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ABSTRACT

Machine learning is a promising tool to reconstruct time-series phenomena, such as variability of active galactic nuclei (AGNs),
from sparsely sampled data. Here, we use three Continuous Autoregressive Moving Average (CARMA) representations of AGN
variability — the Damped Random Walk (DRW) and (over/under)Damped Harmonic Oscillator — to simulate 10-yr AGN light
curves as they would appear in the upcoming Vera Rubin Observatory Legacy Survey of Space and Time (LSST), and provide a
public tool to generate these for any survey cadence. We investigate the impact on AGN science of five proposed cadence strategies
for LSST’s primary Wide-Fast-Deep (WFD) survey. We apply for the first time in astronomy a novel Stochastic Recurrent Neural
Network (SRNN) algorithm to reconstruct input light curves from the simulated LSST data, and provide a metric to evaluate how
well SRNN can help recover the underlying CARMA parameters. We find that the light-curve reconstruction is most sensitive to
the duration of gaps between observing season, and that of the proposed cadences, those that change the balance between filters,
or avoid having long gaps in the g band perform better. Overall, SRNN is a promising means to reconstruct densely sampled
AGN light curves and recover the long-term structure function of the DRW process (SF,) reasonably well. However, we find
that for all cadences, CARMA/SRNN models struggle to recover the decorrelation time-scale (7) due to the long gaps in survey

observations. This may indicate a major limitation in using LSST WFD data for AGN variability science.

Key words: methods: statistical —quasars: general — software: data analysis —surveys.

1 INTRODUCTION

The stochastic variability of quasars has been recognized and
studied since the discovery of the active galactic nucleus (AGN)
phenomenon' (Greenstein 1963; Hazard, Mackey & Shimmins 1963;
Matthews & Sandage 1963; Oke 1963; Schmidt 1963; Press 1978).
Observations of large numbers of quasars from wide-field surveys
show changes in the ultraviolet (UV)/optical emission (e.g. Vanden
Berk et al. 2004; Wilhite et al. 2005; Sesar et al. 2007) and at higher
energies (e.g. Tarnopolski et al. 2020) over the course of weeks to
decades. It is now understood there are several physical mechanisms
that underlie the observed quasar variability, with the variable
continuum U V-optical emission driven by thermal fluctuations in the
active accretion disc (e.g. Shakura & Sunyaev 1973; Czerny et al.
1999; Peterson & Horne 2004; Kelly, Bechtold & Siemiginowska
2009; Kelly et al. 2014). Understanding the details of the AGN
accretion disc is a key area of study in contemporary astrophysics
(e.g. Dexter & Agol 2011; Cai et al. 2016; Dexter & Begelman 2018;
Kubota & Done 2018; Jiang et al. 2019; Jiang & Blaes 2020).

A time Continuous-Autoregressive (C-AR) process has been
proposed for describing the observed UV/optical AGN variability

* E-mail: xxs125@student.bham.ac.uk
'We use the term quasar and AGN interchangeably in the manuscript, noting
that quasars are the bolometrically luminous subset of AGN.

(e.g. Brockwell & Davis 2002; Kelly et al. 2009; Koztowski et al.
2010). This was later extended to a more flexible and scalable
model — the Continuous Autoregressive Moving Average (CARMA)
model (Kelly et al. 2014; Feigelson, Babu & Caceres 2018; Moreno
et al. 2019). CARMA models are not physical models, but rather
a statistical description that characterizes a time-series stochastic
process. CARMA models are notated as CARMA(p, ¢) where p
gives the order of the Autoregressive (AR) process and ¢ gives the
description of the Moving Average (MA) process. The AR response
can be thought of as the forecasting part, while the MA model
gives the input impulse(s). The Power Spectral Density (PSD),? the
Autocorrelation Function (ACF),? and the Structure Function (SF)*
can all be calculated for CARMA models. Moreno et al. (2019)
present a detailed CARMA handbook for optical AGN variability,
discuss CARMA models and their associated statistical descriptions
in full detail, and illustrate the bridge between discrete ARMA and
time-continuous CARMA for fitting the irregular sampling of light
curves.

2The power spectrum of the signal, describing the distribution of power across
frequencies, i.e. the Fourier transform.

3The correlation between steps in a time series.

4The average change as a function of time interval.
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The simplest CARMA model, CARMA(1,0) is the well-known
Damped Random Walk (DRW). The DRW, and its ACF and SF can
be expressed as

d'x 4+ ayx(t) = BpdW (1), (1
ACF(Af) = e~ 5", )
SF(Af) = SFoo(1 — e 1A1/M)12 SE_ = /20, 3)

where «; is the C-AR coefficient and S is the coefficient of the
random perturbations. In the case of AGN, x corresponds to the flux
or magnitude. W(z) is a Wiener process, and dW(f) means a white
noise process with 1 = 0 and variance = 1 (Kelly et al. 2014). At is
the difference between two MJDs. There are two parameters that can
be obtained from DRW to capture the statistics of AGN variability: 7,
the characteristic damping (or signal decorrelation) time-scale, and
SF., the long-term variability amplitude.

The DRW model is a good description of long-term quasar
variability and as such is often applied to data from large-area sky
surveys. MacLeod et al. (2010) confirmed that a DRW model fits well
for ~9000 Sloan Digital Sky Survey (SDSS) Stripe 82 quasar light
curves, and analysed correlations between the observed variability
parameters and AGN physical parameters including black hole
mass, redshift, luminosity, and rest-frame wavelength of emission.
Suberlak, Ivezi¢ & MacLeod (2021) built on this work by adding
Pan-STARRSI photometry to the SDSS Stripe 82 data, generating
light curves up to 15 yr in length. They found that the variability
amplitude is a stronger function of the black hole mass, and that it
(and 7) has a weaker dependence on quasar luminosity than initially
found in MacLeod et al. (2010).

Koztowski (2016b, 2017) investigated systematic biases (photo-
metric noise, etc.) in SF measurements. They applied Monte Carlo
simulations to AGN light curves, and showed that accurate estimation
of DRW parameters requires the observation sampling to be at least
10 rest-frame decorrelation time-scales. Koztowski (2017) note this
is because observations shorter than ~10t are insufficient to fully
sample the PSD. Thus, due to the limited observation lengths of
astronomical surveys, the estimations of DRW parameters may fall
into this unconstrained region resulting in biases.

Koztowski (2016a) reported that DRW modelling can also work
well for non-DRW processes, and should not be regarded as a
proxy for the physical process underlying the variable emission. On
shorter time-scales, other models may be more appropriate. Kasliwal,
Vogeley & Richards (2015) studied a number of Kepler AGN light
curves (Howell et al. 2014). Compared with ground-based surveys,
Kepler has higher photometric precision and denser observation
cadences, but shorter survey length. Kasliwal et al. (2015) found
that AGN with Kepler light-curve information had log-PSD slopes
steeper than that of DRW, suggesting that the variability may be
better captured by another process other than AR(1).

Combining SDSS and data from Kepler’s second mission, K2,
Kasliwal, Vogeley & Richards (2017) discuss DRW and a higher or-
der CARMA(2,1) model, the Damped Harmonic Oscillator (DHO),
and indicate that an overdamped DHO® may be a better description
of the AGN Zw 229-15 (see figs 1 and 3 from Kasliwal et al. 2017).
The PSD time-scale features for Zw 229-15 are also reported by
Edelson et al. (2014) and Williams & Carini (2015). Kovacevic,
Popovi¢ & Ili¢ (2020) present a method to model AGN variability
using a representation of the DHO model with Gaussian processes

SWhose IR moves slowly toward equilibrium.
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Table 1. Acronyms used in this paper.

Variability models:
ACF Autocorrelation Function

ACVF Autocovariance Function

CARMA Continuous Autoregressive Moving
Average

DHO Damping Harmonic Oscillator

DRW Damped Random Walk

PSD Power Spectral Density

SF Structure Function

LSST related:

DDF Deep Drilling Fields

LSST Legacy Survey of Space and Time

OpSim Operations Simulator

VRO Vera Rubin Observatory

WFD Wide-Fast-Deep (survey)

Data science terms:

AE Auto-Encoder

ELBO Evidence Lower Bound

GP Gaussian processes

GPR Gaussian process regression

ML Machine Learning

RNN Recurrent Neural Network

RAE Recurrent Auto-Encoder

SRNN Stochastic Recurrent Neural Network

SSM State Space Model

VAE Variational Auto-Encoder

VRAE Variational Recurrent Auto-Encoder

LSTM Long Short-term Memory Unit

GRU Gated Recurrent Unit

(GPs), and successfully detect variability due to continuum emission
and (broad) line emission.

Thus, DRWs and DHOs are useful descriptions of quasar light
curves. The key goal of CARMA models now is to accurately mea-
sure the model parameters from observed quasars, and use this infor-
mation to study the underlying physics. We summarize the working
equations for the DRW=CARMA(1,0) and DHO=CARMA(2,1)
models in Table Al. Table A1 presents the differential equations, in-
put parameters, impulse response (IR, also called Green’s function),
SF, ACF, Autocovariance Function (ACVF), and PSD for DRW and
DHO processes. Table A2 explains all acronyms and notation. Table
1 shows all acronyms used in this paper.

Our ability to study AGN variability will soon be transformed
by the Vera Rubin Observatory (VRO), conducting the LSST. The
VRO telescope, located on Cerro Pachon in Chile, has an 8.4-m
(6.5-m effective) primary mirror, with a 9.6-deg? field of view, a 3.2-
gigapixel camera, and six filters (ugrizy) covering the wavelength
range 320-1050nm.

LSST will repeatedly observe millions of objects, with >825 visits
for any given point in the survey footprint and a single-visit depth
A~ 24.5 mag in the r band. LSST will cover the whole Southern
sky, and part of the Northern sky, as part of the Wide-Fast-Deep
(WFD) survey. There are also five Deep Drilling Fields (DDFs;
LSST Science Collaboration et al. 2009). The WFD will take about
90 per cent observing time, with >10 million quasars projected to
be identified, though the cadence strategies will have an effect on the
efficiency of quasar identification (Ivezic 2016). This has motivated
recent white papers from the LSST AGN Science Collaboration for
estimating the influence of cadence strategies on AGN astrophysics

MNRAS 512, 5580-5600 (2022)
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studies.® Kovacevic et al. (2021b) have provided statistical proxies to
measure the LSST cadence effects on AGN variability observations
and Kovacevic et al. (2021a) provide two metrics: based on AGN
time lag and periodicity, and on the SF. . Such models simulate AGN
light curves ahead of the start of LSST survey operations. Analysing
recovery of parameters (including e.g. characteristic time-scales,
PSDs, and IRs) from the simulated data under different cadences
can tell us the potential systematic bias.

With the development of large sky surveys such as SDSS and
LSST, astronomy has become a data-intensive science. Conse-
quently, there have been recent attempts to use ML techniques to
address the data challenges set by LSST, especially for classification,
forecasting, and parameter estimations. For example, the Photometric
LSST Astronomical Time Series Classification Challenge included
175500 simulated AGNs (among other transients) to test classifi-
cation algorithms (e.g. Boone 2019; Kessler et al. 2019; Hlozek
et al. 2020). Relevant to the AGN study (Jankov et al. 2022) based
on LSST cadence strategies, in this paper, we aim to quantify the
influence of different LSST cadence strategies on AGN time-series
data, in order to see if contemporary ML algorithms can effectively
recover CARMA model parameters.

We implement an SRNN to model quasar light curves and recover
the DRW and DHO model parameters by GPR. RNN are a popular
class of ML connectionist models for sequential modelling and have
been used previously in astrophysics applications (e.g. Charnock
& Moss 2017; Hinners, Tat & Thorp 2018; Naul et al. 2018;
Muthukrishna et al. 2019; Becker et al. 2020; Escamilla-Rivera,
Carvajal Quintero & Capozziello 2020; Moller & de Boissiere 2020;
Burhanudin et al. 2021; Lin & Wu 2021). However, as noted in
Yin & Barucca (2021), one limitation of RNNs is that the hidden
state transition function is entirely deterministic, which can limit the
RNNs ability to model processes with high variability. Thus (and
as far as we can tell, for the first time in astrophysics research), we
implement the SRNN, in order to recreate quasar light curves. The
SRNN differs from the traditional RNNs in that the RNN hidden cells
invoke a probabilistic (often Gaussian) distribution to generate a level
of stochasticity that improves longer term temporal forecasting. As
such, the SRNN can be somewhat thought of as a combination of an
RNN and ideas from a VAE.

We have two main goals:

(i) To test how well the SRNN can recover and predict observa-
tions when dense or uniformly seasonal light curves are set as inputs.

(i1) To predict AGN behaviour during gaps between seasons in
10-yr LSST-simulated light curves, and see how SRNN could help
recover DRW and DHO parameters.

This paper is organized as follows. In Section 2, we describe our
observational data and the methods (including DRW and DHO) we
use to generate sample quasar light curves. Section 3 presents the
details on the LSST observing strategy and associated cadences. In
Section 4, we describe the ML algorithms we use to evaluate the
model quasar light curves. We report our key results in Section 5
and discuss these results in the context of quasar studies and LSST
in Section 6. Section 7 presents our conclusions. In Appendix A,
we write down the fundamental parameters and equations for the
CARMA models, and in Appendix B, we detail the implementation
of the SRNN. We report all magnitudes on the AB zero-point system

6See documentation and notes at https://github.com/RichardsGroup/LSST_S
F_Metric.
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(Oke & Gunn 1983; Fukugita et al. 1996) unless otherwise stated.
All logarithms are to the base 10.

2 QUASAR DATA AND MODEL LIGHT CURVES

In this section, we give the details of our quasar data, including
both observed quasars from previous sky surveys, used to provide an
input set of representative statistical parameters, and the model light
curves we generate. For the observed quasar data we will focus on
the well-studied SDSS Stripe 82 field. The key analysis codes of this
section are available via a github repository.

2.1 Observed quasars

2.1.1 SDSS Stripe 82

The Stripe 82 field (hereafter S82; Annis et al. 2014) is a ~300-deg?
region of the SDSS across 22h 24m < RA < 04h 08m, |Dec| <
1.27 deg, and has been observed ~60 times on average to search for
transient and variable objects (Abazajian et al. 2009). These multi-
epoch data have time-scales ranging from 3 h to 8 yr and provide
well-sampled five-band light curves for an unprecedented number
of quasars. Examples of quasar variability studies based on S82
photometry include Sesar et al. (2007), Schmidt et al. (2010), Ai et al.
(2010), MacLeod et al. (2010), MacLeod (2012), Meusinger, Hinze
& de Hoon (2011), Butler & Bloom (2011), Koztowski (2016b), and
Suberlak et al. (2021).

For our study we will concentrate on the ~9000 spectroscopically
confirmed quasars from SDSS S82 reported in MacLeod et al.
(2010).” MacLeod et al. (2010) model the time variability using the
DRW and measure the characteristic time-scale (7) and an asymptotic
rms variability on long time-scales (SF,). Also reported for this data
set is the binary value edge (if the observation is close to the field
edge) and a set of probabilities: Plike (log likelihood of a DRW
solution), Pnoise (log likelihood of a noise solution), and Pinf (log
likelihood of T — o0).

In order to have a sample of objects that have well-fitted DRW
parameters, we selected those with edge = 0, Plike-Pnoise>2, and
Plike-Pinf>0.05. We also remove objects with 7 <0 or 7 > 10° d to
allow convergence in 7. With these selections, the number of quasars
in the sample is 7384. We plot the SF, and 7 distribution of these
quasars in Fig. 1.

2.2 Model quasars

Our aim is to analyse the influence of survey cadence on quasar
modelling in LSST. We note again that although CARMA models are
not physical models, they are appropriate approximations of quasar
light-curve properties. As such, we simulate the light curves using a
DRW and DHO implementation. We first generate 10-yr light curves
(consistent with LSST survey length) with dense, daily observations,
which can later be sampled at different realistic cadences. The steps
to generate light curves are described in the following sections.

2.2.1 DRW-simulated light curves

For the DRW model, two input parameter choices are required: SF,
and 7, in addition to the redshift (z). To generate our model light
curves, we sample the SF.,-t parameter space from the S82 data set

"http://faculty.washington.edu/ivezic/macleod/qso_dr7/index.html
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Figure 1. The SF, and t distribution of 7384 quasars in g band selected
from the SDSS S82 field, with spectroscopic redshift given by point colour.
The dashed line is the regression line, and the four star markers represent
four DRW parameter pairs, the associated light curves of which are shown in
Fig. 2.

(MacLeod et al. 2010) shown in Fig. 1. We take the values reported
at a given SF,-7 coordinate and add a ‘scatter’ in the range —0.05
< ¢ < 0.05 (as determined by a random number generator) to each
ordinate separately. We generate 30 000 DRW light-curves parameter
pairings in this manner.

The four black stars in Fig. 1 are four DRW pairs, and we show
their associated light curves, SFs and PSDs in Figs 2 and 3. Given a
fixed value for SF, and a set rest-frame observation length, longer
characteristic time-scales (7) will lead to less fluctuation. When 7 is
short compared with the rest-frame observing duration, the variance
of the light curve will tend towards o and the estimated parameters
will approach the underlying values.

2.2.2 DHO-simulated light curves

The literature is not so comprehensive for DHO modelling of
UV/optically bright AGN, though there are papers that report the PSD
slopes of some quasars are not consistent with DRW (e.g. Kasliwal
etal. 2015, 2017; Moreno et al. 2019). Consequently, these illustrate
that a more complex CARMA process, DHO, might be more suitable
for describing some quasars with (quasi-)periodicity features, such
as weak oscillations, though such research is purely based on the
statistical analysis of their variability rather than any assumptions of
deterministic/periodic physical processes. As such, we build a DHO
set including both ‘overdamped’ and ‘underdamped’ cases.

Five parameters are required as inputs: Bo, Bi, &, Tdecay. and
Tgpo [the time-scale of quasi-periodic oscillations (QPOs)] in the
‘underdamped’ case or 7, (the time-scale to brighten in response
to an impulse) in the ‘overdamped’ case (see Table A2 for details).
To build the light curves, the redshift and SF, for each light curve
are randomly sampled from the S82 distribution. 7 gecqy is set to vary
from 60 to 200 d. MA coefficients B, and B, are set with constant
and small values to ensure that dependent parameters remain in
reasonable ranges (see Appendix Al). Additionally, we set 2 < & <
5 for the overdamped case, 0 < & < 1 for the underdamped case. In
this way, we can calculate the corresponding C-AR coefficients «
and «, using the recipes in Table 2.

Fig. 4 shows four DHO light curves, including two underdamped
and two overdamped, with their IR functions. For the underdamped
DHO, the IR oscillates and gradually returns to a steady state,

Quasars in LSST 5583
whereas in the overdamped case, it gradually moves to its steady
state without oscillation. Analogous to Figs 2 and 3 for the DRW
model, Fig. 5 depicts the PSD and SF for the underdamped and
overdamped DHO.

2.2.3 GPRs and Eztao

A GP is a generalization of the Gaussian probability distribution
and a GPR model provides uncertainty estimations together with
prediction values. GP® and GPR are discussed extensively elsewhere
(e.g. Rasmussen & Williams 2006).

CARMA model can be well expressed by a GP model which
consists of a mean function and a covariance matrix (also called
kernel). For example, the kernel for the simplest CARMA process
(DRW) can be written as

k(A1) = o2e 217, )

We generate the DRW and DHO light curves using the Eztao
Python package (Yu & Richards 2022). Ezt ao is a Python toolkit for
conducting time-series analysis using CARMA processes. Building
on work by Rybicki & Press (1995) and in particular Foreman-
Mackey et al. (2017), EzTao uses celerite (a fast GPR library) to
compute the likelihood of a set of proposed CARMA parameters
given the input time series.

Here, we use EzTao to model and produce GPRs that give
uncertainty estimations together with predictions for DRW and DHO
light curves.

2.2.4 Colour—redshift correlation and SF

The observed colour of a quasar changes with redshift (e.g. Richards
et al. 2001). To quantify this, we select 151 362 quasars included
in the SDSS DR16 Quasar catalogue (Lyke et al. 2020) that are
also in the UKIDSS (Lawrence et al. 2007) footprint. We convert
from UKIDSS/WFCAM?® Vega Y-band to LSST AB y-band,'® and
calculate the colours (u — g), (g — 1), (r — i), (i — z), and (z — y)
from redshift z = 0.00 — 5.00, in redshift bins of Az = 0.05. We
initially generate mean magnitudes in the g band, and normalize the
other bands using these colour relations.

Examining the SF, values for 9258 S82 quasars from MacLeod
et al. (2010),"" we find that SF, is larger in bluer bands. As SDSS
does not provide a y filter, we calculated the SF,, and t ratios for
the S82 quasars in six bands (shown in Table 3), and fix the ratio of
y band SF(y)/SFx () = 0.61, and t(y)/t(u) = 1.26.

2.2.5 LSST photometry and photometric error

Here, we note the expected photometric performance of LSST, and
tie this to our synthetic model quasar light curves. Detailed LSST
performance metrics are given in Ivezi¢ et al. (2019, section 3.2.1),
and the expected photometric error in magnitudes for a single visit
can be written as

2 _ 2 2
OLssT = Crsys + Orand (5)

o2 (0.04 — y)x + yx*(mag?), ©)

rand —

8http://www.gaussianprocess.org/

9The wide-field camera on the United Kingdom Infrared Telescope.
Ymagpp = —2.5log (F,) — 48.6
http://faculty.washington.edu/ivezic/macleod/qso_dr7/Southern.html

MNRAS 512, 5580-5600 (2022)

220z 8unp 0z uo Jesn weybuiwig 1o Ausiaaiun Aq $£8£559/085S/b/2 L S/8101UE/SBIUW/WOoD dno-olWwspeoe//:sdny woJj papeojumoq


art/stac803_f1.eps
http://www.gaussianprocess.org/
http://faculty.washington.edu/ivezic/macleod/qso_dr7/Southern.html

5584  X. Sheng, N. Ross, and M. Nicholl

21.5 A SF.. = 0.15 mag, T = 100 days
; o )
22,0 A ™ “, fv'"" R s S d ‘\“"'g,""‘"ﬂ\w"" PM'M“ o o "
22.5
L 515/ B SF.. = 0.15 mag, T = 600 days
3 i X
_dé 22.0 P Pt ot e N"‘”W\JM&‘L‘MWWWM N——_ 7
g 225
=
4
[= C g SF. = 0.4 mag, T =600.days »
o 21.5 o N ] /\,’""v-‘""" ~\\\\ _,,.f\v_-\,-’fw’ ol S
T 22.0{4 Sl 7 P ety N el
=3 i N M Y
a R W, e
< 225 e
21.5 D SF.. = 0.4 mag, T = 2000 days
22.0
22.5
0 2 4 6 8 10

Rest-frame years
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Figure 3. Left-hand panel: The PSD for the four example DRW light curves as given in Fig. 2. The PSD is determined by the driving force [Byo dW(f) in DRW
equation]. For DRW, there is only one AR coefficient B¢, indicating that slope of PSD will be flat with =2 after the break point. Right-hand panel: The SF
describes the trend of standard variance of magnitude differences with Az. The vertical dash lines correspond to ! and 7 in each graph, respectively.

Table 2. DHO parameters for underdamped and overdamped cases. These
values restrain the range of the real parameters, but they are not applied
with fixed increments to avoid combinations that lead to unrealistic derived
statistical parameters (calculated using Table A1) — such simulated cases are
removed.

Parameter Values Values
Underdamped Overdamped

Tdecay 60~200 60~200

TQPO 7.8~380 —

Trise - 5.6~38.8

& 0~1 2~5

Bo 0.0022 0.003 672

Bi 0.00025 0.0257

Niot 1000 1000

where oy and o4y are the systematic and random photometric
error, respectively, x = 10°4"="5) and ms is the typical 5o depth
of point source at zenith for each visit. Given the fact that the
calibration system and procedure are set to maintain o < 0.005
mag, we assume o gy, = 0.004 mag. y is a band-dependent parameter.
Following Table 2 in Ivezi¢ et al. (2019), we set y,, = 0.038 and
Ve rizy = 0.039. LSST Operations Simulator (OpSim) provides
the ms for each visit in a proposed cadence strategy. In this way,
for one original simulated photometric value, a photometric error is
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randomly selected from a Gaussian distribution, with mean equal to
0 and variance equal to oy

2.3 Model light-curve data products

Following the steps above, we generate a data set containing light
curves generated from the DRW and DHO models. We simulate
200 objects from each of the DRW, DHO-overdamped and DHO-
underdamped models, and for each object, light curves in six bands
are generated, with one observation per day. The mean magnitude,
SF,, and 7 follow the restrictions detailed in Section 2.2.

These light curves will be used in Section 4 for the SRNN analysis,
and are also made available to the community.'?

3 SIMULATED AGN WITH LSST CADENCES

In this section, we present the light curves of the simulated quasars
and how they will be observed using realistic LSST observing
cadences. The survey strategy and cadence choices for LSST are
described in detail by Jones et al. (2021; LSST Project Science
Team Note 051). The LSST survey strategy is designed to fulfil the
core science goals (which can be found at Science Requirements

2https://github.com/XinyueSheng2019/LSST_AGN_SRNN_Paper
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Figure 5. PSD and SF for four DHO light curves with underdamped and overdamped cases. The left-hand side (LHS) and the right-hand side (RHS) of each
subplot represent the PSD and SF for underdamped and overdamped DHO, respectively. For Fig. 5a, & means the damping ratio. The vertical dash lines represent
1/Tqpo (LHS) and 1/7ise (RHS), respectively. For Fig. 5b, ¢ means the ratio of TQpo/T decay (LHS) and tise/T decay (RHS). The black and grey dash lines depict
Tdecay and 5T gecay, respectively. It is worth noting that when At is equal to 57 gecay, the SF has been steadily close to SFw.. The blue dash line on the right plot
represents Tplue, Where the overdamped SF slopes just decrease (Moreno et al. 2019).

Table 3. The ratios are the mean values of (SF, or T in a given band) over
mean (SFy, or t in the u band) for the Stripe 82 quasar data.

Band u g r i z y
SFo ratio 1 0.88 0.75 0.66 0.63 0.61
T ratio 1 1.29 1.51 1.28 1.26 1.26

Document). The baseline design elements for the WFD are: (i) cover
at least 18 000 deg?; (ii) average 825 visits per field, in all filters,
over 10 yr, and (iii) obtain same-night, same-field revisit ‘pairs’.

Within these bounds, several key characteristics that will define
the main WFD survey remain to be determined, including: How the
survey area is defined (footprint, for short); how often each WFD
field should be revisited (cadence) — both for intra- and inter-night
visits; and what are the optimal filter distributions for the WFD fields
(filter) and the optimal intra-night filter pairs for WFD revisits
(colours).

3.1 LSST cadence strategies

The LSST is a complex survey with numerous science drivers. To
this end, nearly 200 simulations of observing strategy have been
generated that look into how different observations will drive the
science goals and various metrics (see e.g. Lochner et al. 2021).

The survey strategies are summarized online'? and we use the v1.7
version.'* There are ‘families’ of observing strategies, with members
of each family having related traits, e.g. the visit_time family
are simulations examining the effect of the length of the individual
visits, and the e.g. u-long family are simulations bearing on the
length of the u-band exposure time.

The LSST OpSim is designed to simulate LSST observing
strategies over the 10-yr survey, and different strategies have been
tested to consider different scientific requirements (LSST Science
Collaboration et al. 2017). Since this work is concerned with the

Bhttps://mbviewer.jupyter.org/github/lsst- pst/survey_strategy/
“https://community.lsst.org/t/survey-simulations-v1-7-release- january-202
1/
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Table 4. Brief overview of the five Legacy Survey of Space and Time (LSST) cadence strategies used in our study. Details are taken from the Jupyter Notebook

nbviewer.jupyter.org/github/Isst-pst/survey_strategy.

Area with  Unextincted Nvisits Median Median Nvis Briefly
>825 visits area total u g r i z y desc
baseline 17982.70 1517443  2045493.0 888.0 55.0 79.0 189.0 190.0 170.0 180.0 Baseline
u_-long 18112.80 15011.61 1986422.0 9150 51.0 76.0 183.0 184.0 166.0 175.0 u 1x60s
filterdist 19 886.22 14974.68  2221366.0 1057.0 166.0 91.0 206.0 205.0 188.0  195.0 u heavy
cadence.drive  17996.97 14996.50  2046411.0  893.0 46.0 115.0 194.0 179.0 160.0 170.0 Add g, limit 200/night, contiguous
rolling 17960.88 15051.89  2048229.0 889.0 54.0 78.0 189.0 190.0 170.0 181.0 0.9 strength, 3 band

global performance of ML neural networks in recovering quasar
light-curve parameters, we decided to focus on five strategies (out
of the over 190 available): a baseline and four different families. We
do note that the LSST collaboration readily provides the cadence
simulations, and we are providing our analysis codes, so studies with
other observing strategies are easily produced.

The five survey strategies we focus on are:

(i) baseline nexp2_vl.7_10yr, which we call baseline for
short. This is the baseline WFD footprint, with the default observing
behaviour having visits of 2 x 15-s exposures.

(i1) u-long-ms_60_v1.7_10yr, which we call u-long for short.
Observations in the u filter are taken as single snaps, and we test
increasing u-band exposure times. The cadence we choose has 1 x 60
s, with the number of u-band visits left unchanged, resulting in a shift
of visits from other filters to compensate for the increase in u-band
observing time. With quasars being bright in the UV/optical, we are
keen to see if additional u-band exposure improves the recovery of
light-curve parameters.

(iii) filterdist_indx4_v1.5.10yr, which we designate
filterdist for short. The aim is to evaluate the impact of changing
the balance of visits between filters, where again we choose a ‘u-
band heavy’ cadence as our focus is on AGN.

(iv) cadence_drive_gl200_gcbvl.7_10yr, which we des-
ignate cadence_drive for short. This investigates the impact of
reducing the gaps between g-band visits over the month, essentially
down-weighting the lunar cycle. This aims to avoid long gaps in
g-band coverage with the goal to improve transient discovery and
variable characterization for longer time-scale objects which require
bluer filter coverage (such as AGN and Supernovae). Our chosen
cadence has 200 fill-in g-band visits each night in a contiguous area.

(v) rolling.scale0.9nslice3 v1l.7.10yr, which we
designate rolling for short. A rolling cadence is where some parts
of the sky receive a higher number of visits during an ‘on’ season,
followed by a lower number of visits during an ‘off” season. During
the first 1.5 yr and the final 1.5 yr of the WFD survey, half the sky is
covered uniformly, allowing for better proper motion coverage. This
leaves 7.0 yr for ‘rolling” observations, with the benefit that transient
and variable phenomena are better observed, at the cost of each of
the middle 7 yr will have no uniform survey coverage. Full details of
the rolling cadences are given in Yoachim (2021).

We summarize the salient details of these strategies in Table 4.

3.2 Light curve with five cadence strategies

We selected and tested the LSST cadence simulations on the
SciServer and used the Metrics Analysis Framework (Jones et al.
2014), to analyse the OpSim-simulated surveys. We chose several sky
positions in WED fields, and assume that each position corresponds
to a quasar object. Given a set of DRW/DHO parameters, a mean
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magnitude, a chosen band, and an LSST cadence, we provide a
QuasarMetric toreturn arealistic LSST-cadence light curve with
MIJDs, magnitude, and magnitude error. This metric can be used for
any WFD survey strategy, so will be beneficial for future AGN light-
curve analysis.

Fig. 6 presents a DRW-simulated light curve as observed under five
cadence strategies. In the next section, we will discuss the influence
of different strategies on quasar modelling with GPR and ML.

4 STOCHASTIC RECURRENT NEURAL
NETWORKS

In this section we give a very high-level theoretical outline of
SRNNs. We describe the SRNN architecture for our investigations,
and how we implement the SRNN in practice. We note Fabius &
van Amersfoort (2015), Chung et al. (2016), Fraccaro et al. (2016),
Schmidt & Hofmann (2018), and in particular the notation from Yin
& Barucca (2021) — as given in Table 5 — as important influences in
what follows.

4.1 SRNN high-level overview

Derived and inspired from Bayer & Osendorfer (2015), Fraccaro
et al. (2016) propose the idea of propagating stochasticity in a latent
state representation with RNNs. They stack an SSM on deterministic
RNNs to achieve a stochastic and sequential generative model
and a structured variational inference network, which produce the
output sequences and provide the model’s posterior distributions,
respectively.

This algorithm is particularly suitable for CARMA modelling as
there are stochastic features, and CARMA can be represented as a
format of SSMs. As such, here we applied SRNN to ingest AGN
light curves with different LSST cadences and bands, and output
modelled light curves with denser observations. The implementation
of our SRNN, with the generative model and the inference model
that we use in our study, is outlined in Fig. 7.

4.1.1 Generative model

The role of the generative model is to establish probabilistic rela-
tionships between the target variable y,, the intermediate variables
of interest (#,, z,), and the input x,. Within the generative model, a
key part of how the RNN becomes an SRNN is the SSM. Inside a
‘classical’ RNN, the evolution of the hidden states h is governed
by f, a non-linear transition function: h,.; = f(h,, x,11), where
x is the input vector. For an SSM however, the hidden states are
assumed to be random variables, z,. In our model, the SSM layer
latent states are Gaussian distributions. The input of the next layer
is randomly sampled from these distributions, thus providing the
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Figure 6. Identical DRW-simulated light curve (SFo, = 0.17, = 100, and z = 0) at position RA = 0, Dec = -10, under five different cadence strategies. The
grey light curve is the original one with dense observations. For each cadence strategy, u, g, and r bands’ cadences are selected. For u_long strategy with 60-s
exposure time in u band, the photometric error is much smaller than others. However, cadence_drive bearing reducing g-band gaps, some of its observations
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and downs in its next season. Compared with u_long, filterdist for u-band heavy has more overall visits in « band.
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Table 5. Stochastic Recurrent Neural Network (SRNN) nomenclature and
notation.

Parameter Description

864 Represents one Gated Recurrent Unit (GRU) neuron
function in general in the ‘a’ layer

h, Hidden state

X; Input data

X7 = {x1, x2, ..x7} is a temporal sequence

¥y, Target variable

2t Latent random variable

0 Parameters set of {6, 0, 6.}

Po Generative distribution

q¢ Inference distribution

E Expected value operator

L Marginal log-likelihood function

F Evidence Lower Bound (ELBO)

Dxr Kullback-Leibler divergence (KL divergence)

stochastic features. The key design of our model is to stack an SSM
layer on the last GRU £ layer (Fig. 7, left-hand panel).

Given the fact that CARMA can be written as developing Gaussian
distributions over time-steps, the SSM layer is expected to present
similar functions for generating the output sequences. In this way, the
model can learn both the long-term dependency within a sequence,
as well as the stochastic features of the input sequence. Combining
the non-linear gated mechanisms of the RNN with the stochastic
transitions of the SSM creates a sequential generative model that
is more expressive than the RNN and better capable of modelling
long-term dynamics than the SSM. Fig. 7a shows the architecture of
the generative model.

4.1.2 Inference network

The second part of the SRNN is the inference network. Here, the
prior distributions in the generative model learn from the posterior
distributions by KL divergence (Kullback & Leibler 1951). While
training, the generative model and inference network are both
implemented, and learn from the backpropagation.

Fig. 7b outlines the inference model architecture. For each step,
latent states a, are fed with the combinations of y;.7 and hy.7, so it
has the information of the future time-steps from target sequences
as well as previous steps’ information from the last / layer in the
generative model. In order to let posterior distributions contain the
information from the future steps, the RNN layer is reversed in the
time dimension.

4.1.3 Loss function

Initially, we wish to maximize the marginal log-likelihood function
L, where L£(0) =Y, L:(0) = log pe(yi.r|x 1.7, 2h. di)). However,
the random variable z, in the non-linear SSM cannot be integrated
out analytically (see e.g. Kingma & Welling 2014, section 2.1).
Therefore, we instead aim to maximize the ELBO (also known
as the variational lower bound) given as F, with respect to the
generative model parameters 6 and an inference model parameter,
¢. Thus, the objective function of our SRNN is F(6, ¢), given in
Appendix B1. In practice, minimizing the loss function is more
intuitive and convenient for implementation. Therefore, we present
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our loss function equation (7), which can be derived from ELBO.

L =NLL+ Dg, (Q2) || P(2)

1 Nic Nt

2 2
= E § ( [(mlargell - mreq) - merror,}
Me it

Opi oy + (g — 14p,)’ 1)

+log 2 A

7
2(7% 2 ™

Oy,

i

This is formed from the negative log likelihood and KL divergence
(Dkv; Kullback & Leibler 1951) of the prior and posterior distribu-
tions of z. Q and P correspond to the approximate posteriors in the
inference network and priors in the generative model, respectively.
Furthermore, the magnitude errors are considered in the loss calcula-
tion. N is the number of light curves per loss calculation. Nt means
the length of each light curve. myge, , means the #-th observation of
the target light curve, and m,, means the #-th observation of the
reconstructed light curve by SRNN. o, represents the magnitude
error in the 7-th observation of the LSST-cadence light curve (also
the input light curve), with O for vacant observations.

4.2 Parameter configuration

Our SRNN is built using the open-source software ML library
TensorFlow (t £), with Keras as the backend. We used Google Colab
as the computing platform, and chose the GPU P100 nodes option.

For the generative model, we set one bidirectional GRU &, layer
with 32 neurons, followed by two bidirectional GRU layers — for the
1. and log o priors — with 32 neurons for each layer. All layers apply
the default hyperbolic function tan/ as the activation function. We
add a ‘bidirectional’ wrapper to each GRU layer as we found during
testing it increased the accuracy of the light-curve reconstruction. For
the inference network, similarly, there are three bidirectional GRU
layers with 32 neurons, corresponding to a,, the posterior i, and
log o, respectively. The dimension of the inputs includes magnitudes
y (and magnitude errors ye,, for DRW and DHO overdamped cases).
The outputs are the dense light curves, with the observation length
identical to the input sequences.

As the goal of applying SRNN is to model the whole light
curves, including those dates where there are no observations, it
is necessary to discuss how to deal with these vacant time-steps. We
cannot impute these values using Autoregressive integrated moving
average (ARIMA), (e.g. Saputra et al. 2021) and Neural-Networks-
techniques (e.g. Li et al. 2020; Shu et al. 2021), as the SRNN would
not then need to learn how to fill the gaps. Our solution is: For
each dimension, the value is first reduced by its mean values, and
then zeros are added for those time-steps where the observations
are vacant. In other words, we pre-processed those vacancies with
the mean values. As RNNs do not allow NaN’ values included in
inputs, adding zeros can provide these vacancies with initial values.
During training, SRNN is expected to learn the correlations between
steps and predict the corresponding values for these vacancies. As
such, adding zeros has less physical meaning, but simply satisfies
the RNN input rules. However, when the vacant period is too long,
the predicted values will move close to the mean values. !

I5We also test to fill in these vacancies with other values. For example,
making a straight line between neighbouring observations, starting with the
previous observation and ending with the latter one, and then filling in the
vacancies with the corresponding values on the line. However, this harms
SRNN’s predictions for their true values; adding a masking layer after the
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Figure 7. (a) The architecture of the generative model (left-hand panel). The inputs layer is connected with a hidden layer (called /), which can be a GRU
or LSTM layer. There could be multiple A layers, and in this diagram we only show one. An SSM layer is interlocked with the last & layer, represented by
prior Gaussian distributions Npyior in the diagram. Note that the SSM layer is implemented by two GRU layers in the programs, producing ) and log 0(21,),
respectively. A sampling layer is used for randomly sampling a variable from each Gaussian distribution at each step. The output of the sampling layer is further
combined with the output of the last & layer, and passed to the output dense layer, to generate output sequences. (b) Inference network. This is for providing
the posterior Gaussian distributions. The target output sequences are combined with the output of the last h layer (also in the generative model), and they are
delivered to a reversed GRU layer, called a. In this way, the output of the a layer at each step contains the information both from its future steps (from the target)
and its previous step (from k). Furthermore, an SSM layer is stacked on the a layer, producing the posterior ji(;) and log 0'(%1) for each step, which is compared
with the priors by calculating the KL divergence. During training, this divergence is considered and works with the negative log likelihood to minimize the

whole loss function.

We chose the Adam Optimizer (a stochastic gradient descent
method derived from adaptive moment estimation) with a learning
rate r =5 x 1073, B1=0.900, B, =0.999,and e = 1 x 1077. The
batch size is 128 per training epoch, and the maximal training epoch
number is 300. tf.keras.callbacks.EarlyStopping is
also applied with the patience set to 3 in order to stop training if the
loss function is no longer decreasing.

4.3 Data set and training plan

The outputs from the SRNN are light curves. To see how the SRNN
performs in ‘ideal’ circumstances, we input a dense and uniformly
sampled light curve with 3650 points (a daily observation for 10 yr)
to the SRNN, and target a similarly dense light curve as the output.
The training data involve 7200 light curves, and test data involve
1800 light curves.

To predict the light curve during seasons in the 10-yr LSST-
simulated light curves, and see how SRNN could help recover the
CARMA DRW and DHO parameters, light curves based on the five
considered LSST cadences are also fed as the input of the SRNN,
and dense light curves will be the targets. The SRNN is expected to
learn the trends between seasons. In this instance, the training data
involve 14400 light curves, and the test data are 3600 light curves.

We also want to predict future observations based on observed
light curves, and again see how the SRNN could help recover DRW
and DHO parameters for light curves with shorter duration. As such,
we shortened the length of dense and LSST-cadenced light curves to
6-9 yr, and let SRNN to predict the next 1-4 yr’s light curves.

For both the LSST light curves as well as the SRNN predicted daily
light curves, we apply the GPR method (Section 2.2.3) to measure

input layer is also tested, in order to mask all the missing values with zeros
and ignore them by deactivating their passing neurons while training. This
design dramatically slows down the training process, which is about 5 times
longer on GPU cores, and the predictions are not as good as the architecture
without masking.

CARMA parameters. We note, GPR is only one method to estimate
the CARMA parameters of the light curves; it is not as accurate as
Markov chain Monte Carlo (MCMC), but more efficient.

5 RESULTS

After generating the model light curves in Section 2 and simulating
observations through the LSST cadences as discussed in Section 3,
we use the SRNN described in Section 4 to reconstruct the full light
curves and calculate CARMA model parameters. In this section, we
report the results.

5.1 Light-curve modelling

5.1.1 Full and uniform seasonal light-curve modelling

Fig 8 shows results of SRNN modelling for one DRW light curve
(SF5 = 0.1 mag and v = 307 d) under different samplings. We test
four example samplings: The light curve can be fully sampled, or have
observation gaps of 30, 60, or 120 d in-between 30 d of observations.
Mean Absolute Error (MAE) is presented for qualifying the influence
of the increasing gap length on the whole light-curve modelling.

These examples illustrate that the longer the gaps in observations,
the lower the accuracy of the model and the larger the MAE. From the
plot it can be seen that the SRNN is able to predict the overall trend
of each gap, which is similar to its real values. It also can simulate
the stochastic characteristics of the sequence, by randomly sampling
from Gaussian priors (the mean and standard shown in lower two
panels) for each step.

5.1.2 LSST light-curve modelling

For LSST-cadence light curves, it is harder for the SRNN to learn
the correlations between each time-step, as the cadences are often
not uniform and have longer intervals. The SRNN is trained for
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Figure 8. Multiple SRNN modelling for one DRW process (SFs = 0.1
mag and v = 307 d) with different uniformly designed cadences. In this
experiment, the magnitude errors are set to zero for simplicity. the upper
five rows correspond to input light curves with different cadences, which is
labelled on the top right of each panel, respectively. The input light curves
are shown in red, modelled light curves by SRNN are shown in blue, and the
grey means the full light curves (10 yr’s observation length; one observation
per night). The Mean Absolute Error (MAE) between the model light curve
and the target light curve is calculated for each case and displayed in the
upper left corner. The last two rows show the mean and standard deviations
of the Gaussian prior distributions used by one example neuron (of the many
that contribute in each time-step) in the SSM layer, from which the random
variable z, is sampled (Fig. 7). The case shown is for the input light curve
with ‘season 30, gap 120’ cadence.

the different models (DRW and DHO underdamped/overdamped)
separately.'®

Fig. 9 presents the reconstructions of a quasar with a DRW
CARMA process, given in the » band with the five LSST cadences.
The input DRW parameter values are SF,, = 0.218 mag and v =
691.656 d, and redshift z = 1.677. The input light curve is the same
for all five cadences.

Fig. 10 presents the reconstructions of a quasar with a DHO
CARMA process, in the overdamped case. The input DHO parameter
values are SF, = 0.215, T = 11.208 d, Tgecay = 1118.304 d, and
redshift z = 1.233.

The modelling of these two cases shows that SRNN is able to
predict the gaps between seasons with stochastic characteristics in
general, though it fails to predict accurately the specifics of the
variability during the gaps. This is unsurprising, as the CARMA
process at each step is indeed a (Gaussian) random variable.

Fig. 11 shows the reconstruction of a quasar witha DHO CARMA
process in the underdamped case. The input DHO parameter values
are SFo, = 0.236, Tgpo = 44.193 d, Tgecay = 239.414 d, and redshift

= 1.372. This plot shows that SRNN is better at learning the

1%For input light curves with few observations, it is hard for the SRNN to
figure out which case it belongs to.
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Figure 9. The reconstructions of a quasar with a DRW CARMA process,
given in the r band with the five LSST cadences. The original DRW parameter
values are SFo, = 0.218 mag, t = 691.656 d, and redshift z = 1.677. The
input light curves are the observed light curves with time dilation considered,
which are identical for all five cadences, presented with grey points. Then
they are sampled with different cadences respectively, shown in black points
with error bars. The reconstructed light curves (by SRNN) are shown with red
points. The recovered reconstructed parameters (observed) are given in the top
right of each panel. MAE represents the Mean Absolute Error, rec_SF, and
rec_t correspond to the parameter estimation (by GPR) after reconstruction,
which are shown on the top right of each panel.
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Figure 10. The reconstructions of a quasar with a DHO CARMA process,
in the overdamped case. Magnitudes are reported in the LSST r band with the
LSST cadences from top to bottom panel. The input DHO parameter values
are SFo = 0.215, Tyise = 11.208 d, Tgecay = 1118.304 d, and redshift z =
1.233. The reconstructed (observed) DHO parameters are given in the top
right of each panel.

periodicity characteristic of the DHO-underdamped process. With
few observations, SRNN can predict the vacant observations well.

5.1.3 Problem of ‘filling the gap’

Here, we particularly discuss how SRNN modelling fills in the gaps
between distant observations. As can be seen from Figs 8-11, SRNN
can reconstruct the input observations when gaps are reasonably short
compared to the time-scale of variability, but for large gaps, SRNN’s
general performance is weak. The following factors all affect the
SRNN light-curve reconstruction:

(1) Number of observations: Unsurprisingly, the number of pro-
vided observations is a major determinant how much information
that SRNN can digest.
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Figure 11. The reconstructions of a quasar with a DHO CARMA process,
in the underdamped case. The input DHO parameter values are SFo, =
0.236, Tqpo = 44.193 d, Tdecay = 239.414 d, and redshift z = 1.372 The
reconstructed (observed) DHO parameters are given in the top right of each
panel.

(ii) Cadence strategies and different bands: Although different
cadences with the same total number of observations in a given
band give similar results, in reality different cadences have different
allocations of observations to individual bands. Those in which a
higher proportion of observations are allocated to a particular band
lead to better SRNN modelling results in that band (at the expense of
other bands). On the other hand, regular samplings (e.g. Fig 8) also
can improve the predictions of gaps. More investigations are shown
in Section 5.2.

(iii) Level of perturbations: high SF,./short 7: Light curves with
extremely high variability or very short time-scales are difficult for
SRNN to model, since the limited number of observations and long
gaps are not sufficient for SRNN to learn these features.

(iv) Quasi-periodicity: Fig 11 shows that SRNN is better at
modelling light curves with quasi-periodic features. It can be seen
that for these light curves with durations 3500 d and quite different
cadences, SRNN is able to predict the observations well, and even
only several observations can help SRNN to greatly recover the trends
with high accuracy.

(v) Assumption of stationarity: All simulations and fittings in this
paper are based on the stationary model CARMA, though the real
AGN variability could be non-stationary (Tachibana et al. 2020). The
main reason for our assumption of stationarity is that at this stage,
not enough real and good-quality AGN light curves are provided
for the training set (for both inputs and targets), while CARMA
(especially DRW) has been a popular model for AGN variability
study for years. It is the closest and simplest model that could help to
achieve AGN light-curve simulations, though it does have drawbacks
and discrepancies compared with the real ones. From this perspective,
SRNN should not be expected to recover the real short-term events
happening in gaps, as CARMA light curves are not generated by
deterministic physical processes.

To summarize: For the LSST cadences shown in Figs 9-11, long
gaps exist between observations, and for the reasons above, the
SRNN model struggles to impute the behaviour during these gaps,
especially for the non-periodic DRW and DHO-overdamped cases.
This will turn out to be an important limitation when attempting to
infer CARMA parameters from these light curves.
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5.2 Parameter estimation analysis

The main motivation of our paper is to investigate whether using an
ML algorithm on (synthetic) LSST quasar light-curve data would
be able to detect and/or mitigate any biases in derived CARMA
model parameters. Specifically, we have modelled the CARMA(1,0)
DRW and CARMA(2,1) DHO processes, the latter in both the
overdamped and underdamped cases. Here, we report the results
of these investigations.

5.2.1 Metric for CARMA parameters

‘We design a metric, M, for evaluating how the CARMA parameters
are recovered by SRNN-modelled daily light curves, compared with
LSST-cadence light curves. This metric is used for the comparisons
between combinations of different cadences and bands, and it can
also be used as an ensemble metric for each cadence with all bands
considered.

.j) @.j)

‘QSRNN QLSST
o= 20 ®
Oin

where N is the number of light curves used in evaluating the metric.
M is the number of parameters for the relevant CARMA model.
OsrNN, OLssT, and 6, are the parameters recovered (by GPR) on the
SRNN reconstructed light curves, the parameters recovered from the
LSST simulated light curves, and the input parameters, respectively.
We calculated the absolute values of differences between Osrnn
and 01 ssT, and then divide them with 6;, in order to measure each
parameter with the same scale. This metric can be extended to any
LSST cadences and any bands.

Fig 12 shows our calculated metrics, for each of the five LSST
cadences and six LSST bands, in the DRW, DHO-overdamped, and
DHO-underdamped cases. We also show ensemble metrics for each
cadence in each CARMA model. Before metric calculations, those
objects with estimated 7 gecqy longer than 10* d are regarded as outliers
and removed.!’

In this plot, it can be seen that the DHO-underdamped case always
gains the lowest M., as the SRNN algorithm can better simulate
this kind of light curve, followed by the DRW case. The DHO-
overdamped case always has the largest M,,. Regardless of which
CARMA model is used, the u-band light curves usually have the
largest M.,,. For most bands, filterdist generally has the lowest (best)
M., which shows that the number of observations plays a key role
in parameter estimation.

To make this more explicit, the lower right panel of Fig 12
shows ensemble metrics for each cadence. Here, three conditions are
considered. The mean metric value from all LSST bands in a given
cadence shows that the differences between baseline, u_long and
cadence_drive are tiny for the DHO-underdamped and DRW models.
The filterdist cadence always gains the lowest mean M., among all
cadences, with rolling having the largest value. Such results indicate
that filterdist might be the optimal cadence for SRNN modelling for
this case, and rolling is the worst option due to the long gaps in
coverage.

However, as the large M., in the u band, which is poorly sampled
for most cadences, drives the mean metric to higher values, we also
present a mean metric that considers only the five redder bands.
In this case, cadence_drive gains the lowest metric. If we consider

17LSST only has 10-yr observation length, r much longer than 10 yr cannot
be estimated correctly.
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Figure 12. CARMA metric under different LSST cadences. Upper left, upper right, and lower left subplots show the metrics with DRW, DHO-overdamped,
and DHO-underdamped cases, respectively. The lower right subplot shows the ensemble metric for different CARMA cases and cadences. The solid lines with
round markers correspond to the mean value with each cadence; the solid lines with ‘x” marker (the labels with %) correspond to the mean value without u band;
the dashed lines correspond to the minimal value for any band (usually r) within each cadence.

single-band modelling, taking only the minimal value (for any band,
but typically ), u_long, cadence_drive, and filterdist all perform well,
with the best cadence depending on the CARMA model used.

5.2.2 DRW parameters analysis

Finally, we investigate the derived parameters and possible biases in
SRNN modelling of AGN, concentrating on the DRW case as it is
the most popular model used to analyse AGN time series. Analysis
for DHO cases will be conducted in future work.

Fig. 13 shows the trend in recovered time-scales compared to the
model inputs, expressed as 1og (0ou) and log (i), where pyx = 7,/(10
yr) (the LSST survey length). For small time-scales, the recovered
T ou from the SRNN-modelled light curves are highly overestimated.
This is because a shorter time-scale leads to more perturbations
within a given gap. SRNN shows worse performance in predicting
the highly variable magnitudes in longer gaps and fewer observations,
resulting in relatively flat predicted light curves and overestimated
time-scales. For longer time-scales, when log (p) > —1, parameter
recovery with the SRNN is somewhat better than using the LSST data
alone, but the time-scales are underestimated in both cases. This is

MNRAS 512, 5580-5600 (2022)

because an observing length longer than ~8-10 times 7 is required to
provide sufficient information for unbiased 7 estimation (Koztowski
2017; Kozlowski 2021; Suberlak et al. 2021). Put simply, when
is longer, e.g. 5 yr, and the observing length is 10 yr, there are not
enough samples for calculating the magnitude differences at high At,
resulting in underestimation of 7.

SRNN-modelled and LSST-cadence metrics almost overlap in r,
i, z, and y bands. For u band, in all cadences, po, for the SRNN
reconstructed light curves is always longer than that for LSST
cadence light curves. Examining the ranges of log (poy) for the six
bands, the , z, and y bands in all cadences allow the best performance:
They are closer to the diagonal than other combinations. Especially
for z band, some SRNN metrics at small time-scales are very similar
to LSST ones. For a given band, the SRNN performance is similar
across most cadences, but larger differences are seen in u band — in
this case filterdist performs relatively better than the others.

Fig 14 shows how well SF, can be recovered from the SRNN-
modelled and LSST light curves. It shows that SF, in all bands and
cadences are underestimated. When log (SF;,) increases, log (SF,y)
moves further away from the diagonal. The main reason is a
positive correlation between SF,, and t (see Fig 1): High SF, often
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Figure 13. t estimation for DRW processes. pin and poy are defined as tj, (the input time-scale) and 74y (the recovered time-scale from the simulated SRNN
or LSST data) divided by 10 yr (the LSST survey observation length). Each row corresponds to a different LSST cadence, and each column corresponds to a
band. Results from the SRNN-modelled light curves are shown with colours, and results from LSST-cadence light curves are shown in grey. The shaded areas
indicate the standard deviation around the median, in 50 bins in pj,, following outlier rejection.

corresponds to longer time-scales, and such light curves require more
observation time (time dilation is also considered) to reach the plateau
of the SF plot (Fig 3). Given the 10-yr LSST survey length, SF, of
many objects with long time-scales will be underestimated.

In general, the SF,, distributions from the SRNN and LSST
light curves overlap in most cases except for u band. SF,, esti-
mations from u-band SRNN light curves, with the baseline, u_long,
cadence_drive, and rolling cadences, are lower than those from LSST
light curves. This is because light curves with sparse observations
make it harder for SRNN to learn their features, resulting in smooth
predictions during observing gaps. When more observations are
allocated (such as in the filterdist cadence), SF,, gets closer to the
diagonal.

6 DISCUSSION

6.1 SRNN modelling performance

Our SRNN model shows the ability to reconstruct realistic AGN light
curves for the three CARMA models of interest. However, we have
also identified biases and limitations in this method. In particular, the
relative inability to predict observations during long gaps means that
modelling results are very sensitive to season length and variability
time-scales, as illustrated in Figs 12-14.

The SRNN model clearly struggles to recover the damping time-
scale, predicting T ~ 1-2 yr regardless of t;, (Fig 13). The problem
at short time-scales is due to the problem of gaps in cadence much
longer than t, with the result that the SRNN representation does not

capture the true variability in these gaps (Section 5.1.3). At longer
Tin, both the SRNN and LSST-cadenced data return underestimates.
This is because of the 10-yr survey duration: For T 2 1 yr, the data
do not have a long enough baseline to give sufficient samples of ©
(Koztowski 2017).

The model performs better in recovering the SE. As shown in
Fig 14, this can be recovered as accurately from the SRNN light
curves as from the LSST light curves, in all bands except u, where
the lower number of detections likely inhibits SRNN reconstruction.
Interestingly, the recovered values of SF, are systematically slightly
below the input values for both SRNN and LSST light curves.

6.2 Comparisons with previous work

The range of ML techniques is vast and here we concentrate on five
main artificial neural network types: the RNN, the RAE, the VRAE,
the VRNN, and the SRNN. We also include multiband GPR here as
the motivation of Hu & Tak (2020) is consistent with this paper.

Very high-level descriptions of these five architectures and as-
tronomical applications are given in Table 6. We also compare the
motivations, input formats, architecture, and results of Tachibana
et al. (2020), Sanchez-Séez et al. (2021), Hu & Tak (2020), and this
paper, shown in Table 7.

Our study represents the first application of an SRNN to as-
tronomical research. The unique design of the SRNN is to stack
a SSM layer on the traditional RNN layer in order to learn and
produce both the underlying features and corresponding stochastic
fluctuations. SRNN is suitable for modelling light curves with

MNRAS 512, 5580-5600 (2022)
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Table 6. A very high-level description of the four architectures most discussed in this paper.

Machine Learning (ML)
network

Description

Recent astrophysics studies

Recurrent Neural Network
(RNN)

Recurrent Auto-Encoder
(RAE)

Variational Recurrent
Auto-Encoder (VRAE)

Variational Recurrent
Neural Network (VRNN)

SRNN

RNN uses multiple layers of recurrent cells [RNN, GRU, Long Short-term
Memory Unit (LSTM), etc.] for processing sequential data. Connections
between nodes form a directed graph along a temporal sequence.

Its encoder learns a representation (encoding) for a set of data, typically for
dimensional reduction (2D time sequences to 1D latent variables), by
training the network to extract the inherent features from input sequences,
and ignore insignificant or noisy data. Then, the representation, or
so-called 1D latent variables are fed into a decoder, which decodes the
features and generate output sequences. This architecture is design for
sequence modelling and forecasting.

Similar to RAE that it consists of an encoder that learns a mapping from
input sequences to latent representation, and a decoder mapping from the
latent representation to outputs. However, the variational approach maps
the data to Gaussian distributions of latent variables instead of determined
variables. Such design provides flexibility for VRAE to generate new and
varying outputs with similar features.

VRNN contains a Variational Auto-Encoder (VAE) at each step, and each
VAE (including the prior of the latent random variables) is dependent on
the hidden state at the previous step /; — ;.

Extended from VRNN, SRNN model combines both VRNN and State
Space Model (SSM) advantages. Compared with VRNN generating
deterministic values, SRNN provides stochastic random variables sampled
from latent Gaussian distributions, thus more suitable for time-series study
with high variability.

Dékéany & Grebel (2020), Fremling et al.
(2021), and Burhanudin et al. (2021)

Naul et al. (2018), Tsang & Schultz (2019),
Jamal & Bloom (2020), Tachibana et al.
(2020), and Villar et al. (2021)

Sanchez-Séez et al. (2021)

None

This paper

extremely high variability, especially AGN. Given an AGN, when
dense observations and uniform cadences are provided, SRNN can
learn its features better. However, SRNN also has some weaknesses.
Its input and output sequence lengths should always be identical,

MNRAS 512, 5580-5600 (2022)

and its forecasting ability is relatively weak since the behaviour
is inherently random. Nonetheless, given its ability to reconstruct
realistic AGN light curves, we encourage further investigations
regarding its architecture.
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Table 7. Comparison between ML applications to AGN in Tachibana et al. (2020), Sédnchez-Sdez et al. (2021), Hu & Tak (2020), and this paper.

Attribute

Tachibana et al. (2020)

Sanchez-Saez et al. (2021)

Hu & Tak (2020)

This paper

Motivation

Data source
and input
format

Architecture

Key results

Focus on how well RAE learns
the underlying processes and
achieves modelling and
forecasting of the general
trend, rather than the
stochasticity.

Approximately 15 000-decade
long quasar light curves from
Catalina Real-time Transient
Survey; normalized mags and
mag_errors, Af.

RAE for forecasting the
temporal flux variation of
quasar.

Applied a RNN Auto-Encoder
(AE) to model and predict
quasar variability and reported
that the AE showed better
performance than DRW
modelling in forecasting
short-term variability.
Additionally, they found
temporal asymmetry in the
optical variability, and the
decrease of the amplitude of
the variability asymmetry as

Aim to recognize
changing-look AGN by
modelling its light curves with
VRAE and obtain their general
behaviours and features.

230451 various AGNs’ light
curves from Zwicky Transient
Facility data release 5 (ZTF
DRS); normalized mags and
mag_errors, Af.

VRAE for modelling AGNSs;
Isolation Forest algorithm as
an anomaly detector providing
the anomaly score.

Modelled light curves from the
ZTF DRS5 with a VRAE
architecture obtaining a set of
attributes from the VRAE
latent space that describes the
general behaviour of the data.
These attributes are used as
features for an anomaly
detector. These anomalies are
dominated by bogus
candidates, identify 75
promising changing-state AGN

Assuming correlations of SF., and t
among bands, they proposed a
state-space representation of a
multivariate DRW model for
modelling AGN light curves in five
bands and with irregular cadences.
Generated simulated light curves via
two steps: Simulate full light curves
with measurement errors using the
DRW model, and shape them to
realistic sparse light curves. Then
they fit them to univariate and
multivariate models separately.

Univariate and multivariate DRW
models; Maximum likelihood —
Kalman Filtering (Kalman 1960) and
Bayesian posterior are applied to
estimate parameters.

Compared the results of univariate
DRW model and multivariate DRW
model fittings for simulated light
curves and a SDSS
spectroscopically-confirmed quasar,
indicating that multivariate model
can help reveal the possible
similarities of true time-scales across
five bands. They also estimated the
time decay between doubly lensed
multiband light curves using the
multivariable process.

Model the whole 10-yr light
curves and predict the
vacancies and stochastic
features, thus helping LSST
cadence strategies evaluation.

Studied ~9000 SDSS Stripe
82 quasars’ DRW parameter
distributions, which are further
referenced for simulating 1200
DRW and DHO quasars in six
bands; normalized mags and
mag_errors, at each time-step
with vacancies (filled with
Zeros) at some time-steps.
SRNNs for modelling AGN
light curves; Univariate
Gaussian process regression
(GPR) is applied for estimating
CARMA parameters.

Applied SRNN to model
simulated LSST cadence AGN
light curves, learn the
stochasticity and latent
features, and eventually
recover their daily light curves.
Provided a metric Mg, to
quantify the influence of
different LSST cadence
strategies on CARMA
parameter recovery.

the luminosity and/or black candidates.

hole mass increases.

6.3 Implications in LSST

Our research is expected to help the LSST AGN collaboration
to consider optimal cadences for studying AGN variability. To
investigate this, we examined the results of our metric evaluation
(equation 8) for each LSST band under various classes of proposed
LSST cadence (Fig 12). For existed cadence strategies, we conclude
that filterdist is the best cadence for band-averaged case. As u band
always has the worst score due to the fewest total observations, we
also only consider a metric with only g, r, i, z, and y bands, and find
that cadence_drive is favoured in this case. If we just look at the ‘best’
band case, u_long is slightly better than baseline and cadence_drive.

However, our experiments show that SRNN performs better for
uniformly-seasonal light curves (see Fig 8) with denser detections,
which is reasonable as with more information provided for the
SRNN, it can learn the underlying features more easily. Therefore,
it might perform better for the DDFs, where the cadences are more
dense and uniform compared to the WED survey.

6.4 Model selection and caveats

When LSST data emerges, CARMA models will be fitted to the
irregular light curves as in Figs 8-10. The fitting procedure for
CARMA is MLE (e.g. GPR), or a Bayesian variant (e.g. MCMC)
if prior constraints on parameters are available. It is worth noting

that in our research, we chose the GPR method as it is much
less time-consuming than MCMC. As we have a sufficient amount
of data for parameter estimations, the biases caused by GPR can
be greatly relieved and the estimation distributions are of our
interest.

In standard practice, the choice between AR models, such as
DRW - CARMA(1,0) and DHO - CARMA(2,1), should be based
on a penalized likelihood measure such as the Akaike Information
Criterion (AIC; Akaike 1973). Best-fitting models are calculated for
arange of (p and ¢) and, using the AIC to achieve model selections.
The balance between oversimplicity versus overcomplexity of the
models is determined by the data.

Moving away from whether DRW or DHO models are preferred
for an observed light curve, goodness-of-fit tests will be needed to
show that the best-fitting model is adequate. The Anderson—Darling
goodness-of-fit test of the cumulative observed versus model bright-
ness is a reasonable tool (Stephens 1974) as well as more powerful
residual diagnostics including the, e.g. Ljung—-Box test (Ljung &
Box 1978) for autocorrelation and augmented Dickey—Fuller test
(Dickey & Fuller 1979) for stationarity. Indeed, time-series analyses
will likely move away from the SF (see Emmanoulopoulos, McHardy
& Uttley 2010) and likely focus more on the ACF. Ultimately, model
selection should allow astrophysical insight into the accretion process
(e.g. presence or absence of a harmonic oscillator and non-stationary;
Tachibana et al. 2020).

MNRAS 512, 5580-5600 (2022)

220z 8unp 0z uo Jesn weybuiwig 1o Ausiaaiun Aq $£8£559/085S/b/2 L S/8101UE/SBIUW/WOoD dno-olWwspeoe//:sdny woJj papeojumoq



5596  X. Sheng, N. Ross, and M. Nicholl

6.5 SRNN forecasting

Forecasting future light-curve behaviour for a given object is another
goal of applying ML to AGN. We tried to use SRNN for forecasting,
and tested its ability to predict one or several steps for one run
and fold the outputs as the input for the next run, and to predict a
length of future light curves for one run. However, the results are not
promising: Our SRNN can only predict light curves for about one
month, with low accuracy. As time increases, the error gets bigger
and light curves become increasingly flat. This suggests that the
SRNN architecture may not be suitable for forecasting, due to its
non-deterministic (random) nature. More experiments will be done
in the future.

7 CONCLUSIONS

Cadence strategy plays an important role in light-curve modelling,
especially for AGN with long time-scales and high variability
features. This paper introduces an SRNN to model realistic LSST-
cadence light curves simulated using CARMA models, and provides
a quantitative metric to evaluate and compare the performance
between five selected LSST cadence strategies.

In this study, we:

(1) Investigated the popular CARMA models, which are often
applied in AGN light-curve simulations. In addition to the usual
DRW model, we also explored DHO models (underdamped and
overdamped cases), which may be more applicable to some AGN.

(ii) Designed a QuasarMetric for simulating LSST-cadence light
curves (MJD, mag, and o ) given varying input CARMA param-
eters.

(iii) Applied modified SRNNs to AGN light-curve modelling, to
achieve stochastic modelling and prediction

(iv) Provided a metric, M, for estimating how well SRNN can
help recover the input parameters with GPR, compared with pure
LSST-cadence light curves.

(v) Concluded that filterdist, cadence_drive, and u_long strategies
are the optimal when six bands, five bands, and the best band are
considered, respectively.

However, as shown in e.g. Figs 8 and 13, the long gaps inherent
in all suggested WFD cadences make it extremely difficult for
CARMA models, and the SRNN implementation, to recover accurate
variability time-scales. Moreover, in real LSST data most AGN will
be fainter than the SDSS sample used to construct our models, and
hence photometric noise will introduce further uncertainties. This
leads us to conclude that LSST WFD data may not be particularly
well suited to AGN variability studies, at least with current methods.
Progress may be made by further developing the ML methods, for
example by combining our SRNN architecture with the multiband
approach of Hu & Tak (2020), or by focussing on the higher cadenced
data from the LSST DDFs for a smaller sample of AGN. The
research we have presented here provides a method to quantify the
performance of any potential cadence strategy, and we expect this
will prove useful to the AGN community in preparing for LSST.
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APPENDIX A: THE CARMA(1,0) AND
CARMA(2,1) MODELS

A1l CARMA in a nutshell

Kelly et al. (2014) and Moreno et al. (2019) show the detailed
introduction of CARMA in different dimensions. Here, we would
like to extract the key information from them, which are beneficial
for our research.

CARMAC(X, Y) is derived from discrete ARMA model, which is
applied to... equation (A1) is the CARMA equation (from equation 1
in Kelly et al. 2014):

d?y(t) APy ()
di)p al”lTZl + ...+ (X()y(t)
d?¢(t) d?le(r)
:ﬂqdliq q_lw"‘...‘i‘G(t). (Al)

The left-hand side of the equation with C-AR coefficients o
describes the AR part of the system; the right-hand side describes the
driving perturbation C-MA. In our work, we only focus on DRW -
CARMAC(1,0) and DHO - CARMA(2,1). Table A1 shows all relevant
equations about DRW and DHO, followed by notation explanation
in Table A2.
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Table Al. Summary of the key DRW and DHO equations (Kelly et al. 2009, 2014; Kasliwal et al. 2017; Moreno et al. 2019). For the RHS of each
differential equation, €(#) corresponds to a white noise process with the mean equal to zero and variance (J]%Oise) equal to one (Kelly et al. 2009). For
DRW, there is only one root, ri, which is equal to —«;. For DHO, the r| and r, mean the two roots of characteristic equations for the LHS of each
differential equation. These could be real or complex, corresponding to overdamped and underdamped cases, respectively. Further symbols are defined
in Table A2. It is worth noting that the top four sections define the statistical models while the bottom three sections are non-parametric transforms of

the CARMA model.
CARMA DRW-CARMA(1,0) DHO-CARMA(2,1)
Differential equation d'x + ax(t) = BodW(D) d2x 4 a1d'x + aox = Bo(dW) + B1d' (dW)
dX(1) = —1X(1)dt + o V/dre(r) + bdt
where 7,0, and r > 0
SSM X(1 4+ 81) = e x (1) + fo [ e CIdW, xX(1 + 81) = e x (1) + e x (1) + [ A9 BAW,,
_ |l _ T
A= |:—Olz 0} . B=1[B1, Pol
Input parameters Tdecay = —+ = & Towe = | &L
ecay ) o blue Bo )
2 2 2 Bthiw
o= /3() Ojc = ACVF(0) = ONoise 0201101(2
Overdamping:
1 ~ 1
Trise = 7= In % ~ ‘min(fl‘rz)
_ 1
Tdecay = ‘max(rl,rz)
Underdamped:
Wy = /02
2
wg = 0,\/1 -8 =\Jan — T
o
§=1/m
_|2x
TQPO = | o
Tagro = %’;
=i = | = [
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IR d'G 4+ a1G =58(n) G+ a1d' G+ arG=6(t)
G(1) = Ce ! G(t) = Cre"V! + Cre’?!
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11 Cy 0
ACF ACF(At) = et ACVF(A1) = Co(C1e"14! + Cpe?2)
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Table A2. Key parameters in the DRW and DHO models.
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DRW

T The characteristic/decay time-scale. Represents the time for the time series to become uncorrelated.

SFso The long-term variability, SFo, = +/20.

o The long-term standard deviation of variability, independent of v and observation length, however, when the observation length is much
longer than 7, the variance of time series will be very close to o.

6 6 = SFao/v/T = 20/JT
For At « 1 the dispersion between two points is & |Ar]'2,
for At > t, the dispersion asymptotes to o (Koztowski et al. 2010).

dW & €(1) Proved by Ito’s theorem (Thomas 1986), Wiener increments dW and random variable €(#) are equivalent.

DHO

o First coefficient of C-AR.

o) Second coefficient of C-AR, equal to w?.

Bo First coefficient of MA equation.

Bi Second coefficient of MA equation.

Tdecay Decay time-scale for DHO.

Trise Rise time-scale for overdamped DHO. It is a feature in Green’s function showing the time corresponding to the peak value. When 75 = 0, it
becomes DRW.

Thlue The ratio of ‘ % ‘ As Tpjye increases, the time series becomes more erratic.

(o Natural QPO frequency.

wg Decay QPO frequency.

TQPO Period of natural QPO frequency.

Taqpro Period of decay QPO frequency.

& Damping ratio of the oscillator, equal to 2%.

£ > 1, it is an overdamped DHO;
& =1, itis a critical damped DHO;
& < 1itis an underdamped DHO.

APPENDIX B: STOCHASTIC RECURRENT
NEURAL NETWORK

B1 The ELBO

Maximizing F is the equivalent of maximizing the (log) likelihood,
p(x|z), and minimizing the distance to the prior, Dk (q(z)|lp(z]x)).

KL divergence is always equal to, or greater than 0. Hence the
ELBO is always below the (log) evidence of our data and in that
sense it is the lower bound: F(6, ¢) = >_; F:(0, ¢) < L(0).

The KL divergence is for measuring the differences between two
probability distributions. In this research, it is applied to measure
the differences between prior and posterior z distributions. For one
pair of input and output sequences, the calculation is shown in
equation (B1).

Dxu(q(@) || plel)) = / o(log 1) g
z p(zlx
= E.yllogq(2)] — E.~yllog p(z]x)]. B1)

B2 SRNN implementation

There is no simple command to invoke the SRNN in TensorFlow.
Instead, as described in Section 4.1, the SRNN is built with a
generative model and an inference model. This is implemented for
our study as follows:

HHH#AHA#HFHH Generative Model ###H##HHHHHH#H

##twoh layers

X_inputs = Input (shape = (timestep, features),
name = ’X_input’)

hl_out =Bidirectional (GRU (num_neutron, name =
"h_0’, return_sequences=True) ) (X_inputs)

hl_out =Bidirectional (GRU (num.neutron, name =

"h 0, return_sequences=True) ) (dl_out)

## Bidirectional wrapper for RNN;

## generatepriorzfromhl

prior_z_mean=Bidirectional (GRU (z_neutron, name
='prior.mean’, return_sequences=True) )
(hl_out)

prior_z_log.var =Bidirectional (GRU(z.neutron,
name = 'prior_log.var’,
return_sequences=True) ) (hl_out)

prior_sampled._z = Sampling (name =
"sampling prior’) ( [prior_z_mean,
prior_z_log.var])

merged prior =concatenate ( [hl_out,
prior_sampled._z])

##prior_ outputswill be the real outputs for
validationset

prior_outputs=TimeDistributed (Dense (1),
name='time dist’) (merged_prior)

generative_model =Model (X_inputs,
[prior_outputs, prior_z mean, prior_z_log._var,
hl_out], name ="'generative model’)

HH#H#HEAH#HEH Inference Model ##H#HH#HHHEHHH#H

## reverse layera for inference

gl_out = Input (shape = (pred_timestep,
num-neutron?2) , name='gl_out’)

Y_inputs = Input (shape= (pred_timestep,
pred_features) , name="'Y_ input’)

merged_input = concatenate ( [gl_out, Y_inputs])
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# ReversedLayer, a

a_out =Bidirectional (GRU (num_neutron,
name="'a_0’, return_sequences=True,
go-backwards=True)) (merged_-input)

posterior_z mean=Bidirectional
(GRU (z_neutron, name = 'posterior_z. mean’,
return_sequences=True, go_backwards=True) )
(a_out)

posterior_z_logvar=Bidirectional
(GRU (z_neutron, name = 'posterior_z_log.var’,

MNRAS 512, 5580-5600 (2022)

return_sequences=True, go-backwards=True) )
(a-out)

inference model =Model ( [gl_out, Y_inputs],
[posterior_z_mean, posterior_z_log.var],
name ="'1inference_model’)

##Fulfilingthe SRNN
srnn = SRNN (generative model, inference_model)

This paper has been typeset from a TEX/IZTEX file prepared by the author.
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