UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Prediction of stillbirth

Townsend, R; Sileo, FG; Allotey, J; Dodds, J; Heazell, A; Jorgensen, L; Kim, VB; Magee, L; Mol, B; Sandall, J; Smith, GCS; Thilaganathan, B; Dadelszen, P; Thangaratinam, S; Khalil, A *DOI*:

10.1111/1471-0528.16510

License:

Other (please specify with Rights Statement)

Document Version Peer reviewed version

Citation for published version (Harvard):

Townsend, R, Sileo, FG, Allotey, J, Dodds, J, Heazell, A, Jorgensen, L, Kim, VB, Magee, L, Mol, B, Sandall, J, Smith, GCS, Thilaganathan, B, Dadelszen, P, Thangaratinam, S & Khalil, A 2021, 'Prediction of stillbirth: an umbrella review of evaluation of prognostic variables', *BJOG: An International Journal of Obstetrics* & *Gynaecology*, vol. 128, no. 2, pp. 238-250. https://doi.org/10.1111/1471-0528.16510

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1 Prediction of stillbirth: an umbrella review of evaluation of prognostic

2 variables

- 3 Townsend R^{1,2}, Sileo F², Allotey J^{3,4}, Dodds J^{3,4}, Heazell H^{5,6}, Jorgensen L⁷, Kim B⁸,
- 4 Magee L⁹, Mol B⁸, Riley R¹⁰, Sandall J^{11,12}, Smith G^{13,14}, von Dadelszen P⁹,
- 5 Thilaganathan B^{1,2}, Thangaratinam S^{3.4}, Khalil A^{1,2}.
- 6

7

8 9

10 11

15

16 17

18

19

20 21

22

23

24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

- Molecular and Clinical Sciences Research Institute, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK
- 2. Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, London, UK
- Women's Health Research Unit, Blizard Institute, Barts and the London
 School of Medicine and Dentistry, Queen Mary University of London, London,
 UK
 - 4. Pragmatic Clinical Trials Unit, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
 - 5. St. Mary's Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.
 - Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
 - 7. Katie's Team, East London, United Kingdom.
 - 8. Department of Obstetrics and Gynaecology, School of Medicine, Monash University, Melbourne, Australia
 - School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
 - 10. Research Institute for Primary Care and Health Sciences, Keele University, Keele, UK
 - 11.Centre for Implementation Science, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
 - 12.Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, St. Thomas' Hospital, London, United Kingdom
 - 13. Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
 - 14. Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- 40 41

4344 ABSTRACT

46 Background

47

45

59

68 69

70

80

48 Stillbirth accounts for more deaths worldwide than HIV and cancer, and yet 49 prevention of stillbirth is a poorly understood public health problem. Improved 50 antenatal tests and identification of high risk pregnancies are a key research priority. 51 Multivariable prediction models are likely to be key to individualised 52 recommendations to women for monitoring, therapeutic interventions and/or early 53 delivery.

54 55 We undertook a systematic review to collate and critically evaluate the published 56 systematic reviews of potential risk factors for stillbirth with the aim of identifying 57 candidate variables that could be relevant to the development of a clinical prediction 58 model for stillbirth.

60 Methods

Medline, Embase, DARE (Database of Abstracts of Reviews of Effectiveness) and Cochrane Library databases, from database inception to August 2018, and bibliographies of relevant articles were searched, without language restrictions, for systematic reviews and meta-analyses relating to risk factors for stillbirth. The quality of the included reviews was assessed using the AMSTAR tool and a modified QUIPS tool.

Results

The literature search identified 986 citations of which 196 were excluded. In all, 61 71 systematic reviews were included reporting on 62 variables associated with stillbirth. 72 The majority of identified reviews focused on maternal characteristics associated 73 with stillbirth. The most frequently reported were maternal age (particularly maternal 74 age >35 years, n=5), body mass index (BMI) or other measures of maternal obesity 75 (n=6) and maternal diabetes (n=5). Uterine artery Doppler (UtAD) measured in the 76 77 second trimester appeared to have the best performance reported for any single test, with sensitivity for any abnormal UtAD of 65% (95%CI 38-85%) and specificity of 78 82% (95%CI 72-88%). 79

Biochemical markers included elevated alpha-fetoprotein (AFP) (two reviews) 81 [AFP>2.0 MoM; sensitivity 11% (95% CI 9-13) specificity 96% (95% CI 96-96)] and 82 low pregnancy associated placental protein-A (PAPP-A) (two reviews) [PAPP-A <0.4 83 MoM; sensitivity 15% (95% CI 8-26%) specificity 95% (95%CI 95-96)). Human 84 chorionic gonadotrophin (hCG) was reported in two reviews and placental growth 85 factor (PIGF) in one review. Several thrombophilia and autoimmune associated 86 antibodies showed a strong association with stillbirth including lupus anticoagulant 87 (two studies, OR 4.3-54.18) and anticardiolipin antibodies (two studies, OR 4.29-88 15.17). The Factor V Leiden mutation, protein S deficiency and activated protein C 89 resistance were all also strongly associated with stillbirth with OR 6.11 (95% CI 2.8-90 13.2), 16.2 (95% CI 5.1-52.3) and 5.0 (95% CI 2.0-12.4), respectively. 91

Only two reviews reported on combinations of variables, including AFP and hCG with
 and without estriol and the combined (nuchal translucency, PAPP-A, maternal age
 and bHCG) screening test.

97 Conclusion

98

99 Our review of reviews has identified a large number of systematic reviews 100 investigating more than 60 candidate variables relevant to the development of 101 clinical prediction models for stillbirth. However, none of these markers, as a sole 102 predictor, had useful screening performance, despite being consistently and strongly 103 associated with stillbirth.

3

106 INTRODUCTION

105

118

Stillbirth accounts for more global deaths than HIV/AIDS or cancer; (1) yet stillbirth 107 108 remains an often invisible public health problem.(2) Although recent years have seen an encouraging, if not yet adequate, fall in maternal and neonatal mortality the global 109 110 incidence of stillbirth remains stubbornly high. Assessment of worldwide stillbirth rates is complicated by local and national variations in case definition, recognition 111 and recording, but conservative estimates suggest that 2.62 million babies died 112 113 before birth in 2015. (3) The majority of the stillbirth burden occurs in low and middle 114 income settings, but stillbirth reduction is an urgent government priority in all settings. The UK incidence of stillbirth (defined as fetal death after 24 weeks) fell by 115 a fifth between 1993 and 2015 to 4.5 per 1000 births,(4) but remains one of the 116 highest in Europe.(5) 117

119 In the UK, national guidelines for stillbirth prevention recommend selecting women for monitoring or intervention by identifying those with risk factors including maternal 120 characteristics (e.g. maternal age), ultrasound markers (e.g. second trimester uterine 121 artery doppler) and biochemical markers (e.g. low PAPP-A [Pregnancy associated 122 placental protein-A]), which are known to be associated with stillbirth.(6) The 123 124 identified risk factors are effectively used as screening tests to triage women as 125 'high' risk of stillbirth, but in most cases, there has been no formal evaluation of the performance of these markers as predictive tests. Furthermore, no guideline 126 considers the relationships between related risk factors or the possibility that certain 127 factors may reduce the risk of stillbirth. In fact, only 19% of stillbirths occur in women 128 with established risk factors at their booking appointment,(7) leaving significant room 129 for improvement on current practice. Risk scores based on clinical characteristics 130 alone have a high screen positive rate, limiting their clinical applicability.(8) 131 Consultation with patients and expert stakeholders has demonstrated interest in 132 developing new antenatal tests and using existing tests more efficiently to help 133 reduce stillbirth.(9) With better prediction tools we could move beyond application of 134 the same threshold for intervention to all women with a single risk factor and 135 individualise the risk assessment and advice we give to pregnant woman 136 137 accordingly.

138

The most important avoidable cause of stillbirth is placental dysfunction, although maternal and fetal co-morbidities and environmental and genetic factors also play a significant role.(10) It is accepted that given the heterogeneity of pathologies leading to intrauterine fetal demise, prediction of stillbirth by any single variable is unlikely to be clinically useful.(11) Instead, multivariable prediction models are most likely to yield clinically relevant results that could individualise recommendations to women for monitoring, therapeutic interventions and/or early delivery.(11) Selection of variables for the development of prediction models is often limited by variables commonly available in large datasets, typically those obtained at the time of first trimester aneuploidy screening.(12,13) However, the ideal prediction model would not be limited by the data available. Optimal model development should take into account the all available evidence, including promising candidate variables.(14)

152 In order to prioritise variables for inclusion in any model built for the prediction of stillbirth one must map and critically appraise the relevant available evidence in this 153 154 field. Where primary studies suggest the possibility of variable association with stillbirth, evidence is synthesised in systematic reviews of observational or prediction 155 studies. We undertook a systematic review to collate and critically evaluate the 156 published systematic reviews of potential risk factors for stillbirth with the aim of 157 identifying candidate variables via a broad overview of the existing evidence that 158 could be relevant to the development of a clinical prediction model for stillbirth. 159

161 METHODS

The systematic review was based on a prospective protocol according to current
recommendations (15–17) and reported according to the PRISMA guidelines(18).
The study was registered with the PROSPERO database (Registration number:
CRD42017074061)

166

160

151

167 Literature search

We searched Medline, Embase and the Cochrane Library including The Cochrane 168 Database of Systematic Reviews (CDSR), Database of Abstracts of Reviews of 169 Effects (DARE), The Cochrane Central Register of Controlled Trials (CENTRAL), 170 Health Technology Assessment Database (HTA) and NHS Economic Evaluation 171 Database (NHS-EED) from inception to August 2018. We used combinations of the 172 relevant medical subject heading (MeSH) terms, key words, and word variants for 173 "stillbirth", "stillborn", "metaanalysis" and "review" (Supplementary Material 1). No 174 language restrictions were imposed. Reference lists of relevant articles and reviews 175 were hand-searched to identify additional relevant papers. 176

177

178 Study selection and data extraction

Two reviewers (RT and FS) reviewed all abstracts independently. Any discrepancies on the potential relevance of the papers were resolved by consensus. We obtained full text copies of reviews that met the inclusion criteria. We included reviews that assessed the predictive accuracy of clinical, biochemical or ultrasound-based predictors for stillbirth (Table 1). We excluded reviews considering the association of therapeutic drugs with stillbirth and other risk factors, as determined by consensus 185 within the steering group to be unlikely to contribute to a useful clinical prediction 186 model, including rare co-morbidities and environmental exposures. Air pollution, for 187 example, may be known for a geographical area without being able to quantify 188 exposure for the individual. (Supplementary Table 1b) Reviews reporting exclusively on variables related to stillbirth in LMIC settings (e.g. malaria and dengue fever) 189 were excluded, since the focus of this work is on prediction of stillbirth within a high 190 resource context. The contributory factors(19) and available variables in LMIC are so 191 different as to mandate a separate approach to prediction of stillbirth and 192 193 assessment of obstetric risk.(8,20)

The clinical characteristics identified included maternal age, parity, body mass index 195 (BMI), cigarette smoking, pre-existing medical conditions (epilepsy, vitamin D 196 deficiency, hypertension, asthma, chronic kidney disease, sickle cell disease, bipolar 197 disorder, Sjogren's syndrome, psychotic illness, diabetes). Any biochemical markers 198 such as soluble fms-like tyrosine kinase-1 (sFlt-1), alpha fetoprotein (AFP), 199 200 pregnancy-associated plasma protein A (PAPP-A), anticardiolipin antibodies (ACA), anti-B2 glycoprotein 1 antibodies (Anti-B2 GP1), human chorionic gonadotrophin 201 (hCG) were grouped as biochemical tests, while uterine artery Doppler, fetal nuchal 202 203 translucency, ductus venosus Doppler and echogenic bowel were categorised as ultrasound variables. We included reviews evaluating tests in the first and second 204 trimester. We accepted and noted the authors' definition of stillbirth, which included 205 206 accepting gestational limits applied by the review authors and noted any pregnancies 207 excluded from the definition of stillbirth (e.g. multiple pregnancies, known fetal anomalies, 'explained' stillbirths). 208

210 We defined a review as systematic if they included an explicit method for searching 211 the literature, searched two or more databases, and if they provided well defined inclusion and exclusion criteria for studies. Case reports, case series, individual 212 observational or randomised studies, narrative reviews, rapid reviews, editorials and 213 poster abstracts were excluded. Two reviewers (RT, FS) independently extracted 214 relevant data. We obtained data on year of publication, study funding, human 215 development index of the countries in which data was gathered, number of 216 databases searched, number of studies included, number of pregnancies/women 217 and the number of stillbirths included, definition of stillbirth used, inclusion and 218 exclusion criteria, screening tests evaluated, timing of the screening test application 219 and the performance of the tests. 220

221

209

194

222 Quality assessment of the included reviews

Two independent reviewers (RT, FS) assessed the methodological quality of the included systematic reviews using the AMSTAR tool (supplementary Figure 1). (21) The tool evaluates whether the reviewers incorporated the following: a prospectively 226 designed study with a clear research question, a comprehensive literature search, 227 relied on the status of publication as an inclusion criterion, duplicated study selection 228 and data extraction, gave details of both the included and excluded studies, 229 assessed and documented the risk of bias of the included studies, included information on the funding of primary studies, used appropriate statistical methods to 230 combine the findings of studies and considered the impact of the risk of bias and 231 232 study heterogeneity in primary studies on the analysis and results, assessed the likelihood of publication bias and reported any conflict of interest. 233

Because the outcome of interest was the prognostic value of the variables considered, we additionally considered for each review whether the risk of bias in the included studies in each of the key domains identified by the Quality In Prognosis Studies tool (QUIPS) had been assessed (supplementary Figure 2). The six domains are study participation, study attrition, measurement of the predictive variable and the study outcome, adjustment for confounders and the quality of statistical analysis and reporting.

242

234

243 RESULTS

244

250

The literature search identified 986 citations. After screening abstracts, 257 full text papers were retrieved for review, of which 196 were excluded (Figure 1, Supplementary Table 1) as not relevant to the purpose of prediction model development, duplicates, wrong study design or reporting outcomes other than stillbirth. In all, 61 systematic reviews were included in this study.

251 Quality assessment using AMSTAR

The methodological quality of the included systematic reviews was assessed using 252 the AMSTAR checklist (Figure 2). The mean score was 7.4/11 and 70.1% (43/61) of 253 254 the included studies had an AMSTAR score greater than or equal to 7. Most reviews undertook a comprehensive literature search (54/61, 88.5%) but only 17/61 (27.9%) 255 utilised a prospectively specified protocol and only 20/61 (32.8%) specifically sought 256 to include 'grey literature'. Most reviews (56/61, 91.8%) used duplicate study 257 selection and data extraction but only 12/61 (19.8%) provided a full list of both 258 included and excluded studies. The majority of reviews (44/61; 72.3%) provided a 259 260 table of the characteristics of included studies, assessed the scientific quality of included studies (47/61, 77.1%) and then used the quality of the included studies in 261 drawing conclusions from the analysis (36/61, 59.0%). Nearly all investigators 262 appropriately combined findings (59/61, 96.7%) but only 31/61 (50.8%) assessed the 263 likelihood of publication bias. Fifty papers made a formal declaration of conflicts of 264 265 interest. Seventeen studies did not specify funding sources and 11 reported no additional study funding. Of the studies that did declare their funding sources, 6 266

Commented [AH1]: Did you use AMSTAR or AMSTAR2? There is an updated version which was published before you completed your searches. Will a reviewer wonder why you've not used the most up to date version?

Commented [rt2]: We considered AMSTAR 2 – the main differences between the two are additional domains heavily weighted towards intervention studies and does not necessarily address the bias important in prognostic studies, which is why we included a consideration of the QUIPS domains as a supplementary quality assessment (this combination of tools was also used in our published review of reviews of predictive variables for pre-eclampsia)

received funds from academic institutions, 9 from non-profit organisations, 15 from
 regional or national governments, 2 from industry sponsors and 1 from the United
 Nations Population Fund (UNFPA).

271 Quality assessment relating to prognostic research using QUality In Prognosis

272 Studies (QUIPS)

270

273

We assessed the risk of bias in the included studies relating specifically to domains 274 275 that are important in the area of prognostic research as outlined in the QUIPS tool (Figure 2). Although most included studies suggested that the variables they 276 reported might be relevant to the prediction of stillbirth, no paper reported fully on the 277 risk of bias in all QUIPS domains in the included primary studies. Most studies 278 (47/61, 77.0%) considered the definition and representativeness of the participants in 279 280 the primary studies and the adequacy of definition and assessment of exposure (50/61, 81.9%) and outcome (46/61, 75.4%). There was significant variation in 281 282 outcome reporting in the reviews and the included primary studies - most reviews simply accepted the primary study authors definitions of stillbirth. Reported 283 definitions of stillbirth varied in the gestational cut offs which ranged from 10-28 284 weeks and in the pathology of stillbirth assessed - several studies excluded 285 congenital anomalies or 'explained' stillbirths. Only 38/61 (62.3%) noted adjustment 286 for potential confounders or the lack of it in the included studies and just 10/61 287 288 (16.4%) considered the impact of attrition and loss to follow up on the performance 289 of the predictive variables.

290

291 Characteristics of the included studies

Table 2 and Figure 3 demonstrate the characteristics and key findings of the 292 included studies. The identified reviews included between 3 and 426 primary studies 293 including 854 to 184 million participants in the largest review (5) The included 294 reviews considered 61 individual variables associated with stillbirth. The majority of 295 included reviews reported on maternal characteristics such as commonly collected 296 297 demographic variables like maternal age, parity, body mass index (BMI), smoking, 298 caffeine and alcohol intake. Medical co-morbidities and past obstetric historical factors were additionally classified as maternal characteristics. Ultrasound markers 299 reviewed included uterine artery Dopplers, nuchal translucency, echogenic bowel, 300 fetal sex and suboptimal fetal growth. Biochemical parameters investigated included 301 thrombophilia associated markers (including anticardiolipin antibodies, lupus 302 anticoagulant and homocysteine), markers of fetoplacental unit function (human 303 chorionic gonadotrophin (hCG), alpha feto protein (AFP), pregnancy associated 304 305 plasma protein-A (PAPP-A)) and a variety of other markers including thyroid stimulating hormone (TSH), soluble fms-like tyrosine kinase-1, serum uric acid, 306 vitamin D, proteinuria and cell free fetal DNA (cffDNA). The majority of biochemical 307

tests were done in the course of clinical care rather than in diagnostic accuracy studies where the results of the tests would have been blinded to the managing clinicians. Several reviews reported on multiple markers in one review but only two reviews reported on combinations of variables. Combinations assessed included alpha-fetoprotein (AFP) and human chorionic gonadotrophin (hCG) with and without estriol (E3),(22) and the combined (nuchal translucency, PAPP-A, maternal age and bHCG) screening test for Trisomy 21.(11)

315

316 Maternal characteristics

The majority of identified reviews focused on maternal characteristics associated 317 318 with stillbirth. The most frequently reported were maternal age (particularly maternal 319 age >35 years, n=5), BMI or other measures of maternal obesity (n=6) and maternal diabetes (n=5). Of the maternal medical conditions reported on, the strongest 320 association (OR>2) was found with sickle cell disease (1 review, RR 3.99, 95% CI 321 2.63-6.04). A mother's obstetric history was strongly associated with stillbirth; a prior 322 stillbirth (2 reviews, one reporting a pooled OR of 4.83, 95% CI 3.77-6.18),(23) a 323 prior preterm birth (1 review, OR 2.98, 95% CI 2.05-4.34) and a prior delivery of a 324 small-for-gestational-age (SGA) baby before 34 weeks (1 review, OR 6.00, 95% CI 325 3.43-10.49).(24) Several socioeconomic factors ranging from social deprivation and 326 327 inequality to immigration status and education were found to be associated with stillbirth, but in all cases the studies identified reported odds ratios of less than 2. 328 329 Only one review considered ethnicity as a risk factor in relation to aboriginal women, where aboriginal status was consistently associated with stillbirth in several 330 countries. Maternal smoking or smoke exposure was consistently seen to be 331 332 associated with an increased risk of stillbirth, with two studies demonstrating a plausible biological gradient of increasing risk with increasing exposure.(25,26) 333 334 Caffeine and alcohol use were both investigated but not consistently associated with stillbirth. 335 336

Three of the included reviews were broad overviews of risk factors for stillbirth specifically in low and middle income (LMIC) countries. These reviews identified syphilis (OR 3.34; P = 0.028)(19) and malaria 1.9 (95% Cl 1.2–9.3) (19) as important maternal conditions contributing to stillbirth and associations with malnutrition, lack of access to healthcare and socioeconomic disadvantage.(19,27,28)

342

343 Ultrasound markers

Uterine artery Doppler (UtAD) measured in the second trimester appeared to have the best performance reported for any single test or variable with sensitivity for any abnormal UtAD of 65% (95%CI 38-85%) and specificity 82% (95%CI 72-88%), although most reviews reported odds ratios rather than sensitivity and specificity, **Commented [ML3]:** Wasn't this excluded as an exposure based on the appendix or have I misunderstood?

Commented [rt4]: Yes it was – these three reviews were included because they reported generalizable risk factors (age, parity, smoking etc .. most did not perform metaanalysis and the one that did was low quality. I picked up their findings about the LMIC specific risk factors here because that was the focus of their discussion, but it isn't the point of this paper so we could remove it.

Commented [U5]: I would suggest that we leave it. If the reviewers/Editor ask us to remove it, then it is ok. Asma

limiting direct comparisons.(29) Another review reporting only UtAD RI>0.58
reported sensitivity of 16% (95% CI 10-27) and specificity 91% (95% CI 9192%)(11). Similarly, suboptimal fetal growth by any definition was associated with
stillbirth with sensitivity of 32% (95% CI 31-34) and specificity 75% (95%CI 75-75).
Other markers considered and found to be associated with stillbirth included fetal
nuchal translucency, echogenic bowel and male sex.(11)

354

355 Biochemical markers

Although a wide range of biochemical markers have been extensively investigated 356 for prediction of pre-eclampsia (30) relatively few reviews have summarised studies 357 358 of biochemical markers associated with stillbirth. Key biochemical tests measured in 359 the first half of pregnancy include elevated AFP (two reviews) [AFP>2.0 MoM; Sens 11 (95% CI 9-13) Spec: 96 (95% CI 96-96))(11) and low PAPP-A (two reviews) 360 [PAPP-A <0.4 MoM; Sens. 15% (95% CI 8-26%) Spec 95% (95%CI 95-96)).(11) 361 Human chorionic gonadotrophin (hCG) was reported in two reviews. One found a 362 pooled sensitivity of 4% (95% CI 1-14%) and sensitivity 94% (95% CI 93-94%) for 363 hCG below the 5th centile MoM when analysed independently.(11) The other found 364 that although associated with stillbirth, hCG seemed to add little value to AFP when 365 used in combination.(31) Placental growth factor (PIGF) is known to be associated 366 367 with placental function and is used in clinical practice for prediction and triage of preeclampsia, and would be a plausible predictor for stillbirth. Only one systematic 368 review has evaluated PIGF; the two primary studies included were not suitable for 369 meta-analysis although both suggested that low PIGF was associated with a 370 heightened risk of stillbirth.(32).(32) Several thrombophilia and autoimmune 371 372 associated antibodies showed a strong association with stillbirth including lupus anticoagulant (two studies, OR 4.3-54.18) (33,34) and anticardiolipin antibodies (two 373 374 studies, OR 4.29-15.17).(34) The Factor V Leiden mutation, protein S deficiency and activated protein C resistance (APCR) were all also strongly associated with stillbirth 375 with OR 6.11 (95% CI 2.8-13.2), 16.2 (95% CI 5.1-52.3) and 5.0 (95% CI 2.0-12.4), 376 377 respectively.(34)

379 **DISCUSSION**

378

387

380 Summary of the key findings

This review has identified 61 systematic reviews examining over 60 variables potentially associated with stillbirth. No marker on its own had useful screening performance, but several were consistently and strongly associated with stillbirth. Only two reviews reported on combinations of variables, including AFP and hCG with and without estriol and the combined (nuchal translucency, PAPP-A, maternal age and bHCG) screening test. Commented [AH6]: Just checking that there is no variance on this 95% CI. Commented [rt7]: Yes double checked the paper this is correct

Commented [AH8]: I realise that this is outside the timeframe of your searches but we have just completed a Cochrane DTA review of biochemical factors. Cochrane Database Syst Rev. 2019 May 14:5:CD012245.

Commented [rt9]: Thanks I will add to the discussion Commented [ML10]: OR and 95% CI?

Commented [AH11]: See above, PIGF was the strongest biochemical predictor our Cochrane DTA review.

Commented [AH12]: See above, PIGF was the strongest biochemical predictor our Cochrane DTA review.

Commented [ML13]: Ukah et al Hypertension 2017 also looked at stillbirth in the context of hypertensive pregnancy. I don't see that this was included. Can you comment why please?

Commented [rt14]: This paper wasn't captured in the literature search – probably because stillbirth and perinatal death aren't in the title or abstract. On review, the paper includes one primary study that reported on perinatal death so would have been excluded for that reason, but I will add to the discussion point on PLGF

Commented [U15]: Already too long for most journals, so please no more additions. Asma

388 Strengths and limitations

Strengths of this review include the comprehensive literature search and critical evaluation in synthesising a massive quantity of existing literature. The study was limited by the quality of included reviews, notably in relation to factors important to prediction. Few studies considered the effect of subject attrition on the strength of observed associations. There was substantial missing information relating to measurement of exposures and outcomes and significant variation in outcome reporting was noted.

The problem of competing risks of stillbirth or delivery may negatively affect the observed predictive accuracy of tests, but was not considered in the included reviews. Where a high risk of stillbirth is identified but delivery occurs before stillbirth, the case will seem to be a false positive. This is particularly significant for 'late' stillbirths, since it is increasingly likely that birth will supervene and consistent with the observation that tests for predicting early stillbirth are more accurate than those predicting later stillbirth. (11)

Arguably, early delivery is most likely to occur in those at highest risk because clinicians act on risk factors for stillbirth. Where clinicians are blinded to the tests intervention bias is reduced, but many clinical characteristics are of necessity known. Only three reviews considered this risk of bias and of these, the risk was low in the reviews assessing biochemical markers(22) and Doppler (29) but increased in the review including clinical characteristics.(11)

411

417

396

404

412 Interpretation of findings and comparison with existing evidence

Previous reviews of individual predictors of stillbirth have concluded that multivariable models are likely to be required for meaningful clinical impact.(5,11) In this review we have considered the factors potentially associated with stillbirth in order to identify variables most relevant to the development of such models.

A recent systematic review of prediction models in obstetrics found three models for 418 stillbirth, only two including the full model, limiting independent external 419 validation.(35) These models included UtAD and ethnicity with history of prior 420 pregnancy loss in one and with BMI in the second.(36) They had good 421 discrimination, but calibration, internal and external validation were not reported. 422 Both were developed in the UK within a high resource antenatal care model at a time 423 424 when national guidelines recommended induction of labour from 41+5 weeks gestation. Further models have subsequently been developed (20,37,38) but not yet 425 externally validated. Although increasing interest in individualising care has led to 426 increasing numbers of models, transfer to clinical practice has been hampered by a 427 lack of subsequent external validation and clinical evaluation.(39) 428

430 Clinical and research implications

Informal screening to identify high risk pregnancies is embedded in practice and 431 urgently needs to be improved. Development of robust models remains a challenge 432 because of the rarity of stillbirth as an outcome and the multitude of potential causes 433 434 of fetal death in utero. Where stillbirth is more common, access to care and poor 435 quality record keeping compromise the data available for model development. The heterogenous causes of stillbirth may be best addressed by separate models; 436 logically, the initial target should be placental dysfunction, representing the largest 437 and most clearly defined factor contributing to global stillbirth rates. Separate models 438 439 could also allow continuous risk assessment through pregnancy taking into account 440 the most recently available patient data.

Model development requires a large volume of data with detailed information on a number of candidate predictors and should be optimised by maximising available data and minimising the candidate predictors in order to arrive at the best achievable effective sample size.(40)

In this review we have identified several key candidate variables which should be 447 considered in model development; maternal age, BMI, history of previous stillbirth, 448 cigarette smoking, uterine artery Doppler, PAPP-A and PIGF. We reported one 449 review of PLGF, but a recently updated Cochrane review confirms the importance of 450 this test in stillbirth prediction (41) and the related sFIt-1/PLGF ratio has good 451 predictive performance for perinatal death.(42) Strongly associated variables 452 453 included maternal thrombophilias, but these are too rare to contribute to a generalisable model. 454

Socioeconomic deprivation was consistently associated with stillbirth in both high 456 and low income settings but is measured and defined heterogeneously, limiting the 457 utility of this variable in prediction. Nonetheless, this finding reinforces the 458 459 importance of addressing social inequality as a core strategy for the prevention of 460 stillbirth in any setting. This review identified only one systematic review considering ethnicity, but it has recently been confirmed that Black women were at 1.5-2 fold 461 higher risk than White women.(43) The association of ethnicity with adverse 462 pregnancy outcomes is clear but problematic as a predictive variable. The 463 association is potentially related to biological factors (length of pregnancy and 464 cardiovascular parameters differ with ethnicity and are plausibly associated with 465 stillbirth), but also with differing social norms like higher multiparity in selected social 466 groups and with systemic inequality in access to healthcare. 467

Commented [U16]: Need to add the relevant references here. Asma

429

441

446

455

A large-scale, collaborative approach utilising individual participant data (IPD) meta-469 470 analysis offers an innovative approach to addressing the problems of stillbirth prediction. IPD meta-analysis allows the use of all original data and continuous 471 472 variables with the flexibility to standardise variable and outcome definitions, their combinations and comparisons across datasets.(44) Existing models can be 473 validated and tested against new models,(45) offering the opportunity to build 474 consensus around development and validation of methodologically robust models. 475 IPD may be derived, for example, from trial registries and routinely collected patient 476 477 data.

- In this era of increasingly personalised medicine, women want individualised recommendations for care and expect clinicians to make the most effective use of available tests. The global loss of millions of lives to stillbirth every year is too significant a tragedy to waste time generating excessive clinically irrelevant prediction models; the time has come to initiate a collaborative approach in order to definitively answer the question of how to predict, and ultimately prevent, stillbirth.
- 486 Conclusions

487 Our review of reviews has identified a list of candidate variables relevant to the 488 development of clinical prediction models for stillbirth. Prospective, well-designed 489 studies of predictive variables, combined through IPD meta-analysis, have the 490 potential to develop and validate new prediction models, optimise the prediction of 491 stillbirth and minimise further research waste in this field.

492

478

493 **REFERENCES**

- Neonatal and Perinatal Mortality Country, Regional and Global Estimates
 2004.
- 496 2. D'Souza R, Shah P. Predicting stillbirths still a distant reality. BJOG An Int J
 497 Obstet Gynaecol. 2015 Jan 1;122(1):56–56.
- Blencowe H, Cousens S, Jassir FB, Say L, Chou D, Mathers C, et al. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis. Lancet Glob Heal. 2016 Feb 1;4(2):e98–108.
- ONS. Childhood mortality in England and Wales Office for National Statistics.
 2017.
- Flenady V, Koopmans L, Middleton P, Frøen JF, Smith GC, Gibbons K, et al.
 Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet (London, England). 2011;377(9774):1331–40.
- 506 6. The Investigation and Management of the Small–for–Gestational–Age Fetus: 507 Greentop Guideline 31. London, UK; 2013.
- Association Between Stillbirth and Risk Factors Known at Pregnancy
 Confirmation. JAMA. 2011 Dec 14;306(22):2469.
- Haws RA, Yakoob M, Soomro T, Menezes E V, Darmstadt GL, Bhutta ZA.
 Reducing stillbirths: screening and monitoring during pregnancy and labour.
 BMC Pregnancy Childbirth. 2009 May 7;9(Suppl 1):S5.
- Heazell AEP, Whitworth MK, Whitcombe J, Glover SW, Bevan C, Brewin J, et
 al. Research priorities for stillbirth: process overview and results from UK
 Stillbirth Priority Setting Partnership. Ultrasound Obstet Gynecol. 2015
 Dec;46(6):641–7.
- Gardosi J, Kady SM, McGeown P, Francis A, Tonks A. Classification of stillbirth by relevant condition at death (ReCoDe): population based cohort study. BMJ. 2005 Nov 12;331(7525):1113–7.
- Conde-Agudelo A, Bird S, Kennedy SH, Villar J, Papageorghiou AT. First- and second-trimester tests to predict stillbirth in unselected pregnant women: a systematic review and meta-analysis. BJOG. 2015;122(1):41–55.
- Akolekar R, Tokunaka M, Ortega N, Syngelaki A, Nicolaides KH. Prediction of stillbirth from maternal factors, fetal biometry and uterine artery Doppler at 19– 24 weeks. Ultrasound Obstet Gynecol. 2016;48(5):624–30.
- An JJ, Ji HY, You JY, Woo SY, Choi SJ, Oh S young, et al. Introduction of a nomogram for predicting adverse pregnancy outcomes based on maternal serum markers in the quad screen test. Arch Gynecol Obstet.
 2015;292(3):589–94.
- 530 14. Steyerberg EW. Clinical Prediction Models. New York, NY: Springer New York;
 531 2009. (Statistics for Biology and Health).
- 532 15. HENDERSON LK, CRAIG JC, WILLIS NS, TOVEY D, WEBSTER AC. How to 533 write a Cochrane systematic review. Nephrology. 2010 Sep;15(6):617–24.
- 16. NHS Centre for Reviews and Dissemination. Systematic reviews: CRD's
 guidance for undertaking reviews in health care. York; 2009.
- von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke
 JP, et al. The Strengthening the Reporting of Observational Studies in
 Epidemiology (STROBE) statement: guidelines for reporting observational
 studies. Lancet. 2007 Oct 20;370(9596):1453–7.
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et
 al. The PRISMA statement for reporting systematic reviews and meta-analyses

of studies that evaluate healthcare interventions: explanation and elaboration.BMJ. 2009;339.

- Aminu M, Unkels R, Mdegela M, Utz B, Adaji S, van den Broek N. Causes of and factors associated with stillbirth in low- and middle-income countries: a systematic literature review. BJOG. 2014;121 Suppl:141–53.
- 547 20. Kayode GA, Grobbee DE, Amoakoh-Coleman M, Adeleke IT, Ansah E, de
 548 Groot JAH, et al. Predicting stillbirth in a low resource setting. BMC Pregnancy
 549 Childbirth. 2016;16(1):1–8.
- Shea BJ, Bouter LM, Peterson J, Boers M, Andersson N, Ortiz Z, et al.
 External Validation of a Measurement Tool to Assess Systematic Reviews
 (AMSTAR). Gagnier J, editor. PLoS One. 2007 Dec 26;2(12):e1350.
- Hui D, Okun N, Murphy K, Kingdom J, Uleryk E, Shah PS. Combinations of
 maternal serum markers to predict preeclampsia, small for gestational age,
 and stillbirth: a systematic review. J Obstet Gynaecol Can. 2012;34(2):142–53.
- Lamont K, Scott NW, Jones GT, Bhattacharya S. Risk of recurrent stillbirth:
 systematic review and meta-analysis. BMJ. 2015;350:h3080.
- Malacova E, Regan A, Nassar N, Raynes-Greenow C, Leonard H, Srinivasjois
 R, et al. Risk of stillbirth, preterm delivery and fetal growth restriction following
 exposure in previous birth: systematic review and meta-analysis. Br J Obstet
 Gynaecol. 2018;125(2):183–92.
- 562 25. Marufu TC, Ahankari A, Coleman T, Lewis S. Maternal smoking and the risk of
 563 still birth: systematic review and meta-analysis. BMC Public Health.
 564 2015;15:239.
- Pineles BL, Hsu S, Park E, Samet JM. Systematic review and meta-analyses
 of perinatal death and maternal exposure to tobacco smoke during pregnancy.
 Am J Epidemiol. 2016;184(2):87–97.
- Di Mario S, Say L, Lincetto O. Risk factors for stillbirth in developing countries:
 a systematic review of the literature. Sex Transm Dis. 2007;34(7 Suppl):S11 21.
- Berhan Y, Berhan A. Perinatal mortality trends in Ethiopia. Ethiop J Health Sci.
 2014;24:29–40.
- Allen RE, Morlando M, Thilaganathan B, Zamora J, Khan KS, Thangaratinam
 S, et al. Predictive accuracy of second-trimester uterine artery Doppler indices
 for stillbirth: a systematic review and meta-analysis. Ultrasound Obstet
 Gynecol. 2016;47(1):22–7.
- 577 30. Townsend R, Khalil A, Premakumar Y, Allotey J, Snell KIE, Chan C, et al.
 578 Prediction of pre-eclampsia: review of reviews. Ultrasound Obstet Gynecol.
 579 2018 Sep 28;
- Hui D, Okun N, Murphy K, Kingdom J, Uleryk E, Shah PS. Combinations of
 maternal serum markers to predict preeclampsia, small for gestational age,
 and stillbirth: a systematic review. J Obstet Gynaecol Can. 2012;34(2):142–53.
- Sherrell H, Dunn L, Clifton V, Kumar S. Systematic review of maternal
 Placental Growth Factor levels in late pregnancy as a predictor of adverse
 intrapartum and perinatal outcomes. Eur J Obstet Gynecol Reprod Biol.
 2018;225:26–34.
- Abou-nassar K, Carrier M, Ramsay T, Rodger MA. The association between
 antiphospholipid antibodies and placenta mediated complications : A
 systematic review and meta-analysis. Thromb Res. 2011;128(1):77–85.
- 590 34. Alfirevic Z, Roberts D, Martlew V. How strong is the association between

- 591 maternal thrombophilia and adverse pregnancy outcome? A systematic 592 review. Eur J Obstet Gynecol Reprod Biol. 2002;101(1):6–14.
- 593 35. Kleinrouweler CE, Cheong-See F, Collins G, Kwee A, Thangaratinam S, Khan
 594 KS, et al. Prognostic models in obstetrics: available, but far from applicable.
 595 Am J Obstet Gynecol. 2016;214(1):79–90.
- S Smith GC, H Yu CK, Papageorghiou AT, Maria Cacho A, Nicolaides KH.
 Maternal Uterine Artery Doppler Flow Velocimetry and the Risk of Stillbirth
 LEVEL OF EVIDENCE: II. Vol. 109, Obstet Gynecol. 2007.
- Trudell AS, Tuuli MG, Colditz GA, Macones GA, Odibo AO. A stillbirth
 calculator: Development & internal validation of a clinical prediction model to
 quantify stillbirth risk. PLoS One. 2017;12(3):1–13.
- 38. Iliodromiti S, Mackay DF, Smith GCS, Pell JP, Sattar N, Lawlor DA, et al.
 Customised and Noncustomised Birth Weight Centiles and Prediction of
 Stillbirth and Infant Mortality and Morbidity: A Cohort Study of 979,912 Term
 Singleton Pregnancies in Scotland. Myers JE, editor. PLOS Med. 2017 Jan
 31;14(1):e1002228.
- 39. Collins GS, Reitsma JB, Altman DG, Moons K. Transparent reporting of a
 multivariable prediction model for individual prognosis or diagnosis (TRIPOD):
 the TRIPOD Statement. BMC Med. 2015 Jan 6;13(1):1.
- Alley RD, Snell KIE, Ensor J, Burke DL, Harrell FE, Moons KGM, et al.
 Minimum sample size for developing a multivariable prediction model: Part I Continuous outcomes. Stat Med. 2018 Oct 22;
- 41. Heazell AE, Hayes DJ, Whitworth M, Takwoingi Y, Bayliss SE, Davenport C.
 Biochemical tests of placental function versus ultrasound assessment of fetal
 size for stillbirth and small-for-gestational-age infants. Cochrane Database
 Syst Rev. 2019 May 14;(5).
- 42. Ukah UV, Hutcheon JA, Payne B, Haslam MD, Vatish M, Ansermino JM, et al.
 Placental Growth Factor as a Prognostic Tool in Women With Hypertensive
 Disorders of Pregnancy: A Systematic Review. Hypertens (Dallas, Tex 1979).
 2017;70(6):1228–37.
- 43. Muglu J, Rather H, Arroyo-Manzano D, Bhattacharya S, Balchin I, Khalil A, et
 al. Risks of stillbirth and neonatal death with advancing gestation at term: A
 systematic review and meta-analysis of cohort studies of 15 million
 pregnancies. Smith GC, editor. PLOS Med. 2019 Jul 2;16(7):e1002838.
- 44. Abo-Zaid G, Sauerbrei W, Riley RD. Individual participant data meta-analysis
 of prognostic factor studies: state of the art? BMC Med Res Methodol. 2012
 Dec 24;12(1):56.
- 45. Khan KS, Bachmann LM, ter Riet G. Systematic reviews with individual patient
 data meta-analysis to evaluate diagnostic tests. Eur J Obstet Gynecol Reprod
 Biol. 2003 Jun 10;108(2):121–5.
- 631
- 632
- 633
- 634

Table 1. Prognostic variables for stillbirth investigated in systematic reviews

_	
Paren	tal characteristics and history
•	Extremes of maternal and paternal age
•	Parity
•	Body mass index
•	Pre-existing medical conditions (epilepsy, vitamin D deficiency, hypertension,
	asthma, chronic kidney disease, sickle cell disease, bipolar disorder,
	Sjogren's syndrome, psychotic illness, diabetes, sleep disordered breathing,
	endometriosis, acute kidney injury)
•	Obstetric history (previous Caesarean section, vaginal bleeding in pregnancy,
	Circuit and an end and an end and an end an end and an end an
•	Cigarette smoking, smokeless tobacco and second hand smoking exposure
•	
•	Immigration status
•	Perceived reduced tetal movements
Ultras	sound markers
•	Uterine artery Doppler
•	Fetal nuchal translucency (NT)
٠	Any suboptimal fetal growth
٠	Fetal echogenic bowel
•	Male fetus
Bioch	emical markers
Prothr	rombotic markers
•	Factor V Leiden gene mutation
٠	Anticardiolipin Antibodies (ACA)
٠	Lupus anticoagulant (LA)
•	AB2G1
٠	Protein S deficiency
٠	Activated Protein C Resistance
٠	G20210A mutation
•	MTHFR C677T mutation
٠	Antithrombin III
٠	Protein C
•	Homocystinaemia
Marke	ers of fetoplacental unit endocrine dysfunction
•	Human chorionic gonadotrophin (HCG)
•	Alpha-Fetoprotein (AFP)
•	Pregnancy-associated plasma protein A (PAPP-A)
•	Estriol
•	PIGE
Other	markers
•	Thyroid stimulating hormone (TSH)
•	Haemoglobin <10
•	
	17

Soluble fms-like tyrosine kinase-1 (sFlt-1)
Serum uric acid
Vitamin D
Proteinuria
Free fetal DNA
Combination of markers
 Combined screening test for aneuploidy (bHCG, PAPP-A, nuchal
translucency)
 Combinations of various biomarkers (AFP+hCG) (PAPP-A+hCG) (AFP+hCG+uE) (AFP+uE) (hCG+uE)
Combination of maternal characteristics, NT, PAPP-A, and ductus venosus Doppler
Combination of maternal characteristics and inhibin A

Table 2. Characteristics and findings of the included systematic reviews

Study	Variable investigated	Populati on Pare	Definition of stillbirth used ental characte	No. of studies included ristics	Findings of the review
Berhan 2014 (2) (36)	Young maternal age (<20 years),	LMIC setting	Fetal death >28 weeks gestation	12	OR 1.19 (95% CI 1.07-1.33)
Gibbs 2012(3 7)	Young maternal age (<16 years or <2 years from menarche)	unselect ed	Accepted study authors definitions. (Range 20- 23 weeks completed gestation.)	6	3 out of 6 found an association between young age and stillbirth but meta- analysis precluded by study heterogeneity.
Carola n 2011(3 8)	Maternal age 35-39	unselect ed	Accepted study authors definitions	8	7/8 studies found advanced maternal age (35-39) to be an independent risk factor for stillbirth"
Flenad y 2011(4)	Maternal age >35	unselect ed	>22 weeks gestation and >500g birthweight	6	Age 35-39 ES 1.5 (95% CI 1.22-1.73) 40-44 ES 1.8 (95% CI 1.4-2.3) >45 ES 2.9 (95% CI 1.9-4.4)
Huang 2008(3 9)	Maternal age >35	unselect ed	Accepted study authors definitions	37	30/37 studies found a significant association
Lean 2017(4 0)	Maternal age >35	unselect ed	accepted study authors definition	44	OR 1.75 (95% CI 1.62-1.89)
Berhan 2014(3 6)	Nulliparity	LMIC setting	Fetal death >28 weeks gestation	11	OR 1.5 (95% Cl 1.31- 1.73)
Flenad y 2011	Primiparity	unselect ed	>22 weeks gestation and >500g birthweight	3	ES 1.4 (95% CI 1.42- 1.33)
Olderei d 2018(4 1)	Paternal age	unselect ed	accepted study authors definition	4	OR 1.19 (95% Cl 1.1- 1.3)

	Maternal co-morbidities						
Allotey 2017(4 2)	Maternal epilepsy	Women with epilepsy	Fetal death	60	Prevalence: 0.8% (95% Cl 0.5-1.1)		
Amega h 2017(4 3)	Vitamin D deficiency	unselect ed	Fetal death >20 weeks gestation	4	RR 1.02 (95% Cl 0.96-1.09)		
Flenad y 2011	Pre-existing hypertension	unselect ed	>22 weeks gestation and >500g birthweight	5	ES 2·58 (95% CI 2·13–3·13)		
Murph y 2013(4 4)	Maternal asthma	A) unselect ed B) women with asthma	Accepted study authors definitions	8	RR 1.06 (95% CI 0.9- 1.25)		
Nevis 2011(4 5)	Chronic kidney disease	unselect ed	Not defined	13	Findings variable across studies		
Oteng- Ntim 2015(4 6)	Sickle cell disease	unselect ed	Not defined	21	HbSS RR 3.94 (95% CI 2.6-5.96) HbSC RR 1.78 (95% CI 1.05-3.02) all SCD RR 3.99 (95% CI 2.63-6.04)		
Rusner 2016(4 7)	Bipolar disorder	unselect ed	Not defined	9	No difference observed		
Upala 2016(4 8)	Sjogren's syndrome	unselect ed	Not defined	3	OR 1.05 (95% CI 0.37-2.97)		
Webb 2005(4 9)	Psychotic illness	unselect ed	Not defined	6	OR 1.89 (95% CI 1.36-2.62)		
Wang 2013(5 0)	Gestational diabetes	LMIC setting	Not defined	17	Higher incidence of stillbirth associated with GDM		
Wu 2018(5 1)	Lupus nephritis	Women with SLE	>20 weeks and >24 weeks	16	OR 1.68 (95% CI 0.95-2.98)		
Glavin d 2018(5 2)	Endometriosis	unselect ed	not defined	4	unclear association		
Brown 2018(5 3)	Sleep disordered breathing	unselect ed	stillbirth or perinatal death	33	OR 2.02 (95% CI 1.25-3.28)		

Warlan d 2018(5 4)	Obstructive sleep apnoea	unselect ed	not defined	3	The studies showed no significant association with OSA.
Zhao 2016(5 5)	ART: IVF/ICSI compared to FET	Women pregnant after ART	Not defined	6	OR 1.01 (95% CI 0.76-1.35)
Cavore tto 2018(5 6)	IVF/ICSI	unselect ed	not defined	2	OR 1.87 (95% Cl 0.74-4.73)
Balsell s 2009(5 7)	Type 1 versus Type 2 diabetes mellitus	Women with pre- existing diabetes	Accepted study authors definitions	19	RR 1.23 (95% CI 0.82-1.85)
Gizzo 2013(5 8)	Type 1 versus Type 2 diabetes mellitus	Women with pre- existing diabetes	Not defined	4	Mean prevalence across studies 2.8 v 1.9% (no CI given)
Flenad y 2011	Pre-existing diabetes	unselect ed	>22 weeks gestation and >500g birthweight	5	ES 2·90 (95% Cl 2·05–4·09)
Yu 2017(5 9)	Pre-existing diabetes	unselect ed	Fetal death >20 weeks gestation	12	Any diabetes OR 3.52 (95% CI 3.19- 3.88) T1 OR 3.97 (95% CI 3.44-4.58), T2 OR 3.65 (95% CI 1.59-8.42)
	I	<u>(</u>	Obstetric history		
<u>Conditio</u>	ns occurring in th	<u>ne index pre</u>	egnancy		
Ananth 1994(6 0)	Vaginal bleeding in pregnancy	unselect ed	Fetal death >28 weeks gestation	22	OR 4.1 (95% Cl 3.6- 4.7)
Berhan 2014(3 6)	Antenatal care non- attendance (ANC)	LMIC setting	Fetal death >28 weeks gestation	10	OR 3.17 (95% Cl 1.03-9.71)
Flenad y 2011	Abruption	unselect ed	>22 weeks gestation and >500g birthweight	2	strong association in both studies
Downe s 2017(6 1)	Abruption	unselect ed	not defined	25	central location, detachment >45% and concealed bleeding more frequently associated with stillbirth

Bradfor d 2018(6 2)	Reduced fetal movements	women with high BMI	accepted study authors definition	19	OR 1.8 (95% CI 1.0- 3.2)
Liu 2017(6 3)	Acute kidney injury	unselect ed	stillbirth or perinatal death	11	OR 3.39 (95% CI 2.76-4.18)
In previc	ous pregnancies	1			
Lamon t 2015(1 6)	Previous stillbirth	unselect ed	Fetal death >20 weeks gestation or >400g weight	16	OR 4.83 (95% Cl 3.77-6.18)
Malaco va 2018(1 7)	previous PTB, SGA or IUD	unselect ed	>20 weeks	17	PTB or SGA: OR 1.7 (95% CI 1.24-2.16) Preterm SGA: OR 4.47 (95% CI 2.58- 7.76) PTB<34 weeks: OR 2.98 (95% CI 2.05- 4.34) preterm SGA <34 weeks: OR 6.00 (95% CI 3.43-10.49)
Moraiti s 2016(6 4)	Previous caesarean section	multipar ous women with singleto n pregnan cies	Antepartum stillbirths between 24- 42 weeks excluding fetal anomaly and multiple pregnancy	3	HR 1.40 (95% CI 1.1-1.77)
O'Neill 2013(6 5)	Previous caesarean section	multipar ous women	Accepted study authors definitions (range 20-28 weeks, some excluding multiples and fetal anomaly)	11	OR all stillbirths 1.23 (95% CI 1.08-1.4) unexplained stillbirths OR 1.47 (95% CI 1.2- 1.8) antepartum stillbirths OR 1.27 (95% CI 0.95-1.7) primips OR 1.29 (95% CI 1.12-1.49) multips OR 1.13 (95% CI 0.75-1.72)
Keag 2018(6 6)	Previous caesarean section	multipar ous women	perinatal death (22 weeks gestation to 7 days of life)	80	OR 1.27 (95% CI 1.15-1.40)
		<u>Phy</u>	sical characteris	stics	
Aune 2014(6	Body Mass Index (BMI)	unselect ed	Fetal death beyond 20-	38	Stillbirth RR per 5 BMI units 1.24 (95%

7)			28 weeks completed gestation		CI 1.18-1.30). Fetal death RR per 5 BMI units 2.21 (95% CI 1.09-1.35). Perinatal death: RR per 5 BMI units 1.16 (95% CI 1.00-1.35)
Flenad y 2011	BMI 25-30	unselect ed	>22 weeks gestation and >500g birthweight	5	BMI 25-30 ES 1.2 (95% CI 1.09-1.38)
Chu 2007(6 8)	BMI >30	unselect ed	Accepted study authors definitions	7	OR 1.47 (95% CI 1.08-1.94)
Flenad y 2011	BMI >30	unselect ed	>22 weeks gestation and >500g birthweight	5	BMI >30 ES 1.6 (95% CI 1.35-1.95)
Liu 2016(6 9)	BMI >30	unselect ed	Not defined	60	OR 1.27 (95% CI 1.18-1.36),
Liu 2016	BMI >35	unselect ed	Not defined	60	OR 1.81 (95% CI 1.69-1.93)
Chu 2007	BMI >35	unselect ed	Accepted study authors definitions	8	OR 2.07 (95% CI 1.59-2.74)
Marchi 2015(7 0)	BMI	unselect ed	Not defined	22	Risk of stillbirth increases with increasing BMI
Slack 2018(7 1)	BMI	South Asian women	not defined	2	greater association between BMI and stillbirth in South Asian women than white women
		Soc	ioeconomic fact	<u>tors</u>	
Shah 2011(7 2)	Aboriginal women	unselect ed	Not defined	7	OR 1.68 (95% CI 1.49–1.89)
Vos 2014(7 3)	Social deprivation	unselect ed	Fetal death >20 weeks gestation	3	OR 1.38 (95% CI 1.23-1.54) adjusted OR 1.33 (95% CI 1.21-1.45)
Weight man 2012(7 4)	Social inequality	unselect ed	Fetal loss >24 weeks gestation	2	OR 1.54 (95% CI 1.39-1.72)
Flenad	Smoking	unselect	>22 weeks	4	ES 1.4 (95% CI 1.27-
			23		

y 2011		ed	gestation and >500g birthweight		1.46)
Leonar di-Bee 2011(7 5)	Second hand smoke	unselect ed	Fetal death >20 weeks gestation	5	ES 1.23 (95% CI 1.09-1.38)
Marufu 2015(1 8)	Smoking	unselect ed	Fetal death >20 weeks gestation	25	Any smoking OR 1.47 (95% CI 1.37- 1.57). 1-9 cigarettes a day OR 1.09 (95% CI 0.97-1.24), >10 a day OR 1.52
Pineles 2016(1 9)	Smoking	unselect ed	Accepted study authors definitions (range 20-28 weeks, 400- 1000g birthweight)	142	sRR any smoking 1.46 (95% CI 1.38- 1.54), 1-10 cigarettes a day RR 1.1 (95% CI 0.98-1.24), 11-20 RR 1.3 (95% CI 1.22- 1.38), >20 a day RR 1.24 (95% CI 1.03- 1.5), ex smoker RR 1.12 (95% CI 0.91- 1.37), second hand smoke RR 1.4 (95% CI 1.06-1.85)
Green wood 2014(7 6)	Caffeine intake	unselect ed	Fetal loss >24 weeks gestation	5	RR 1.19 (95% CI 1.05-1.35)
Wikoff 2017(7 7)	Caffeine consumption >300 mg/day	unselect ed	not defined	4	2/4 studies reported increased risk with caffeine >300 mg/day
Hender son 2007(7 8)	Low- moderate alcohol exposure	unselect ed	Not defined	5	1/5 studies reported a significant association
Inamd ar 2015(7 9)	Smokeless tobacco use	unselect ed	Fetal loss >24 weeks gestation	4	All 4 found a significant association
		LMIC :	setting specific f	actors	
Di Mario 2007(2 0)	Multiple risk factors	LMIC setting	Accepted study authors definitions (range 20-28 weeks, 350- 1000g	33	Five risk factors (maternal syphilis, chorioamnionitis, maternal malnutrition, lack of antenatal care, and maternal socioeconomic

			birthweight, some excluded multiples or malformation s)		disadvantage) were found to be significantly associated with stillbirth (population attributable fraction (PAF) greater than 50%) in more than 1 study.
Berhan 2014 (2)	Multiple risk factors	LMIC setting	Fetal loss >28 weeks gestation	14	Urban residence OR 0.93 (95% CI 0.83- 1.05) Maternal education OR 1.14 (95% CI 1.00-1.29) Maternal wealth index OR 1.02 (95% CI 0.95-1.10)
Aminu 2014(2 1)	Multiple risk factors	LMIC setting	Accepted study authors definitions	142	Factors associated with stillbirth included poverty, lack of education, maternal age (>35 or <20 years), parity (1, ≥5), lack of antenatal care, prematurity, low birthweight, and previous stillbirth.
			Ultrasound		
Allen 2016(2 3)	Uterine artery doppler (2 nd trimester, any abnormal result)	ed	Stillbirth after 23+6 weeks completed pregnancy	13	Sensitivity: 65% 95% CI 38–85%) Specificity: 82% (95% CI 72–88%) LR+ 3.5 (95% CI 2.3- 5.5) LR- 0.43 (95% CI 0.22-0.85) OR 8.3 (95% CI 3.0- 22.4)
Conde- Agudel o 2015 (7)	Uterine artery Doppler RI >0.58	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	2	Sens: 16 (95% CI 10–27) Spec: 91 (95% CI 91–92) LR+1.8 (95% CI 1.1– 3.1) LR-0.9 (95% CI 0.8–1.0)
Conde-	Fetal nuchal	unselect ed	Accepted	4	Sens: 10 (95% CI 7–
Aguael	uansiucency	eu	Sluuy		14) Spec. 95 (95% CI

o 2015*	(NT) - any increase		authors definitions (range 20-28 weeks completed gestation)		95–95) LR+ 2.0 (95% CI 1.4– 2.8) LR- 0.9 (95% CI 0.9–1.0)
Conde- Agudel o 2015*	NT ≥2–3 mm	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	3	Sens: 13 (95% CI 6– 23) Spec: 95 (95% CI 95–96) LR+ 2.6 (95% CI 1.3– 5.0) LR-0.9 (95% CI 0.8–1.0)
Conde- Agudel o 2015*	Fetal isolated echogenic bowel presence	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	2	Sens: 4 (95% CI 3–7) Spec: 99 (95% CI 99–100) LR+ 8.3 (95% CI 5.2– 13.3) LR-1.0 (95% CI 0.9–1.0)
Conde- Agudel o 2015*	Suboptimal fetal growth - any	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	4	Sens: 32 (95% CI 31–34) Spec:75 (95% CI 75–75) LR+1.3 (95% CI 1.2– 1.4) LR-0.9 (95% CI 0.9–0.9)
Mondal 2014(8 0)	Male fetus	unselect ed	Accepted study authors definitions (range 20-28 weeks, >500g or unexplained at any gestation)	21	RR 1.10 (95% CI 1.7- 10.6)
			Biochemical		
Abou- Nassar 2011(8 1)	Lupus anticoagulant	unselect ed	Intrauterine death of a morphologic ally normal fetus at >10 weeks gestation	10	Loss >10 weeks OR 4.73 (95% CI 1.08- 20.81
Abou-	Lupus	unselect	Intrauterine	10	Loss >20 weeks OR

Nassar 2011	anticoagulant	ed	death of a morphologic ally normal fetus at >10 weeks gestation		54.18 (95% CI 2.45- 1198.19)
Alfirevi c 2002(2 7)	Lupus anticoagulant	unselect ed	Pregnancy loss >20 weeks gestation	2	OR 4.3 (95% Cl 1.7- 10.6)
Abou- Nassar 2011	Anti- cardiolipin antibodies	unselect ed	Intrauterine death of a morphologic ally normal fetus at >10 weeks gestation	19	IgG/IgM OR 4.29 (95% CI 1.34-13.68) IgG 15.17 (95% CI 4.29-53.59)
Alfirevi c 2002	Anti- cardiolipin antibodies (IgG)	unselect ed	Pregnancy loss >20 weeks gestation	2	lgG OR 5.6 (95% Cl 2.6-11.7)
Abou- Nassar 2011	Anti-B2 GP1 antibodies	unselect ed	Intrauterine death of a morphologic ally normal fetus at >10 weeks gestation	2	OR 23.46 (95% Cl 1.21-455.01)
Alfirevi c 2002	Factor V Leiden (heterozygous)	unselect ed	Pregnancy loss >20 weeks gestation	4	OR 6.11 (95% CI 2.8- 13.2)
Alfirevi c 2002	Protein S deficiency	unselect ed	Pregnancy loss >20 weeks gestation	3	OR 16.2 (95% CI 5.0- 52.3)
Alfirevi c 2002	APCR	unselect ed	Pregnancy loss >20 weeks gestation	2	OR 5.0 (95% CI 2.0- 12.4)
Alfirevi c 2002	Prothrombin gene mutation	unselect ed	Pregnancy loss >20 weeks gestation	2	OR 0.6 (95% CI 0.2- 2.4)
Alfirevi c 2002	MTHFR C677T (homozygoou s)	unselect ed	Pregnancy loss >20 weeks gestation	2	OR 1.4 (95% Cl 0.9- 2.1)
Alfirevi	Protein C	unselect	Pregnancy	3	OR 1 (95% CI 0.1-

c 2002	deficiency	ed	loss >20 weeks gestation		11.1)
Conde- Agudel o 2015*	Alphafetoprot ein (AFP) ≥1.7–1.8 MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	2	Sens: 13 (95% CI 10–17) Spec: 95 (95% CI 95–95) LR+2.6 (95% CI 2.1– 3.3) LR- 0.9 (95% CI 0.9–0.9)
Conde- Agudel o 2015*	Alphafetoprot ein (AFP) ≥2.0 MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	10	Sens: 11 (95% CI 9– 13) Spec: 96 (95% CI 96–96) LR+3.1 (95% CI 2.6– 3.7) LR-0.9 (95% CI 0.9–0.9)
Conde- Agudel o 2015*	Alphafetoprot ein (AFP) ≥2.5 MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks	8	Sens: 9 (95% Cl 8– 11) Spec: 98 (95% Cl 98–98) LR+ 4.0 (95% Cl 3.4– 4.7) LR- 0.9 (95% Cl 0.9–0.9)
			completed gestation)		
Conde- Agudel o 2015*	Alphafetoprot ein (AFP) <0.4–0.5 MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	4	Sens: 6 (95% CI 4–7) Spec: 94 (95% CI 94–95) LR+ 1.0 (95% CI 0.8– 1.3) LR- 1.0 (95% CI 1.0–1.0)
Conde- Agudel o 2015*	Human chorionic gonadotrophi n (hCG) ≥2.0– 2.5 MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	11	Sens: 12 (95% CI 10–14) Spec: 93 (95% CI 93–93) LR+1.6 (95% CI 1.4– 1.9) LR- 1.0 (95% CI 0.9–1.0)
Conde- Agudel o 2015*	Human chorionic gonadotrophi n (hCG) <0.5 MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks	2	Sens: 4 (95% CI 1– 14) Spec: 94 (95% CI 93–94) LR+ 0.7 (95% CI 0.2– 2.7) LR- 1.0 (95% CI 1.0–1.1)

			completed gestation)		
Conde- Agudel o 2015*	Free b-hcg ≤5th centile MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	2	Sens: 12 (95% CI 8– 16) Spec: 93 (95% CI 93–94) LR+1.8 (95% CI 1.3– 2.5) LR-0.9 (95% CI 0.9–1.0)
Conde- Agudel o 2015*	Unconjugated estriol ≤0.5– 0.7 MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	3	Sens: 15 (95% CI 11–20) Spec: 96 (95% CI 96–96) LR+4.0 (95% CI 3.0– 5.3) LR-0.9 (95% CI 0.8–0.9)
Conde- Agudel o 2015*	Pregnancy- associated plasma protein A (PAPP-A) <0.4–0.5 MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	7	Sens: 14 (95% CI 11–17) Spec 95 (95% CI 95–95) LR+2.7 (95% CI 2.1– 3.4) LR- 0.9 (95% CI 0.9–0.9)
Conde- Agudel o 2015*	Pregnancy- associated plasma protein A (PAPP-A) <0.25–0.30 MoM	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	2	Sens: 15 (95% CI 8– 26) Spec: 95 (95% CI 95–96) LR+3.3 (95% CI 1.8– 6.0) LR-0.9 (95% CI 0.8–1.0)
Conde- Agudel o 2015*	TSH >95th centile	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	4	Sens: 2 (95% CI 1–7) Spec: 97 (95% CI 97–97) LR+ 0.8 (95% CI 0.3– 2.4) LR- 1.0 (95% CI 1.0–1.0)
Conde- Agudel o 2015*	Haemoglobin <10–11 g/dl at <13 weeks	unselect ed	Accepted study authors definitions (range 20-28 weeks completed	2	Sens: 9 (95% CI 7– 10) Spec: 89 (95% CI 89–89) LR+ 0.8 (95% CI 0.7– 0.9) LR-1.0 (95% CI 1.0–1.0)

			gestation)		
Conde- Agudel o 2015*	25- hydroxyvitami n D <25 nmol/l or ≤20 ng/ml	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	2	Sens: 15 (95% CI 7– 28) Spec:90 (95% CI 89–91) LR+1.5 (95% CI 0.8– 3.0) LR- 0.9 (95% CI 0.8–1.1)
Thang aratina m 2006(8 2)	Serum uric acid	women with pre- eclampsi a	Not defined	16	LR- 0.53 (95% CI 0.27-1) LR+ 2.0 (95% CI 1.5-2.7)
Sherrel I 2018(8 3)	PLGF	unselect ed	accepted study authors definitions	2	associated in both included studies
		1	<u>Urine tests</u>		
Thang aratina m 2009(8 4)	Proteinuria	women with pre- eclampsi a	Not defined	18	Narrative synthesis found no association.
Combina	ations				
Conde- Agudel o 2015*	Second- trimester Down screening risk ≥1:190–270	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	5	Sens: 67 (95% Cl 53–80) Spec: 61 (95% Cl 60–63) LR+1.8 (95% Cl 1.4– 2.2) LR-0.5 (95% Cl 0.3–0.8)
Conde- Agudel o 2015*	First-trimester Down screening risk ≥1:270–300	unselect ed	Accepted study authors definitions (range 20-28 weeks completed gestation)	3	Sens: 10 (95% CI 5– 19) Spec: 96 (95% CI 96–97) LR+2.8 (95% CI 1.5– 5.5) LR-0.9 (95% CI 0.9–1.0)
Hui 2012(2 5)	Combinations of biomarkers: (AFP+hCG) (PAPP- A+hCG) (AFP+hCG+u E) (AFP+uE)	unselect ed	Fetal loss >24 weeks gestation	7	Most commonly reported combination was AFP+hCG. Reported LR+ ranges from 4.28 (95% Cl 1.15-15.53) to 8.86 (95% Cl 0.85-39.96)

(hCG+uE)	and LR- from 0.92 (95% CI 0.83-1.0) to 0.77 (95% CI 0.22 to
	1.01)

644 *Conde-Agudelo 2015: from this paper only the pooled sensitivities of tests reported

645 in more than one primary study are included in the table

646

Supplementary Table 1a. Studies excluded at full text review as they did not meet the inclusion criteria and the reason for exclusion

Study author and year	Reason for exclusion
Aune 2014	Duplicate
Coleman 2012	Duplicate
Darmstadt 0001	Duplicate
Flenady 2011	Duplicate
Goffinet 1997	Duplicate
Kyrgiou 2016	Duplicate
Lamont 2015	Duplicate
Malacova 2018	Duplicate
Moraitis 2015	Duplicate
Polyzos 2011	Duplicate
Viale 2015	Duplicate
Yazdani Brojeni 2012	Duplicate
Li 2015	Full text not available
Makarechian 1998	Full text not available
Attini 2018	Only 1 included study reporting stillbirth
Jacobs 2011	Only 1 included study reporting stillbirth
Ramakrishnan 2012	Only 1 included study reporting stillbirth
Delabaere 2014	Only 1 included study reporting stillbirth
Boga 2016	Review article /commentary
Carp 2008	Review article /commentary
Gaccioli 2018	Review article /commentary
Herrera 2017	Review article /commentary
Krassas 2000	Review article /commentary
Gilbert 2009	Review article /commentary
Bell 2014	Review article /commentary
De Montalembert 2015	Review article /commentary
Fretts 2005	Review article /commentary
Liu 2014	Review article /commentary
Li 2018	Study protocol
Allen 2007	Stillbirth not reported as an outcome
Duong 2015	Stillbirth not reported as an outcome
Henderson 2007	Stillbirth not reported as an outcome
Nazarpour 2015	Stillbirth not reported as an outcome
Piccoli 2013	Stillbirth not reported as an outcome
Rodger 2010	Stillbirth not reported as an outcome
Roozbeh 2017	Stillbirth not reported as an outcome
Smyth 2010	Stallbirth not reported as an outcome
Berhan 2014	Stillbirth not the outcome - comparison of perinatal mortality rates between centres

Cohen 2005	Conference speech
Coleman 2015	Intervention
Gagnon 2008	Guideline
Gamble 2006	Intervention
Gamble 2007	Intervention
Goffinet 1997	Intervention
Grand'Maison 2014	Intervention
Gurung 2013	Intervention
Heazell 2008	Intervention
Heazell 2015	Intervention
Hodnett 2000	Intervention
Imdad 2012	Intervention
Johnson 2012	Guideline
Syed 2011	Intervention
Van Ravenswaaij 2011	Primary study
Webster 2017	Intervention
American Society for Reproductive Medicine 2002	Registry data
Tieu 2008	Intervention
Goffinet 1997	Intervention

Supplementary Table 1b. Studies investigating variables associated with stillbirth excluded as not clinically relevant to the development of a prediction model for stillbirth.

Study author and year	Variable		
Parental history and characteristics			
Kwong 2018	Bariatric surgery		
Langagergaard 2011	Breast cancer		
Garcia 2016	Chemotherapy for trophoblastic neoplasia		
Saccone 2016	Coeliac disease		
Tersigni 2014	Coeliac disease		
Schinkel 2014	Hypertrophic cardiomyopathy		
O'Toole 2015	Inflammatory bowel disease		
Wendt 2012	Interpregnancy interval		
Kangatharan 2017	Interpregnancy interval after miscarriage		
Alfirevic 2000	Invasive prenatal testing		
Deshpande 2012	Liver transplant		
Owusu 2013	Maternal sleep practices		
Blake 2014	Ovarian sex-cord stromal tumour		
Garritsen 2017	Paternal exposure to immunosuppressant drugs		
George 2011	Periodontal treatment during pregnancy		
Polyzos 2010	Periodontal treatment during pregnancy		
Polyzos 2009	Periodontal treatment during pregnancy		
Howard 2005	Psychotic disorders		
Dreier 2014	Pyrexia in pregnancy		
Delamou 2016	Prior repair of obstetric fistula		
Gao 2015	Radiotherapy for childhood cancer		
Mogos 2013	Reproductive cancers		
Ionescu 2015	SLE		
Bundhun 2018	SLE/APS		
Suliankatchi 2016	Tobacco chewing		
Kyrgiou 2016	Treatment for cervical pre-invasive disease		
Jin 2014	Treatment for cervical pre-invasive disease		
Kyrgiou 2017	Treatment for cervical pre-invasive disease		
Boelig 2016	Treatment for hyperemesis gravidarum		
Infectious disease			
Ganer Herman 2015	Candida glabrata		
Paixao 2016	Dengue fever		
Xiong 2017	Dengue fever		
Nan 2015	GBS		

Seale 2017	GBS
Hall 2017	GBS
Keramat 2017	Hepatitis B
Rein 2012	Hepatitis E
Wedi 2016	HIV infection
Brocklehurst 1998	HIV infection
De Cock 1994	HIV infection
Shi 2018	HSV and CMV
He 2017	Influenza A in pregnancy
Moore 2017	Malaria
Thompson 2016	Rubella
Arnesen 2015	Syphilis
Qin 2014	Syphilis
Gomez 2013	Syphilis
McGready 2014	Typhus
Chibueze 2017	Zika virus
Drug safety reviews	
Rahimi 2008	5-ASA drugs
Terrana 2015	Anti-psychotic exposure
Coughlin 2015	Anti-psychotic exposure
Chan 2000	Anticoagulation (for mechanical heart valves)
Etwel 2017	Antihistamine exposure
Alemu 2015	Antiretroviral therapy
Quansah 2015	Arsenic
Manyando 2012	Artemether-lumefantrine exposure
Kovacs 2016	Artemisinin derivatives exposure
Tosato 2017	Atypical antipsychotics
Laughlin 2004	Corticosteroids
McLaughlin 2003	Corticosteroids
Ford 2014	Cotrimoxazole
Ford 2010	Efavirenz
Dellicour 2017	First trimester artemisinin derivatives and quinine
Kaplan 2015	First trimester exposure to topical retinoids
Kaplan 2016	Hydroxychloroquine
Bratton 2015	Influenza immunisation in pregnancy
McMillan 2012	Influenza immunisation in pregnancy
Yazdani Brojeni 0001	Interferon alpha
Pariente 2017	Lamotrigine
Gonzalez Blanco 2011	Lispro compared to regular insulin
Pasley 2013	Lopinavir/ritonavir

Radeva-Petrova 2014	Malaria prophylaxis
Galbally 2010	Mood stabilisers in pregnancy
Graner 2017	Neuraminidase inhibitors
Martinez Lopez 2008	NSAIDS
Oyebode 2012	Psychotropics in pregnancy
Bar-Oz 2009	Quinolones
Sawka 2008	Radioactive iodine for thyroid cancer
Dunn 2017	Sildenafil
Badell 2015	Smallpox vaccination in pregnancy
Einarson 1990	Spermicide exposure
Geert 2011	Tamoxifen
Mofenson 2017	Tenofovir exposure
Uthman 2017	Timing of ART intiation
Nielsen 2013	TNF-alpha inhibitor exposure
Marchioni 2013	TNF-alpha inhibitor exposure
Chi 2010	Topical corticosteriods
Chi 2009	Topical corticosteriods
Environmental factors	
Zhang 2016	Atmospheric particulate matter
Lai 2013	Air pollution
Bruce 2013	Air pollution
Glinianaia 2004	Air pollution
Siddika 2016	Air pollution
Jahn 1995	Dioxin exposure
Pan 2015	Dioxin-related toxicants exposure
Nieuwenhuijsen 2013	Environmental risk factors
Grant 2013	Exposure to e-waste
Balise 2016	Exposure to oil and natural gas extraction
A 1 1 0014	processes
Ashworth 2014	Exposure to waste incineration
Zhu 2015	Fine particulate matter exposure
Duong 2011	Formaldenyde exposure
Amadi 2017	Heavy metal exposure during pregnancy
Pan 2007	Mercury exposure
Yan 2012	Pesticide exposure
Shirangi 2011	Pesticide exposure
Amegah 2014	Solid fuel use
Sengal 2014	Solid fuel use
Pope 2010	
Zhang 2017	I emperature exposure during pregnancy
Thakur 2010	Toxic waste water exposure

Hwang 2012	Water disinfection by-products		
Fetal factors			
Morris 1999	Down's syndrome		
Morris 2010	Ductus venosus doppler		
Ayed 2015	Fetal sacrococcygeal teratoma		
South 2013	Gastroschisis		
Rabie 2017	Oligohydramnios		
Tuuli 2011	Subchorionic haematoma		
Kennelly 2009	Ventriculomegaly		
Carta 2018	Ventriculomegaly		
Derricott 2013	Villitis of unknown etiology		
Socioeconomic factors	·		
Keasley 2017	Armed conflict		
Srinivasjois 2012	Biracial parents		
Darmstadt 2009	Non-facility birth		
Almeida 2013	Immigration status		
Gissler 2009	Immigration status		
Small 2008	Immigration status		
Knight 2005	Imprisonment		
Porter 2012	Indigenous ethnicities		
Han 2014	Intimate partner violence		
Conner 2016	Marijuana use		
Wolf 2017	Multivitamin use		
Dranitsaris 2005	Occupational exposure - chemotherapy		
Peters 2010	Occupational exposure - hairdressers		
Warembourg 2017	Occupational exposure - health care workers		
Shah 2014	Occupational exposure - non-ionising radiation		
Hall 2017	Pregnancy intention		
Berhan 2014	Skilled birth attendance		

FIGURE LEGENDS

Figure 1. PRISMA flow chart Figure 2. Quality assessment charts Figure 3. Characteristics of the included studies Figure 4. Association of single variables and stillbirth Supplementary Figure 1. AMSTAR checklist Supplementary Figure 2. QUIPS checklist