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Abstract 22 

China has implemented two national clean air actions in 2013-2017 and 2018-2020, 23 

respectively, with the aim of reducing primary emissions and hence improving air 24 

quality at a national level. It is important to examine the effectiveness of such emission 25 

reductions and assess the resulting changes in air quality. However, such evaluation is 26 

difficult as meteorological factors can amplify, or obscure the changes of air pollutants, 27 

in addition to the emission reduction. In this study, we applied the random forest 28 

machine learning technique to decouple meteorological influences from emissions 29 

changes, and examined the deweathered trends of air pollutants in 12 Chinese mega-30 

cities during 2013-2020. The observed concentrations of all criteria pollutants except 31 

O3 showed significant declines from 2013 to 2020, with PM2.5 annual decline rates of 32 

6-9% in most cities. In contrast, O3 concentrations increased with annual growth rates 33 

of 1-9%. Compared with the observed results, all the pollutants showed smoothed but 34 

similar variation in trend and annual rate-of-change after weather normalization. The 35 
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response of O3 to NO2 concentrations indicated significant regional differences in 36 

photochemical regimes, and the differences between observed and deweathered results 37 

provided implications for volatile organic compound emission reductions in O3 38 

pollution mitigation. We further evaluated the effectiveness of first and second clean air 39 

actions by removing the meteorological influence. We found that the meteorology can 40 

make negative or positive contribution in reducing pollutant concentrations from 41 

emission reduction, depending on type of pollutants, locations, and time period. Among 42 

the 12 mega-cities, only Beijing showed a positive meteorological contribution in 43 

amplifying reductions in main pollutants except O3 during both clean air action periods. 44 

Considering the large and variable impact of meteorological effects in changing air 45 

quality, we suggest that similar deweathered analysis is needed as a routine policy 46 

evaluation tool on a regional basis. 47 

 48 

Keywords: air quality, clean air action, weather normalization, random forest model, 49 

meteorological influence 50 

 51 

Graphical Abstract 52 

 53 

1. Introduction  54 

Air pollution is an urgent problem globally due to its adverse impacts on the environment, 55 

human health and climate (Fan et al., 2020; Hadley et al., 2018). It has been well recognized SO2, 56 

NO2, CO, O3, PM2.5 and PM10 are defined as the six criteria pollutants in quantifying air pollution 57 

levels (Hu et al., 2015). World Health Organization (WHO) data shows that 9 out of 10 people 58 

breathe air that contains high levels of these criteria pollutants and which exceeds WHO guideline 59 

limits, and it is estimated that 7 million people premature deaths are caused by air pollution 60 

worldwide every year (World Health Organization, 2021). In addition, air pollution can reduce 61 

visibility and affect solar radiation balance directly and indirectly (Li. et al., 2017; Xia et al., 2016), 62 
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and even give rise to more extreme weather events (i.e. flooding and drought (Cui et al., 2017; 63 

Herrera-Estrada et al., 2018; Tie et al., 2016). 64 

In the past few decades, China has experienced rapid industrialization and urbanization. Along 65 

with the rapid development of the economy, air pollution has produced a substantial influence on 66 

each sector of Chinese society for a long time. In some major areas of China, concentrations of air 67 

pollutants greatly exceed air quality guidelines for the protection of health recommended by the 68 

WHO (Zhang et al., 2015). In China, ambient air pollution has become the fourth largest threat to 69 

Chinese health, after heart disease, dietary risks and smoking (Chen et al., 2013; Zhang et al., 2015), 70 

and was responsible for 1,565,000 to 2,168,000 premature deaths in 2019 71 

(http://ghdx.healthdata.org/gbd-results-tool). As a result, air pollution has become a major concern 72 

for the public and policy makers (Feng et al., 2017; Guo et al., 2020; Kuerban et al., 2020; Liu and 73 

Wang, 2020; Ma et al., 2019; Song et al., 2017; Wang et al., 2019a; Wang et al., 2019b; Zhan et al., 74 

2018; Zhang et al., 2018). To solve the increasingly serious air pollution problem, China established 75 

a national air quality monitoring network that covers major cities since early 2013. The monitoring 76 

data include observations of PM2.5, PM10, NO2, SO2, O3 and CO (Wang et al., 2020b). Meanwhile 77 

in 2013, the Chinese government implemented the "Air Pollution Prevention and Control Action 78 

Plan" (2013-2017), also known as the first Clean Air Action. In 2018, the Chinese government 79 

continued to implement the "Blue Sky Protection Campaign" (2018-2020), also known as the 80 

second Clean Air Action (Wang et al., 2019c; Xu et al., 2021). 81 

At present, these actions have been implemented, and it is of great significance to accurately 82 

estimate whether the intervention is working to meet the set targets. However, such evaluation is 83 

somewhat difficult as many meteorological conditions can obscure the impact of emission changes 84 

on air quality (Vu et al., 2019). Apart from interventions or management efforts to control air 85 

pollution, meteorological conditions can also directly or indirectly affect the emission, transport, 86 

chemical formation and deposition of air pollutants, thus affecting their concentration in ambient 87 

air (Zhang et al., 2015). Variation of meteorological factors can hinder the correct analysis of trends 88 

in different air pollutants and may lead to erroneous conclusions about the effectiveness of 89 

intervention or management strategies (Grange and Carslaw, 2019). Hence, it is essential to 90 

decouple meteorological impacts from trends in ambient air quality data and extract the real changes 91 

in air quality driven by policy interventions. 92 

Daskalakis et al. (2016) employed chemical transport models to evaluate the response of air 93 

quality to emission control measures, which was based on assimilated meteorology to account for 94 

the year-to-year climate variability. However, such assessment results will be affected by significant 95 

uncertainties in the emission inventory and chemical transport model itself (Gao et al., 2018). 96 

Statistical analysis is another commonly used method to decouple the meteorological effects on air 97 

quality. Many mathematical analysis approaches or models were developed, which were mainly 98 

through data regression to eliminate the impact of varying meteorological variables. Venter et al. 99 

(2020) adopted a regression model to evaluate the effects of COVID-19 lockdown on air pollution 100 

levels. He et al. (2020) applied a “difference-in-difference” approach to evaluate the impacts of 101 

COVID-19 lockdown measures in terms of the Air Quality Index (AQI) and the concentrations of 102 

particulate matter. Henneman et al. (2015) employed multiple Kolmogorov–Zurbenko filters and a 103 

multi-linear regression model to estimate the effectiveness of air pollution regulations and control 104 

measures. Among these models, machine learning models (i.e., the boosted regression trees and 105 

random forest algorithms) usually show a better performance than traditional statistical and air 106 
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quality models by reducing variance/bias and error in high dimensional data sets, though they fail 107 

to interpret the physical mechanism behind the results (Zhang et al., 2020). Particularly, RF has the 108 

advantage of not being a “black-box” method where the learning process can be explained, 109 

investigated, and interpreted. Recently, Grange et al. (2018) developed a machine learning technique 110 

based upon the random forest algorithm to identify the key mitigation measures contributing to the 111 

reduction of air pollutant concentrations in Beijing. This technique has been adopted widely and 112 

validated in various environments (Shi et al., 2021; Vu et al., 2019; Zhang et al., 2020).  113 

In this study, we applied the RF machine learning technique proposed by Vu et al. (2019), and 114 

systematically studied the trends and characteristics of air pollution in 12 mega-cities in China from 115 

2013 to 2020 based on the latest observational data. The effects of meteorological factors were 116 

eliminated from the trends in pollutant levels, and the real performance of the two national clean air 117 

actions were comprehensively assessed. The results may be conducive to formulating air quality 118 

control policies in China and other developing countries. 119 

2. Method 120 

2.1 Study region and data sources 121 

In this study, we investigated 12 megacities in China, these cities are selected as they are 122 

representative mega-cities of China according to their GDP, population and area, and geographical 123 

distribution. Also, the air quality data availability is another important reason, as all these 12 mega-124 

cities started to monitor PM2.5 since January 2013. Their geographical locations are shown in Fig. 125 

S1, and the summarized information describing each city (i.e. economy, population, area, specific 126 

location, etc.) can be found in the Supporting Information Table S1.   127 

Since January 2013, the Ministry of Environmental Protection of China (MEPC) has released 128 

the real-time air pollution monitoring information for 74 major cities, including for the 6 main 129 

criteria pollutants of PM2.5, PM10, NO2, SO2, O3 and CO. In this study, we used air quality 130 

observation data and meteorological data over the aforementioned 12 cities from 18th January 2013 131 

to 31st December 2020. Table S2 summarized the name and location of monitoring stations in each 132 

city from the Chinese national monitoring network, and those sites are mostly distributed in urban 133 

areas of each city. By averaging the measurements from the monitoring sites within each city, we 134 

obtain city-specific dataset that can represent the air quality of each city. Meteorological data, 135 

including air pressure (PRS, hPa), temperature (TMP, °C), wind direction (WD, °), wind speed (WS, 136 

m/s), and humidity (RH, %), were also collected from meteorological stations of each city over the 137 

period of 18th January 2013 to 31st December 2020. The detailed information of data source was 138 

illustrated in Supporting Information Text S1. 139 

 140 

2.2 Deweathering using the random forest (RF) model 141 

The deweathering technique was first proposed by Grange et al. (2018) to predict the 142 

concentrations of air pollutants at a specific measured time point but removing the influence of 143 

varying meteorological conditions, which was regarded as “deweathered concentration”. Such 144 

technique was based on RF regression model. Regression model is a mathematical model for 145 

quantitative description of statistical relationship, and it can indicate the strength of the influence of 146 

multiple independent variables on one dependent variable. The RF regression model is composed 147 
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of hundreds of independent decision tree models and a combination of randomly chosen explanatory 148 

factors, and the term "Random Forests" is derived from "random decision forests". The random 149 

selection process involves 1) variables and data input, and 2) generation of a certain number of 150 

decision trees. In the subsequent calculation, each decision tree can provide one intermediate for the 151 

input variables, and then the intermediate of these decision trees were summarized as the RF 152 

regression prediction result. It can be employed to describe the relationship between the 153 

concentration of air pollutants by temporal variables (yearly, day of year, day of week, and hourly) 154 

and meteorological variables (relative humidity, temperature, atmospheric pressure, wind speed and 155 

wind direction). The detailed information of random forest model can be found in Supporting 156 

Information Text S2 (Wang et al., 2020a). 157 

Firstly, we constructed a reliable RF model. The original datasets for the RF model of each city 158 

contain the concentration of PM2.5, PM10, NO2, SO2, O3 and CO as well as their predictor variables, 159 

including time variables represented by Unix Epoch time, hour (0−23), day of week (Monday to 160 

Sunday), and meteorological parameters (wind speed, wind direction, pressure, temperature, and 161 

RH). 70% of the original datasets were randomly selected as a training dataset to construct the RF 162 

model, using R “normalweather” packages by Grange et al. (2018), and the remaining 30% of the 163 

original data was employed as testing dataset to validate the performance of the constructed model. 164 

The performance of the RF model has been evaluated based on several typical statistical metrics 165 

(Emery et al., 2017; Vu et al., 2019), and details of formulas, verification plots and summarized 166 

statistical metrics can be found in the Supporting Information Text S3, Fig. S3 and Table S3. These 167 

results demonstrated the reliability of the trained model. For example, the coefficient of 168 

determination r2 are all above 0.8, and the coefficient of efficiency COE are between 0.6 and 0.9. 169 

These validation results from different statistical metrics are overall consistent with previous study 170 

(Vu et al., 2019), hence the trained model can be used for subsequent deweathering analysis. 171 

Secondly, we used the validated RF model to eliminate the effects of meteorological factors. 172 

Both time variables (month, week, and hour) and meteorological parameters were resampled 173 

randomly to represent the mean meteorological conditions of a city. Specifically, we resampled 174 

meteorological data set from the meteorological conditions of that city for 2013-2020. The input 175 

meteorological variables at a particular time point on a particular day can be randomly replaced with 176 

data at the same time within a four-week period (i.e., 2 weeks before and 2 weeks after the selected 177 

date), which is similar to Zhang et al. (2020). Then the resampled meteorological variables and time 178 

variables were fed into the RF model to predict the concentrations of air pollutants. A diagram that 179 

describing the above methodology is shown in Fig. S2. This resample and calculation process was 180 

repeated 1000 times, and the 1000 predicted concentrations of each air pollutant at specific time 181 

point were obtained and then averaged as the final weather-normalized concentration. In this way, 182 

the impact of weather variations on air pollutants can be normalized while their seasonal and diurnal 183 

variations are retained, which allows us to further study the temporal variations in deweathered 184 

concentrations. 185 
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3. Results and discussion 186 

3.1 Observed and deweathered air quality trends during 2013-2020 187 

Combining the observed and deweathered pollution concentration data, we obtained the annual 188 

changing rate (normalized to the year of 2013) of the six criteria pollutants in the 12 mega-cities 189 

from 2013 to 2020 by a linear regression, which are shown in Fig. 1. Detailed trends about the 190 

monthly and yearly averaged values for both observed and deweathered concentrations can be found 191 

in Supporting Information Fig. S4-S5. 192 

As shown in Fig. 1, the overall concentrations of PM2.5 observed in 12 mega-cities maintained 193 

a general downward trend, while several cities experienced an uptick in specific years, such as 194 

Shijiazhuang in 2016 and Shanghai in 2015. Specifically, the annual decline rate of PM2.5 observed 195 

across the 12 mega-cities has been around 6~9% per year, and the decline rates in Beijing, 196 

Shijiazhuang, Nanjing and Hangzhou are larger than for the other cities. The trends in the weather 197 

normalized concentrations and annual decline rates of PM2.5 in most of the mega-cities are very 198 

similar to that of observed trends and annual decline rate, with the exceptions of Beijing and 199 

Lanzhou with 2% lower deweathered annual decline rate compared to that of observed PM2.5. 200 

Apart from Shijiazhuang, Lanzhou and Chengdu, the concentration of observed PM10 in many 201 

cities increased in 2014 and then declined subsequently. The concentrations of observed PM10 in 202 

Shijiazhuang, Lanzhou and Chengdu increased slightly in 2016 and maintained a downward trend 203 

in the other years. The annual decline rates of observed PM10 are around 6%~8% in Beijing, Tianjin, 204 

Shijiazhuang, Nanjing, Wuhan, Chengdu and Chongqing, and 4%~6% in Shanghai, Hangzhou, 205 

Guangzhou, Shenzhen and Lanzhou. After weather normalization, the deweathered PM10 showed 206 

overall similar annual decline rates to the observed, consistent with the case of PM2.5. 207 

Large variability in the trends for observed NO2 concentrations were found among the 12 cities. 208 

Specifically, Chongqing and Lanzhou maintained an upward trend from 2013 to 2017, and began to 209 

decline from 2018. By contrast, other cities showed a downward trend of observed NO2 since 2013 210 

or 2014 with some fluctuations in specific years. In 2014, Tianjin, Shanghai, Lanzhou and 211 

Chongqing experienced a significant NO2 uptick, while Nanjing, Hangzhou, Chengdu and Beijing 212 

experienced a sightly increase. In 2017, Tianjin, Guangzhou and Wuhan experienced a significant 213 

uptick while Nanjing and Shanghai experienced a sightly increase. Overall, the annual rate of 214 

decline of the observed NO2 is highest in Beijing (7% per year), followed by Chengdu, Shenzhen 215 

and Wuhan (around 4%~6%), and the rates of decline for other cities are all below 4%. 216 

Comparatively, large fluctuations of the observed NO2 in specific years were smoothed after the 217 

weather normalization. For example, the NO2 increase phenomenon (i.e. Hangzhou and Chengdu 218 

in 2014; Tianjin and Guangzhou in 2017) was not observed in deweathered trends. The annual 219 

decline rates of NO2 after the weather normalization were overall similar to that of the raw observed 220 

concentrations, except for Shanghai showing a clear difference between observed and deweathered 221 

(-0.4% vs. -2.1%). 222 

The concentration of observed O3 in most of the mega-cities showed an upward trend until 223 

2017, except for Tianjin and Shijiazhuang. Specifically, Lanzhou, Shijiazhuang and Tianjin showed 224 

the highest annual rate of increase in observed O3 at around 8%, followed by Nanjing (6%), while 225 

other cities showed lower rates of increase (below 4%). Similar to NO2, the observed O3 fluctuations 226 
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in specific years were smoothed after the weather normalization. Overall, both observed and 227 

deweathered O3 concentrations have increased for all the cities, with annual increase rates of 1- 9%. 228 

The reduction in observed SO2 concentrations was the most significant among the six criteria 229 

pollutants. From 2013 to 2020, all 12 mega-cities maintained a large SO2 reduction rate in the first 230 

few years, which then gradually reduced. Particularly for Wuhan, Chongqing, Shenzhen, Lanzhou 231 

and Hangzhou, the observed SO2 concentrations tended to flatten out since 2016. Overall, the annual 232 

rates of decline of observed SO2 in most of the mega-cities exceeded 10%, with Beijing, Tianjin and 233 

Shijiazhuang showing the largest rate of decline (around 12%), while the rate of decline for 234 

Shenzhen is the lowest (6%). Compared to the observed results, almost all the mega-cities showed 235 

a similar trend and rate of decline in deweathered SO2 results, except Lanzhou with a smaller 236 

decrease of deweathered trend than that observed since 2019. 237 

Generally, the concentration of observed CO in all mega-cities showed a trend of declining 238 

concentrations, with some fluctuations for specific years. For example, Lanzhou and Chongqing 239 

showed a brief increase in observed CO in 2014, while Nanjing and Shijiazhuang also showed a 240 

significant increase of CO in 2016. Overall, Beijing, Tianjin, Shijiazhuang, Shenzhen and Chengdu 241 

showed a relatively large CO annual reduction rate of 6%~8%, while the reduction rate for other 242 

cities was around 2%~4%. Similar to other pollutants, the fluctuations of CO in specific years were 243 

smoothed after the weather normalization (i.e., Lanzhou and Chongqing in 2014; Nanjing in 2016). 244 

The annual rate of decline of CO after the weather normalization is very similar to that obtained 245 

from the observed values, with differences generally within 1%. 246 

We further define the index ω to quantify the extent to which concentrations of the six criteria 247 

pollutants in different regions are affected by meteorological conditions. As meteorology may have 248 

positive or negative influences in different seasons (Vu et al., 2019), we used absolute difference 249 

between observed and deweathered values to prevent an offsetting effect arising between different 250 

seasons. The absolute difference values from 96 months between 2013 and 2020 are averaged, as 251 

shown in Equation (1). 252 

 

96
,  ,

1 ,  

96

i observation i model

i i observation

C C

C


=

−

=


 (1) 253 

The ω values for the six criteria pollutants across 12 mega-cities are shown in Fig. S6 and the 254 

overall results are discussed here. PM2.5, PM10 and O3 were most affected by meteorological 255 

conditions (ω between 10%~15%), followed by NO2 and SO2 (ω ~10%). Compared with other 256 

primary gaseous pollutants, it seems that PM2.5 and PM10 are more sensitive to meteorological 257 

influences. The likely reasons are 1) long-range transport is important source of aerosol, which is 258 

mainly controlled by the wind field; 2) temperature and humidity are also important meteorological 259 

factors that can affect secondary aerosol formation and chemical composition. CO shows the lowest 260 

ω value of around 5%, which may be explained by its long atmospheric lifetime that has least 261 

influence from meteorological conditions. Among 12 mega-cities, the air pollutants (i.e., PM2.5, 262 

PM10, SO2 and CO) in Beijing are most affected by meteorological conditions, which is likely partly 263 

due to the unique topography in Beijing as the Yanshan Mountains and Taihang Mountains surround 264 

the city to the north and west. For example, northern winds tend to bring clean air to Beijing while 265 

southerly winds do the opposite (Liang et al., 2017; Zhang et al., 2015). Here we further performed 266 

the 72 hours backward trajectory analysis at Beijing from 2013 to 2020 by employing the hybrid 267 



8 

 

single particle Lagrangian integrated trajectory model (Hysplit) with the global data assimilation 268 

system (GDAS). The trajectory clustering analysis showed that more than 50% long-range airmass 269 

arriving in Beijing were mainly originated from the northwest direction and passing through 270 

Yanshan Mountains and Taihang Mountains (Fig. S7). As mentioned previously, our RF model 271 

results suggested that Beijing is most affected by meteorological conditions among the 12 mega-272 

cities, which may be explained by both unique topography in Beijing and frequent long-range 273 

airmass from northwest direction. By contrast, there were no significant city-to-city differences in 274 

the relative sensitivity to meteorological conditions for NO2 and O3. 275 

3.2 Response of O3 to NO2 concentrations 276 

It is well established that both NOx and volatile organic compounds (VOCs) are the precursors 277 

of O3, and understanding the O3-precursor relationship is important for developing effective O3 278 

control strategies (Blanchard, 2000; Hidy, 2000; Li et al., 2019; Lu et al., 2018). Here we explore 279 

the O3-NOx relationship for each city by analysis of the monthly averaged O3 and NO2 280 

concentrations (as volume mixing ratios, i.e. converted to ppbv to retain the NO2-O3 photostationary 281 

steady state stoichiometry) across all 96 months during 2013-2020 (Fig. 2). Data for most of the 282 

cities (except Guangzhou and Shenzhen) showed clear negative correlation between O3 and NO2, 283 

suggesting that NOx reduction can lead to the increase of O3. According to the well-known titration 284 

reaction (NO + O3 → NO2 + O2), neglecting other processes an increase of 1 ppbv NO2 would lead 285 

to 1 ppbv consumption of O3, corresponding to a slope of －1 in the O3 vs. NO2 space. However, 286 

this slope value may vary due to the complex non-linearity of the O3-VOC-NOx chemistry, which 287 

provides an indicator of the O3 formation chemistry (i.e., O3 formation is more or less sensitive to 288 

NOx reduction).  289 

As shown in Fig. 2, the regression slope indicates how O3 responses to the changes of NOx 290 

concentration for each city. Interestingly, it can be seen from observed category that the slope values 291 

showed significant regional differences with variations between cities. For example, the slope 292 

values for BTH region (Beijing-Tianjin-Hebei, Shijiazhuang is the capital of Hebei province) ranged 293 

from -1.42 to -1.36, while YRD region (Yangtze River Delta, including Shanghai, Hangzhou and 294 

Nanjing) ranged from -1.09 to -0.08. By contrast, data from the PRD region (Pearl River Delta, 295 

including Guangzhou and Shenzhen) did not show any clear negative relationship between O3 and 296 

NO2 (with slope of ~0). The above information is indicative of regional differences in O3-precursor 297 

relationship. Here we further assume that the slope value of -1 as the threshold, with values 298 

significantly above or less than -1 as more or less sensitive to NOx reduction respectively. In 299 

addition, we compare our fitted slope values in O3-NO2 space with the O3 formation regime 300 

identified from HCHO/NO2 ratios in Li et al. (2021) for the three key regions. As shown in Table 301 

S4, these results are overall consistent, which further demonstrates that O3 formation in PRD is more 302 

sensitive to NOx reduction, while O3 formation in other regions is less sensitive to NOx reduction. 303 

Note that the above O3-precursor relationship derived from the fitted slope value in the O3 vs. NO2 304 

space is qualitative as a relative concept, and further detailed evaluation using a quantitative method 305 

(e.g. chemical transport model) is still needed. 306 

Compared with the observed concentrations, the overall range in deweathered concentrations 307 

for O3 and NO2 are narrowed, suggesting that extreme conditions due to meteorology have been 308 

removed. Note that almost all the cities showed slightly decreased slopes (O3 vs NOx) with 309 
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improved R2 after weather normalization, which implies a trend of O3-precursor relationship 310 

towards less NOx sensitive condition. This suggests that using deweathered data more clearly 311 

demonstrates the need for VOC reductions – and the limitations of NOx-reductions alone – in 312 

reducing regional O3 concentrations. The detailed reason for this phenomenon is unclear. However, 313 

it implies that the VOC emission reduction should play a more important role for O3 pollution 314 

mitigation in most cities if the meteorological influence is considered. 315 

3.3 Evaluating the effectiveness of two national clean air actions 316 

3.3.1 First clean air action (2013-2017) 317 

A series of policy, control measures and action plans were proposed for the first clean air action, 318 

with a particular focus on Beijing–Tianjin–Hebei, Yangtze River Delta, and Pearl River Delta 319 

regions, attempting to reduce PM2.5 by 25%, 20%, and 15%, respectively. Table S5 summarized the 320 

main mitigation measures that implemented in China and other key regions during the clean air 321 

actions (Zhang et al., 2019; Zheng et al., 2018). Generally, these measures are overall similar among 322 

different regions, while there are some region-specific measures according to the differences in 323 

energy utilization and industry distribution for each region. According to the recent emission 324 

inventory (Zhang et al., 2019), China’s anthropogenic emissions have been decreased by 59% for 325 

SO2, 21% for NOx, 23% for CO, 36% for PM10, and 33% for PM2.5 during 2013–2017. To evaluate 326 

the effectiveness of the first clean air action, we summarized the results from the 12 mega-cities as 327 

derived from observations before and after weather normalization, as shown in Fig. S8 and Table 1. 328 

It is evident that the first clean air action period shows significant reductions in PM2.5 329 

concentration, with both observed and deweathered PM2.5 concentrations reducing by 34% on 330 

average the 12 mega-cities. The reductions indicated the effectiveness of mitigation efforts, such as 331 

strengthening industrial emission standards and replacing residential coal with electricity and 332 

natural gas (Zheng et al., 2018). The reduction percentages of PM2.5 in Beijing and Shijiazhuang 333 

reduced greatly after weather normalization, suggesting that meteorological conditions made a 334 

positive and significant contribution in reducing PM2.5 in Beijing and Shijiazhuang over this time 335 

period (see Table 1), while anthropogenic effects (i.e. impacts of emissions) did not reduce as much 336 

as the observations suggested (Li et al., 2020). In contrast, meteorological conditions made a 337 

negative contribution in suppressing reductions in PM2.5 in Shanghai, Hangzhou, Wuhan and 338 

Chengdu, as the magnitudes of reduction increased after weather normalization, which is consistent 339 

with the conclusion of Xiao et al. (2021).  340 

Although all the 12 mega-cities showed a downward trend in observed PM10 from 2013 to 341 

2017, the magnitudes of the reduction varied widely (0.8%~45%) among different cities and were 342 

lower than PM2.5 in average (25% vs. 34%). This may partly be attributed to the greater importance 343 

of natural primary emission sources to PM10, including dust storms from the desert areas in north 344 

and northwest of China (Li et al., 2017). The rates of reduction in deweathered PM10 in Tianjin, 345 

Guangzhou, Wuhan and Chongqing were larger than the observed, while Beijing and Lanzhou 346 

showed the opposite characteristic. This indicates that the meteorological conditions made a 347 

negative contribution in suppressing reductions in PM10 in Tianjin, Guangzhou, Wuhan and 348 

Chongqing, and a positive contribution in amplifying reductions in Beijing and Lanzhou. In general, 349 



10 

 

the influences on PM10 from meteorological conditions are limited compared with anthropogenic 350 

emission reduction. 351 

SO2 is mainly emitted from the coal-fired source, and the reductions in SO2 concentration are 352 

in line with the coal-fired emission control measures (Li et al., 2020). All the 12 cities showed an 353 

obvious reduction in observed SO2 from 2013 to 2017, which suggests that a remarkable SO2 354 

emission reduction was achieved in the first clean air action period, as all the 12 cities showed an 355 

obvious reduction in observed SO2 from 2013 to 2017, and this is mainly due to the policy measures 356 

in phasing out of coal-fired boilers (Zheng et al., 2018). The reduction magnitudes of the observed 357 

SO2 ranged from 27% (Shenzhen) to 70% (Beijing), with an average of 56%. All the 12 mega-cities 358 

showed very similar values (difference within 4%; see Table 1 and Fig. 3) between deweathered and 359 

observed SO2 reduction magnitudes over 2013-2017, which implies that the meteorological effects 360 

can be negligible in obscuring changes in SO2. 361 

Some cities (e.g. Tianjin, Shanghai, Guangzhou, Lanzhou and Chongqing) showed 2.7%~47% 362 

increases in observed NO2 from 2013 to 2017, while other cities showed 8.2%~18% reductions in 363 

the same period. The increase in observed NO2 in some cities is mainly due to the increased vehicle 364 

emissions, as indicated by the rapid increase of car ownership in recent years (Song et al., 2018). 365 

After weather normalization, the increases in NO2 in some cities (i.e. Tianjin, Shanghai and Lanzhou) 366 

were weakened and even reversed to become decreases (i.e. Guangzhou), while the magnitude of 367 

NO2 reduction in Nanjing and Wuhan were enlarged. This suggests that the meteorological 368 

conditions made a negative contribution in obscuring NO2 reductions in these cities. The 369 

effectiveness in reducing deweathered NO2 was inferior to that of SO2, which implies that the NOx 370 

from vehicle emissions were not as effectively controlled, as NOx emissions were from both coal-371 

fired power plants and vehicle sources (Meng et al., 2018). Therefore, more effective control 372 

measures on vehicle emissions are needed (Lin et al., 2021). 373 

As for O3, most of the mega-cities (10 out of 12, except Guangzhou and Wuhan) showed an 374 

increase of observed O3 from 2013 to 2017 with a range from 14% to 60%. After the weather 375 

normalization, the increase magnitudes of O3 in Beijing, Tianjin and Shijiazhuang were lowered, 376 

suggesting that the increase of observed O3 in these cities was partly due to the negative contribution 377 

of meteorological influence. As many previous studies have suggested that VOC-limited O3 378 

formation regimes dominate the urban areas of China (Ding et al., 2013), the decline in the NOx 379 

emission during the first clean air action can be regarded as a significant contributor to increasing 380 

O3 concentration (Lin et al., 2021; Sun et al., 2019). Therefore, we believe that meteorology played 381 

an important but not dominant role in increasing the observed O3 concentrations, consistent with 382 

previous studies (Chen et al., 2020a). 383 

Most of the mega-cities (8 out of 12) showed 2.6%~31% reductions in observed CO from 2013 384 

to 2017. By contrast, Shanghai, Nanjing, Lanzhou and Chongqing showed increases in observed 385 

CO from 1.6% to 29%. After weather normalization, the increases in CO were significantly 386 

weakened (i.e. Lanzhou) or even reversed (i.e. Shanghai and Nanjing). This suggests that 387 

meteorological conditions made a negative contribution in obscuring CO reductions in these cities. 388 

In general, the effectiveness in reducing CO varied in different cities, demonstrating that policy 389 

effectiveness in some cities (i.e. Lanzhou) should be improved. The different trend of CO and NO2 390 

may be partly due to the limited implementation of emission reduction measures in Lanzhou, as 391 

Lanzhou is an underdeveloping mega-city in the northwest of China with the lowest GDP among 392 

the 12 cities (see Table S1). In addition, the unique valley topography in Lanzhou is not conducive 393 
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to the diffusion of air pollutants (Chen et al., 2020b), which may frequently offset the emission 394 

reduction efforts. 395 

3.3.2 Second clean air action (2018-2020)   396 

Continuing the efforts of first clean air action, the second clean air action (2018-2020) aimed 397 

to significantly reduce the total emission of major air pollutants, comparing with the base year of 398 

2015 (Li et al., 2020). The concentrations and changes between 2015 to 2020 from 12 mega-cities 399 

before and after weather normalization are illustrated in Fig. S8. In addition, we also summarized 400 

the relative changes (%) of six criteria pollutants during 2015-2020 and 2018-2020 in Table 1. 401 

From 2015 to 2020, 12 mega-cities have achieved significant reductions in observed PM2.5 402 

concentrations, ranging from 27% (Lanzhou) to 52% (Beijing) with an average of 39%. After the 403 

weather normalization, the reductions in deweathered PM2.5 concentrations ranged from 20% to 43% 404 

(with an average of 36%). The reductions in deweathered PM2.5 were significantly lower compared 405 

to the reduction in the observed PM2.5 in Beijing, Shenzhen and Lanzhou, suggesting that 406 

meteorological conditions made a positive and significant contribution in enhancing reductions in 407 

PM2.5 in these cities during time period of the second clean air action. By contrast, meteorological 408 

conditions made a negative contribution in PM2.5 reduction at Shijiazhuang, as the magnitude of 409 

reduction increased after weather normalization.  410 

Compared with the base year of 2015, all the 12 cities showed an obvious downward trend of 411 

observed PM10 in 2020, and the reduction ranged from 27% (Guangzhou and Lanzhou) to 47% 412 

(Beijing). After the weather normalization, the magnitude of reduction ranged from 17% (Lanzhou) 413 

to 45% (Wuhan). The downward trends for PM10 in Beijing, Shanghai, Nanjing, Shenzhen and 414 

Lanzhou were weakened greatly, indicating that meteorological conditions made a positive 415 

contribution in the control of PM10 in these cities, amplifying the effect of emissions changes.  416 

Among the 12 mega-cities, only Lanzhou showed an increase (0.6%) in observed NO2 from 417 

2015 to 2020, while the other 11 cities showed reductions with magnitudes ranging from 4.6% 418 

(Tianjin) to 39% (Beijing). After the weather normalization, the increase of NO2 in Lanzhou was 419 

enlarged from 0.6% to 6.8%, indicating the inadequate effort of NOx reduction policies at this 420 

location. As shown in Fig. S8 and Table 1, compared to the observed concentrations, the reductions 421 

in deweathered NO2 in Tianjin and Shanghai were enlarged greatly, suggesting a negative 422 

contribution of meteorological conditions in offsetting emission-change-driven NOx reductions in 423 

these cities.  424 

All the 12 mega-cities showed an obvious decrease in SO2 from 2015 to 2020, and the 425 

reductions of observed SO2 ranged from 27% to 75%, with 9 cities (except Guangzhou, Shenzhen 426 

and Lanzhou) higher than 50%. The SO2 reduction magnitudes in Beijing, Nanjing and Lanzhou 427 

were lowered greatly after the weather normalization, suggesting that the meteorological conditions 428 

made a positive contribution in amplifying the reduction of SO2 in these cities.  429 

8 cities (except Shanghai, Hangzhou, Shenzhen and Chengdu) showed an obvious increase of 430 

observed O3 from 2015 to 2020, with the increase ranging from 6.6% to 39%. After weather 431 

normalization, only Hangzhou still showed a decrease in O3 from 2015 to 2020, with magnitude 432 

change of only 1.4%. The downtrends in Shijiazhuang and Lanzhou were weakened, which means 433 

that meteorological conditions made a negative contribution in the suppressing reduction of O3 in 434 

these cities. The performance of different cities varied widely when compared with the first clean 435 
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air action. It shows that some cities have made significant improvements in O3 control during the 436 

second clean air action, while O3 control is still a serious challenge for all these cities and further 437 

efforts are needed. 438 

All the 12 cities showed obvious decrease in observed CO from 2015 to 2020, implying the 439 

remarkable emission reduction achieved through the second clean air action. The reductions of 440 

observed CO ranged from 19% (Hangzhou) to 50% (Beijing), with an average of 29%. By contrast, 441 

the reductions of deweathered CO ranged from 16% (Wuhan) to 43% (Beijing), with an average of 442 

27%. The reductions of CO in Beijing, Lanzhou and Wuhan were weakened greatly after weather 443 

normalization, suggesting that meteorological conditions made a positive contribution in amplifying 444 

effects of the control of CO in these cities.  445 

Here we also compare the overall reduction effectiveness from the average of 12 cities for both 446 

clean air actions, with the periods of 2013-2017 and 2018-2020. As shown in Table 1, both periods 447 

maintained similar reduction strength for PM2.5, PM10 and SO2. Interestingly, it seems that the 448 

second clean air action made greater efforts in reducing NOx and CO, which may explain the slight 449 

decrease of observed O3 during 2018-2020. This implies that the increasing trend severe O3 450 

pollution can be mitigated through continuous emission reduction. 451 

We further summarize the difference between the observed and deweathered relative changes 452 

(from values shown in Table 1 and Fig. S8) for each city and six criteria pollutants. A positive value 453 

of these difference can indicate the negative contribution made by meteorological factors and vice 454 

versa. As shown in Table 1 and Fig. 3, a negative meteorological contribution was observed in most 455 

of the cities during the first clean air action, while most of the cities were tended to show a positive 456 

meteorological contribution during the second clean air action. However, the difference between the 457 

observed and deweathered relative changes are mostly below 5%, which suggests that the 458 

enhancement or reduction effect of meteorological are overall not significant for each city and six 459 

criteria pollutants. This demonstrates that the efforts from emission reduction remain the major 460 

driving force for the concentration changes of pollutants. We believe that these positive or negative 461 

contributions may be related to many factors, such as the periodic fluctuations in climate and the 462 

specific weather characteristics at each city, which still needs further investigation for more detailed 463 

explanation. Among the 12 mega-cites, only Beijing showed a positive meteorological contribution 464 

in reducing the main pollutants except O3 during both the first and second clean air actions. This 465 

suggests that the improvement of air quality in Beijing was contributed from both emissions 466 

reductions of the two clean air actions and favorable meteorological conditions at the same period. 467 

4.Conclusion 468 

In this study, we employed the RF machine learning technique to decouple meteorological 469 

factors impacting ambient air quality data for 12 Chinese mega-cities during the period 2013-2020, 470 

in order to extract the real changes of air quality from large-scale emission reductions in recent years. 471 

With the exception of O3, the observed concentrations of all the criteria pollutants showed 472 

significant reduction from 2013 to 2020, with an annual rate of decline for PM2.5 in most cities of 473 

6-8%, while O3 showed an annual rate of increase of 1-9%. Compared with the observed results, all 474 

the pollutants showed smoothed but similar trends and rates of decline after weather normalization. 475 

We further quantify the extent to which these six criteria pollutants that are affected by 476 
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meteorological conditions, and the results show that PM2.5, PM10, SO2 and CO in Beijing are most 477 

sensitive to meteorology among the 12 mega-cities. By contrast, the responses of NO2 and O3 to 478 

meteorology did not show significant city-to-city difference. Significant regional differences of 479 

ozone formation chemistry were qualitatively determined through the fitted slopes in the O3 vs. NO2 480 

spaces. Specifically, the O3 formation in Pearl River Delta (PRD) region is more sensitive to NOx 481 

reduction, while O3 formation in other regions is less sensitive to NOx reduction. The deweathered 482 

results emphasize the importance of VOC emission reductions in O3 pollution mitigation in most 483 

cities if the meteorological influence is removed. 484 

We further evaluate the effectiveness of first and second clean air actions by removing the 485 

meteorological influence. We find that both first and second clean air actions reduced most of the 486 

pollutants significantly, excepting the increase of O3. However, meteorology can play negative or 487 

positive role by suppressing or amplifying changes due to emission controls respectively, which 488 

ranges from -9% to 16% depending on specific conditions, such as the type of pollutants, locations, 489 

and time period. For example, a negative meteorological contribution was observed in most of the 490 

cities during the first clean air action, while most of the cities were tended to show a positive 491 

meteorological contribution during the second clean air action. Among the 12 mega-cites, only 492 

Beijing showed a positive meteorological contribution in reducing the main pollutants except O3 493 

during both the first and second clean air actions. Considering the significant scope for 494 

meteorological effects to change air quality, and obscure the effectiveness of policy actions, we 495 

suggest that such deweathered analyses are routinely undertaken on a regional basis. 496 
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 646 

Figure. 1 The normalized trend (observed and RF modelled) of the six criteria pollutants in the 12 647 

mega-cities from 2013 to 2020. Inserts show the overall mean annual change rates from 2013-648 

2020. 649 
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 650 

Figure. 2 The monthly averaged O3 vs. NO2 (observed and RF modelled) from 96 months 651 

between 2013 to 2020 for 12 mega-cities  652 

 653 

 654 



19 

 

 655 

Figure. 3 The difference between the observed and deweathered relative changes (as shown in 656 

Figure S8) of the six criteria pollutants in 12 mega-cities. The statistic metric mean bias (MB) in 657 

Table S3 was employed as the uncertainty error of RF model. 658 

 659 



20 

 

Table 1. The relative changes (%) of six criteria pollutants from 2013 to 2017, 2015 to 2020, and 660 

2018 to 2020 in 12 mega-cities. 661 

 Observed concentration Deweathered concentration 

PM2.5 PM10 NO2 SO2 O3 CO PM2.5 PM10 NO2 SO2 O3 CO 

Beijing 

2013-2017 -33 -20 -17 -70 14 -31 -27 -15 -10 -66 1 -24 

2015-2020 -52 -47 -39 -71 6.6 -50 -41 -39 -36 -65 7.2 -43 

2018-2020 -23 -30 -26 -35 1.3 -22 -19 -28 -25 -25 3.2 -21 

Tianjin 

2013-2017 -27 -8.9 23 -60 37 -2.6 -26 -12 17 -52 24 -8 

2015-2020 -31 -42 -4.6 -70 39 -34 -31 -42 -15 -68 38 -34 

2018-2020 -3 -21 -21 -54 9.5 -28 -9.4 -23 -25 -52 11 -31 

Shijiazhuang 

2013-2017 -41 -45 -18 -62 37 -20 -36 -44 -17 -63 24 -18 

2015-2020 -33 -30 -15 -75 31 -32 -37 -32 -14 -71 26 -32 

2018-2020 -17 -21 -7.4 -40 -5.2 -18 -21 -22 -6.6 -31 -0.8 -20 

Shanghai 

2013-2017 -33 -0.8 19 -41 45 4.3 -37 -0.02 8.4 -30 42 -0.6 

2015-2020 -41 -44 -18 -61 -5.1 -23 -38 -38 -24 -57 4 -21 

2018-2020 -11 -21 -8.3 -31 -3.5 1.3 -11 -19 -20 -26 4 -2.9 

Nanjing 

2013-2017 -42 -36 -8.2 -53 48 4 -45 -38 -14 -54 46 -2.1 

2015-2020 -44 -42 -28 -63 11 -20 -40 -36 -25 -58 12 -20 

2018-2020 -26 -27 -15 -29 1.7 7.8 -21 -21 -14 -24 6.6 4.7 

Hangzhou 

2013-2017 -28 -17 -11 -57 26 -6.2 -33 -17 -14 -58 22 -12 

2015-2020 -45 -32 -15 -61 -4.4 -19 -43 -31 -15 -60 -1.4 -17 

2018-2020 -21 -16 -2.8 -34 -4.5 -17 -20 -15 -5.2 -32 1.2 -17 

Guangzhou 

2013-2017 -29 -0.8 2.7 -43 -10 -8.7 -32 -4.4 -5.3 -44 -17 -10 

2015-2020 -40 -27 -18 -42 25 -22 -36 -23 -15 -40 22 -20 

2018-2020 -32 -18 -21 -24 5.8 -4.1 -29 -18 -19 -24 5.8 -2.5 

Shenzhen 

2013-2017 -25 -15 -15 -27 23 -31 -24 -15 -18 -26 25 -30 

2015-2020 -34 -29 -31 -27 -0.1 -33 -25 -18 -29 -23 11 -31 

2018-2020 -29 -21 -22 -15 -9.1 -8.8 -22 -14 -17 -14 -1 -7 

Lanzhou 

2013-2017 -32 -16 47 -40 60 29 -29 -8.5 38 -41 61 14 

2015-2020 -27 -27 0.6 -24 25 -28 -20 -17 6.8 -14 18 -21 

2018-2020 -18 -28 3.2 -15 -3.1 -3.8 -12 -21 5.3 -6.2 -9 0 

Wuhan 

2013-2017 -39 -25 -13 -70 -5.6 -4.7 -45 -31 -18 -71 2.4 -12 

2015-2020 -46 -45 -25 -54 7.4 -21 -43 -45 -27 -52 12 -16 

2018-2020 -20 -23 -16 -1.6 3.5 -12 -19 -23 -18 1 9.8 -11 

Chengdu 

2013-2017 -37 -38 -10 -57 15 -17 -39 -37 -9.7 -54 26 -21 

2015-2020 -33 -38 -25 -62 -1.9 -32 -34 -38 -27 -61 2.2 -34 

2018-2020 -16 -19 -14 -34 -11 -15 -13 -17 -17 -32 -7.1 -13 

Chongqing 

2013-2017 -24 -17 39 -64 18 1.6 -30 -22 32 -64 22 -2.2 

2015-2020 -39 -37 -10 -51 14 -27 38 -34 -7.7 -48 13 -26 

2018-2020 -14 -14 -6.9 -9.6 -7.8 -11 -14 -14 -6.9 -7.7 1 -10 

Average in 12 cities 

2013-2017 -34 -25 0 -56 24 -9 -34 -25 -3.4 -56 21 -11 

2015-2020 -39 -37 -19 -59 11 -29 -36 -34 -19 -55 13 -27 

2018-2020 -19 -22 -13 -29 -1.9 -12 -17 -20 -14 -25 2.1 -12 
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