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A vision-based method for line-side switch
rail condition monitoring and inspection

Jiaqi Ye1, Edward Stewart1, Qianyu Chen1, Lei Chen1 and
Clive Roberts1

Abstract
In railway systems, switch rails are one of the key components of switches & crossings (S&C). They are controlled by switch
machines to guide trains from one track to another. Due to the discontinuity in geometry, switch rails are exposed to high-
impact loads as train wheels pass through. The long-term impact loads can cause local plastic deformation. These faults, and
general alignment changes, can lead to the development of a gap between the switch rail and the stock rail known as a toe gap,
as well as non-optimal contact with the wheel flange, both of which can endanger the safe operation of passing trains.
Currently, periodic visual inspection is the main method for detecting these defects. This is not efficient or reliable enough to
support the ever-shortening maintenance windows available in modern railway systems. The development of computer vision
technologies and constantly improving processors make it possible to monitor the health status of such safety-critical
components in real time. This research proposes a line-side condition monitoring approach for the switch rail.With the use of
dedicated identification algorithms, the status of the switch rail, including movement, position, toe gap and the edge of the
toes, can be monitored remotely in real time. This approach has been tested in a high-speed train testing centre in China. The
results show a capability to further improve the safe operation of S&C while simultaneously reducing the cost and increasing
the safety of inspection.
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Introduction

Rail inspection plays a vital role in ensuring the normal
operation of railway networks, especially for safety-critical
components. One such key system is switches & crossings
(S&C) which enable trains to change routes through the
network. Figure 1 shows a single S&C arrangement and its
main components, with sleepers/bearers omitted for clar-
ity.1 The complicated structure of S&C and their role at
junctions within the network expose them to higher
working loads than plain track, and thus they tend to have a
shorter life span.2 Therefore, more frequent inspection of
S&C is needed to ensure the normal operation of the rail
network.

According to the statistics from the International Union
of Railways (UIC), the cost of maintenance for every S&C
unit is equal to that for about 0.3 km of plain track.3 Except
for switch machines, the cost of maintaining and replacing
the switch rail accounts for a large proportion.4

As a transfer area for train wheels, the switch rail is
exposed to high-impact loads as trains pass through. Even
with the use of advanced alloys, the long-term impact loads
can still cause abrasion, and a plastically deformed lip is
prone to forming at the switch rail toes.5 Defective switch
rail toes can lead to incorrect lateral alignment with the
stock rail, which is characterised by a small gap between the
switch and the stock rail known as a toe gap. Excessive toe

gaps can lead to non-optimal contact with wheel flanges as
wheels travel from the stock rail onto the switch rail. For
example, wheel flanges can strike the switch rail with higher
impact loads and make the switch rail ‘crawl’ along the
longitudinal direction of the stock rail, which can endanger
transit safety, or in extreme cases the toe gap can be further
split by the wheel flange and even direct the train to the
wrong route.3

Traditionally, the inspection of these defects is mainly
based on periodic visual inspection undertaken by human
operators complying with corresponding standards (e.g.
Network Rail’s NR/L2/TRK/001 Inspection and Mainte-
nance Permanent Way).6 Inspection of the switch rail
normally includes two parts: 1) to check the contact angle
between the switch rail and the stock rail, using mechanical
gauges such as a TGP8 gauge and 2) to measure the toe gap
between the stock rail and the closed switch rail, using cant
sticks such as a track gauge. However, manual inspections
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are normally characterised by low efficiency, and their reli-
ability is susceptible to human errors.7 For example, poor
maintenance of S&C led to abnormally positioned switch toes
which caused a train derailment at Potters Bar in the UK on 10
May 2002 which killed seven and injured 76. Since then,
numerous researches have been carried out both in universities
and industrial railway organisations to develop automatic
inspection solutions to replace or reduce the dependence on
manual inspection. Fundamentally, conventional manual in-
spections mainly involve visual identification of rail faults and
rail profile measurements, and thus most of the automatic
inspection systems using camera and laser-based measuring
units to replace such operations, which can be mounted on
trains,8,9 rail vehicles,10,11 trolleys,12,13 or hand-held.14 For
example, Network Rail’s New Measurement Train (NMT),
which equipped with an array of lasers and cameras. It can
measure rail profiles and identify rail faults periodically at
train speeds.8 The vehicle-based ‘Switch Inspection &
Measurement’ (SIM) wagon developed by Eurailscout is
advertised as having the capability of inspecting 100 S&C in
less than 6 hours. It includes eight charge coupled device
(CCD) cameras and a laser measurement unit. The system
can be used to check various parameters including missing
fasteners, track gauges and flangeway gaps.10 Compared to
manual inspection methods, these automatic systems do
considerably improve the efficiency of inspection. However,
one of the main limitations of these inspection systems is the
fact that they need to be scheduled in the train timetable,
which impacts normal train services.Meanwhile, they cannot
support continuous inspection and monitoring of S&C.
Therefore, there is still a risk of missing developing rail faults
or deterioration of S&C, especially under increasing traffic
density and with the decreasing inspection and maintenance
windows available in modern railway systems.

There are also some fixed monitoring systems which
include the installation of a wide range of sensors for
continuous S&C condition monitoring.15–17 As an example,
the position of the detection rod connected to a switch
machine can be monitored with displacement sensors or
CCD cameras to reflect the real-time toe gap.16,17 These
methods can detect excessive toe gaps caused by me-
chanical failures such as incorrect adjustment of the driving
and locking devices, but cannot monitor the condition of
switch rails directly. For example, a deformed switch rail
adjacent to the switch toe and excessive toe gaps caused by
this could still be an insidious problem. This has been
increasingly reported as one of the major concerns that
require more frequent and direct inspection.18

In recent years, the development of computer vision
technologies and constantly improving processors have paved
the way for the application of vision-based condition moni-
toring systems into more challenging areas. In the railway,
such systems have also been applied to provide more accurate
and effective conditionmonitoring solutions.19–22 An example
is the overhead track detection and gaugemeasurement system
proposed by Singh et al.,21 which employs computer vision-
based monitoring through drone imagery. Z. Liu et al.22

proposed a vision-based monitoring approach for catenary
support components using fixed high-resolution cameras and
LED lights. By exploiting specific inspection algorithms, these
systems can achieve automatic condition monitoring and fault
detection with reduced human involvement, which is efficient
and cost-effective, and is a recognised target for future rail
condition monitoring applications. Accordingly, a vision-
based real-time switch rail condition monitoring prototype
is proposed in this research. The main contributions can be
summarised in the following three points:

(1) A line-side and non-intrusive vision-based condi-
tion monitoring prototype is proposed for switch
rail condition monitoring and fault detection, which
satisfies the relevant requirements for high-speed
rail inspection equipment.

(2) The system can monitor the conditions of switch rails
includingmovement, position, toe gap and the edge of
the toes in real time through embedded algorithms.

(3) Through the monitoring of switch rails on both sides, a
real-time trajectory that reflects the status of the S&C
(position and route setting) can be built, which can
work as a supplement to existing inspection devices.

The following Measurement system introduces the
structure of the system. Methodology illustrates the meth-
odology of the vision-based switch rail condition moni-
toring and inspection including object detection and
tracking and switch rail evaluation. The testing results are
analysed in Field Test Results. Discussion discusses some
external factors that may influence the effectiveness of the
system. Conclusion summarises the work.

Measurement system

The data acquisition system mainly consists of a pair of
high-resolution CCD cameras with external infrared (IR)

Figure 1. Simplest structure of S&C.

Figure 2. CAD model of the proposed system.
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lights and an embedded PC for communication and data
transfer. To obtain a clear view of the switch rail, and to
have minimal impact on the existing systems, the cameras
can be installed line-side or mounted on the overhead line
structure. Considering the visibility of both toe gaps and
the edge of switch rail toes, the cameras in this research
are fitted on the line side. The CAD model shown in
Figure 2 illustrates the relative position of the camera
modules (A and B) installed at the line side of a railway
switch system. All the components are fitted into a cus-
tomised metal case to protect the camera, provide vibra-
tional damping, ensure its absolute position and maintain
the cleanliness of camera lenses. The dashed lines indicate
the corresponding target of each camera module. The
system outputs images at a resolution of 1920 × 1080 at a
frame rate of up to 30 frames per second. To comply with
the relevant safety requirements for line-side equipment in
the country where the field tests were conducted (China),6

the camera module is set 2.40 m away from the midpoint
between the stock rails and at a height of 0.55 m. A zoom
lens and focussing system are added to the cameras to
ensure high-quality images while focussing more tightly on
the target objects to reduce the computational complexity
associated with processing the wider background.

Methodology

To accurately measure the toe gap, a number of elements are
required. The system must be able to locate the switch and
stock rails and to track the switch rail to ascertain when it
reaches the lateral position associated with locking. Ad-
ditionally, deformation on the switch rail may distort results
and so it is necessary to identify its status when locating the
switch rail. These activities are presented in the following
sub-sections.

Detection of the switch rail

In computer vision, object detection is the process of
finding instances of an object in images or video frames
based on its features. These features could be colours, edges
and corners and can be described as quantitative attributes
by using numerous feature descriptors such as Speeded Up

Robust Features (SURF) and Maximally Stable Extremal
Regions (MSERs).23 These features form distinguishable
patterns to help detect and locate the object. Accordingly,
such descriptors were considered in the experimental stage
of this work in order to establish those most suitable for
inclusion in the final system. Figure 3 shows an example of
lab. testing results for detecting and matching the SURF
features on the locking nut of the driving rod, through which
the movement of the switch rail can be inferred. This
method performs well in the lab. where the working con-
ditions of S&C are stable. However, the complicated
working conditions of S&C in the real world such as
weather conditions, background clusters and different S&C
types make this challenging for final deployment. These
factors can affect both the stability and the accuracy of
detection. Considering the robustness requirements of the
system, one alternative solution would be to apply marker
points to assist the detection of the object.24 This approach
is used extensively in other domains such as surgical in-
strument tracking and augmented reality.25,26 A reference
marker points-based method is therefore applied in this
research. Figure 4 illustrates the framework of this method.
Figure 4(a) shows initial example video frames captured in
a high-speed train testing centre in China in the daytime and
at night, respectively. The marker point (attached on the
switch rail toe) is an IR-reflective round patch (30 mm
diameter) with a black contour to facilitate detection with
increased contrast against the background, especially at
night when the external light dims.

The marker point can be detected based on its shape or
intensity within the image. During the experiment, it was
found that the shape of the marker point can vary in terms of
scale changes as the switch rail moves, which affects the
accuracy of shape-based detection such as Circular Hough
Transform (CHT). The intensity related to the colour or
brightness properties of the marker point, by contrast, was
more stable. Consequently, the HSV (Hue, Saturation,
Value) properties of the marker point are considered, as
these are more effective than working in the conventional
RGB (Red, Green, Blue) colour space. Each property in
the HSV model is relatively independent, and hence the
markers are found to be more distinguishable.27 During the
field test, it was observed that the V-channel of the marker

Figure 3. SURF-based switch rail detection.
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point related to the brightness has distinguishable ranges.
Moreover, their intensity distributions are less affected by
external factors such as changes in the background and
ambient light. Figure 4(b) shows the intensity analysis of
the V-channel of the video frames shown in Figure 4(a).
From their partially enlarged views, clear valley and peak
areas can be seen in the ranges, as indicated by the vertical
red lines. The approximate range is 0.85 to 1.0 in the
daytime and 0.9 to 1.0 at night. Accordingly, an adaptive
threshold (Vthresholding) is defined as (1):

V thresholding ¼ 0:85 × MaxðV Þ (1)

where Max(V) represents the maximum intensity of the
captured image in the V-channel. This can then be used to
recognise the marker point from other parts of the image by
replacing all pixels with intensity values above the globally
determined threshold (Vthresholding) with ‘1’ and setting all

others to ‘0’. Figure 4(c) shows the detection results in
binary images. Erroneous points can be filtered using
morphological operations such as erosion and dilation.28

The marker point can then be localised with a bounding
box in the video frame to indicate the position of the switch
rail, as shown in Figure 4(d). With the marker point de-
tected, the ratio between the actual size of the marker point
(30 mm) and its pixel size in each video frame can be
calculated. Taking one of the partially enlarged views in
Figure 4(d) as an example, the width (W) and height (H) of
the detected marker point consist of 85 and 112 pixels,
respectively. This means that each pixel represents about
0.35 mm (30/85 mm) in the longitudinal direction and
0.27 mm (30/112 mm ) in the vertical direction, which
reflects the theoretical resolution of the system and helps to
convert the corresponding pixel distance to actual distance
in millimetres.

Figure 4. Framework of the maker points-based switch rail detection (a) initial video frames captured in the daytime and at night, (b)
V-channel intensity analysis and partial enlarged views, (c) detection results in binary images and (d) switch rail localisation.
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Detection of the stock rail

To access the toe gap between the switch and stock rails, the
interface point (the line at the top of the stock rail) needs to
be identified. In the short term, and in comparison to the
switch rail, the stock rail can be considered to be a stationary
component and hence the interface points on the stock rail
are also fixed, it is unnecessary to detect them in each
movement. In this initial work, the interface line is manually
indicated by selecting the extremes in an initial video frame
(Figure 5(a)) and inferring the entire interface line through
interpolation (Figure 5(b)). This ensures the accuracy of the
toe gap measurement while minimising computational cost.
In a more developed solution, the stock rail location would
be re-evaluated periodically depending on the local con-
ditions. It should be noted that the accuracy of this inter-
polation may be affected by factors such as maintenance
interventions. Therefore, recalibrations are also expected at
such times to ensure the effectiveness of the interface line.

Switch rail tracking

To measure the toe gap at the right time, the system needs to
know when the switch rail is in the locked position. As a
non-intrusive system, this information is not accessible
from other sources. The method used in this research is to
localise the switch rail in consecutive frames to form a trace
of its position relative to the stock rail. However, as a real-
world system, external factors such as specular reflections
may lead to missing or imprecise positions in some frames,
for example, the centre point deviation of the reference
marker. Considering the properties of periodic motion of the
switch rail, which is also in a relatively constant velocity, a

Kalman filter is used to predict and correct its location. The
filter was set to use the displacement of the marker point in
adjacent frames as a reference for the movement of the
switch rail. It works by predicting the marker point location,
first based on historical data and then using a newly de-
tected location to correct the prediction. If a marker point is
missing, the location can still be predicted solely by relying
on historical data.29 To avoid any confusion between the
tracking error and the switch rail anomalies, a constraint of
15 mm (the radius of the marker point in this research) was
set for the filter. If the deviation between the predicted and
detected locations is above the constraint, the filter will
ignore the predicted location and use the detected one. This
improves the stability of the switch rail tracking and ensures
that the tracking results reflect the motion model of the
switch rail more accurately. Furthermore, the toe gap
measurement was set to rely solely on the detection results,
to ensure its independence. Figure 6 shows an example of
the switch rail tracking results using the proposed system.
In this application, two indices are as follows: 1) dis-
placement of the switch rail in adjacent frames and 2) a
threshold distance to the stock rail of 20 mm, are used to
identify the status of the switch rail. This helps to divide the
status of the switch rail into four different phases, namely,
Closed (the switch rail stops moving and the lateral distance
to the stock rail is under 20 mm), Opening (transition from
closed to opened), Opened (the switch rail stops moving
and the lateral distance to the stock rail is above 20 mm) and
Closing (transition from opened to closed). The toe gap,
hence, can be identified at the right time (when the switch
rail is closed). The detailed logic is illustrated in Algorithm
1. Note, the aim of four phases introduced here is to build
the trajectory of the motion of the switch rail and help the
system to identify the toe gap at the right time. The closed
status does not indicate that the switch rail is locked as the
proposed system cannot access the locking mechanism of
the switch rail, additional indicators would need to be
included and tracked in order to demonstrate an engaged
lock.

Algorithm 1. Switch rail tracking
Input: interface point on the stock rail (PA), centre of the

marker point at the video frame i (Mi) and constant velocity
(Mi � Mi�1).

Figure 5. Manual positioning of the stock rail (a) extremes
marking (b) stock rail indication.

Figure 6. Example of switch rail trace results.
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Initialisation: configure Kalman filter (K) with initial
position (Mi), constant velocity (Mi � Mi-1) motion model
and a constraint of 15 mm from the detected location.
Output: Corrected positionCi, distance to the stock rail (Di),
toe gap (Gapi) and status of the switch rail. Procedures:

1. While hasFrame do
2. Localise the position of the marker point (Mi)
3. If Mi exists, then Ci = K (Mi) and calculate Di

4. Else, then Ci = K (Mi�1) and calculate Di

5. End if
6. If Ci � Ci�1 = 0 and Di ≤ 20 mm, then
7. Switch rail is closed, and Gapi = Mi � PA
8. Else if Ci � Ci�1 = 0, then
9. Switch rail is opening

10. Else if Ci � Ci�1 = 0 and Di > 20 mm, then
11. Switch rail is opened
12. Else if Ci � Ci�1 < 0, then
13. Switch rail is closing
14. End if
15. i = i + 1
16. End while

Edge detection and evaluation

While the detection of the switch and stock rails can be used
to directly evaluate the toe gap, detection of the edge of the
switch rail at the point it approaches the stock rail is of
particular importance, as any abnormal profile at this point
can not only cause non-optimal wheel-rail contact but may
also impact the toe gap. Commonly used edge detection
methods include Sobel, Canny,30 Prewitt and Roberts, all of
which have been evaluated for this application. The Canny
detector, which calculates the brightness gradient of
neighbouring pixels using the derivative of a Gaussian
filter, performs best in the application. Figure 7 illustrates
the framework of the proposed edge detection and evalu-
ation method. Firstly, the existence of the marker point
makes it possible to extract the particular region around the
switch rail toe (Figure 7(a)), which helps to filter the un-
related background to improve the accuracy of detection

and reduce computational complexity. To further increase
the contrast and eliminate the noise generated by external
conditions such as ambient light fluctuations, a grey
equalisation method based on (2) is then applied.

Cðy,zÞ ¼ Rðy,zÞ � gðyÞ
Rðy,zÞ þ gðyÞ (2)

low ¼ ð1� σÞ× Median (3)

where R(y, z) is the intensity value of the region of interest
(ROI), g(y) is the average grayscale value of the ROI in
column y and C(y, z) is the contrast image after the
equalisation of grayscale.

The contrast image can then be fed into the edge detector.
In the Canny edge detection method, the selection of a pair
of intensity gradient thresholds is key in the accuracy of
detection.31 Any pixels with a corresponding intensity
gradient larger than the high threshold value are considered
to be edges, while those below the low threshold value are
ignored as non-edges. Pixels whose intensity gradient lies
between the thresholds are classified based on their con-
nectivity, that is, if connected to pixels considered above the
upper threshold they are also considered to be edges.
However, the intensity values of pixels within an image can
change with variations of the ambient light. This makes it
difficult to determine a pair of fixed thresholds that are
suitable for varying conditions. Manual parameter tuning
can be time-consuming and unreliable; hence, in this re-
search, an adaptive Canny detector is applied to the ROI
with low and high thresholds defined as (3) and (4):

high ¼ ð1þ σÞ×Median (4)

In (3) and (4), σ is used to determine the sensitivity of the
detector, which can be adjusted from 0 to 1 to adapt to
different conditions. A larger σ indicates a higher sensi-
tivity. The median referred to is that of image intensity
which helps the low and high thresholds to adapt to images
captured under varying illumination conditions. The
brightness gradient of neighbouring pixels can then be
compared to the thresholds to detect edges. Figure 7(b)
shows the edge detection results. Any points arising from

Figure 7. Framework of the edge detection and evaluation (a) ROI extraction and grey equalisation, (b) edge detection of the switch rail
toe and (c) affine registration for edge evaluation.
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random noise can be eroded using morphological opera-
tions. The detected edges can then be attached to the video
frames to indicate the status of the corresponding switch rail
in real time.

To evaluate the status of the edge of switch rail toes, a
commonly used method is to align the detected edge to the
expected or ‘normal’ edge. Since the detected edge consists
of a group of points (pixels), this process must identify
those common to both the detected and expected edges and
then calculate the transformation matrix between them in
order to allow alignment. An affine point set registration
method is used in this research.32 This is based on the
squared Euclidean distance metric (E(T)) defined as (5):

EðTÞ ¼ minΣ
����eN � T eD

�� 2
�� (5)

where eN represents the expected edge and eD the detected
edge. T is the transformation matrix, which can be used to
iteratively align the detected edge to the expected edge.

Figure 7(c) illustrates the process of the proposed edge
evaluation method. For each application, an edge initially
detected and identified as a switch rail toe is considered to
be ‘normal’ and thus used as the expected edge for future
registration. The following detected edges are periodically
compared to the expected edge on a user-defined schedule.
Using affine registration, the average value of the final
Euclidean distance (E(T)) between the matched points of
aligned edges is used to identify the status of the switch rail
toe. A threshold of 1 mm is used in this research to dis-
tinguish registration error from actual faults. Since the
location and the scale of the detected edge change with the
movement of the switch rail, the transformation matrix (T)
between the registered edges involves rotation, scale ad-
justment and translation. This is described in (6):

T ¼

2
664

cos θ sin θ 0
�sin θ cos θ 0

0 0 1

3
775

2
664
sy 0 0
0 sz 0
0 0 1

3
775

2
664

1 0 0
0 1 0
Ty Tz 1

3
775

(6)

where θ indicates the angle of rotation, Sy and Sz are the
coefficients of scale changes on the corresponding axes and
TY and Tz are the translation offsets. It should be noted that
the edge alignment method based on (5) and (6) only aims
to provide a norm-based measure of the degree of match or
the similarity between the detected and expected edges, to
indicate excessive toe gaps that are linked to abnormal
switch rail profiles. Uniform wear of the switch rail does not
affect the toe gap detection process described above.
However, the data obtained by the system could be used by
a human inspector to remotely assess the status of the switch
rail with the potential for the detection of uniform wear if
needed. These considerations will be further discussed in
Field test results and Discussion.

The proposed method can, therefore, monitor the status
of the switch rail, measure the toe gap and evaluate the
condition of the switch rail toe in real time. The flowchart in
Figure 8 illustrates the basic logic of the proposed method
for clarity.

Field Test Results

The proposed system and algorithms have been tested in a
high-speed train testing centre in China. Figure 9(a) shows
the installed line-side cameras (A and B). Figure 9(b) shows
an example of the testing results. The system can output
real-time monitoring results for the targeted switch rail
including the position of the switch rail, the toe gap between
the switch rail and the stock rail and the edge of the switch
rail toe.

With the monitoring results from cameras A and B
available, a real-time trace of switch rails on both sides can
be generated (Figure 9(c)). The graph intuitively reflects the
properties of periodic motion and normal patterns of the
Switch rail. The toe gap information is available when the
corresponding switch rail is in the closed phase, and the
edge evaluation is carried out periodically. Figure 9(d)
shows a comparison result and the process of registration
between the detected edge and the expected edge. The
initial average Euclidean distance between them is ap-
proximately 4 mm. During the registration progress, the
detected edge can be iteratively aligned to the expected
edge giving a final average E(T) under 1 mm, indicating the
switch rail toe is normal. Additionally, tracking the
movement of the switch rails, and identifying the locked
positions and the corresponding toe gaps, provides a non-
invasive alternative solution to understanding S&C per-
formance and establishing S&C status including detection
of route setting.

As a condition monitoring system, the top-level re-
quirements are system accuracy and stability. Since the key
procedure of the proposed method is the localisation of the
switch rail, which determines the accuracy of the toe gap
measurement, the accuracy of the switch rail localisation
has been considered as the main index. Stability refers to the
range of deviation of measurement results under consistent
conditions. For this application, the system was tested in the
daytime, repeatedly, under the same conditions (same
configurations and short intervals). The localisation results
of the switch rail were recorded at its locked and unlocked
positions, which should be 0 mm and 164 mm, respectively.
Figure 9(e) shows a group of recorded localisation results.

Figure 8. Flowchart of the proposed method.
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The absolute value of the average localisation error is under
1 mm, with a standard deviation of approximately 0.3 mm
(indicated by the dotted lines), which satisfies the common
requirements for the accuracy and the stability of an au-
tomatic toe gap measurement system.33

To further evaluate the performance of the system,
various scenarios of application were also considered.
These included testing the system under different ambient
lighting conditions, using marker points of different sizes
and simulating excessive toe gaps by putting obstacles
between the switch rail and the stock rail. Figure 10 shows
some representative results. In most cases, the switch rail
localisation performs sufficiently accurately with the use of
the reflective maker point and the operation of external IR
lights at night. For example, the actual thicknesses of ob-
stacles put between the switch rail and the stock rail are

3 mm (Figure 10(c)) and 2 mm (Figure 10(e)), the mea-
surement results are 3.5 mm and 2.7 mm, respectively.
However, edge detection of the switch rail toe is more likely
to be affected by noise. This is normally caused by regional
texture changes in the video frames due to uncontrollable
factors such as direct sunlight projection on the lenses, or
the build-up of dirt on the ROI. As shown in Figure 10(a),
such influences are normally minor in the daytime, and the
status of the switch rail toe can still be indicated by
comparisons between the detected and expected edges
(Figure 10(b)). However, this can become worse when the
ambient light dims or at night leading to partial shadowing
on the ROI. Edge detection results can therefore be inac-
curate (Figures 10(c) and (d)) or even invalid (Figure 10(e)).
In these cases, the proposed system allows a human in-
spector to check the status of switch rail toes remotely.

Figure 9. Field test results (a) completed prototype of the system, (b) monitoring results, (c) trace results of switch rails on both sides,
(d) evaluation of the switch rail toe and (e) system accuracy and stability analysis.
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Discussion

Field test results considers the performance of the proposed
system. However, it has not been possible to fully consider
all aspects due to experimental constraints.12, 34 These
factors are discussed here.

1) Surface cleanliness can be a major concern for all
vision-based condition monitoring and inspection
systems. For the proposed system, surface dirt on
switch rails may lead to inaccurate detection results,
and such augmentations on the lenses of cameras
can even affect their ability to function.

2) Adverse weather conditions may affect the system’s
imaging quality. Such weather conditions would
include fog, rain, or snow, where the object may
become partially obscured leading to noisy and
inaccurate detection results.

3) Material degradation is mainly caused by long-term
wheel-rail contact and may affect the effectiveness
of the algorithm. For example, switch rail running
surfaces may develop complicated profiles, which
could affect the accuracy of edge detection.

4) Stock rail drifts can happen in practice which can
affect the effectiveness of the stock rail localisation
relying on absolute coordinates and cause errors in
the toe gap measurement.

In railway systems, surface dirt on the rail is related to
the application of grease, which accelerates the accumu-
lation of particulates. To ensure the system’s effectiveness,
key components such as the marker point should not be
coved by grease. The proposed system protects the camera
with a metal case and screen, which ensures the cleanliness
of its lenses. However, a periodic cleaning process is still
expected to ensure the surface cleanliness of these key

components. This can be scheduled based on the actual
performance of the system. Regarding weather conditions,
the reflective marker point has higher intensity values than
the backgrounds in the image, which ensures its visibility in
most cases. The usage of external infrared lights can im-
prove the system’s imaging quality when the visibility
becomes poor. However, should more adverse effects occur
such as adherent raindrops or snow, additional measures
may need to be applied, such as adding a screen wiper onto
the camera or using specific artefact detection and removal
algorithms. The proposed system aims to provide contin-
uous monitoring of the switch rail. Therefore, it is antici-
pated that changes in the switch rail profile can be detected
in its early stage before it develops and becomes sufficiently
complicated to disrupt the algorithms. However, the usage
of indicators, such as applying a reflective coating on the
switch rail, should be considered to increase its contrast
against backgrounds and thus improve the accuracy of edge
detection. Considering stock rail drift; the current system
requires manual re-calibrations for the positioning of the
stock rail to ensure accurate toe gap measurement. How-
ever, automatic stock rail drifts detection should also be
considered to improve the robustness of the system. This
can be achieved by adding additional cameras focussing on
stock rail drift measurement or through the detection and
location of stock rail features and re-calibrating the absolute
coordinates automatically if any drift is detected.

Conclusion

This paper presents a line-side condition monitoring and
inspection solution for S&C based on the position and
condition of the switch rail. By using customised detection
and tracking methods, key parameters such as the toe gap
and the condition of the edge of the switch rail can be

Figure 10. Tests in different external conditions (a) monitoring results in the daytime, (b) edge comparison results with noise, (c) 3 mm toe
gap test, (d) monitoring results at night and (e) 2 mm toe gap test.
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monitored in real time. Compared to other automatic in-
spection solutions, the proposed system can provide con-
tinuous or more frequent condition monitoring for switch
rails with less impact on normal train services. Testing results
have demonstrated the accuracy of the proposed system for
switch rails localisation and toe gaps measurement with an
error under 1 mm and the feasibility to monitor the condition
of the switch rail toe. The proposed system, therefore, could
potentially work to supplement existing inspection systems
and to support the maintenance management of key com-
ponents like S&C, further ensuring their safe operation. As
exploratory research, there are still some deficiencies. Future
work in this area will mainly focus on i) upgrading the
hardware configuration to improve the system accuracy, ii)
further testing and optimising the algorithm under the impact
from different external factors as discussed in Discussion, to
improve the system robustness and iii) with more samples
and dedicated processors available, introducing more intel-
ligent detection strategies, such as using deep convolutional
neural networks (CNNs).
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