSN XIV, vol. 9921, pp.
803–813. Springer International Publishing, Cham (2016)

13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (Apr 2002)

14. Doerr, B.: Does Comma Selection Help to Cope with Local Optima? Algorithmica
(Jan 2022)

15. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoretical Computer Science 567, 87–104 (Feb 2015)

16. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference. pp. 777–
784. ACM, Berlin Germany (Jul 2017)

Self-adaptation via Multi-objectivisation: An Empirical Study 17

17. Doerr, B., Witt, C., Yang, J.: Runtime Analysis for Self-adaptive Mutation Rates.
Algorithmica 83(4), 1012–1053 (Apr 2021)

18. Droste, S.: Analysis of the (1+1) EA for a Noisy OneMax. In: Genetic and Evo-
lutionary Computation GECCO 2004, vol. 3102, pp. 1088–1099. Springer Berlin
Heidelberg, Berlin, Heidelberg (2004)

19. Friedrich, T., Kotzing, T., Krejca, M.S., Sutton, A.M.: The Compact Genetic Al-
gorithm is Efficient under Extreme Gaussian Noise. IEEE Transactions on Evolu-
tionary Computation pp. 1–1 (2016)

20. Friedrich, T., Ktzing, T., Krejca, M.S., Sutton, A.M.: Robustness of Ant Colony
Optimization to Noise. Evolutionary Computation 24(2), 237–254 (2016), pub-
lisher: MIT Press

21. Gieen, C., Ktzing, T.: Robustness of Populations in Stochastic Environments. Al-
gorithmica 75(3), 462–489 (Jul 2016)

22. Goldberg, D.E., Deb, K.: A Comparative Analysis of Selection Schemes Used in
Genetic Algorithms. In: Foundations of Genetic Algorithms, vol. 1, pp. 69–93.
Elsevier, - (1991)

23. Gottlieb, J., Marchiori, E., Rossi, C.: Evolutionary Algorithms for the Satisfiability
Problem. Evolutionary Computation 10(1), 35–50 (Mar 2002)

24. Harik, G., Lobo, F., Goldberg, D.: The compact genetic algorithm. IEEE Trans-
actions on Evolutionary Computation 3(4), 287–297 (Nov 1999)

25. He, J., Yao, X.: A study of drift analysis for estimating computation time of evo-
lutionary algorithms. Natural Computing 3(1), 21–35 (2004)

26. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting offspring population sizes out-
perform fixed parameters on the cliff function. In: Proceedings of the 16th
ACM/SIGEVO Conference on Foundations of Genetic Algorithms. pp. 1–15. ACM,
Virtual Event Austria (Sep 2021)

27. Hevia Fajardo, M.A.H., Sudholt, D.: Self-adjusting population sizes for non-elitist
evolutionary algorithms: why success rates matter. In: Proceedings of the Genetic
and Evolutionary Computation Conference. pp. 1151–1159. ACM, Lille France
(Jun 2021)

28. Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes
and its application to maturation of the immune response. Journal of theoretical
biology 141(2), 211–245 (1989), publisher: Elsevier

29. Lehre, P.K.: Negative Drift in Populations. In: Parallel Problem Solving from Na-
ture, PPSN XI. pp. 244–253. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

30. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Proceedings of the 13th
annual conference on Genetic and evolutionary computation - GECCO ’11. p. 2075.
ACM Press, Dublin, Ireland (2011)

31. Lehre, P.K., Nguyen, P.T.H.: Runtime Analyses of the Population-Based Univari-
ate Estimation of Distribution Algorithms on LeadingOnes. Algorithmica 83(10),
3238–3280 (Oct 2021)

32. Lehre, P.K., Qin, X.: More Precise Runtime Analyses of Non-elitist EAs in Uncer-
tain Environments. In: Proceedings of the Genetic and Evolutionary Computation
Conference. p. 9. ACM, Lille, France (2021)

33. Lehre, P.K., Qin, X.: Self-adaptation to Multi-objectivisation: A Theoretical Study.
In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM
(2022)

34. Lehre, P.K., Yao, X.: On the Impact of Mutation-Selection Balance on the Run-
time of Evolutionary Algorithms. IEEE Transactions on Evolutionary Computa-
tion 16(2), 225–241 (Apr 2012)

18 X. Qin and P.K. Lehre

35. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: A Modular MaxSAT Solver.
In: Theory and Applications of Satisfiability Testing SAT 2014, vol. 8561, pp.
438–445. Springer International Publishing, Cham (2014)

36. Meyer-Nieberg, S.: Self-adaptation in evolution strategies. PhD Thesis, Dortmund
University of Technology (2007)

37. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions I. Binary parameters. In: International conference on parallel problem
solving from nature. pp. 178–187. Springer (1996)

38. Ochoa, G., Chicano, F.: Local optima network analysis for MAX-SAT. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion.
pp. 1430–1437. ACM, Prague Czech Republic (Jul 2019)

39. Ochoa, G., Tomassini, M., Vrel, S., Darabos, C.: A study of NK landscapes’ basins
and local optima networks. In: Proceedings of the 10th annual conference on Ge-
netic and evolutionary computation - GECCO ’08. p. 555. ACM Press, Atlanta,
GA, USA (2008)

40. Qian, C., Bian, C., Jiang, W., Tang, K.: Running Time Analysis of the (1+1)-EA
for OneMax and LeadingOnes Under Bit-Wise Noise. Algorithmica 81(2), 749–795
(Feb 2019)

41. Smith, J.E.: Self-Adaptation in Evolutionary Algorithms for Combinatorial Opti-
misation. In: Adaptive and Multilevel Metaheuristics, pp. 31–57. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008)

42. Srinivas, N., Deb, K.: Muiltiobjective Optimization Using Nondominated Sorting
in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (Sep 1994)

43. Sudholt, D.: Analysing the Robustness of Evolutionary Algorithms to Noise: Re-
fined Runtime Bounds and an Example Where Noise is Beneficial. Algorithmica
(Jan 2020)

44. Sudholt, D., Witt, C.: Update Strength in EDAs and ACO: How to Avoid Genetic
Drift. In: Proceedings of the Genetic and Evolutionary Computation Conference
2016. pp. 61–68. ACM, Denver Colorado USA (Jul 2016)

45. Wilcoxon, F.: Individual comparisons by ranking methods. In: Breakthroughs in
statistics, pp. 196–202. Springer (1992)

