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Abstract
Objective. Lesions of COVID-19 can be clearly visualized using chest CT images, and hence provide
valuable evidence for clinicians whenmaking a diagnosis. However, due to the variety of COVID-19
lesions and the complexity of themanual delineation procedure, automatic analysis of lesionswith
unknown and diverse types from aCT image remains a challenging task. In this paper we propose a
weakly-supervised framework for this task requiring only a series of normal and abnormal CT images
without the need for annotations of the specific locations and types of lesions.Approach.Adeep
learning-based diagnosis branch is employed for classification of the CT image and then a lesion
identification branch is leveraged to capturemultiple types of lesions.MainResults.Our framework is
verified on publicly available datasets andCTdata collected from13 patients of the First Affiliated
Hospital of ShantouUniversityMedical College, China. The results show that the proposed
framework can achieve state-of-the-art diagnosis prediction, and the extracted lesion features are
capable of distinguishing between lesions showing ground glass opacity and consolidation.
Significance.The proposed approach integrates COVID-19 positive diagnosis and lesion analysis into
a unified frameworkwithout extra pixel-wise supervision. Further exploration also demonstrates that
this framework has the potential to discover lesion types that have not been reported and can
potentially be generalized to lesion detection of other chest-based diseases.

1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (Huang et al 2020), and since the beginning of 2020 (Shi et al 2020), it has beenwidely spreadworldwide
due to person to person transmission (Chan et al 2020). To date, theWHOhas reported thatmore than
260million confirmed cases of COVID-19 globally, withmore than 5million deaths (WorldHealth
Organization 2021). Hence, there is a need for accurate diagnosis and treatment protocols.

When undergoing clinical analysis, COVID-19 patients display lesions which can clearly be seen on chest
computed tomography (CT) images. Thus, CT scans play an essential role in early screening and diagnosis of
COVID-19 aswell as informing on treatment guidelines. Previous investigations reported several typical types
of lesions shown on the chest CTof patients withCOVID-19.Of the terms used to describe the clinical
manifestation of such lesions inCT images, themost frequently observed are ground glass opacity (GGO), crazy
paving pattern (GGOwith superimposed inter- and intra-lobular septal thickening) and consolidation (see
figure 1 for examples of COVID-19 lesions).

Manually annotating the lesions onCT slices requires separating lesions from the image background and
settingmultiple imaging parameters to identify the diverse lesions. As this process is time- and labour-
consuming, automatic identification of the lesions is highly desirable in clinical studies. However, lesion analysis
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of COVID-19 ismore challenging than traditional recognition tasks, since the imaging patterns of these lesions
have awide variety in their locations, shapes, as well as textures. In recent years, deep learningwith convolutional
neural networks (CNNs)has shown its value formanymedical image analysis tasks, such as the disease screening
(Gulshan et al 2016,Hirata et al 2020), disease grading (Yonekura et al 2017,Meng et al 2020) and lesion
segmentation (Huang et al 2020b, Cao et al 2020). Hence, there is interest in harnessing the power of CNNs to
detect the subtle distinctions betweenmultiple lesions. Such distinctions can be hard for humans to detect yet
can provide a reference for clinical diagnosis.

There already exist several CNN-basedmodels for the analysis of COVID-19 based onCT scans, including
AI-assisted differential diagnosis (Wang et al 2020a, 2020d, Li et al 2020,Mei et al 2020,Wang et al 2021, Ying
et al 2021) infected lung segmentation (Jin et al 2020, Li et al 2020) and severity assessment of COVID-19 (Gozes
et al 2020b,Huang et al 2020b). As COVID-19 has been proven to cause destruction of the pulmonary
parenchyma, there has also been a focus on developing intelligentmodels dedicated to the localization,
segmentation, and quantification of lung lesions in patients with this disease (Zhang et al 2020a, 2020b,Duran-
Lopez et al 2020, Ghoshal andTucker 2020, Shi et al 2021). However, despite being themost valuable guide to aid
clinicians inmaking diagnoses, enacting treatment and determining a quarantine plan, the link betweenCT
findings of COVID-19 lesions and the clinicalmanifestation of the disease has been paid less attention. Instead
most conclusions are derived by experienced clinicians, which can be subjective.

With accurate and clear information about the lesion, valuable guidelines for clinicians to enact treatment or
follow-up can be provided.Hence, in this paper, we focus on automatic identification of diverse types of lesions
over a sequence of CT images. Considering the heavy delineationwork, we use onlyweak annotations that the
images are normal/abnormal with no detailed lesion information required. To achieve this we design aCNN-
based frameworkwith two branches, namely the diagnosis and lesion branches. For the diagnosis branchwe
develop aCNNmodel to automatically screen suspectedCOVID-19 cases. The lesion branch is connected to the
diagnosis branch via aGrad++module. Thismodule is designed by a fact that the CNN’s ability to accurately
classify CT images originates from the detected lesion features in the abnormal images. By revealing the lesion
features generated in the diagnostic procedure, theGrad++module ensures themulti-lesion detector in the
lesion branch can functionwithout explicitly considering the variability in shape and texture of the lesions,
significantly reducing the annotation burden.

The effectiveness of the framework is evaluated on independent datasets, and the results show the diagnosis
branch can achieve robust and competitive performancewith themaximumaccuracy up to 99.41%and
performance of the lesion identification is effective.Moreover, further exploration of this framework’s potential
is carried out, which demonstrates that themulti-lesion detector can detect the lesions that do not report as a
clinicalmanifestation. Themain contributions of this paper can be summarized as follows:

(i) A CNN-based framework is presented to integrate the positive CT images prediction and lesion
identification.

(ii) A lesion indicator is provided by exploit feature maps under image-level supervision, which can be used to
capture the lesionwithout explicitly considering the lesions’ shape and texture.

(iii) The lesion features are extracted and then clustered into different groups with an unsupervised clustering
method, the results show that the abstract representation of lesions is discriminative.

The rest of this paper is organized as follows. Section 2 summarizes the relatedwork on artificial intelligence
(AI)-assisted differential diagnosis and lesion identification for COVID-19. Section 3 introduces the proposed

Figure 1.Example CT imaging of COVID-19 lesions (circled by red boxes). Left: GGO;Middle: crazy-paving pattern; Right:
consolidation.
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CNN-based frameworkwith two branches. In section 4we describe our experimental setup and section 5
presents results. Finally, the discussion and conclusion are given in sections 6 and 7. A list of the abbreviations
used in this paper is given in table 1.

2. Relatedwork

In this section, we review themethods for AI-assisted differential diagnosis and lesion identification, which are
two recent trends in the study of COVID-19 that closely relate to ourwork.

2.1. AI-assisted differential diagnosis
Previousmethods for AI-assisted differential diagnosis can be roughly divided into two categories: binary
classification andmulti-class classification. Binary classification approaches aim to distinguishCOVID-19 and
non-COVID-19 cases.Whereasmulti-class classification often focuses on three classes (Wang et al 2020c, Li et al
2020, Ying et al 2021): a normal or non-pneumonia class, COVID-19 cases, and other disease cases. In this work,
we target binary classification, as these approaches can quickly and easily detect COVID-19 positive images with
high specificity, which is valuable for the following lesion analysis.

Binary classification can be used to distinguish betweenCOVID-19 negative versus COVID-19 positive
(Zhang et al 2020a, Jin et al 2020,Narin et al 2021), for instance, in Jin et al (2020), a deep learning frameworkwas
proposed integrating lung segmentation and classification for COVID-19 detection. Alternatively binary
classification can be used to distinguish COVID-19 fromother diseases such as pneumonia (Wang et al
2020c, 2020d, Ghoshal andTucker 2020,Wang et al 2021). In either case the structure of the neural network
used to provide theAI-based differential diagnosis of COVID-19 can be broken down into either 2D-CNNs or
3D-CNNs.

2.1.1. 2D-CNNmodelling
Due to their fast acquisition, x-ray images are often the initial step in the study of COVID-19.Naturally, for x-ray
images 2-dimensional CNNmodels are used (Wang et al 2020c, Duran-Lopez et al 2020, Narin et al 2021).
However, while x-ray scans provide a fast, cost-effective examination of the chest, a CT scan provides amore
detailed 3D scan.Hence, 2D-CNNmodels based on chest CT images also exist, for instance (Mei et al 2020) used
CT images in their integratedmodel combining predictions fromCT images only, non-image information only
(i.e. demographic and clinical data), and the combination of image and clinical data. As a pre-processing step
most 2D approaches obtain the lung-mask using segmentation ormorphological operations and thenmake a
decision using the lung region of theCT image. For instance,Hu et al (2020)first utilized a 2D segmentation
network and then used the segmented lung image for classification of COVID-19 patients from community
acquired pneumonia (CAP) and non-pneumonia scans.

2.1.2. 3D-CNNmodelling
Considering the 3D structure of CT sequences, several recentmethods have exploited 3D-CNNs formodelling
COVID-19.Wang et al (2020d) employed a deep learningmethod for diagnosis where lung segmentation is

Table 1. List of abbreviations.

Abbr. Explanation Abbr. Explanation

COVID-19 Coronavirus disease 2019 GGO Ground glass opacity

CNN Convolutional neural network CT Computed tomography

CAM Class activationmap LAM Lesion activationmap

FeCNN Feature pyramid network embedded LAHm Lesion activation heatmap

convolutional neural network

FPN Feature pyramid network GT The ground-truth

COVIDx2a A large-scale compound Own CTdata collected from the

First AffiliatedHospital

CT dataset of ShantouUniversity

CTset CT data collected fromNegin ROC curve Receiver operating

RadiologyMedical Center (Iran) characteristic curve

CNCB CTdata collected from theChina PR curve Precision-recall curve

National Center for Bioinformation

MLP Multi-layer perceptron AUC The area under ROC curve

LBP Local binary pattern descriptor AP The average precision

SVM Support vectormachine Hist Grey-scale histogramdescriptor
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performed, and then the segmentation result is taken as the input of the 3D-CNN to predict the probability of
COVID-19. InGozes et al (2020a) a 3Dmodel is added based on 2D analysis of each slice, where the 3D-CNN
analyzes the volume for nodules and focal opacities. Though 3DCT scans can provide abundant stereoscopic
information of lung involvement inCOVID-19, the calculation andmemory load of 3Dmodels cannot be
ignored. In our study, we have opted not to implement a 3D-CNNmodel and have instead attempted tomimic
theway the cliniciansmake their decisions based on 2DCT images.

2.2. Lesion identification
Despite the significantwork on lesion detectionwhich already exists, identifying specific lesion types from
COVID-19with solely image-level supervision is challenging. Previous studies havemainly focused on
separating the lesion region from the image background.With several studies employingU-Net (Ronneberger
et al 2015) to segment the lungCT scans. For instance, to distinguishCOVID-19 pneumonia fromCAP (Li et al
2020) or to segment pulmonary opacities in the lungs to obtain quantitativemeasurements (Huang et al 2020b,
Cao et al 2020), for longitudinal assessment of the disease. Extending beyondU-Net, Jin et al (2020) proposed
UNet++ segmentation for locating lesions andWang et al (2020b)proposed a novel COVID-19 pneumonia
lesion segmentation networkwhich is robust to noise and can deal with lesions with various scales and shapes. In
addition, there is an extensively exploited lesion segmentation framework calledVB-Net (Shan et al 2021), and
with thismethod, Shi et al (2021) designed hand-crafted features based on the segmentedCOVID-19 infection
and then screened theCOVID-19 positives. However, these works all require accurate lesion annotations for the
training procedure.

To address the issue of annotations, recentlymuch effort has been directed toweakly supervised lesion
detection in an attempt to achieve equivalent performance to fully supervised approaches. The use of weak
supervision, e.g. image-level classification labels, relieves the rigid demand for lesion-wise annotations at a pixel-
level. The class activationmap (CAM) (Zhou et al 2016), is an effective way to localize the lesion regionwithinCT
images using diagnostic labels solely. InHu et al (2020) the CAM is regarded as the class-specific saliencymap
and the saliencymaps fromdifferent layers are joined for lesion segmentation.WhileWang et al (2020d)
combinedCAMactivation regionswith the output of a 3D segmentation network forfinal lesion localization.
Thesemethods resort toCAM to indicate the pixel-wise distribution of lesions. Nonetheless, the detected lesions
are class-specific and can only cover a broad range of suspected abnormal regions.

Our proposed lesion identification approach is weakly-supervised, relieving the time- and labour- intensive
labellingwork required bymethods that need accurate pixel-wise information for lesion segmentation.
Moreover, unlike previous work on lesion detection, ourwork aims to automaticallymake a differential
diagnosis and use this to identify the characteristics of theCOVID-19 lesion.Hence, this work requires not only
high classification accuracy but also needs to identify the unique patterns of COVID-19 lesions inCT images.
And in that way, the linking of clinicalmanifestations and provision of clinical guidelines can be allowed.

3.Methodology

In this section, we provide details of the proposed framework, which is illustrated infigure 2. In brief the
framework consists of the followingmodules:

(i) A feature pyramid network (FPN) embedded convolutional neural network (FeCNN), to extract the multi-
scale deep features of the CT image.

(ii) An ensemble feature fusion module, which integrates the multi-scale feature to make a diagnosis
prediction.

(iii) A connecting module, the Grad++ module, which combines the feature maps from the last layer of
network outputs and the back-propagated gradient derived from the predicted probability to generate the
lesion activation heatmap (LAHm).

(iv) Amulti-lesion detector, which is used to encode all the potential lesions and form a lesion distribution space
using a self-supervised clustering algorithm.

(v) A clustering module, which projects the encoded lesion into the lesion space and yields the final lesion
clusteringmodule.

The FeCNNand ensemble feature fusion allow us to obtain the likelihood that theCT image is COVID-19
positive; theGrad++ then serves as a transitionmodule connecting the diagnostic network branch to the lesion
identification branch via featuremaps generated by the inference procedure. In the lesion branch, the LAHm
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yielded by theGrad++module is leveraged to capture the spatial information ofmultiple lesions which helps us
locate the lesions at a pixel-level.

3.1. FPN-Embedded convolutional neural network (FeCNN) for CT slice prediction
As a supervised approach for diagnosis, FeCNN is used to learn amapping :  F  , given the collection of
training samples x l,n n n

N
1{( )} = = . Here, denotes the data space and  represents the annotation space.N

is the number of training samples, ln Î is the associated diagnostic label of the input CT image xn Î .
Specifically, the proposed FeCNNhas three central parts: the backbone of the network, the FPNmodule, and the
fusionmodule.

The backbone network takes advantage of the powerful encoding ability of CNNs inmedical image analysis
tasks. As an encodingmodule of the diagnosis branch, the backbone networkwill utilize a consecutive block
structure to extract the featuremaps of pre-processed CT images at each of the corresponding scales. The block-
based architecture of the backbone network can facilitate the enhancement ofmulti-scale image features;
considering this a FPN is included in the framework. FPNs have shown strong performance in computer vision
tasks due to their reuse of features. The FPN leverages the pyramid-like shape ofmulti-scale featuremaps to
form a feature pyramid, aiming to further improve the semantic representation of the input featuremaps at
single scale. In this study, our FPNmodule echoes the classical plug-in proposed in Lin et al (2017). The features
generated at each scale level of the FPN all produce a valid prediction, potentially resulting in variance in the
diagnoses. Hence, inspired by the idea of ensemble fusion, a fusionmodule is designed to integrate the enhanced
features from each scale level for thefinal prediction.

3.1.1. The backbone network
Ideally, the architecture of the backbone network isflexible, whichmeans that it can be an encodingmodule of
any classical CNN:Resnet (He et al 2016), VGG (Simonyan andZisserman 2014), etc. They all share the same
block-based network architecture and similar in-block elements, i.e. the convolution operation, the nonlinear
activation, the batch normalization and the pooling operation. Stacking these elements with different schemes
orfine-tuning their configuration provides theCNNswith distinct in-block structures.

In ourwork, the backbone network hasfive convolutional blocks denotiedConv1,K, Conv5 infigure 2. The
details of the backbone network’s stacking schema are illustrated infigure 3, where the numbers k, q, s in the
green rectangular box represent a convolutional operationwith q, k× kfilters and stride, s, (q and k denote the
number and the size of the convolutional kernel). Re andMPdenote the residual operation and 3× 3max
pooling operation, respectively. Each block yields the image featuremapwith the corresponding scale.

Figure 2.The pipeline of the proposed framework.
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3.1.2. FPNmodule
Typically, as the depth of the backbone network increases, the feature output of the deeper convolutional blocks
will provide amore robust representationwith strong semantics. That is alsowhy the output features from the
last layer are emphasized inmost computer vision tasks. Nevertheless, comparedwith natural images, CT
images have less object-level semantic information, andmost are filledwith dark pixels. At the same time, lesions
inCT images show a variety of shapes, textures, and features which a single scale cannot capture. Thus, careful
extraction ofmulti-scale semantic details is crucial and therefore, we utilize the FPNmodule for semantic
enhancement.

Figure 4 shows the stucture of FPN; as the outputs of the first two blocks, Conv1 andConv2 have a high
computational load but only low semantic details, the featuremaps of only the final three blocks Conv3, Conv4,
andConv5 (denoted as C3, C4 andC5 respectively) are fed into the FPNmodule. These featuremaps are first
convolvedwith a 1× 1 kernel and batch normalization applied to obtain a corresponding featuremapwith
lower dimension. The featuremaps of the two relatively higher scales, i.e. C4 andC5 are upsampled to the spatial
resolution of the next levels down, and thus the spatial resolution of the lower scale and the semantic
information from the higher scale can be combined. Finally all three scales are convolvedwith a 3× 3 kernel
with 1-stride. Additionally to provide greatermulti-scale information, two consecutive 2-stride 3× 3
convolution operations are performed onC5 to obtain fine-grained featuremapsC6 andC7.

To summarize the information in themulti-scale featuremaps, we include a global average pooling
operation (GAP). Before conducting theGAP operation, a 1× 1 convolution and batch normalization is applied
to the featuremaps in order to keep the same dimensions, whichwe set to 256 in our experiments. After applying
GAPoperation on themulti-scale featuremaps, we obtain a 1× 1× 256 vector for each scale level.

3.1.3. Ensemble fusion
Let Pi

1 256Î ´ indicate the feature vector of the ith scale of the FPNmodule. Since the variance across the scales
is significant and also robust, the summarized feature vector obtained from each level can facilitate the final
prediction.However, this can potentially lead to variability in the diagnoses which can be challenging to unify.
Therefore, we implement an ensemble fusionmethod to aggregate the separate feature components.

Specifically, for each scale level P i, 0, 5i [ ]Î , we add a ρ-way fully-connected layer with ReLU activation
function to calculate a scale-level score, si, (where ρ corresponds to the pre-set length of the scale-level score)
such that

s W P b W b0max , , , , 1i
i

i
T

i
T

i i
256 C 256 C ( ) ( )= + Î Î´ ´

where,Wi and bi are theweights and the bias of the fully-connected layer which are to be trained. Then, the
associatedweight of each feature vector,ωi, is calculated as:

1

2
log

1
, 2i

i

i

⎜ ⎟
⎛
⎝

⎞
⎠

( )


w =

-

where òi is the error rate of the scale-level prediction such that

s
N

axis l
1

argmax , 1 . 3i
i

n
N
1{ ( ) } ( ) = = - ¹

After calculating theweights, the ensemble fusionmodule aggregates theweighted score vectors to produce a
new feature vector for the final prediction. If the final feature vector is denoted as d 5Î r´ , where

Figure 3.The stacking schema of the backbone network. The black arrow indicates the direction of dataflow.
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d s s sw w w i, , .., , 0, 5i i0 0 1 1 T[ ] [ ]= Î , then the final step is to add a -way fully-connected layer (where 
corresponds to the number of categories). Softmax is used to predict the likelihood that the input CT slice
belongs to each category and the diagnostic probability can be defined as:

d W
d

d
y j x j

w

w
, ,

exp

exp
, 0, , 4n n

j
T

i i
T

( ∣ )
( )

( )
[ ] ( )


F = =

å
Î

where yn is the predicted label of the nth input CT image, andW wj j{ } = Î is the set of weighted parameters of
the functionΦ. Thus, themodel is trained byminimizing the loss function:

d WL
N

True y l y j
1

log , . 5loss
n

N

j
n n n

1 0

( ) ( ( ∣ )) ( )


åå= - == F =
= =

where,True (·) is a Boolean function such thatTrue 1(·) = if the condition is true and 0 otherwise. As the
diagnostic network is designed to predict if theCT slice is COVID-19 positive or not,  is set to 2 in our
framework.

3.2. Lesion identification
Since the image-level label is the only human-annotated supervision that is used in our study, identifying the
lesion at a pixel-level is a challenging task.However, if a trainedmodel is able to predict whether aCT image is
COVID-19 positive or notwith high accuracy, itmust have captured a reliable set of lesion features from the
input image.Motivated by this fact, we propose taking those lesion features as clues to identify the type of lesion.
Nevertheless, the difficulty with this idea is that these lesion features are theoretically invisible and unavailable.
Recently, severalmethods have turned toCAMusing the class-specificmap toweakly localize the lesion area
(Wang et al 2020d,Hu et al 2020) or show the suspected lesion region in order to demonstrate that the CNNs are
making the correct decisions (Wang et al 2020d, Jin et al 2020). Inspired by these studies, we utilize theGrad++
module to reveal the underlying lesion using the back-propagated gradient and then leverage themulti-lesion
detector to capture them.

In detail, the lesion identification problem can be formalized as follows. Let X xn n
m

1{ } = Í= be a set of
COVID-19 positive CT slices predicted by the diagnosis branch, whereTrue x largmax 1n n( ( ( )) )F == = . The
target of the lesion prediction is to learn a function: X S:  , where S is a set of possible lesion scores. For the
multi-lesion detector, it is developed using the lesion activation heatmap (LAHm) generated by theGrad++
module. The intensity of the pixels in the LAHmcorresponds to the presence of lesions, withwhich the detector
can encode the lesions without explicitly considering the lesions’ pixel-wise information, i.e. the shape, textures,
etc.Hence, let  denote the detector, then the process of lesion identification can be formalized
as X S( ( ))   .

Figure 4.The feature pyramid network is utilized to reuse features of different scales extracted from the backbone network for the
semantic enhancement.
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3.2.1. Grad++module
Let the featuremaps output by thefinal block of the backbone network in the FeCNNbe An

w hÎ k´ ´ , where
w, h,κ denote thewidth, height, and number of featuremaps respectively. Then, the lesion activation heatmap
(LAHm) of the diagnosed image xn is computed as the linear combination of An

i
i 0{ }k= , where theweight of each

featuremap is calculated as described in Selvaraju et al (2017):

w h A

1
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withακ obtained by calculating the partial derivatives of xn( )F with respect to Aij
k. Then the LAHm is generated

as follows:
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⎛
⎝

⎞
⎠

( )å a=
k

k k

The LAHm is a positive-case-specific saliencymap, which activates the pixels of the featuremap that contribute
to the diagnosticmodelmaking a prediction. The discriminative CT image patternswhich emerge are those
corresponding to theCOVID-19 positive cases (i.e. the lesions theCT slice shows).

To further analyze the lesions, the LAHm isfirst normalized to [0,1] and then thresholded usingOtsu’s
method (Otsu 1979) to obtain a preliminary binarymaskwhich segments the LAHm into lesion region and
background.With the binarymask obtained, the components are searched to detect potential lesions by
identifying connected components and eliminating fuzzy boundaries between them. To provide a better
separation of lesions the searchmode is set to 4-connectivity, meaning that those pixels within 4 orthogonal
hops are considered as neighbors. Since 1 pixel on the LAHmequates to a lesion area of 1024 (i.e. 32× 32)when
projected to the resolution of the original image. To preserve asmany potential lesion regions as possible,
connected components withmore than 1 pixel are accepted as candidate lesion regions. These two steps ensure
that, asmuch as possible, all potential lesions are kept and the boundaries between the lesions are also as clear as
possible. Inspired by Zhu et al (2017), the LAHmand the binarymask are coupled viaHadamard product and a
lesion activationmap (LAM) is created by upsampling the coupledmap to the original image for potential lesion
localization, example LAMs are shown infigure 5.

3.2.2.Multi-lesion detector
If we denote the LAHmof the input lung image xn as L w hÎ ´ , wherew and h correspond to thewidth and
height of the featuremapA. Themulti-lesion binarymask divides the LAHm intomultiple lesion regions. If we
recall that the higher the value of the LAM, the higher the corresponding local area’s contribution to predicting
the correct diagnostic label. Thus, we adopt themethod used in Lin et al (2020) formulti-lesion feature
extraction. That is, for each potential lesion region, we locate the spatialmaxima:

x y L i m, argmax , 0, , 8i
i( ) ( ) [ ] ( )* * = Î

where Li is ith sub-region of L, the candidate lesion locations andm is the number of candidate lesions. These
extrema correspond to points deemedmaximally salient for the differential diagnosis task by the proposed
network.

Considering the LAHm is theweighted linear combination of the featuremaps, A w hÎ k´ ´ , used by the
classification network, we utilize these spatialmaxima x y, i( )* * to extract a local feature vector describing the ith
lesion region based on the corresponding component ofA for each channel. Thus, the lesion detector  can be
formalized as follows:

Figure 5.Example LAMs visualized in a heatmap format using a Jet color scheme, where deep color corresponds to higher activations
and light to lower activations.
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x A x y i m, , 0, , 9n
i

i( ) (( ) ) [ ] ( )* * = Î

where xn
i denotes the ith lesion of the input image xn.

Typically, the featuremapsA have low resolution but high channel dimensionality, in our case xn
i( ) is

16× 16× 2048. Therefore, the length of the encoded lesion feature is 2048. If we run the feature detector for
each candidate lesion of input CT image, then, a set of the feature vectors formultiple lesions is yielded, onwhich
we build a feature space for all input CT images.

3.2.3. Lesion clustering
As there are no extra supervised annotations except the image-level label, the identification of the lesions is
accomplished by clustering lesions based on the encoded lesion representation using an unsupervisedmachine
learning approach. Simply, we apply a k-means clustering algorithmon the extracted lesion feature space to
group the detected lesions.Where each of theK lesion clusters represents a potential lesion type.Hence, for a
predicted positive CT slice, xn, the lesion score lsn

i of the ith detected lesion is defined as:

ls
e

e
min , 10i

k

d i k

k
d i k

,

,
( )

( )

( )=
å
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-

where ls Sn
i

i
m

0{ } Í= , d (·) is the euclidean distance between the ith lesion and the kth optimal cluster centre. This
formulation produces a smooth probability distribution over theK clusters, inwhich the lesion score decreases
the likelihood of belonging to this cluster increases.

4. Experimental setup

The following section describes our experimental setup including the datasets used to evaluate our proposed
framework and themetrics used to evaluate the performance.

4.1.Dataset
With Institutional ReviewBoard (IRB) approval, 39CT scans collected from13 patients at the First Affiliated
Hospital of ShantouUniversity (denoted asOwn) are included in this study and all patients included in this
dataset have providedwritten informed consent. Besides our owndataset, we also evaluate the performance of
the proposed frame-work on two publicly available data sources, the small scale dataset: Radio-2 (Knipe and
Iqbal 2020), and the compoundCOVID-19 dataset (COVIDx2a) (Gunraj et al 2020). TheCOVIDx2a dataset
itself has been collected from several different data spaces including theChinaNational Center for
Bioinformation (CNCB) (Zhang et al 2020b), the COVID-19 diagnosis dataset (CTset) fromNegin Radiology
Medical Center (Iran) (Rahimzadeh et al 2021), and theCTdataset provided by themulti-national, national
institutes for health (NIH) cnsortium forCTAI inCOVID-19 via theCancer Imaging Archive (TCIA) public
website (Clark et al 2013, An et al 2020,Harmon et al 2020). The dataset from the TCIA public website is also the
official data used by theMICCIA grand challenge onCOVID-19 lesion segmentation 2020 (An et al 2020). Not
all of the slices from these sources were used inCOVIDx2a and the data for other types of pneumonia have been
excluded in our experiment. In total 155 541CT slices including 94 548 frompositive patients were used in this
investigation. The details of these datasets, including the number of positive cases, the number of positive slices
and the annotations, are listed in table 2.

Note that only a portion of theCT slices from theCorona (Ma et al 2020) andCNCB (Zhang et al 2020b)
datasets are releasedwith annotations of the infection area. Of the 750CT slices from150COVID-19 patients of
the CNCBdataset, 549 of these slices are alsomarkedwith lesion type (e.g. 2 in the lesionmask denotesGGO, 3
denotes consolidation).

4.2. Network implementation details
4.2.1. Basic setup
In the diagnosis branch, the backbone network for CT image feature extraction is initializedwith the no-top-
weights trained from ImageNet. The ρ of the fusionmodule in the diagnosis branch is set to 2. For each database,
80%, 15%, and 5%of data split randomly for training, testing, and validation. The networkwas trained for 50
epochs usingAdamoptimizer with a constant learning rate of 1e-5 and a dropout rate of 0.5, the batch size is set
to 10.

4.2.2. Preprocessing
All CT images of each dataset were preprocessed in a unifiedmanner before training and testing. A
normalizationwindowwasfirst set to normalize each image to 8-bit pixel intensity values, i.e. 0-255. And the
lungwas segmented out bymorphological operation. Since the lung of several CT images at the beginning and
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end of aCT sequence is usually closed, the average pixel intensity perCT image in the sequence was calculated
and theywere discarded if their average pixel intensity was below 0.08. After that, all the cropped lung images are
resampled to the same spatial resolution, 512× 512. Inputting the lung region instead of thewhole CT image
manually helps ourmodel focus on pulmonary differentiation, ignoring the effects of air or fat.

4.2.3. Data augmentation
As onemethod to tackle the overfitting problem, a data augmentation schemewas applied in the training stage.
The data augmentation included a randomaffine transformation and color adjustment. The affine
transformationwas composed of rotation (0°–360°), horizontal and vertical flip, and resolution shifting (0.05).
The color adjustment includes brightness (0%± 50%) and contrast (0%± 30%). For each training sample, the
parameters were randomly generated, and the augmentationwas identically applied.

The training procedure of our FeCNNwas carried out on aNVIDIARTX2080ti GPUwith 11 GB ofGPU
memory. During the testing procedure, the data augmentation strategywas not applied. The trainedmodel gives
the diagnostic probability as the likelihood of beingCOVID-19 positive. Using the predicted probabilities and
corresponding ground-truth labels, statistical analysis of themodel performance is conducted.

4.3. Evaluationmetrics
We independently evaluated the performance of each of the three parts of ourmodel: the diagnosis prediction,
lesion detection, and lesion identification, for the datasets described in section 4.1.

4.3.1. Diagnosis prediction
To evaluate the performance of the diagnosis network, the testing dataset was usedwith the trainedmodel. For
each testingCT image, the COVID-19 positive and negative probability are predicted. The performance is
evaluated against the ground truth labels through the diagnostic accuracy, the precision-recall (PR) curve, and
the receiver operating characteristic (ROC) curve. If the true positives (TP) are the number of correctly detected
COVIDpositive cases, the false positives (FP) the number of detected positive cases that are actually negative,
and the false negatives (FN) are the number of rejected positive cases that are truly positive. Then the
precision= TP/(TP+ FP) and the recall= TP/(TP+ FN). TheROC curve is created by plotting the TP rate
(TPR) against the FP rate (FPR) at various thresholds. Finally, the average precision (AP) and the area under
ROC curve (AUC), which summarize the PR curve andROCcurve, are also calculated.

4.3.2. Lesion detection
To quantitatively analyse the performance of our weakly-supervised lesion detectionmodule, and in linewith
the results presented inWang et al (2020d)we calculate the lesion hit rate as the evaluationmetric. First
bounding boxes for the highlighted regions of the LAMare calculated, by employing the connected component
operation. This is then repeated for the ground-truth (GT) lesion boxes,marked by theGT lesionmasks. Next
the ratio of the area of the LAMboxwhich overlaps theGT lesion box is calculated. To determine if the lesion is
successfully detectedwe check if the ratio is over a specified threshold and the spatialmaximal of the LAMbox is
inside the overlapping region. The hit rate is then calculated as the quotient of the number of successful hits and
the number of theGT lesions.

Table 2.Details of the datasets used in this study. Pos. refers to the number of positive COVID-19 cases and Slices are the
corresponding positive slices. Img., Les. A. and Les. T. refer to the annotation of image category, lesion area and lesion type
respectively. The checked box denotes that part of the dataset has this annotation.

Details Annotation

Dataset Pos. Slices Img. Les. A. Les. T

COVIDx2a (Gunraj et al 2020) Radio-1 (Bell andHacking 2020) — 3175 ✓

CTset (Rahimzadeh et al 2021) 95 2282 ✓

LIDC (Armato et al 2015) — 3999 ✓

HUST (Ning et al 2020) 1521 37 306 ✓

TCIA (An et al 2020) 632 11 818 ✓

Corona (Ma et al 2020) 20 1213 ✓ ✓
CNCB (Zhang et al 2020b) 409 31 070 ✓ ✓ ✓

Radio-2 (Knipe and Iqbal 2020) 9 829 ✓ ✓

Own 13 2856 ✓ ✓ ✓
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4.3.3. Lesion identification
The evaluation of the lesion detection is on the lesion-level. For the lesion clusters of a dataset, experienced
radiologists label the detected lesions. According to the guidance of the specialist, we then calculate the
sensitivity (SEN) and specificity (SPE) of the clusters as the evaluationmetrics, where SEN= TPR, SPE= 1—
FPR. TPR is the ratio of the number of correctly identified lesions over the total number in a cluster and FPR is
the ratio of the number of incorrectly identified lesions over the total number in a negative cluster.

5. Results

In this section, we present our results and evaluate ourmethod against the state-of-the-art in order to validate
the effectiveness of our framework for COVID-19 classification and lesion identification.

AsCOVIDx2a is a compound dataset, wefirst evaluated the classification performance of our diagnostic
network on this data. To validate the performance on the available independent datasets, themodel is tested on
ourOwndataset and the Radio-2 (Knipe and Iqbal 2020). The testing threshold is set to 0.5, i.e. if the predicted
likelihood of COVID-19 is over 0.5, the CT image is classified asCOVID-19 positive, and vice versa. Overall, our
FeCNNachieves accuracies of 0.99 for the compound dataset COVIDx2a, and of 0.95, 0.85 for the other two
independent datasets Own andRadio-2, respectively. The accuracies for positive and negative classification are
above 0.99 and 0.98 on the dataset COVIDx2a, and on the other two datasets, the positive classificationmetric is
0.94 and 0.83, with the corresponding negative classification results being approximately 0.91 and 0.96
respectively. Using these results, the evaluationmetrics introduced in the previous section are calculated.

5.1. COVID-19 diagnostic prediction
Figure 6 shows the PR curves and the ROC curves of the three datasets, respectively. From the PR curves we can
see that ourmodel exhibited relatively high discrimination of COVID-19 positive cases, especially on the
datasetsOwn andCOVIDx2a, with both datasets showing highAP values of 0.95 and 0.99, respectively. For the
dataset Radio-2 as the recall increases the precision fluctuates in a narrow range andwhen the recall is nearly 1,
the precision is almost 0.8. The results obtained from theCOVIDx2a dataset are particularly impressive (see
figure 6), evenwhen the recall reaches 0.90, the precision is still over approximately 0.95. The likely explanation
for this result is due to the fact that our diagnosis network tends to predict with high certainty (e.g. with a value of
either 0.99 or 0.01). If we analyze the distribution of predicted probabilities, we learn that the percentage of slices
with probability ranging from0 to 0.1 and from0.90 to 1 is up to 83%on average (this percentage is over 90% in
COVIDx2a). If we look at the corresponding ROCs, then for the Radio-2 themodel obtains anAUCof 0.89 and
similarly for the ourOwndataset the AUC is 0.90. In both cases when the FPR is less than 0.3 the FeCNNcannot
achieve robust performance. In contrast if we compare theCOVIDx2a, the results aremuch higherwith anAUC
of approximately 1.00. This somewhat surprising result is similar to the result reported in the study (Gunraj et al
2020), which can probably be attributed to theCOVIDx2a having been filtered to the common abnormal CT
slices by an experienced radiologist; in other words, only CT images showing the significant variance are kept.

To further validate the effectiveness of the diagnosis prediction, we evaluated it against existing baseline
methods, including those based on the combination of hand-crafted features and a classifier and those based on

Figure 6.The PR curves (top) and the ROC curves (bottom) of data radio-2 (left), Own (middle) andCOVIDx2a (right).
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deep-learning techniques. In particular, we applied two image feature descriptors the local binary pattern (LBP)
operator (Zhang et al 2004), and 64 bins grey-scale histogram (Hist).We also show the results of these features
with two different classifiers, the three-layermulti-layer perceptron (MLP) and the support vectormachine
(SVM). Here, the three layers of theMLPhave 25, 10, and 2 nodes respectively and are composed of a batch
normalization operation, a fully connected layer, and a tanh activation function, and the L2 penalty
(regularization term) parameter is 0.01. The baseline classificationCNNs tested are the Resnet50 (He et al 2016),
VGG16 (Simonyan andZisserman 2014), Xception (Chollet 2017). The architecture of the backbone networks
remain unchanged, but two dense layers with ReLU activation function and one dense layer with softmax are
added at the top tomap the output of the CNNs toCOVID-19 likelihood. In addition, three recentmethods
which have been demonstrated to be effective are included for comparison, these are: theweakly supervised
multi-scale network used inHu et al (2020) (denoted asWsNet), the 2DDeCoVNet proposed inWang et al
(2020d) and theCOVIDNet-CT reported inGunraj et al (2020). All the baselinemethods are trained in the same
environment as the proposed framework.

Table 3 reports the performances of all of themethods in terms of accuracy on the testing datasets. From this
table, we can observe thatwithin the hand-crafted feature-based approaches, the diagnostic performance of the
feature descriptors with SVMare better thanwithMLP, and for all three datasets, the combination of 64Hist+
SVM,which reaches accuracies of 71.78%, 80.72% and 93.92% respectively, ismore persuasive than the other
feature-basedmethods. Comparedwith the feature-basedmethods, the CNNs show competitive results, which
are largely capable of beating the feature-basedmethods. Among the baseline CNNs, Xception could generally
achieve the state-of-art performance. TheWsNet, DeCoVNet, COVIDNet and FecNNall achieved similar
performance for the Radio-2 dataset. This can be attributed to the fact that all four networks share similar
backbone architecture (e.g. all are embeddedwith the residual connection), and the volume of data limits any
divergance in performance. For the other two datasets the FeCNNachieved better performance than the other
CNNs, surpassing themaximumby over 1.3% for datasetOwn and 0.3% for dataset COVIDx2a. The advantage
of ourmodel is not as great for theCOVIDx2a dataset, but as highlighted earlier the COVIDx2a dataset has
already beenfiltered to include onlyCT images with significant variance thereforemaking it easier to
discriminate between theCOVID-19 positive and negative cases which is indicated by the very high diagnostic
accuracy of all of the CNNmethods.

To verify the effectiveness of the differentmodules in the diagnosis branchwe carried out an ablative study.
The baseline is the single backbone network, without the FPNand the ensemble fusion, on top ofwhich the
original fully-connected layer is added for the diagnosis. From the final results (see table 4), we can conclude as

Table 3.The diagnostic accuracy of the proposedmethod and the baselinemethods on datasets: Own,
Radio-2 (Knipe and Iqbal 2020), andCOVIDx2a (Gunraj et al 2020).

Dataset

Method Own Radio-2 COVIDx2a

Feature-basedmethods LBP+ SVM 0.717 0.789 0.898

LBP+MLP 0.691 0.733 0.887

64 hist+SVM 0.718 0.807 0.939

64 hist+MLP 0.706 0.744 0.896

Deep learningmethods Resnet50 0.908 0.851 0.976

VGG16 0.854 0.825 0.955

Xception (Chollet 2017) 0.913 0.854 0.979

WsNet (Panwar et al 2020) 0.928 0.854 0.986

DeCoVNet (Wang et al 2020d) 0.916 0.847 0.987

COVIDNet (Gunraj et al 2020) 0.944 0.849 0.991

FeCNN 0.957 0.859 0.994

Table 4.The effectiveness of differentmodules in the diagnosis branch. The diagnostic
accuracy for each of the datasets is given for four different combinations of themodules.

Modules Accuracy

# Backbone FPN Fusion Own Radio-2 COVIDx2a

1 ✓ 0.908 0.851 0.976

2 ✓ ✓ 0.922 0.843 0.983

3 ✓ ✓ 0.941 0.853 0.987

4 ✓ ✓ ✓ 0.957 0.859 0.994
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follows that:first, adding either the FPNor the fusionmodule can improve the performance on dataset Ownbut
this is not significant for the other two datasets; second, overall the addition of the fusionmodule to the
backbone network can improve the performancemore than the backbone networkwith just the FPN; third, the
combination of all threemodules, as in our configuration, achieved the best performance surpassing the baseline
bymore than 3%accuracy on average across all three datasets. These results illustrate the effectiveness of these
two components and, thus, suggest that CNNswith the FPNmodule and the fusionmodule have the potential to
lead to significant progress in deep-learningmethods for COVID-19 diagnosis.

5.2. Lesion detection
Table 5 reports the hit rates achievedwhen the overlap threshold used to determinewhether a lesion is
successfully detected or not is varied. The results in table 5 are for the datasets Radio-2, a subset of the
COVIDx2a dataset—as the examples are from theCNCBdataset we denote itmore specifically as CNCB, and
ourOwndataset. As can be seen, when the threshold is 0.1, the hit rate reaches 72.4%, 75.3%, 74.1%on the three
datasets respectively. Since this threshold is relatively small, these results aremore indicative of the percentage of
the spatialmaxima of each identified lesionwhich are correctly located in the overlapping region of a true lesion.
We can also see that the hit rates for the different datasets follow a general trend: as the threshold increases, the
hit rate gradually decreases. This is to be expected, as a successful hit needs to ensure the location of the spatial
maxima is inside the overlapping region, and then the area of the overlap exceeds the threshold.

If we set the overlap threshold to 0.5, i.e. in a successful hit, the spatialmaxima of the segmented lesion needs
to be inside the overlapping region and the area of the overlap needs to be over half of the union pixels, then our
weakly-supervised framework achieves hit rates of 63%, 68%and 65%, respectively.While these results are not
especially high, considering there is no pixel-level lesion annotation they are acceptable. If we compare our
results with theCAMmethod and the recently proposedweakly supervisedmethod,Norm-grad (Rebuffi et al
2019), both achieve 39%on averagemaking our results a significant improvement (see table 6). In principle, the
generation of the LAM shares the rationale with these twomethods. Thus, we can attribute the improvement in
the hit rate for the lesion detection to the LAHmwithmorphological operation, which allows us to keepmost of
the potential lesions and separates the lesions by eliminating the fuzzy boundaries between lesions, thus
improving sensitivity to the distribution of the actual lesions, and improving the hit rate.

Example results of the lesion detection on datasets Radio-2, CNCB, andOwn are given infigure 7, showing
the original positive CT image, its cropped and resized lung image, the corresponding LAMs and the detected
lesionmap. As the other parts of COVIDx2a lack lesion annotations, examples of LAMs for these datasets are
given in figure 8.

From the examples infigures 7(a) and (c), we can see that the detected solid boxes generally cover the labelled
lesion regions. However, from the detected lesions, we can also observe that the LAMhas twomain limitations.

Table 5.Hit rate results forweakly-supervised lesion
detectionwith different overlap thresholds.

Dataset

Threshold Ratio-2 COVIDx2a Own

0.1 72.4% 75.3% 74.1%

0.2 70.5% 74.5% 72.3%

0.3 68.5% 73.5% 66.5%

0.4 64.8% 69.8% 65.3%

0.5 63.2% 68.3% 65.3%

0.6 60.7% 59.2% 52.7%

0.7 50.6% 50.3% 40.2%

0.8 45.2% 33.1% 20.9%

0.9 30.2% 27.9% 15.8%

Table 6.The results of weakly-supervised lesion
detection.

Dataset

Method Ratio-2 COVIDx2a Own

LAM 63.2% 68.3% 65.3%

CAM 35.8% 45.8% 38.5%

Norm-grad 34.2% 43.1% 41.4%
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First, the LAMdoes not always distinguish two lesions that are close together. As shown in the second case of
figure 7(a) and thefirst case offigure 7(c), the two patches annotated as lesions are identified but presented as an
integrated one. Thoughwe set up strategies to keep the potential lesions separated aswell as possible, the low
activation around two patches will link them together if they are very close together. Thus, the effectiveness of
the lesion detector will be affected. Second, the LAM is not very sensitive to small lesions. If we look at the
ground-truth lesionmaps, there are relatively small patches (compared to the image resolution) that aremarked
as lesions, as shown in thefirst (the green patches) and last case (the blue patches) offigure 7(a).When the
candidate lesions are identified they fail to hit these small patches. Empirically, we have found theminimum
threshold of the patch size to be 225.Hence, when the number of these patches compared to that of the
candidates differ largely, it will result in a high number of false positives and the relatively low hit rate.
Significantly, there also exist artefacts in the detected lesions that are probably caused by the heartbeat,
breathing, or the diaphragmmoving during scanning resulting in a certain proportion of pseudo lesions that
also decrease the hit rate.

Figure 7.Example results of lesion detection for dataset (a)Radio-2, (b)Ownand (c)CNCB.
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5.3. Lesion identification
The hit rate indicates the ratio of correctly detected lesions, having detected the lesions we now verify the
performance of the lesion identification using the extracted lesion features. Considering the ourOwndataset,
based on the radiologist guidelines we setK= 3, which results in three types of radiologicalmanifestation for
this data. The lesions areGGO, partial consolidation, and consolidation. The lesion is categorized as partial
consolidation if the consolidation area of the lesion is over 10%but less than 80%. To visualize the cluster
performance, we reduce the dimensions of the encoded lesion feature to 50 using truncated singular value
decomposition and then use t-SNE (van derMaaten andHinton 2008) to visualize these lesions in 2D space (see
figure 9(a)).

The results of the lesion identification are listed in table 7. As can be seen, of the 77 detected lesions, 51 out of
54GGO, 12 out of 14 consolidation, and 4 out of 9 partial consolidation are detected. The SENs of the three
clusters are 94.44%, 44%and 85.71% respectively and the SPEs are 96.37%, 92.85%and 80.00%.Of the 9 lesions
which are labelled as partial consolidation, 3 lesions arewrongly classified asGGOand 2 as consolidation. The
identification rate of partial consolidation is not significant, which is to be expected as even an experienced
radiologist cannot be 100% sure if the lesion belongs to partial consolidation or consolidation. The lesion
identification is also evaluated on theCNCBdataset which has pixel-level lesion annotation. Since CNCBonly
has two types of annotation,K= 2 for this dataset. There we detect 862 lesions in total. Of the 612 recognized as
GGO, 541 are annotated asGGOproactively, while of the 250 labelled consolidation, 199 are identified. Thus,
the SENs of the two clusters are 88.39%and 76.53% respectively, and the SPEs are 72.70%and 92.39%. The
encoded lesion feature space can be seen infigure 9(b). Figure 10 shows example identification results, including
the input CT images, LAMs and the lesion clusteringmaps. The patches in a single slice are of the same type. The
numbers on these patches denote the clustering index, and the positions of the numbers indicate the location of

Figure 8. Lesion distributionmaps for theCOVIDx2a dataset, which corresponds to dataset TCIA,HUST andCTset from the top to
the bottom, respectively.

Figure 9.The encoded lesion feature space of dataset (a)Ownand (b)CNCB. Each sample in the feature space represents a lesion.
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the localmaxima. From these it is easy to observe that the k-means clustering algorithm can successfully use the
encoded lesion features to distinguish the different lesions.

6.Discussion

This study has developed aCNN-based integrated framework for COVID-19 diagnosis and lesion analysis using
CT scan data andweak annotations. The framework consists of two branches, thefirst, the diagnosis branch,
learns theCT image representation for prediction of abnormal CT images. Simultaneously, this branch provides
lesion information from abnormal CT images. Next the lesion identification branch learns theCOVID-19 lesion
representation capturing the cueswith amulti-lesion detector for analysis. Our proposed framework shares
several similarities with thework inWang et al (2020d) for example the use of weak labels and the generation of
binarymasks of the lesionwithout pixel-level lesion supervision.However, ourmethod has the following
advantages:

(i) A feature enhanced network, FeCNN, which can achieve state-of-the-art diagnosis prediction with average
precisions for the test datasets of 87%, 95%and 99% respectively.

(ii) A robust frameworkwhich has been demonstrated on datasets with a variety of scales, achieving areas under
the ROC curves all over 89%.

Table 7. Lesion identification results for ourOwndataset.

Detected

Ground truth GGO

Partial

consolidation Consolidation

GGO 51 3 1

Partialconsolidation 2 4 1

Consolidation 1 2 12

Sensitivity 94.44% 44% 85.71%

Specificity 86.37% 92.85% 80.00%

Figure 10. Lesion clusteringmaps for dataset (a)Ownand (b)CNCB. 1 represents GGO, 2 partial consolidation and 3 consolidation.
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(iii) COVID-19 lesion classification without the need to explicitly consider the circumstances and unique
attributes of the lesions. The lesion detector also provides a solution formultiple types of lesion occurring in
the sameCT image.

(iv) We have built a sizeable COVID-19 lesion feature space, which offers a new approach for the study of
COVID-19 lesions.

This studywas inspired by the fact that if the network canmake an accurate prediction of COVID-19 then it
must be capturing the differences caused by the lesions during the inference procedure. Hence, the capability of
the lesion detector comes from extracting the lesion features from the FeCNNandwe can use these hidden cues
for lesion identification.However, thismethod has the following limitations:

(i) The detector is based on using a 2D slice, which means that it does not take into consideration the 3D
distribution of lesions. Thus, there exists a semantic gap betweenmapping the lesion feature based on 2D
slice to its clinicalmanifestation.

(ii) The detector can only encode the lesions with clear boundaries, in other words, if two different lesions are
very close to each other the detectormay consider these as one lesion.

In this paper althoughwe did not focus on lesion segmentation specifically, from the LAMwe can see that
our FeCNN learns the imaging patterns of the COVID-19 lesions, and by combining the LAHmwith a
morphological operation the lesion detection ratewe obtainedwas still relatively high. In the followingwe
discuss the role of the lung segmentation, the diagnosis performance in a three-way classification taskwith other
pneumoniaCT images, the potential to identify different lesion types and future applications of our work.

6.1. Effectiveness of lung segmentation
In ourwork several pre-processing steps were carried out to allow us to evaluate themodel on different data at
the same scale and use only slices where the lungs are clearly shown. As part of the pre-processing lung
segmentation is carried out. The segmentation procedure can potentially impact on the final performance of the
lesion identification. There are existing workswhich can achieve state of the art performance in lung
segmentation (Ronneberger et al 2015, Shan et al 2021), while in this study, we segment the lung fromCT slice
with themorphological operation. This ismainly because ourmethod is weakly supervised, whichmeans that
the only available supervision is image-level (normal or abnormal). Themorphological operation can segment
the lung outwithout any prior label related to the lung area. To obtain quantitative results for themorphological
operation, we tested thismethod on the dataset CNCB (Zhang et al 2020b), the result shows that we achieveDice
coefficient of 0.82 and therefore still have room for further improvement. This is to be expected because the
morphological operation cannot segment the lung area from the severefibrosis and effusions well, thus lowering
the lung segmentation performance.

To further evaluate how segmentation affects the final performance, we test different configurations on the
dataset CTset (Rahimzadeh et al 2021). The results show that the prediction performances do not differmuch
achieving 98.8%with lung segmentation and 98.1%without.However, without lung segmentationwe cannot
use the features from the network for lesion identification. Fromfigure 11we can see that the locations relating
to the evidence the network uses tomake its decision contain areas of air or fat. Therefore, even though the lung
segmentationmay not bring a significant improvement in the network prediction, its significance is that itmakes
the lesion recognitionmore interpretable.

Figure 11. LAMs for dataset CTset of COVIDx2awithout lung segmentation.
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6.2. Three-way classification
The results in section 5 have shown the power of the proposed framework in the binary task. To further verify the
effectiveness of this framework, we test the diagnosis branch in a three-way classification task. As the name
suggests, the three-way classification task aims to distinguishCOVID-19, normal and other pneumoniaCT
slices.

The basic experiment setup for the three-way classification is the same as described in section 4, while
accordingly, the ρ in the fusionmodule and the  in softmax layer are set to 3. The output of the diagnosis
branch is a 3-d tensor, each dimension ofwhich indicates the probability that the CT image belongs to either
COVID-19, normal or other pneumonia.We trained the adjustedmethod on the dataset COVIDx2a, this is a
large-scale dataset that contains the three types CT slices (in total 194 922CT images, 94 548 are COVID-19,
60 065 are normal, 58 321 belong to other pneumonia). The dataset was split following the public splittingfile
with 42 286COVID-19, 25 496 normal, 35 996 pneumoniaCT images for training.

Overall, our FeCNNachieves 0.95 accuracy in the three-way classification task. Although this is 0.04 less
than the binary classification, it is still an acceptable result, especially considering the increase in complexity and
uncertainty compared to the binary task. To verify the stability of the diagnosis prediction for the three types of
CT images, we obtained a series of classification accuracies for each individual category by varying the
probability threshold as shown in table 8.We can see that the classification accuracies for an individual type are
higher than 0.9when the threshold ranges from0.2 to 0.8. And if we use thewinner-take-all strategy, i.e. the
threshold is 0.5, the COVID-19, normal and other pneumonia CT images can be recognized by accuracy of
93.3%, 95.7%, 95.6%, respectively. Evenwhenwe select the probability threshold to 0.9, the diagnosis accuracy
is highwith 89.5%, 89.1%, 89.8% for the three type, which shows the powerful and stable diagnosis capacity.

6.3. Potential of lesion identification
In the evaluation of the lesion identification, we set differentK values in advance. This is due to the diversity of
the data, e.g. guided by an experienced radiologistK is empirically set to a value of 3.However, different values of
Kmay result in different lesion clusters. To explore how the value ofK affects the lesion clusters, we use the
dataset CTset (Rahimzadeh et al 2021), which has 436 detected lesions and test the k-means algorithmwith
different values ofK on this lesion space.

For each value ofK the inertias i.e. the sumof the distances of the samples to their closest cluster centre is
calculated. Thenwe identifyK= 12 as optimumusing the elbowmethod. From the final result, we can find that
even though there exist clusters with slight overlap, the result with 12 clusters appears reasonable. Each group
has a clear boundary with the neighboring groups, suggesting that purely from the perspective of the lesions,
theremay bemore than three types of lesion in the data space. And recently, several longitudinal researches (Ng
et al 2020, Pan et al 2020), concluded that the lesions of COVID-19would not stay in a dormant state. Hence, the
lesion patterns could be diverse in intermediate states during the dynamic evolution of COVID-19. Therefore, it
is reasonable to include the abstracted lesion feature into the clustering process, as this could help to
discriminate the lesion patterns with tiny differences.More significantly, it implies that COVID-19may exhibit
other lesion types that have not been reported up to now. Equivalently, it could also be interpreted that the
encoded lesion features are sensitive and the subtle discrimination of lesions is hard for humans to identify.

6.4. Future applications
In the clinical study of COVID-19 a significant amount of work has been put into analysis of CT scans to
investigate the course and severity of the disease. By observing changes in theCT findings, a set of systematic
rules can be developed to assess the severity of the COVID-19 patient. For instance, when enlarged regions of

Table 8.The results of weakly-supervised lesion
detection by varying overlap thresholds.

Type

Threshold COVID-19 Normal Pneu

0.1 0.934 0.958 0.957

0.2 0.934 0.958 0.957

0.3 0.934 0.958 0.957

0.4 0.934 0.958 0.957

0.5 0.933 0.957 0.956

0.6 0.925 0.949 0.947

0.7 0.918 0.939 0.936

0.8 0.910 0.922 0.923

0.9 0.895 0.891 0.898
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GGOwith superimposed inter- and intra-lobular septal thickening (crazy-paving pattern) are observed, the
patientmay be in a serious situation.Hence, with automatic recognition of the lesions fromCT images, we could
further investigate how the detected lesions can bemapped to the severity of COVID-19. Similarly, the lesion
information can be provided to clinicians to assist them inmaking a diagnosis, enabling doctors to act early to
changes in patients’ condition early and enact treatment strategies.

Even though this paper has aimed to provide a solution for lesion analysis for COVID-19, the proposed
approach is not COVID-19 specific. It is easy to see that our framework can potentially be generalized to lesion
detection of other chest-based diseases. For other diseases where lesions can be observedwith aCT scan, the
proposed framework in this paper can naturally serve as a preliminary and cost-effective step to explore the
clinicalmanifestation of this disease’s lesions.

7. Conclusion

Identifying diverse types of lesions fromCT imageswithout pixel-wise labels is a challenging task. This paper
presents a novel and effective integrated framework for this purpose. In particular, we leverage the power of
neural networks to extract a deep representation of theCT images and bridge this representation toCOVID-19
lesions through amulti-lesion detector. The obtained results prove that the diagnostic network can detect
COVID-19 positive CT images and the lesion identification branch can successfully distinguish the lesion types.
Furthermore, the proposed systemhas the capability to detect unreported lesions and hence can assist clinicians
to assess the severity of the disease and to enact the treatment plan efficiently.
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